

# BIRZEIT UNIVERSITY Physics Department

## Physics 111

### **Experiment No. 1**

# Density of a metal and distance between atoms Student's Name:\_\_\_\_\_\_ Student's No.: \_\_\_\_\_\_ Partner's Name:\_\_\_\_\_\_ Partners' No. : \_\_\_\_\_\_ Instructor: \_\_\_\_\_\_ Section No.: \_\_\_\_\_\_

| 1) The aim of the experiment: |
|-------------------------------|
| 2) The method used:           |
|                               |
| 3) The main results are:      |
| $\rho = \pm$                  |
| Spacing between atoms (a) =   |
| – Theory:                     |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |

- Abstract:

| - Procedure: |
|--------------|
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
| - Data:      |

|                  | 1. | 2. | 3. | 4. | 5. | 6. | Average |
|------------------|----|----|----|----|----|----|---------|
| Length L<br>(cm) |    |    |    |    |    |    |         |
| Width W<br>(cm)  |    |    |    |    |    |    |         |
| Thickness T (cm) |    |    |    |    |    |    |         |

Mass (M) =  $\pm$ 

# - Calculation:

| $\overline{X}$ (cm) | $\sigma_{s}$ (cm) | $\sigma_{_m}$ (cm)      |
|---------------------|-------------------|-------------------------|
| $\overline{L} =$    | $\sigma_s(L) =$   | $\Delta \overline{L} =$ |
| $\overline{W} =$    | $\sigma_s(W) =$   | $\Delta \overline{W} =$ |
| $\overline{T} =$    | $\sigma_s(T) =$   | $\Delta \overline{T} =$ |

| $\overline{V} = \overline{L} \times \overline{W} \times \overline{T} =$                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\Delta \overline{V}}{\overline{V}} = \frac{\Delta \overline{L}}{\overline{L}} + \frac{\Delta \overline{W}}{\overline{W}} + \frac{\Delta \overline{T}}{\overline{T}} = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$ |
| $\Delta \overline{V} =$                                                                                                                                                                                                    |
| $\rho = \frac{M}{\overline{V}} = \dots$                                                                                                                                                                                    |
| $\frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} + \frac{\Delta \overline{V}}{\overline{V}} = \dots$                                                                                                                         |
| $\Delta \rho$ =                                                                                                                                                                                                            |
| $a = \sqrt[3]{\frac{A_w}{\rho \times N_A}} =$                                                                                                                                                                              |
| <ul><li>Results and Conclusion:</li></ul>                                                                                                                                                                                  |
| $\rho = \pm$                                                                                                                                                                                                               |
| Spacing between atoms (a) =                                                                                                                                                                                                |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |