Linear and Nonlinear Elements

Student's Name:	Student's No.:
Partner's Name:	Partner's No.:
Instructors Name:	Section No.:
Date:	

Carbon Re	esistor	Si Diode		Light bulb (low currents)		Light Bulb (high currents)	
V (Volts)	I (mA)	V (Volts)	I (mA)	V (Volts)	I (mA)	V (Volts)	I (mA)
0.4		0.4		0.010		0.5	
0.8		0.45		0.02		1.0	
1.2		0.50		0.03		1.5	
1.6		0.53		0.04		2.0	
2.0		0.55		0.05		2.5	
2.4		0.57		0.06		3.0	
2.8		0.60					
3.2		0.62					
3.6		0.64					
4.0		0.66					
4.4		0.68					
4.8		0.70					

Impedance Matching and Internal Resistance

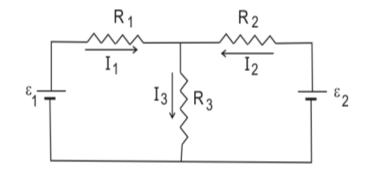
Student's Name:		Student's No.:				
Partner's Nan	ne:		Partner's No.:			
Instructors Na	ame:		Section No.:			
Date:						
	ltage 10 volts!					
$R_L(K\Omega)$	I(mA)	I ⁻¹ (mA) ⁻¹	I ² (mA) ²	$P_L = I^2 R_L (mW)$		
0.1						
0.3						
0.5						
0.7						
0.8						
0.85						
0.9						
0.95						
1.0						
1.05						
1.1						
1.2						
1.5						
2.0						
3.0						
5.0						
7.0						
10.0						
20.0						
50.0						

Room 253 – Network analysis 1: The SPP and Kirchhoff's law

Student's Name:	Student's No.:	
Partner's Name:	Partner's No.:	
Instructors Name:	Section No.:	
Date:		

1) Kirchhoff's Laws

Connect the circuit shown:

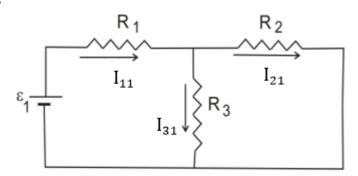

 $R1=1 \text{ k}\Omega$,

 $R2=3.3 \text{ k}\Omega$,

 $R3=6.2 \text{ k}\Omega$,

 $\epsilon 1 = 8 \text{ V},$

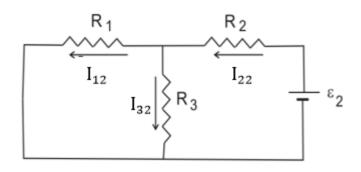
 $\varepsilon 2 = 4 \text{ V}.$



Measure the currents:

	experiment	calculation
I_1 (mA)		
$I_2(mA)$		
I ₃ (mA)		

2) **Superposition Principle**


A) Connect the circuit shown:

Measure the currents:

	experiment	calculation
$I_{11}(mA)$		
$I_{21}(mA)$		
I ₃₁ (mA)		

B) Connect the circuit shown:

Measure the currents:

	experiment	calculation
$I_{12}(mA)$		
I ₂₂ (mA)		
I ₃₂ (mA)		

C) Find the current using SPP $I_1 = I_2 = I_3 =$

Experiment 4 Room253–Network analysis 2: Theyenin and Norton technique

Student's Name:	· ·	and Norton technique		
Partner's Name:	Partner's No.:			
Instructors Name:	Section No.:			
Date:				
Connect the circuit shown: R1= 1 k Ω , R2= 3.3 k Ω , R3= 6.2 k Ω , ϵ 1= 8 V, ϵ 2= 4 V.	ϵ_1 I_3 R	R_2 I_2 I_2 I_2		
A) When I₁= I _L 1) Fill the following table:				
	experiment	calculation		
R _{eq1}				
$\epsilon_{ m eq1}$				
$I_{\rm eq1}$				
2) Construct Thevenin equi	valent circuit:			
	experiment	calculation		
I _{L1} (mA)				
3) Construct Norton equival	ent circuit			
	experiment	calculation		
I _{L1} (mA)				

B) When $I_3 = I_L$

1) Fill the following table:

<u> </u>		
	experiment	calculation
R _{eq3}		
$\epsilon_{ m eq3}$		
I _{eq3}		

2) Construct **Thevenin** equivalent circuit:

	experiment	calculation
I_{L3} (mA)		

3) Construct **Norton** equivalent circuit

	experiment	calculation
I_{L3} (mA)		

Experiment 5 Digital Storage Oscilloscope (DSO)

with the instructor

EXPERIMENT 6 CAPACITORS AND INDUCTORS

Student's Name: _____ Student's No.:____

Partner's Name:	Partner's Name: Par				urtner's No.:			
Instructors Name:		S	ection No.:	etion No.:				
Date:								
R= Part1: RC-circuit		C=	find best valu	d best value!			0mH	
	V_c on the DSO			S	how V_R on th	e DSO		
Draw what you see	e on the screen	of the DSO	Dr	aw what vo	ou see on the	screen of	the DSO	
			-					
			-					
Find $\tau_c =$	Find $\tau_d =$							
$\tau_{exp} =$			$ au_{theo} =$					
Part2: LR-circuit								
Show I	V_L on the DSO			S	how V_R on th	e DSO		
Draw what you see	on the screen	of the DSO	Dr	Draw what you see on the screen of the DSO				
			-					
Find $\tau_c =$	Find $\tau_d =$	1						
1 ma t c —	I ma ta							
$\tau_{exp} =$			$\tau_{theo} =$					

Part 3: LC-circuit

	Show V_c on the DSO							
Draw what you	Draw what you see on the screen of the DSO							
Resonance	$f_{^{\circ}exp} =$			ω_{exp}	=			
frequency	$f_{^{\circ}theo} =$				$\omega_{\circ}{}_{theo} =$			

Damped Oscillations

Student's Name:	Student's No.:				
Partner's Name:	Partner's No.:				
Instructors Name:	Section No.:				
Date:					
C = find best value!	L = 10 mH	f = (300 - 1000) Hz			
-Data:					
Part (1): Critical-Damp	ing				

			9	Show V	on the DS	Ю			
	1	I	Draw what	t you see	on the screen	of the DSC)	i	
								ļ	
$R_{Critical} =$				$\delta_{C,Theo} =$					
$t_{\frac{1}{2}exp} =$					$\delta_{C,Exp} =$				

Part (2):Over-Damping

			S	Show V ₀	on the DS	SO			
			Draw what	you see	on the screen	of the DSC)	1	
R _{Over} =	$R_{Over} = \delta_{C,Theo} =$								
$t_{\frac{1}{2}exp} =$				$\delta_{C,Theo} = $ $\delta_{C,Exp} = $					

Part (3):Under-Damping

	Show V _C on the DSO								
Draw what you see on the screen of the DSO									
$R_{under} =$	R _{under} =			$t_{\frac{1}{2}\text{theo}} =$					
$t_{\frac{1}{2}\exp} = \delta_{C,\exp} = \delta_{C,\exp}$			$\delta_{C,Theo} =$						
$\delta_{C,exp} =$									
$f'_{exp} =$	$f'_{exp} =$				f' _{theo} =				

EXPERIMENT 8

Impedance and Reactance

Student's Name:	Student's No.:	Student's No.:			
Partner's Name:	Partner's No.:	Partner's No.:			
Instructors Name:	Section No.:	Section No.:			
Date:					
C = 0.1µF	L= 10 mH	R=1 kΩ			

Frequancy (KHz)	Δt	Ω =2πf	Φ = ωΔt
rrequality (KHZ)	Δι	12 –2/(1	Ψ = ωΔι
0.1			
0.3			
0.5			
0.7			
1.0			
3.0			
4.0			
4.5			
4.8			
5.0			
5.2			
5.5			
7			
20			
50.0			
70.0			
100.0			

Resonance

Student's Name:	S	Student's No.:
Partner's Name:	P	Partner's No.:
Instructors Name:	Se	ection No.:
Date:		
L=10mH;	C=0.1μF;	$R=1k\Omega$

		c-σ.τμι,			
	R = 1K	Ω	$R = 2K\Omega$	Ω	
f(kHz)	$V_0(volt)$	$I_0(mA)$	$V_0(volt)$	$I_0(mA)$	
0.2					
0.3					
0.5					
0.6					
0.8					
1.0					
2.0					
3.0					
4.0					
4.5					
5.0					
5.5					
7.0					
10.0					
20.0					
50.0					
80.0					

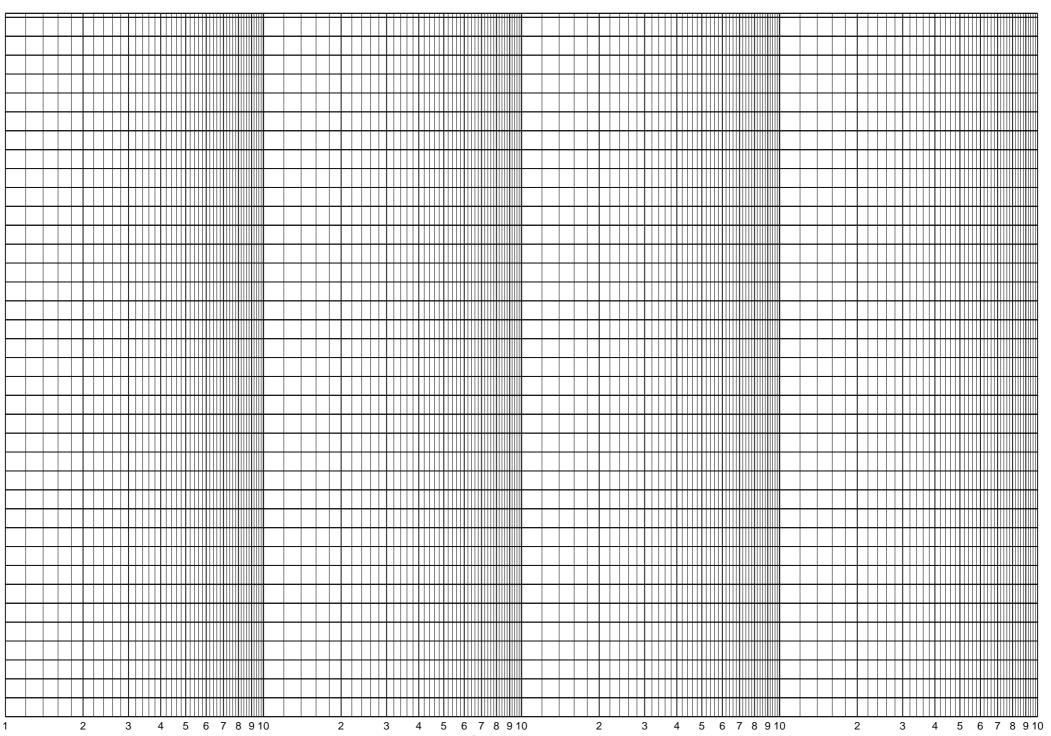
Filters

Student's Name:	Studer	nt's No.:				
Partner's Name:	Partner	r's No.:				
Instructors Name:		_ Section No.:				
Date:						
$R = 1 k\Omega$	C = 0.1uF	$V_{in_{rms}} = 4 \text{ Volt}$				

	Low-pass	s filter	High-pass filter		
ω (rad/sec)	V _{0 Out} (Volt)	A	V _{0 Out} (Volt)	A	
1256					
1884					
3140					
3768					
5024					
6280					
7536					
9420					
11304					
12560					
18840					
31400					
50240					
62800					

-Data:

T	Low-pass filter acts as integrator when $\omega \gg \omega_{-3dB}$	High-pass filter acts as differentiator when $\omega \ll \omega_{-3dB}$
Туре	Sub-Sub-	- Sub
Square wave		
Saw wave		
Sine wave		


Results and Calculations:

Graphs:

• Plot A vs.ω curve for both filters on semi-log graph paper.

Analysis of results:

- 1. What is the value of ω_{-3dB} for both filters from A vs. ω curve?
- 2. What is the phase relation between the input and the output voltages in both the unattenuated and the highly attenuated regions for both filters?
- 3. Prove that the wave functions obtained in table (2) are the derivatives (in the case of high pass filter) and the integrals (in the case of low pass filter) of the respective of input voltage.
- 4. Compare between theoretical and experimental values of ω_{-3dB} .

