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INTRODUCTION 
 

THEORY OF ERROR ANALYSIS 

AND THE NATURE OF EXPERIMENTATION 
 
 
 

Students often complain that physics experiments simply don't work, at least as far as they are 
concerned. They consider textbook results as sacred because they have supposedly been determined by 
scientists. Such misconception can be avoided by careful understanding of the nature of experimental 
physics with sufficient insight into the theory of errors. 
 

But first, few rules: 

• The result of an experiment must be written as the example shows for a recent determination of 
the velocity of light: 

C = (2.997923 ± 0.000008) x 1010 cm s-1 

The first number, 2.997923 x 1010 gives the best estimate of the true value of the velocity of light. 
0.000008 x 1010 reflects the reliability with which that value has been determined. This is an 
example of a computed experimental value, a type that we shall come to later. 

• When the problem is as simple as doing a single measurement with a certain device, like measuring 
a length with a regular rule, one must be careful with the last significant figure that he writes. This 
may be a fraction of the smallest division on the ruler, or scale depending on the physical situation. 

• When doing many experiments, one often discards unreliable data (there exists rules for doing that) 
and takes the average of the rest. And since results of experiments of different types have different 
uncertainties, they must be given different weights. Above all there are the errors of human 
judgment. The results of experiments are, in the final analysis, matters of opinion although rules 
exist. The word error used here does not mean mistake. Some people prefer uncertainty or 
discrepancy, but we shall stick to the general trend in the literature of using error, keeping in mind 
that it does not mean that the result is wrong. 

• Care should be taken here not to consider textbook values as true or exact. There does not exist 
such a thing as a true or exact value in experimental science. 

• One way of classifying errors is to sort them into systematic and random errors. When repeated 
measurements of a given value don't agree exactly, deviations from the "best estimate of the true 
value" are as a result different. This is the case of random errors. When, on the other hand, 
individual values differ by the same constant, they are systematic. 

• Examples of systematic errors are : 

1. Errors of instrument calibration. 
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2. Errors like the ones caused by the habit of always looking from a slanted perspective onto 
a galvanometer needle.  

3. Experimental conditions might be set up to introduce a systematic error.  

4. Imperfect techniques, like allowing fluid to leak out of a vessel in a fluid flow experiment 
at a constant rate.  

• Examples of random errors are :   

1. Errors of judgment like the case when one has to estimate a smallest division in a given 
instrument.  

2. Small disturbances like mechanical fluctuations in an electrical instrument. 

3. Definition of the measured quantity is often difficult. A simple example is a measurement 
of the length of a table.  

• Another type of error is totally illegitimate and is called by that name. Examples of this are the 
blunders. These are outright mistakes in reading, adjusting or calculating. Errors of computation 
like using an instrument with less significance than sufficient is of this type. However, when the 
effect of disturbances becomes far beyond random discrepancies, it is called chaotic .If it gives a 
totally illogical result it is called a wild error. Errors of this type which are surely illegitimate can't 
be incorporated in the results and are to be corrected for right from the start.  

• Errors can also be classified according to whether they are determinate or indeterminate. 
Determinate errors are those which can be evaluated by some logical procedure. They include 
random errors that can be calculated using the techniques mentioned below, and specific types of 
systematic errors that can be evaluated.  

 
Precision, Accuracy and Significant Figures: 

An experiment having small random errors is said to have high precision. Two devices may also 
differ in their precision. A micrometer, for example, is more precise than a millimeter ruler. 

An experiment that has, on the other hand, a small systematic error is said to have high accuracy. 
Devices also differ in accuracy. Two micrometers have the same precision but if one of them is broken, it 
will introduce a certain systematic error, and is less accurate than the other.  

The number of significant digits that one displays measurement in a certain or result must reflect its 
precision. It is, therefore, in order here to present the rules for treating significant figures:  

• The leftmost non-zero digit is the most significant digit. 

•  If there is no decimal point, then the right most non-zero digit is the least significant 
digit. 

•  If there is a decimal point, then the rightmost digit is the least significant digit, even if it is 
zero. 



3 
 

•  All digits between the least and most significant digits are counted as significant digits.  

Example:  
1,234; 123,400, 1,001; 1,000; 10.10; 0.0001010; 100.0 are numbers that have four significant figures. But 
1010 has three significant figures. If it is to have four significant figures it must be written as l,010. or 
1.010 x 103 .  

When performing a calculation, the result has the significance of that number involved which has the 
least significance.  

 
Single Measurement Experiments 

  Suppose that one can repeat a certain experiment and he gets different values for a certain 
physical measurement. Which one of those values must be taken as the true value?  

As mentioned before, one can never arrive at the true or exact value. To do so he must repeat the 
experiment an infinite number of times. For a finite number of measurements N, one can say that he 
obtains a best estimate of the true value. This is taken to be the arithmetic average of the set of 
measurements: 

 

 
This is taken as the best value because the sum of the squares of the deviation of individual measurements 
about this average is a minimum: 
 

 

To find the value of   that makes  a minimum we take the deviation and equate to zero:  

 

 

 

This gives as claimed. 

The average value of these square deviations is also of importance: 
 

 

It is called the standard deviation or the root mean square (rms) deviation. 
 
When N = 1, = 0 and, thus, is of no help. We, therefore, define: 
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For large values of N, s is only slightly different from s'. Using s, nevertheless, does not allow 
one to do statistics with one measurement. s is called the sample standard deviation and its physical 
significance is that it gives the uncertainty in the individual measurements about their average. The 
uncertainty in the average itself shrinks with increasing number of measurements. It is called the 
standard deviation of the mean σM and is defined as:  
 

(1)      

 
A single measurement experiment is best analyzed by drawing a frequency histogram. (see111manual). 
 
Propagation of errors 

 
Not all physical quantities are directly measured. Some of them, like the above example of the 

speed of light, are computed. Errors are propagated in the sense that any discrepancy in the measured 
values will appear as a discrepancy in the computed one. 
The general relation is as follows: 
 
let f be computed from the measured values x1, x2,..., xN or, f = f (x1, x2,..., xN).  From calculus one has: 

 

 

 
Since errors are vectorial in nature, i.e. a discrepancy in one quantity might cause an effect which 

is opposite to the one caused by another, one takes an average direction and Δf is defined as:   
 

 

 
Example: 
The volume of a parallel piped is measured by measuring x, y, and z its three dimensions x, y, and z:  
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Equation (2) is a general relationship that holds for all functions, some of the more important special 
cases are summarized below: 
 

• If   f  = axyz, or     f = axy/z,   “a”  being a constant, then:  
 

 

 
• If   f = axey mz n,  then: 
 

 

 
• If   f = ax ± by ± cz,  then:  

 
 

 

 
 

 
 
 
References: 
 
Physics 1l1 Laboratory Manual. 
 
Beers, Y. Introduction to the Theory of Error. Addison Wesely, 1957. 
 
Bevington,  P. Data Reduction and Error Analysis for the Physical Sciences. McGrawHill, 1969.  
 
Roberts, D. "Errors Discrepancies and the Nature of Physics", Physics Teacher,  March1983.  
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GENERAL REVIEW I 

 
DIRECT CURRENT CIRCUITS 

 
Introductory Concepts 
 
Current (1):  

The motion of electric charges constitutes 
an electric current. Specifically, the current is the 
time rate at which a charge (Q) passes through a 
given cross-sectional area of a conductor, so that:  
 

(1)     

 
 
 
 
 
Electric current is measured in Coulombs (C) per second; this unit is termed the Ampere (A). 
 
 
Voltage (V): 

The work required to move a unit charge from one point to another is called the electric potential 
difference (technically referred to as the voltage difference "V") between the two points. Symbolically, 
 

(2)         

 
  
where W stands for work and Q for charge. The unit of voltage is the volt defined by:  
 

 

 
Resistance(R) 

The resistance that each free electron encounters as a result of multiple collisions when moving 
through a conductor depends upon a material property called resistivity (ρ) in addition to the shape of the 
conductor, so that the resistance(R) of a wire L meters long and A squared meters in cross-sectional area 
( see fig (1)) is given by: 
 

 

 
The unit of resistance is the Ohm (Ω).  

dt
dQI =

,
Q
WV =

C
JVvolt
1
1)1(1 =

A
LR r=
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Question: Find the units of ρ.  
Ohm’s Law: 

In order to maintain a large current in a conductor, more energy, hence a greater potential difference 
is required than in the case of a small current in the same conductor, hence, the potential difference is 
directly proportional to the current. The constant of proportionality is just the resistance (R) of the 
conductor, or  
 
(3)      V = RI 
 
This equation is known as Ohm’s law. 
 
Joules Law: 

The kinetic energy of the electrons in a conductor, which results from acceleration by the electric 
field, is dissipated in inelastic collisions within the conductor. As a result, the conductor heats up In other 
words, the temperature of a conductor carrying a current must increase, at least slightly, and it is apparent 
that electric power is expended in sustaining a current through the conductor. The power (P) that must be 
supplied to the conductor to sustain the current is given by: 
 

 

Using equation (2) we get,  
 

 

Now, substituting for V using Ohm’s law, we get, 
 
(4)      P = I2R 

This equation is known as Joule's Law. The unit of power is the Watt ( J/s).  
 

 
Circuit Elements:  
 
I) Sources  

According to Joule's law, electric energy is 
dissipated in any conductor when it carries a current. 
Therefore, in order to maintain the current in any circuit, a 
source of electrical energy is required. Common sources of 
electrical power are ordinary batteries, voltage power 
supplies, and current sources.  
 

 
 
 
 
 
An ideal voltage source (a battery or a power supply) can maintain a constant voltage difference 

between its terminals regardless of the value of the load resistance in the circuit. Therefore, it offers no 
resistance to the current passing through it and is characterized by a zero internal resistance. On the other 

dt
dWP =

VI
dt
dQVP ==
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hand, an ideal current source can supply a constant current regardless of the value of the load resistance in 
its circuit. An ideal current source is characterized by an infinite internal resistance. However, ideal 
sources do not exist in reality; therefore, there are limits on the voltage and the current that both voltage 
and current sources can provide to circuits.  
 
2) Circuit components  

Electrical circuit’s components are the consumers of 
the power generated by the power supplies. Resistors are 
circuit elements that respond linearly to applied voltage 
differences across them. Therefore, resistors are called 
linear circuit elements. Linear circuit elements obey Ohm's 
law (V = RI) and are said to have linear I-V characteristics. 
Diodes and light bulbs are examples of non-linear circuit 
elements. Non-linear circuit elements do not obey Ohms law 
and are said to have non-linear I-V characteristics.  
 
3) Connecting wire  

In order to connect power supplies and circuit components in a closed electrical circuit, wire made 
of copper is used. Ideal connectors offer zero resistance to the current passing through them. In reality, 
however, wires possess a small resistance to the current passing through them.  
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EXPERIMENT 1 
 

LINEAR AND NON-LINEAR CIRCUIT COMPONENTS 

 
Theory  

The relation between the current passing through a 
circuit component and the voltage difference between its 
terminals is called the I-V characteristic of that component. 
Components that have straight line I-V characteristics are 
called linear components. The slope of the line that 
represents the I-V characteristics of a component is the 
value (l/resistance) of that component (see Fig(l)). Most 
resistors used in the laboratory are carbon resistors, which 
are essentially linear.  
 

 
Components that do not possess straight line I-V 

characteristics are called non-linear components. An 
example is a diode. A semiconducting diode, for instance, 
consists of two pieces, a p-type piece of a semicoducting* 
material and an n-type piece of the same material joined 
together. Diodes are two terminal components that allow 
current to pass through in one direction only; almost no 
current passes through in the other direction (parts of 
micro-amperes). Therefore, the way the diode is 
connected to a battery is crucial. When the p-type terminal 
of the diode is connected to the positive terminal of the 
battery, it allows current to pass through and the diode is 
said to be forward-biased. On the other hand, if the n-type terminal of the diode is connected to the positive 
terminal of the battery, it blocks the current so that a very small current flow through the circuit and the 
diode is said to be reverse-biased. 
  
The relation between the current (I) passing through a 
semiconducting diode and the potential difference (V) 
between its terminals usually has the following form (see 
Fig(3))  
 
(1)        I = I0 (eeV/kT-1),  
 
where I0 is called the saturation current, e is the electron 
charge, V is the applied voltage, k is the Boltzmann 
constant, and t is the temperature in Kelvin.. Therefore, 
a semiconducting diode has a variable resistance that 
depends on the value of the current passing through it.  
 
 
 
 
 
*Consult Serway's " Physics: with modern physics" for an elaborate discussion of semiconductors.  
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A light bulb is another example of a conducting material that possesses non-linear characteristics. 

The tungsten wire in a bulb converts electrical power to heat energy. Consequently, the wire glows and 
emits light. The resistivity, and thus the resistance of conducting material, depends on the temperature of 
that material according to  
 
(2)        R = R0 [1 + α(T-T0)], 
 
where R0 is the resistance at temperature T0 and α is the temperature coefficient of resistivity. Therefore, 
since the temperature of the tungsten increases by increasing the current passing through it, one expects 
the light bulb to have a non-linear I-V characteristic and a resistance that depends on the value of the 
current. 
 
Apparatus 
 
A DC. voltage source (6 volts), one carbon resistor (200Ω), two digital multimeters, connecting wire, a 
decade resistor box, a silicon diode and a light bulb. 
 
Procedure  
 
a) Connect the circuit shown in Fig(4). 
 
b) Use the resistor as your circuit element. Change the 
value of R (decade box resistance) and record about eight 
different values for the current and the corresponding 
voltage values. 
 
c) Repeat part (b) using a forward-biased diode as your 
circuit component. 
 
 
Warning: current passing through the diode should not exceed 30 mA in all measurements,  
 
d) Reverse bias your diode and check if it conducts or not. Register the current flowing in this case; this is 
I0 in equation (1). 
  
e) Repeat part (b) using the light bulb as your circuit component. 
 
Note: a high current (~100 mA) is needed to light the bulb. Watch the brightness. of the bulb to decide 

on the upper current limit (~300mA). Do not exceed this value during the experiment.  
 
Analysis of results  
 
a) Use your data to draw the I-V characteristic curves for the carbon resistor, the diode and the light bulb 
on a linear graph paper. Decide which component is linear.  
b) Using the I-V characteristic of the carbon resistor, find the value of the resistance and compare it with 
the value obtained from the color code (see appendix A).  
c) Draw tangent lines at two different points on the curve representing the IV characteristics of the forward-
biased diode, and find the value of the resistance at those points.  
d) Repeat part (c) for the tight bulb.  
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EXPERIMENT 2 
 

SOURCE INTERNAL RESISTANCE, LOADING PROBLEMS 

AND CIRCUIT IMPEDANCE MATCHING 

 
 
Theory 

A voltage source is characterized by its electromotive 
force (emf), which is the open circuit voltage difference between 
its terminals, see Fig(1a), and the maximum value of the current 
it can deliver to a short circuit. An ideal voltage source connected 
to a short circuit (R~0) should, according to Ohm's law (I=V/R), 
be able to provide an almost infinite current. In real circuits a 
voltage source connected to a short circuit can neither maintain its 
(emf) as a voltage difference across its terminals nor can it provide 
the circuit with unlimited current. Therefore, each real voltage 
source is assigned an internal resistance (rin). Fig(1b) gives a more 
realistic representation of a voltage source. It should be obvious 
that voltage sources with small internal resistances can maintain 
most of their emf as voltage differences between their terminals and provide circuits with higher current 
values than would the ones with high internal resistances.  
 

Voltage sources are used to provide useful electrical power to certain circuit components, such as 
electric motors and light bulbs. Any component which consumes electrical power to produce useful work 
is called a load and the resistance of such a component is called the load resistance (RL).  
 
 
Loading Problem  
The current passing through the simple series circuit of Fig(2) is  
 

(l)      

 
So, the voltage difference between the source terminals is 
  

(2)         

 
  

If then   and the source delivers most of its emf as a voltage difference across its 
terminals. On the other hand, if RL is comparable to rin then VRL, is smaller than ε, and hence, a 
considerable amount of power is consumed inside the source and converted to unuseful heat energy. In 
this case the source is said to be loaded. ln practical circuits we want to  avoid loading the source, therefore, 
choosing RL ≥ l0Rin is recommended 
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Impedance Matching (Maximum Power Transfer)  

In real circuits, power consumed in the load produces useful work. Therefore, we seek to consume 
the maximum available power there. In Fig(2) the power consumed in the load resistor is:  
 
(3)      P = I2RL 
 
  
Therefore,  
 

 (4)        

  
 
Equation (4) represents the power consumed in the load as 
a function of the load resistance itself. The function P(RL) 
has a maximum value which can be obtained by setting 

(see Fig( 3 ) ). 

 
This gives  

RL = rin 
 
as the condition for transferring maximum power to the 
load resistance. This choice of load resistance is called 
impedance matching.  
 

As the internal resistance of voltage sources is usually small (a few Ohms), in practical circuits an 
additional resistor is connected in series with the source as shown in Fig(4) in order to produce the 
maximum power transfer condition for large values of RL. While this additional resistance appears to RL 
as an additional internal resistance, it is seen by the source as an additional load resistance. Consequently, 
this resistance helps in avoiding loading problems and fulfilling the condition of impedance matching for 
large load values. The only disadvantage is that this additional resistance consumes part of the power 
delivered to the circuit by the source.  
 
If we apply conservation of energy to the circuit in Fig(4), 
we get  
 
(5)                            ε = Irin + IR + IRL 
  
Rearranging, we get  
 

(6)                       

 
 

A plot of  versus RL gives a straight line with  as its slope and  as its y-intercept.  
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If we apply the condition of maximum power transfer to the load resistance of the same circuit we get:  

 
RL = R + rin 

Efficiency  
A useful concept to use with power is that of efficiency (η). The efficiency of a component with impedance 
(resistance) RL operated from a source with internal resistance rin is the power dissipated in RL divided by 
the power dissipated in the circuit. Therefore,  
 

(7)      

 
Apparatus  
 
Voltage source (10volts), 1 KΩ resistor, digital multimeter, resistor decade box. 
 
Procedure  
 
a) Connect the circuit shown in Fig(5).  
.  
b) Change the value of the Load resistance (0-l MΩ) and 
record the value of the current each time. 
 
Note: take more data points around the value of RL which 
satisfies the maximum power transfer condition.  
 
Analysis of results  
a) Plot selected values of  and RL on a linear graph 

paper. Find the value of ε and rin.  
 
Hint: select a range that can be plotted on a single linear graph paper.  
 
b) Compute P(RL) and η(RL) for all values of I. (Use Lotus 123 or equivalent computer aid)  
 
c) On a Semi-log graph paper, plot both P(RL) and η(RL). From the graph; find the value of RL that satisfies 
the condition of maximum power transfer.  
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EXPERIMENT 3 
 

NETWORK ANALYSIS I 

THE SUPERPOSITION PRINCIPLE AND KIRCHHOFF’S 

LAW’S 

 
Theory 

Electric networks are circuits that include many elements such as resistors, voltage sources and 
current sources that are connected together in a rather complicated way. In such cases, applying Ohm's 
law and the simple parallel and series connection rules is of no practical help. Many circuit analysis 
techniques where developed in order to facilitate analyzing complicated networks. Kirchhoff’s laws and 
the superposition principle are such powerful techniques deduced from nature's most fundamental laws. 
 
 
Kirchhoff’s Laws  
 

I. Loop theorem: This theorem of energy is just the principle of conservation as applied to electric 
circuits. It states that. The algebraic sum of the voltage drops and electromotive forces (emf’s) in a 
closed electric circuit is always zero. In other words, the power generated by sources in a closed 
circuit is totally consumed by the circuit components. Symbolically,  

 
 

or, 
(1)                    

 
 

      where we have accounted for the opposite signs of voltage drops and emf 's.  
  

II. Junction theorem: This theorem is just the principle of conservation of charge applied to electric 
circuits. It states that. The algebraic sum of the currents passing through any circuit junction is 
always zero. Symbolically,  

 
      (2)         

 
     where the currents entering a junction have opposite signs to those leaving it.  

 
One way of finding the values of the currents passing through the different resistors in a circuit similar to 
the one shown in Fig(l) proceeds as follows:  
 

• Assign a current of arbitrary direction to each of the resistors in the circuit.  
• Apply Kirchhoff’s junction theorem to all independent junctions in the circuit.  
• Apply Kirchhoffs loop theorem to all independent circuit loops.  
• You should be able to produce as many independent equations as there are unknown currents.  
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Example: 
 
Applying the rules above to the circuit of Fig (l) gives the following: 
 
l- Two junctions exist, but both give the same equation. 
 

I1 - I2 – I3 = 0 
 
2- Three circuit loops exist, but only two independent 
could be equations formed (Note that the third large loop 
will result in an equation that is the sum of the two small 
loop equations). 

 
ε1 = I1 R1 +I3 R3 

 
   ε2 = -I2 R2 + I3 R3 

 
 
Solving these three linear equations with three unknowns is straight forward and yields the values of the 
currents passing through the three resistors. 
 
Note: If any current is found to be negative, its assigned direction must be reversed. 
 
The Superposition Principle (SPP) 
 
If circuit equations are linear, then the mathematical superposition principle which states that: The 
response " a desired current or voltage " at any point in a linear circuit having more than one source 
can be obtained as the sum of the responses caused by each of the independent sources acting alone, is 
applicable. 
 
Therefore, a circuit that contains independent and/or linear sources and linear circuit components such as 
resistors, capacitors and inductors can be analyzed as in the following example. 
 
Example: 
 
In the circuit of Fig(I) find the current passing 
through R3. 
 
1- Keep ε1, and replace, with a short circuit (see 
Fig(2)) ( a voltage sources is replaced by a short 
circuit but a current source is replaced by an open 
circuit). 
 
2- Find the current passing through R3 as a result of 
the presence of ε1, alone, as follows:  
 
 

 

 
 

)//( 321
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and  
I31 R3  = (I1 – I31)R2 

Thus, 
 

 

 
 

3- Keep ε 2 and replace ε 1 by a short as 
shown in Fig(3). 
  
4- Find the current passing through R3 as a 
result of the presence of ε 2 alone, as follows.  
 

 

and  
 

I32 R3  = (I2 – I32)R1 
.  
Those give: 

 

 
 
5- Add both currents to find the total current passing through R3 .  
 
(3)       I3 = I31 + I32  
 
Apparatus 
 
Two power supplies, three carbon resistors, a circuit board and a digital multimeter. 
 
 
Procedure  
 
a) Connect the circuit shown in Fig(4).  
 
b) Measure the voltage differences across the three 
carbon resistors and the current passing through each of 
them. 
 
c) Replace ε2 by a short and repeat part (b).  
 
d) Connect ε2 back, replace ε1 by a short and repeat part 
(b).  
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Analysis of results  
 

I. Superposition principle ( SPP):  
Using SPP, analyze the circuit to find the value of the current passing through R3 when each    source 
is acting alone. Compare the values obtained with the practical measurements. Use your data to prove 
equation (3).  
 

II. Kirchhoff’s Laws: 
Analyze the circuit using Kirchhoff’s rules. Find the values of the currents passing through the three 
carbon resistors. Compare with the values obtained from the experiment. 
  

 
Question: To what extent do the two methods give the same value for the current passing through R3? 
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EXPERIMENT 4 
 

NETWORK ANALYSIS II 

THE THEVENIN AND NORTON TECHNIQUES 
 

 
Theory  

Kirchoff’s laws and the Superposition principle are 
useful techniques for analyzing networks that 
contain a few circuit elements. Dealing with fairly complicated 
networks, however, requires more 
adequate methods such as the equivalent circuit techniques of 
Thevenin and Norton. 
 
Thevenin's theorem states that: any network of resistors and 
supplies having two output terminals (see Fig(l)) can be 
replaced by a series combination of a voltage source (εeq) and 
a resistor (Req), see Fig(2). Thevenin's technique is especially 
important in obtaining the current 
passing through hand/or the voltage across any one resistor 
(RL) in a complicated network. Thevenin suggested the 
following method to find εeq and Req:  
 
l- Remove RL and calculate the voltage difference at the 
network output terminal. Call this value εeq. 
2- Remove RL, kill all the sources in the network through 
replacing voltage sources by short circuits and current sources 
by open circuits (see Fig(3)). Calculate the network equivalent 
resistance at the output terminals (between a and b). Call this 
value Req. 
3- Construct Thevenin's equivalent circuit as in Fig(2). 
Calculate the current passing through, and the voltage drop 
across, RL. Those should be the same values obtained in the 
original network.  
 
 
Norton suggests a similar technique that goes along the 
following lines:  
 
1- Use exactly the same procedure used by Thevenin to find Req.  
 
2- Replace RL by a short circuit (a wire), see Fig(4), and calculate 
the current passing through the wire, call it Ieq. 
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3- Construct Norton's equivalent circuit using a current source 
and a parallel resistance, as in Fig(5). Calculate the current 
passing through and the voltage difference across, RL. Those 
should be the same values obtained in the original network.  

Example: 
For the circuit in Fig(l), use Thevenin's  and Norton's 
equivalent circuit techniques to find the value of the current 
passing through RL. 

l) Thevenin's: 

1- Remove RL, kill both sources as in Fig(4), and you will get :   

 (l)                      

2- Remove RL, return both sources back to the circuit as in 
Fig(6), and calculate εeq as follows:  

Using Kirchoff’s loop theorem we get :  

ε1 – ε2 = I(R1 + R2), 
εeq = ε1 – IR1, 

 

Eliminating I between the two equations, yields:  

(2)             

3- Construct Thevenin's equivalent circuit as in Fig(2) using the calculated values of  εeq and Req. Now, 
you can find the current passing through RL as follows:  

(3)                  

Il) Norton's:   

l- Replace RL with a short circuit (a wire) as in Fig(4), and calculate Ieq as follows:   

(4)      Ieq = I1 +I2 

(5)              

2- Construct Norton's equivalent circuit, Fig(5), and calculate the current passing through RL as follows:  

(6)                 ,  
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(7)               

Problem: Prove the equivalence of equations (3) and (7). 

Apparatus 
 

Two voltage supplies, circuit board, digital multimeter, three carbon resistors. 

Procedure 
 

a) Connect the circuit shown in Fig(7). 
 

b) Remove RL, kill both sources and 
measure the value of Req. 

c) Connect the sources back and measure εeq. 
 

d) Replace RL by a short circuit (a wire) and 
measure Ieq. 

e) Construct Thevenin's equivalent circuit, 
and measure Ieq. 
 

f) Construct Norton's equivalent circuit. 
 

Analysis of results  
 

Calculate the values of Ieq, εeq, Req, IRL, and compare them with your experimental results. 

 
  

Leq

eqeq
R RR

RI
I
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EXPERIMENT 5 
Digital Storage Oscilloscope 

(You will get a hand out before the lab)  
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GENERAL REVIEW 2 
 

ALTERNATING CURRENT CIRCUITS 

 
Capacitor and inductor behavior in DC circuit  
 
Capacitors  

The simplest form of a capacitor 
is two metal plates separated by an 
insulating material (see Fig(l)). When 
connected to a DC power supply, 
positive charge will accumulate on one 
of the capacitor plates and an equal 
negative charge will accumulate on the 
other. This charge configuration results 
in the build up of an electric field 
between the capacitor plates (see 
Fig(l)). This process is described as 
charging the capacitor. If the two plates 
of a charged capacitor are connected 
together, the capacitor will discharge so 
that each of its plates becomes neutral. 
Each capacitor is characterized by its 
capacitance(C) which is the amount of charge accumulated on one of its plates divided by the voltage 
difference across it. Symbolically,  

(1)         

The unit of capacitance is the Farad ( F ). 
 

Inductors: 
The simplest form of an inductor is a wound wire (see Fig(t)). When connected to a DC power supply, a 
magnetic field build sup in the vicinity of the inductor (see Fig(l)). Each inductor is characterized by its 
Inductance ( L ). The relation between L and the voltage difference across the inductor terminals and the 
current passing through it is given by:  

(2)       

  

 The unit of inductance is the Henry ( H )  

DC driven RC circuit:  

V
QC =

dt
dILV -=
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A DC driven RC circuit is a circuit that contains a resistor and a capacitor connected in series and powered 
by a DC power supply (see Fig(2) with switch S1 closed and switch S2 open). Using Kirchhoff’s loop 
theorem we obtain the following equation:  

ε = IR + Vc 

 

 
Rearranging we get:  

 

  

integrating both sides as follows 
 

 

and solving for Q, we get:  

 

(3)            

This equation describes how the capacitor is charged with time. 
  
If after the capacitor is charged, switch S1 is opened and S2 closed the circuit equation becomes:  
 

 

and its solution, using simple integration methods as in the charging case is :  

(4)              

  
This equation describes how the capacitor discharges with time. Fig(3) represents relation between ( Q ) 
and ( t ) in both charging and discharging processes. "RC" has units of time and is called the time constant 
of the circuit; it is the time required for the charge on the capacitor to reach about 63% of its final charge 
during charging.  
 
DC driven RL circuit: 

A DC driven RL circuit is a circuit that contains an inductor 
connected in series with a resistance and powered by a DC power 
supply (see Fig(4)). The circuit equation is given by:  
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The solution is found using methods similar to those used in the RC circuit case.  

(5)        

 
This equation describes how the current rises in the circuit.  
If the power supply is shorted (replaced by a wire), then the circuit equation becomes:  
 

 

 
the solution of which is: 
 

 (6)                     

 
 
This equation describes how the current decays in the circuit. Fig(5) represents the relation between ( I ) 
and ( t ) for both rising and decaying currents. "L\R" has units of time and is called the time constant of 
this circuit. 
 
DC driven LC circuit: 
The circuit in Fig(6) is a series LC circuit powered by a 
DC power supply. The circuit equation is: 

 

 
If the circuit is connected to the supply (S1 is closed) until 
the capacitor is charged then the supply is replaced by a 
short, the circuit equation becomes: 
 

                                

 
This is an equation of a simple harmonic oscillator with an angular frequency ω0 defined as:  
 

 

 

Such a circuit is called an LC tank or an LC oscillator, with ω0 as its natural angular frequency of 
oscillation. The solution of the simple harmonic oscillator is a sinusoidal function. In mathematical form:  
 

(7) Q(t) = Acos(ω0 t) , 
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where A is a constant. 
In reality it is never possible to construct a pure LC circuit. Various sources of resistance cause a 
continuous loss of power as heat; consequently, the simple harmonic oscillations will sooner or later decay. 
 
 
DC driven RLC circuit:  
The circuit in Fig(7)is a simple series RLC circuit 
powered by a DC supply. Using Kirchhoff’s loop 
theorem, the circuit equation takes the following form:  
 

 

 
which, using the definition of the current, could be written 
as follows:  
 

 

 
The solution of this second order linear differential equation is mathematically involved*, therefore, we 
only introduce the result:  
 

(8)       

 
where A1 and A2 are constants and  

 

 

 
This solution is an exponentially decaying one. As this solution decays to zero within a limited period of 
time, it is called a transient solution. The significance of this solution will be discussed in detail through 
experiment (6).  
 
 
 
* See appendix B for a comprehensive summary of solving second order linear differential equations. 
The response of resistors, capacitors and inductors to AC signals 
 
If a resistor is connected to an AC supply then the current flowing in the resistor is related to the voltage 
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through Ohm's law as  
 

 , 

where,  
 

ε(t) = ε0 cos(ωt) , 
therefore,  

(9)      

 
The current is also a sinusoidal function of time.  
 
The root mean square (rms) value: 
A resistance, with an alternating sinusoidal current passing through, dissipates power by means of joule 
heating by an amount equal to that dissipated if it were a direct current I passing through it. The rms current 
(Irms) is given by :  

 

 
Therefore, if we take the (rms) value of both the driving voltage and the current, Ohm's law takes the 
following form:  
 

(10)           

 
Which is Ohm's law generalized for an AC current; R here is best describes the resistive impedance.  
If a capacitor is connected to an AC source then the current is given by:  

 

Hence, 
 

or, 

 

 
Taking root mean square value of both the current and the voltage we get: 
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(11)        

Which is again the generalized Ohm’s law with (-1/ωC) termed the capacitive reactance. 
 
Now, if an inductor is connected to an AC supply, and because the self-induced emf εs is given by:  

 

 
Then the current passing through the inductor is : 

 

Solving the integral and taking the root mean square value we get,  
 

(12)           

0 
Once again this is the generalized Ohm's law with (ωL) the inductive reactance.  
 
 
AC Driven RLC Circuits: 
Shown in Fig(8) is a series RLC circuit powered by a 
sinusoidal AC source. The circuit equation in this case 
is: 
 

 

where, 
 

 The solution of this second order linear differential 
equation is as the sum of two parts, one is called the 
homogenous solution and the other is called the particular solution. The homogenous solution is the 
transient solution given by equation(8). This solution has an effect only when the circuit is switched on 
or off and dies exponentially and rapidly with time. The particular solution for the current passing 
through the circuit is presented here without mathematical treatment as:  
 
(13)               

where, 

(14)         
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and 

(15)        

 
Note that the current in the circuit is also sinusoidal with an introduced phase shift (Ф) and an amplitude 
that is dependent on frequency.  
 

Generalized Ohm's Law: Impedance and Reactance  
A resistor as a circuit element is characterized by its resistance. Can we assign similar characteristics to 
capacitors and inductors in AC circuits?  
Let us define a resistive impedance ZR, a capacitive impedance ZC and an inductive impedance ZL as 
follows:  
 

ZR = R 

(16)        

  ZL = jωL  
 

The unit of impedance is the Ohm (Ω) and j =  ; hence, the impedance is defined as a complex 
number.  
For the simple series RLC circuit of Fig(8), the current passing through the circuit is given by:  
 

(17)               ,  ( Generalized Ohm's Law) 

where, 
  
(18)             Zeq = ZR + ZC +ZL.  
 
Therefore,  

(19)           

 
And the physical (non-complex) value of the current is obtained as (see appendix C):  
 

 

 
where Ф is defined as in equation (15). This is the same value obtained from the solution of the second 
order linear differential equation.  
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This technique in circuit analysis; i.e. using the definitions of equation (16), which can be summarized by 
the following steps, is useful for all AC circuits:  

• Assign an impedance to each circuit element in the circuit. .  
• Find the equivalent impedance through applying the rules of series and parallel connection or by 

other advanced techniques such as Thevenin's.  
•  Find the current equation by dividing the supply's electro motive force by the equivalent 

impedance of the circuit. .  
• Use the mathematical rules and techniques of complex numbers* to find the physical value of the 

current.  
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EXPERIMENT 6 
 

CAPACITORS AND INDUCTORS 
 

Theory 
 

i. RC Circuits 
Charging a capacitor: 
During the positive half period of the square wave, 
the charge in the simple RC circuit shown in Fig(1) 
builds up on the capacitor plates according to the 
following formula: 

 

The voltage across the capacitor plates is defined by 

 

hence, 

(1)      

RC is usually called the time constant (τ) of 
the RC circuit. τ has the unit of time (sec) and 
is measure of how fast the voltage across the 
capacitor rises. When t = τ, 

VC = 0.63ε, 
or, the voltage across the capacitor rises to 
0.63 of its maximum value. 
The current passing through the circuit is 
given by:  

 

Therefore, the voltage across the resistor is 

(2)    

 Discharging a capacitor: 
During the negative half period of the square wave, the capacitor, in the RC circuit of Fig(1), 
discharge according to the following formula: 

 

Hence, the voltage across the capacitor plates is given by: 
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(3)        

 
RC is again called the time constant (τ) of the circuit; it is a measure of how the fast the voltage 
across the capacitor plates decreases. When t = τ, 

VC = 0.37ε , 
or, the voltage across the capacitor plates decays to 0.37 of the maximum value within a time 
τ. 
The current passing through the circuit is 

 

 thus, the voltage across the resistor is given by: 

(4)           

The graphs in Fig(2) show the functional relation between both the voltage across the 
capacitor and the resistor and the time for both charging and discharging. 
 

ii. RL Circuits 
 

In Fig(3), the current passing through the circuit rises 
with the according to the following equation: 

   

                  

The voltage across the resistor is: 
 

(5)             

and the voltage across the inductor is: 
 

(6)            

 
The quantity L/R is called the time constant (τ) of the 
circuit; it is measure of how fast the current rises in the 
circuit. When t = τ, 

VR = 0.63ε, 
and 

VL = 0.37ε. 
 

 The graphs of Fig(4) show both VL and VR a function of time. 
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iii. LC Circuits 
 

In the circuit of Fig(5), the voltage across the 
capacitor plates is described through the following 
equation: 

                 (7)               VC=VC0cos(ωt+Ф), 
 
where, VC0 is the amplitude (constant) and  
 

(8)                   . 

Fig(6) shows the voltage across the capacitor as a 
function of time. 

 
Apparatus 
Resistor (5 kΩ), Inductor (10 mH), Capacitor (0.01 μF), 
Signal Generator, and an Osilloscope. 
Procedure 

i- RC Circuits  
a) Connect the circuit of Fig(7). 
 
b) Use a square wave from the signal generator to 

power your circuit. 
 

Note: a square wave operation on half cycle only 
acts as a DC supply. 
 
c) Display VC on the Oscilloscope screen. 

Measure τ for both charging and discharging. 
 
d) Display VR on the Oscilloscope screen. 

Measure τ for both charging and discharging. 
 

Note: you have to exchange the places of R and C 
in the circuit (why?). 

 
ii- RL Circuits  

a) Connect the circuit of Fig(8). 
b) Display VR and VL on the oscilloscope screen. 

Measure τ in both cases. 

LC
1

=w
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iii- LC Circuits  
 

a) Connect the circuit of Fig(9). 
b) Display VC on the oscilloscope screen. Measure 

the amplitude A and the angular frequency ω. 
 
Analysis of results  
a) In both RC and RL circuits compare the values of τ obtained 
practically with the theoretically predicted ones. 
 
b) For the LC circuit compare the measured value of co with the theoretically predicted one and discuss 
the discrepancy. 
 
Questions 
1) For the RC circuit, explain what happens when τ→0 and when τ →∞? 
 
2) Is it possible to operate the RL circuit or the RC circuit by a standard DC supply and to do time 
measurements using a stop watch? What values of R, L, and C make this option possible? 
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EXPERIMENT 7 
 

DAMPED OSCILLATIONS 
 
Theory  

The charge on the capacitor plates and hence, the 
voltage across the capacitor in the DC powered RLC circuit 
shown in Fig(l) are described using the following solution for 
Q(t) (see general review2):  
  
(1)           Q(t) = A1 eλ+t + A2 eλ-t ,  
 
where A1 and A2 are constants, and  
 

(2)       

 
For this solution three interesting cases emerge. 
case i: Over-damping 
If 

 

 
then, both terms in equation(l) decay exponentially with 
time and the voltage across the capacitor is  
said to be over-damped, see Fig( 2 )  
 
case ii: Critical damping 
If 

 

 
then, the term under the square in equations(2) root 
vanishes and  
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Therefore, the charge on the capacitor plates, and consequently the voltage across the capacitor plates take 
the following form: 

(3)                     

 
where A and B are constants. 
 
 
Again the charge on the capacitor plates, and consequently the voltage across them, decay exponentially 
with time, see Fig(3) This damping case is called critical damping and it serves as a boundary between 
over-damping and under-damping (discussed below).  
 
case iii: Under-damping  
If  

 

 
then, the term under the square root becomes 
negative.  
 
The mathematical treatment of this case is beyond the 
scope of this course*, therefore, we only introduce 
the solution: 

(4)          

where  

(5)                                          

and   

(6)                               

This equation represents a sinusoidal function with an amplitude that is decaying exponentially, see Fig(4). 
This case is called under-damping. An interesting quantity is the time t1/2 after which the amplitude 
(envelope) falls to half its initial value Q0. Or,  

 

Substituting for δ from equation(5) and solving for t1/2 gives:  
 

(7)               

* In fact, using the properties of complex numbers introduced in appendix C with some trigonometric and 
algebraic maneuvers, a student at this level should readily get the desired result.
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Experimentally, we measure the voltage across the capacitor. As usual the voltage is related to the charge 
through  

 

hence, VC behaves exactly the same as Q(t) in all three cases.  
 
Apparatus 
 
Resistance decade box, l0mH inductor, lμF capacitor, a signal generator and an oscilloscope.  
 
 
Procedure 
 
a) Connect the circuit in Fig(s). 
 
b) Display the voltage across the capacitor on the 
oscilloscope screen. 
 
c) Change the value of R to obtain the three damping 
cases; record R in each case. 
 
d) Draw each response on a linear graph paper. 
  
Analysis of results  
 
a) For underdamping find t1/2 and compare it with the value calculated from component values.  
 
b) Define the value or the range of values of R in each case.  
 
c) Find the decay constant for the critical and overdamping cases and find which decays faster.  
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EXPERIMENT 8 
 

IMPEDANCE AND REACTANCE 
 
Theory 
 

In the AC-powered RLC circuit shown in Fig(l), 
the current in the circuit is given by* 
 

 

where, 
 

Zeq = ZR + ZC + ZL, 
 

with 
                      ZR = R,  ZC = -j/ωc, ZL = jωL, 
 

ZR, ZC, and ZL being the resistive impedance, the capacitive impedance and the inductive 
impedance respectively. While the quantities (l/ωC) and (ωL) are the capacitive reactance and the 
inductive reactance respectively.  
 

In general, impedance is a complex numbers that needs special mathematical treatment**. 
Proceeding with such treatment we get the following value for the current in the circuit:  
 
(l)          I(t) = I0 cos(ωt+ Ф) ,  
where, 

 

and  

 

 
Fig(2) shows a plot of both the voltage and the current 

in the circuit on a common time scale. It is obvious from equation(l) that the current heads or lags the 
voltage by a time interval that is dependent on the frequency of the cosine function. In other words, there 
exists a phase shift Ф = ω∆t between them.  
*    See general review2 
*'* Consult appendix C for a review of complex numbers.  
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The voltage across the inductor VL can be obtained as follows: 
 

 

 
(2)                 

 
Note that VL is just the current multiplied by the inductive reactance with a phase shift of π/2 introduced**. 
(Generalized Ohm's law)  
 
The voltage across the resistor is  
(3)      

 
Note that VR is just the current multiplied by the resistance.(Oh's law)  
And finally, the voltage across the capacitor is  

 

 (4)                

 
Note that Vc is just the current multiplied by the capacitive reactance with a phase shift of π/2 introduced.  
 

The phase shifts between the current and the voltages across the different circuit elements in Fig(1) 
are also related to Ф which is a function of ω.  
 

In order to find the value of the phase shift between two harmonic functions using the oscilloscope do 
the following:  

• Set the oscilloscope on the x-y mode.  
•  Connect one function to the X-channel and the other to 

the Y-channel.  
•  On the screen you will see an ellipse (see Fie(3)).   
•  Let 

                               VX = VX0 cos (ωt) 
and  

                         VY = VY0 cos(ωt + Ф) 
where Ф is the phase shift between the two functions.  

• At point a, defined in Fig(3), VX has its maximum value, 
therefore, ωt= 0 , and  

*   All phase shifts are related to the voltage of the source in the circuit.  
** Note that: sin (θ) = cos(θ + π/2 ) .  
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VY = VY0 cos(Ф). 
Therefore,  

 

Both VY and VY0 are measured as shown in Fig(3).  
 
 
Apparatus 
 
I kΩ resistor, 0.1μF capacitor, l0 mH inductor, signal generator, oscilloscope, circuit board.  
 
Procedure 
 
a) Connect the circuit of Fig(4). 
 
b) For five different frequencies find the phase shift 
between the driving voltage and the current. 
 
c) Display VR, VC, and VL on the oscilloscope screen 
and measure their characteristics. Measure the phase 
shift between each of them and the driving voltage. 
  
Analysis of results: 
a) Draw VR, VC, and VL on the same graph paper 
showing similarities and differences. 
 
b) Draw the phase shift between the driving voltage and the current as a function of the frequency. Define 
the frequency at which the phase shift is zero. 
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EXPERIMENT 9 
 

RESONANCE 
 
 
Theory 
 

Consider the AC-powered RLC circuit shown in 
Fig(l). The amplitude of the current passing through the 
circuit is given by, 
                          

(l)                       

  
It is obvious that I0 assumes a maximum as a function of 
ω when 

                                      

It is interesting to note that under such a condition ω is the natural angular frequency of the circuit:  

(2)               

 
In other words, the current in the 

circuit assumes its maximum value when the 
driving voltage frequency equals the natural 
frequency of the RLC circuit. This 
phenomenon is called resonance.  
 

Fig(2) shows a plot of the value of I0 
as a function of ω. At resonance 
 
(3)     

         

and the value of the current is only limited 
bv the resistance of the circuit. 
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The Quality Factor:  
A measure of the sharpness of the resonance curve is a quantity called the quality factor (Q), which 

is defined as  
 

(4)               

At resonance  

(5)                         

Fig(3) shows a plot of the resonance curve for different combinations of R, L and C. 
 

 
 

A practical value that measures the sharpness of the resonance curve is the bandwidth. The 

bandwidth (∆ω) is the frequency range between the maximum value of I0 and the value of , see Fig(2).  

The quality factor is related to the bandwidth as follows:  
 

(6)         

 

Question: Show that  
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Apparatus  
lkΩ and 2kΩ resistors, 0.lμF capacitor, l0 mH inductor, signal generator, oscilloscope, circuit board and a 
digital multimeter.  
 
Procedure 
 
a) Connect the circuit of Fig(4). 
 
b) For R = lkΩ measure the current as a function of the 
input voltage frequency. 
 
c) Measure the phase shift between the current and the 
voltage in both cases. Fre(ql  
 
d) Repeat parts (b) and (c) for R = 2 kΩ. 
 
 
 
Analysis of results 
 
a) Plot I0 as a function of the frequency for both cases. 
 
b) Measure the bandwidth for both resonance curves. 
 
c) Determine the resonance frequency and the quality factor in each case. 
 
d) Plot the phase shift as a function of frequency. 
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EXPERIMENT 10 
 

RC FILTERS 
 
Theory 
 

A filter is an electrical circuit that allows signals with a defined 
frequency range to pass while blocking others with different 
frequency ranges. Filters are useful units in many electrical and 
electronic devices such as radio, TV, etc.  

There are three types of filters: high pass, low pass and band 
pass filters, see Fig(l). In filters unwanted signals are highly 
attenuated* through the circuit while required signals are passed with, 
almost, no attenuation. 
Low-pass RC filter  
Consider the circuit of Fig(la). Using the generalized Ohm's law we 
can obtain the output voltage, Vout, as a function of the input voltage, 
Vin, as follows. 
 

• Find the circuit equivalent impedance: 

 

• Then, the current is 

 

• The output voltage then becomes 
 

 

• Treating the complex numbers as described in appendix C will yield the following value for the 
amplitude of the output voltage: 

 

where Vin0 is the amplitude of the input signal. 
 
* Attenuation is the decrease in amplitude. 
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• The attenuation factor, A, is defined as follows: 

 

• For reasons to be explained later. let us define 

 

then, the attenuation factor takes the following form:  

 

 
A careful Examination of this equation will yield the three 
following cases: 

1. If ω>>ω-3dB then A is extremely small and the output signal is highly attenuated.  
 
2. ω<< ω-3dB then A≈1 and the amplitude of the output signal is equal to that of the input signal, in 

other words, the signal is passed without attenuation. 
 

3.  If ω = ω-3dB then A =  = A.707 and the amplitude of the output signal is 0.707 of the 
amplitude of the input amplitude. This value sets a practical boundary between passed signals and 
highly attenuated ones. 

It is obvious from the above discussion that the circuit in consideration is acting as a low-pass filter, see 
Fig(2a). 
 
High-pass RC filter 

The circuit of Fig(lb) acts as a high-pass filter. The attenuation factor, A can be deduced using 
exactly the same procedure used in the case of the low pass filter; this gives:  

 

 
A careful examination of this equation will also yield three case:  

1. If ω<<ω-3dB then A is extremely small and the output signal is highly attenuated.  
 
2. If ω>>ω-3dB then A≈1 and the signal is passed without attenuation. 

 

3.  If ω = ω-3dB then A =  = 707 which again sets the boundary between passed signals and 
highly attenuated ones. 
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It is obvious from the above discussion that the circuit in consideration is acting as a high-pass filter, see 
Fig(2b). 
 
Differentiators and Integrators  
If a low pass filter is functioning in the highly attenuated region, where ω>>ω-3dB, then, Vout(t) is extremely 
small and 

VR(t) = Vin(t) – Vout(t) ≈ Vin(t). 
On the other hand,  

 

so,  

 

or equivalently,   

 

 
The output voltage is justthe integral of the input voltage. Under such conditions this circuit acts as an 
integrator.  
If an RC high-pass filter is functioning in the highly attenuated region, where ω<<ω-3dB, then, Vout(t)  is 
extremely small and  
 

VC(t) = Vin(t) – Vout(t) ≈ Vin(t). 
 
On the other hand,  

 

so,  

 

The output voltage is just the derivative of the input voltage. Under such conditions this circuit acts as a 
differentiator. 
 
Apparatus 
lkΩ resistor, 1μF capacitor, a circuit board, a signal generator and an oscilloscope.  
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Procedure 
 
a) Connect the circuit of Fig(3a). 
 
b) Measure the amplitude of the output voltage as a function of 
frequency. 
 

Note:  Scan a wide range of frequency. Be sure to include ω-3dB in 
the range. Regularly check the input voltage to make sure it 
maintains the same value while changing the input frequency.  

  
c) Check the phase shift between the input and the output voltages in 
both the high attenuation region and the region of no attenuation. 
  
d) Use a sinusoidal, a square and a triangular signal with a frequency 
in the high attenuation region and plot the input and the output 
voltages on a common time scale. 
  
e) Connect the circuit of Fig(3b)and repeat parts (a) through(d). 
  
Analysis of results  
a) Draw the attenuation factor A as a function of frequency for both the high and low pass filters. From 
the graphs find the value of ω-3dB for both filters and compare it with the expected value.  
 
b) Prove that the wave functions obtained in part (d) are the derivatives (in the case of the high pass filter) 
and integrals (in the case of the low pass filter) of the respective input functions. 
 
c) What is the phase relation between the input and the output voltages in both the unattenuated and the 
highly attenuated regions in both filters? 
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APPENDIX A 
 

COMPONENTS OF ELECTRICAL CIRCUITS 
 

The following is a list of the symbols most frequently used in schematic diagrams of electrical circuits:  
 

Cell or Battery   
 

Switches   
 

Fuse 
 

Resistor (fixed)  
Resistor (variable) 

  
 

Capacitor 
 

 

 
Capacitor (variable) 

  

 
Diode 

 
Inductor (coil) 

 
Inductor (iron core) 

 
 

Ammeter 
 

 
Voltmeter  

 
AC supply  
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Resistors are the most widely used of all electrical components. They are of many types and are 
very easy to use. The most common of these are carbon resistors. They differ in value and power rating; 
¼ watts and ½ watts being the most popular types. Carbon resistors, however, are not very precise. They 
have, at best, tolerances of 50%. Hence, wire wound resistors are used in applications that require precision 
down to 1%.  
 
 

Fig(2) shows a carbon resistor with the shaded regions representing the color bands used to read 
the value of the resistor. Given in the table in Fig(2) is the color code for the bands. To read the value of 
a resistor, start from the bands marked 1st digit and 2nd digit in Fig(2), decode their respective colors then 
multiply by the value corresponding to the color of the multiplier. The last band, marked tolerance, gives 
the error as a percentage of the marked value. 

 

 
 

Hint: Here is an easy way to remember the code. Take the first letters from the words in the following 
sentence: 

 
"Be Brave, Run Onto Your Goals, Because Victory Grants Wisdom" 

 
Then assign them values 0 through 9 making them correspond to:  
 

                 "Black Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray, White" 
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APPENDIX B 
 

SECOND ORDER LINEAR DIFFERNTIAL EQUATIONS  

WITH CONSTANT COEFFICIENTS  
 
 

In the theory of circuit analysis, as in many other areas of physics, one often encounters equations of the 
form:  
 

(1)  

Where a, b and c are real constants and f(x) is a function of x only. This equation is called a second order 
linear differential inhomogeneous equation.  When f(x) = 0, the equation is called homogeneous, but as it 
stands it is called inhomogeneous. The general solution of this equation is the sum of the solution yh(x) of 
the homogeneous equation and a particular solution yp(x) of the full equation. 
 
(2) y(x) =   yh(x) +  yp(x) 
 
Let us start by looking at the homogeneous solution. The theory of differential equations requires that a 
second order differential equation must have two linearly independent solutions. The general solution yh(x) 
is a linear combination of these two solutions. yh(x)  will contain two arbitrary constants that can be fixed 
after specifying boundary conditions. 
 
As we are searching for a function that is proportional to its first and second derivatives, let us try 
 

 

   where λ is a constant. Evaluating the derivatives: 
 

 

 
and substituting back into equation(1) with f(x) = 0 we obtain: 
 

 

 
After eliminating the exponential term we are left with the following second order algebraic equation: 
 

(3)      
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The solution of this equation is: 

(4)       

and hence, 
 

(5)        

 
where A and B are constants to be evaluated from boundary conditions. 
 
The final functional dependence of yh(x) is specified by whether the quantity under the square root in 
equation(4) is positive, negative or zero: 
 

• If b2-4ac > 0, then both λ+ and λ- are negative real numbers and yh(x) is a linear combination of 
two exponentially decaying functions. 

• If  b2-4ac = 0, then 

                                     

And the two solutions are identical. In order to get a linearly independent solution we resort to 
another result of the theory of differential equations which states that could be combined 
with the original solution to get 

 

 

 
• If b2-4ac < 0, then the term under the square root in equation(4) turns out to be imaginary. If we 

define  

 

then, 

 

and 

 

 
The solution yh(x) takes the following form,  
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And after rearrangement it becomes 

 

 
where C and Ф are constants. 
 
The general solution to equation(1) has to incorporate also the particular solution corresponding to f(x). 
This is generally taken to have the same functional dependence as f(x). For example if f(x) = E, a constant, 
then we have to set 

yp(x) = F  , 
 
where F is constant. If we substitute in equation(1) we get 

 

 
The general solution to equation(1), in this case, will be: 
 

 

Now, for f(x) = Acos(ωx), where A and ω are constants and using 
 

 

we can work the solution using the complex representation as follows: 
Let          

 

hence,  

 

and 

 

Substituting in equation(1) 

 

and after simplifying we get  

,)( xx
h BeAexy -+ += ll

),'cos()( 2 F+=
-

tCexy
x
a
b

h w

,
c
EF =

.)(
c
EBeAexy xx

h ++= -+ ll

),Re()cos( xjAexA ww =

xj
p eyxy w

0)( =

,0
xjp eyj

dx
dy ww=

.0
2

2

2
xjp ey

dx
yd ww-=

.)()()( 000
2 xjxjxjxj Aeeyceyjbeya wwww ww =++-



53 
 

 

This is the complex amplitude. When transformed into the polar representation, y0 appears as: 
 

 

where,   

 

We need the real part of the solution, i.e. 

 

Evaluating the real part gives: 

 

where, 

 

 
Finally, the general solution is the sum of the homogeneous and the particular solutions: 
 

 

where C and B are constants to be determined from the boundary or initial conditions. 
  

.
)( 20 bjca

Ay
ww ++-

=

,
)( 22220

bac
Aey

j

ww +-
=

F

).(tan 2
1

ba
b
-

=F -

w
w

).Re()( 0
xj

p eyxy w=

),cos()( 0 F+= xyxyp w

.
)( 22220

bac
Ay

ww +-
=

).cos()( 0 F+++= -+ xyBeCexy xx wll



54 
 

APPENDIX C 
 

COMPLEX NUMBERS 

 
A complex number is defined as appoint in the complex plane, see 
Fig(1). A complex number can be represented in two general forms: 
 
The Component Form: 
 Any complex number could be represented by: 
 

Z = R + jX, 
where Z is a complex number, R is its real part (R = Re(Z)), X is 
its imaginary part 

(X = Im(Z)) and j =   
 
The Polar Form: 
Another way to represent a complex number is  

 

wher is the modulus of Z and Ф is its argument. 
It should be obvious from Fig(1) that 

 

and 

 

Euler’s Formula 
The following is termed Euler’s formula after “Leonhard Euler” who developed it 
 

 

Identifying the left hand side as a complex number written in the polar form and the right hand side as the 
same number written in the component from, one could write: 
 

 

and 

 

 
Therefore, instead of dealing with trigonometric functions, one can perform the work with complex 
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numbers in the polar form and then take either its real or imaginary part as the physical solution. 
Important Properties of Complex Numbers 
If  Z1 = R1 + jX1 and Z2 = R2 + jX2  are complex numbers then,   
 

• Equality of two complex numbers 
 
Z1 = Z2 if and only if R1 = R2 and X1 = X2. 

 

• Addition and subtraction of complex numbers 
 
Z1 ± Z2 = (R1 ± R2) + j(X1 + X2). 
 

• Multiplying and division of complex numbers  
 

Multiplication and division of complex numbers are better performed using the polar form:  
 

 

and 

 

 
• Rationalizing a complex number 

 
A complex number Z is rationalized through multiplying it by its conjugate Z*. Z* is found by 
multiplying the imaginary part of Z by -1. This operation is useful when a complex number appears 
in the denominator. 

 

 Example: 
To rationalize the complex number Z = 1/(R + jX) we multiply both the nominator and the denominator 
by the conjugate of the complex number appearing in the denominator: 
 

 

Therefore, the complex number Z takes the following simple component form: 
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Analyzing an RLC Circuit Using complex impedance  
 
The current passing through sn AC-driven series RLC circuits is found through the generalized Ohm’s law 
to be: 

(1)                                                                        

where the source emf, can be represented in its complex form as  
 

 

and  

 

or 

 

Substituting for and Zeq in equation(1) we get: 
 

 

 
To rationalize, we multiply both nominator and denominator or by the conjugate   
 

 

 
On rearrangement we get: 
 

 

 
 

Transforming the complex number   into its oplar form we get: 
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And on simplification we get: 
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