


Experiment3 Network analysis II The Thevenin and Norton techniques

Student's name: Student's No.:			
Partner's name: Partners No.:			
Section:			
Instructor:			
Date:			

Abstract:

Theory:

Calculations:

For the circuit shown:

- a) Use Thevenin's equivalent circuit techniques to find the current passing through R_3 .
- b) Use Norton's equivalent circuit techniques to find the current passing through R₂.

Data:

 $\begin{array}{lll} R_1 = & \quad , R_2 = & \quad , R_3 = \\ \epsilon_1 = & \quad \epsilon_2 = & \end{array}$

(a) Remove R_3 , kill both sources and $\,$ measure $R_{eq} {:}$ $R_{eq} {=}$

(b) Connect the sources back and measure ϵ_{eq} :

 $\epsilon_{eq} =$

(c) Measure I_{eq}:

 $I_{eq} =$

(d) Construct Thevenin's equivalent circuit:

Measure I_{RL} =

(e) Construct Norton's equivalent circuit:

Measure I_{RL} =

Results and conclusion: