
Physics 112

Preliminary Laboratory Questions Exp.4 network analysis II: Thevenin and Norton techniques

For the circuit shown:

 ε_1 = 8 volt, ε_2 = 4 volt, R_1 = 1 K Ω , R_2 = 2 K Ω , R_3 = 4 K Ω .

a) Use Thevenin's equivalent circuit techniques to find the current passing through R₃.

$$\begin{split} R_{eq} &= \frac{R_1 + R_2}{R_1 \, R_2} = \frac{1 \times 10^3 \times 2 \times 10^3}{(1 + 2) \times 10^3} = \frac{2}{3} \Omega \\ \varepsilon_{eq} &= \varepsilon_1 - \frac{(\varepsilon_1 - \varepsilon_2) R_1}{R_1 + R_2} = 8 - \frac{(8 - 4) \times 1 \times 10^3}{(1 + 2) \times 10^3} = \frac{20}{3} \, volt \\ I_{R_L} &= I_{R_3} = \frac{\varepsilon_{eq}}{R_{eq} + R_L} = \frac{\varepsilon_{eq}}{R_{eq} + R_3} = \frac{20/3}{2/3 + (4 \times 10^3)} = 1.67 \, mA \end{split}$$

b) Use Norton's equivalent circuit techniques to find the current passing through R_3 .

$$\varepsilon_{eq} = \frac{\varepsilon_1}{R_1} + \frac{\varepsilon_2}{R_2} = \frac{8}{1 \times 10^3} + \frac{4}{2 \times 10^3} = 10 \text{ mA}$$

$$I_{R_L} = \frac{I_{eq} R_{eq}}{R_{eq} + R_L}$$

$$I_3 = \frac{I_{eq} R_{eq}}{R_{eq} + R_3} = \frac{10 \times 10^{-3} \times 2/3}{2/3 + (4 \times 10^3)} = 1.67 \mu\text{A}$$