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Abstract: 

 

The aim of the experiment: is to find out the time constant in RC, RL , 

and LC circuits. 

 

The method used: is by using the DCO to measure the voltage in the 

RC and RL circuits and to measure the frequency in the LC circuit. 

 

 

The main result: 
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Theory: 

:RC circuits 

Charging a capacitor: 
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Discharging a capacitor: 

Now, during the negative period of the square wave, the 

capacitor, the capacitor discharges according to the following formula: 
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And so the voltage across the capacitor’s plates is: 
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In this case the voltage decays to 0.37 of its maximum value within 

a time τ, which equals RC (the time constant). 

The current passing through the circuit is:  
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and so, the voltage is given by: 
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:RL circuits 

The current passing through the RL circuit shown in 

fig.3 rises with time according to the following equation: 
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:LC circuits 

The following equation describes the voltage 

across the capacitor’s plates of the one in the circuit 

shown in fig.5,  
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Fig.6 shows the voltage across the capacitor as a 

function of time 

 

 

 



Calculations: 

 

:RC circuit 
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:RL circuit 
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:LC circuit 

 The value of frequency as we read from the signal generator 
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Analysis of results: 

As we saw from the results of the three circuits the values were 

somehow close to those of the theoretical ones, the small difference may 

be because of the visual inaccuracy while looking on the CRO. 
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