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Abstract: 

The aim of the experiment: is to find out 2/1t  and decing constant (λ) 

(lambda)  for the three cases, 

and to study the natural response of the RLC-circuit.  
 

 

The method used is: by measuring the voltage difference across the 

capacitor’s plates using the DCO. 

 

 
The Main Result:  

 
 

 
1- Over damping: 

 

s𝜇  40= 1/2 t      

 

     Vmax=19 volt 

 
 1-s  4*101.7250=  λ      

      

 

2- Critical damping: 

s𝜇 28= 1/2 t      

 

     Vmax=19.4 volt   

 

   
51*10=  λ      

 

3- Under damping: 

R=97Ω 

. s𝜇28= 1/2 t      

 

     Vmax=28 volt 

 

           

 4850
1020

97

2 3





L

R
 

 
 

 



 

 

 

 

Theory: 
 

The equation: 

1.....  tt
eAeAtQ  
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21is the equation that describes the charge on , 

the capacitor’s plates in the DC powered RLC circuit, where 1A and 2A  

are constants, and  
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And this leads us to talk about this three interesting cases. 

 
 
 
 
 

:Over damping 

then, both terms in the first equation decay  
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exponentially with time and the voltage across the capacitor is said to be 

over damped, as shown in fig.2. 

 

 

 

 

 

 

 



 

 

 

 

:Critical damping 

then, the terms under the square root in equation 2  
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And so the charge on the capacitor’s plates takes the following 

form: 
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.where A and B are constants  

And again the charge and the voltage across the capacitor’s plates 

decay exponentially with time, as shown in fig.3. And this case is called 

critical damping. 

 

:Under damping 

then the terms under the square root becomes  
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This case is called under damping. 

2/1t falls to half the initial valuet

oeQ  is the time at which the amplitude 
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Analysis of results: 



 

 is some how  2/1t As we can see from the results the theoretical

in the under damping case and this difference 2/1t equal to the practical

is due to the resistances of wires, capacitor and inductor. and the decay 

constant of the critical damping case is the largest so it decays faster. 
 


