UPLOADED BY AHMAD JUNDI Binetic Energy & Work Faind scaler "Dot product" Work= F.d W= Fd COS (9 W= FCOSO W= N.m= Tou ~ 3, 30/ (le d. 5 (a), 2 001 * page - 40 < 90) al vai Work -> zero -> (U=70) Kinetic Energy = 1 m v²) K.E = Joil * S W at N 124-79274 Work - Energy Theorem . $V_p^2 = N_1^2 + 2a \Delta X$ $V_P - V_{\cdot}^2 = 2ad$ m $\frac{mV_{p}^{2}-mV_{r}^{2}}{\frac{2}{2}}=\frac{2}{12}m\alpha d$ $K_{p}-K_{i} = F.d$ W= AK 15/11/2018

UPLOADED BY AHMAD JUNDI * work done by gravity: 2 mass moves downword Mg= motion mq - mgdCoso R O=zee tmgd Fapp 2 mass moves upward Ø motion d Wg= my = mg d cos & O=120 force: Variable * Xę ×f FCOSOdr = Frdx+ 202 \sim Xi the Area under the carve Remar K X (Work)) is 15/11/2018

UPLOADED BY AHMAD JUNDI * work Done by a spring force. " Variable Porce" * Fs = - RX (Hook's law) > elastic constant (+) 000000000 Q Appf App F Com 2222222 WWWWW X Xf Fx dx = - Rx dx Ns = xi - R X dx $x_{f}^{2} - x_{i}^{2}$ if \Rightarrow Ws = -R $W_{i} = 0$ $W_{s=-\frac{P}{2}} X_{p}$ 15/11/2018

UPLOADED BY AHMAD JUNDI