

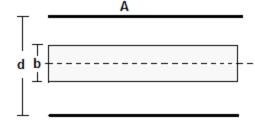
## <u>2<sup>nd</sup> Hour Exam</u> <u>Time: 85:00 min</u>

## <u>2<sup>nd</sup> Semester 2017/2018</u> <u>Date: 13 /5/2018</u>

| Student Name: | Student NO |
|---------------|------------|
|               |            |

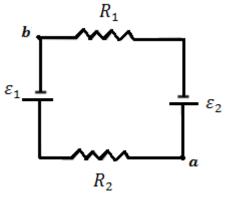
| $\checkmark$ | Sec | Instructor Name    | Classes Time  | $\checkmark$ | Sec | Instructor Name    | Classes Time  |
|--------------|-----|--------------------|---------------|--------------|-----|--------------------|---------------|
| Ο            | 1   | Areej Abdel Rahman | S 9:00-9:50   | 0            | 8   | Hazem Abu Sara     | W 12:00-12:50 |
| Ο            | 2   | Hazem Abu Sara     | M 12:00-12:50 | 0            | 9   | Wael Karain        | W 9:00-9:50   |
| Ο            | 3   | Areej Abdel Rahman | M 14:00-14:50 | 0            | 10  | Abdallah Sayyed    | W 14:00-14:50 |
| Ο            | 4   | Abdallah Sayyed    | S 14:00-14:50 | 0            | 11  | Abdallah Sayyed    | W 11:00-11:50 |
| Ο            | 5   | Dua' Abu Mura      | S 14:00-14:50 | 0            | 12  | Areej Abdel Rahman | W 12:00-12:50 |
| Ο            | 6   | Ghassan Abbas      | W 13:00-13:50 | 0            |     |                    |               |
| 0            | 7   | Areej Abdel Rahman | M 15:00-15:50 |              |     |                    |               |

## **Answer Sheet:**


| <b>Q</b> # | a | b | c | d | e |
|------------|---|---|---|---|---|
| 1          |   |   |   |   |   |
| 2          |   |   |   |   |   |
| 3          |   |   |   |   |   |
| 4          |   |   |   |   |   |
| 5          |   |   |   |   |   |
| 6          |   |   |   |   |   |
| 7          |   |   |   |   |   |
| 8          |   |   |   |   |   |
| 9          |   |   |   |   |   |
| 10         |   |   |   |   |   |
| 11         |   |   |   |   |   |
| 12         |   |   |   |   |   |
| 13         |   |   |   |   |   |
| 14         |   |   |   |   |   |
| 15         |   |   |   |   |   |
| 16         |   |   |   |   |   |

## Useful Formulae and Constants 1. $\varepsilon_o = 8.85 \times 10^{-12} C^2 / N.m^2$

2.  $e = 1.6 \times 10^{-19} C$ 3.  $\mu_o = 4\pi \times 10^{-7} T.m/A$ 4.  $m_e = 9.11 \times 10^{-31} Kg$ 5.  $m_p = 1.67 \times 10^{-27} Kg$ 6.  $g = 10 m/s^2$ 7.  $eV = 1.6 \times 10^{-19} I$ Capacitance 1. q = CV2.  $C = \frac{\varepsilon_0 A}{d}$ 3.  $\frac{1}{C_{er}} = \sum \frac{1}{C_i}$  (Series connection) 4.  $C_{eq} = \sum C_i$  (Parallel connection) 5.  $U = \frac{q^2}{2C}$ 6.  $u = \frac{1}{2}\varepsilon_o E^2$ 7.  $\varepsilon_o \oint \kappa \vec{E} \cdot d\vec{A} = q$ Current and Resistance 8.  $\vec{I} = ne\vec{v}_d$ 9.  $\vec{E} = \rho \vec{I}$ 10.  $R = \frac{\rho L}{A}$ 11.  $P = i^2 R$ Circuits 12.  $\varepsilon = \frac{dW}{da}$  $13. V = \varepsilon (1 - e^{-\frac{t}{RC}})$ Magnetic Fields 14.  $\vec{F} = q\vec{v} \times \vec{B}$ 15.  $qvB = \frac{mv^2}{r}$ 16.  $f = \frac{qB}{2\pi m}$ 17.  $\vec{F} = i\vec{l} \times \vec{B}$ 18.  $\vec{\tau} = \vec{\mu} \times \vec{B}$ 19.  $U = -\vec{u} \cdot \vec{B}$ 20.  $W_a = U_f - U_i$ 


- 1- A potential difference of 600V is applied to a series connection of two capacitors of capacitance  $C_1 = 3 \mu F$  and  $C_2 = 6 \mu F$ . What is the charge on  $C_1$ ?
  - a) 1200  $\mu C *$
  - b) 5400 μC
  - c) 400 µC
  - d) 200  $\mu C$
  - e) 600 μ*C*
- 2- Two capacitors, C<sub>1</sub> = 4 μF is charged so its charge is q<sub>1</sub> = 80 μC and C<sub>2</sub> = 6 μF is uncharged. The two capacitors are then connected in parallel. Find the charge on C<sub>2</sub>?
  a) 80 μC
  - b) 32 μC
  - c) 48 µC \*
  - d) 40 µC
  - e) zero
- 3- A certain capacitor has a capacitance of C. After it is charged to a charge q and isolated, the two plates are pull apart so its capacitance becomes C/2. Find the work done by the agent?
  - a)  $-\frac{q^2}{2C}$
  - b)  $\frac{q^2}{2c}*$ c)  $\frac{q^2}{c}$
  - с) с
  - d)  $-\frac{q^2}{c}$
  - e) zero

- 4- A slab of copper of thickness (b) is thrust into a parallel plate capacitor of plate area (A) and plate separation (d) as shown in the figure. What is the capacitance after the slab is introduced?
  - a)  $\frac{\varepsilon_0 A}{d}$
  - b)  $\frac{\varepsilon_0 A}{b}$
  - c)  $\frac{\varepsilon_0 A}{d+b}$
  - d)  $\frac{\varepsilon_0 A}{d-b}$ \*
  - e) 0



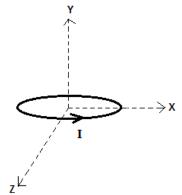
- 5- A isolated conducting sphere whose radius is R and has a charge Q. How much potential energy is stored in the electric field of this charged conductor?
  - a)  $\frac{kQ^2}{R}$
  - b)  $\frac{kQ^2}{2R}$ \*
  - c)  $\frac{kQ}{R}$
  - d)  $\frac{kQ}{2R}$
  - e)  $\frac{kQ}{R^2}$
- 6- A certain wire has a resistance *R*. What is the resistance of a second wire, made of the same material, that is half as long and has half the radius?
  - a) 2*R*\*
  - b) 4*R*
  - c) R/2
  - d) *R*/4
  - e) *R*

- 7- What is the current in a wire of radius (a) if the magnitude of the current density is variable and given by J = br, in which b is constant and r is the radial distance?
  a) πba<sup>3</sup>
  - b) 2πba<sup>2</sup>
  - c) πba<sup>3</sup>/3
  - d)  $2\pi ba^3/3^*$
  - e)  $2\pi a b^3/3$
- 8- What is the value of 1 Ampere. hour?
  - a) 3600 C\*
  - b) 3600 J
  - c) 3600 Watt
  - d) 3600 electrons
  - e)  $1.6 \times 10^{-19} C$
- 9- In the circuit shown, the ideal batteries have emfs, ε<sub>1</sub> = 20 V, ε<sub>2</sub> = 5 V and R<sub>1</sub> = 3 Ω, R<sub>2</sub> = 2 Ω. If the potential at *a* is 10 V, what is the potential at *b*?
  a) +3 V
  - b) +4 V
  - c) −4*V*\*
  - d) -14 V
  - e) +14 V



10- In the circuit shown find  $I_1$ ?

- a) zero
- b) 3.5 A c) 7 A d) 2 A e) 5 A\*  $\varepsilon_{1} = 10 V$   $R_{2} = 5 \Omega$   $R_{2} = 5 \Omega$   $R_{1} = 2 \Omega$
- 11- A capacitor with initial charge  $q_0$  is discharged through a resistor. What is the time taken by the capacitor to lose one-third of its charge?
  - a) 1.1τ
  - b) 0.41*τ*\*
  - c) 0.6937
  - d)  $0.18\tau$
  - e)  $0.48\tau$
- 12- In an RC series circuit,  $\varepsilon mf \ \varepsilon = 10 \ V$ , resistance  $R = 2 \ M\Omega$ , and capacitance  $c = 2.5 \ \mu F$ , the circuit is closed at t = 0 to begin charging. Find the voltage across the capacitor at  $t = 5 \ s$ ?
  - a) 3.7 V
  - b) 6.3 V\*
  - c) 1.4 V
  - d) 8.6 V
  - e) 9.5 V


- 13- At one instant,  $\vec{v} = (200\hat{i} + 300\hat{j}) m/s$  is the velocity of a proton in a uniform magnetic field  $\vec{B} = (0.05\hat{\iota} - 0.15\hat{\jmath}) T$ . At that instant find the force on the proton?
  - a)  $+72 \times 10^{-19} \hat{k} N$
  - b)  $-72 \times 10^{-19} \hat{k} N^*$
  - c)  $-45 \times 10^{-19} \hat{k} N$
  - d)  $+88 \times 10^{-19} \hat{i} N$
  - e)  $+88 \times 10^{-19} i N$
- 14-An electron moves with speed v into a region of uniform magnetic field B. The angle between them is  $= 65^{\circ}$ . Describe the motion of the electron and find the periodic time?

  - a) Uniform circular motion,  $T = \frac{2\pi m}{eB}$ b) Nonuniform circular motion,  $T = \frac{2\pi m}{eB} \cos 65$
  - c) Helical motion,  $T = \frac{2\pi m}{\rho R} *$

  - d) Helical motion,  $T = \frac{eB}{eB}^{*}$ e) Helical motion,  $T = \frac{2\pi m}{eB} \cos 65$ e) Helical motion,  $T = \frac{2\pi m}{eB} \sin 65$
- 15-The coil in the figure, which is parallel to the xz plane, carries current I = 2A in the direction indicated, has 3 turns and area of  $4 \times 10^{-3} m^2$ , and lies in a uniform magnetic field  $\vec{B} = (2\hat{\imath} - 3\hat{\jmath} - 4\hat{K}) mT$ . What is the potential energy of the coil in the magnetic field?
  - a)  $-48 \,\mu J$
  - b)  $+24 \mu J$
  - c)  $+96 \mu J$
  - d) +72 μJ\*
  - e) zero

16- A magnetic field CANNOT:

- a) Exert a force on a charge
- b) Accelerate a charge
- c) Change the momentum of a charge
- d) Change the kinetic energy of a charge\*
- e) exist

