Chapter 27: Gravits

$$\cdot \xi = \frac{dW}{dq}$$
, $1 \text{ Volt} = 1 \text{ J/sec}$ \Rightarrow $\left[\begin{array}{c} i \text{ deal battery} (r_{in} = 0) \\ \text{Real battery} (r_{in}) \end{array} \right]$
 \Rightarrow Battery $\left[\begin{array}{c} \text{supplies energy} \rightarrow \text{current with end} \\ \text{absorbs energy} \rightarrow \text{current of are in apposite} \\ \text{chreetion} \end{array} \right]$
 \Rightarrow Loop Ride \Rightarrow conservation f energy \Rightarrow closed loop $\xi V = 0$
 $\cdot \text{ Junction Rule} \Rightarrow \text{conservation } f \text{ charge } i i'$
 \Rightarrow Sories Resistences $R_{cq} = \sum_{i=1}^{N} R_i$
 $\Rightarrow \text{ Sories Resistences } R_{cq} = \sum_{i=1}^{N} R_i$
 $\forall Rc - \text{Circuits}$, $T_e = \text{capacitive time constant} = RC$
 $\cdot \text{ charging a capacitor } 3 \cdot \text{Discharging a capacitor}$
 $q = c\xi(1 - e^{t/Rc})$
 $V_c = \xi(1 - e^{t/Rc})$

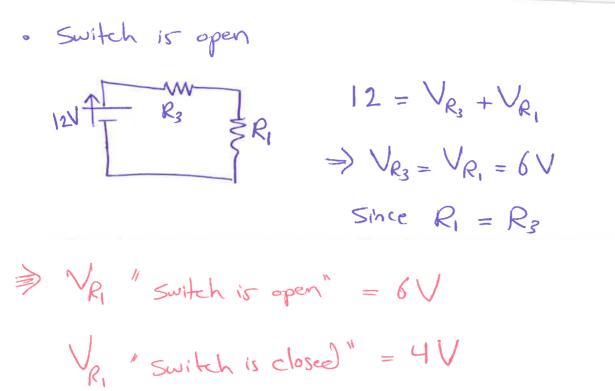
27-9 In the below tigure, R1 = 10.0 KSL, R2 = 15.0 KSL, C=0.40MF and the ideal battery has emp E=20.0V. First, the switch is closed a long time so that the steady state is reached. Then the switch is opened at time t=0. For resistor 2 and at time t=4.0ms, what are a) the current, b) the rate at which the current is changing, and c) the rate at which the dissipation rate is changing? (a) $V_{capacitor} = V_{R_2}$ " parallel" steady state (open circuit) $\implies \bigvee_{\text{Capacitor}} = \underbrace{\mathcal{E}}_{R_2} R_2$ $R_1 + R_2$ $i = \frac{\mathcal{E}}{\mathcal{R}_1 + \mathcal{R}_2}$ $= 20(15) \\ 10+15$ $V_{R_2} = i R_2$ V capacitor = 12V Discharging a Carpacitor · Switch is opened H $i = \frac{dq}{dt} = \left(-\frac{q}{Rc}\right) e^{-\frac{t}{Rc}}$

$$\begin{array}{l} \underbrace{QR} = \bigvee_{0} e^{-\frac{1}{L}/RC} \\ = 12 e^{-\left(\frac{4 \times 10^{-3}}{L_{15} \times 10^{3} \times 0.4 \times 10^{-6} \mathrm{J}\right)} \\ = 12 e^{-\left(\frac{4 \times 10^{-3}}{L_{15} \times 10^{3} \times 0.4 \times 10^{-6} \mathrm{J}\right)} \\ \underbrace{V = 6.16 V} \\ \cdot \underbrace{Vsing \ ohm's \ law} \Rightarrow i = \underbrace{V}_{R_{e}} = \frac{6.16}{15 \times 10^{3}} = 4.11 \times 10^{-4} \mathrm{A} \\ \underbrace{b} \ The rate \ at which the Current is changing \\ \frac{di}{dt} = \frac{d^{2} \mathrm{q}}{dt^{2}} \Rightarrow \mathrm{q(t)} = \mathrm{CV}_{0} e^{-\frac{1}{L}/L} \\ i = \frac{dq(4)}{dt} = \frac{\mathrm{CV}_{0}}{L} e^{-\frac{1}{L}/L} \\ \frac{d^{2} \mathrm{q}}{dt^{2}} = \frac{\sqrt{2}}{V} e^{-\frac{1}{L}/L} \\ \frac{d^{2} \mathrm{q}}{dt^{2}} = \frac{\sqrt{2}}{V} e^{-\frac{1}{L}/L} \\ \underbrace{di}_{e} = \frac{0.4 \times 10^{-6} \times 12}{(15 \times 10^{5} \times 0.4 \times 10^{-6})^{2}} e^{-\frac{1}{L}/L} \\ i = 0.0685 \ \mathrm{A/s} = 68.5 \ \mathrm{mA/s}. \\ i = 0.0685 \ \mathrm{A/s} = \frac{10}{2} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} e^{-\frac{1}{L}/L} \\ i = \frac{12}{dt} e^{-\frac{1}{L}/L} e^{-\frac{1$$

27-14 The resistances in the below figure are all 4.0-2.1 and
the batteries are ideal 12V batteries. a) when switch 5 in Figure (a)
is closed, what's the change in the electric potential V1 across
resistor 1, or does V1 remain the same? b) when switch 5 in figure
part b is closed, what is the change in V1 across resistor 1, or
does V1 remain the same?

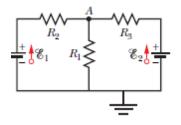
$$1 + \frac{R_1}{R_2} = R_2$$

(b)
a) By loop Theorem, it remains the same
 R_1 in parallel with R_2
b) Switch is closed R_1, R_2 parallel and their combination is
in series with R_3
 $R_{123} = R_3 + \frac{R_1 \times R_2}{R_1 + R_2} = 6.0 - 2$
 $R_1 = \frac{R_1 R_2}{R_1 + R_2} = 2.2$ $\Rightarrow i = \frac{12V}{6.2} = 2.8$
 $V_{R_3} + V_{R_{12}} = 12$
 $V_{R_3} = iR_3 = 2.84 = 8V$
 $V_{R_1} = iR_{12} = 2.8 = 4V$



$$\frac{27-47}{1}$$
 In the below circuit, $\mathcal{E} = 1.2 \text{ kV}$, $\mathcal{C} = 6.5 \text{ MF}$,
 $R_1 = R_2 = R_3 = 0.73 \text{ M} \cdot \Omega$ with C completely uncharged, switch S
is Swedenly closed (at $t = 0$). At $t = 0$, what are a) current i_3 in resistor
 $3? \text{ At } t = 00 (\text{that is, after many time constants}), what are i_1 , i_2
and i_3 ? what is the potential difference V_2 across resistor $2 \text{ at } t = 0$
and $t = 00$?
 $M_1 = i_2 + i_3$
 $M_2 = 0.73 \text{ M } i_1 + 0.73 \text{ M } i_2$
 $1.2 \text{ kV} = 0.73 \text{ M } i_1 + 0.73 \text{ M } i_2$
 $1.2 \text{ kV} = 0.73 \text{ M } i_1 + 0.73 \text{ M } i_2$
 $1.2 \text{ kV} = 0.73 \text{ M } i_1 + 0.73 \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.2 \text{ kV} = 3(0.73) \text{ M } i_2$
 $1.3 \text{ current} = 0 \text{ open circuif.}$
 $1.3 \text{ current} = 0 \text{ open circuif.}$
 $1.3 \text{ current} = 0 \text{ open circuif.}$$

P20-27) In Fig, $\varepsilon_1 = =.00 \text{ V}$, $\varepsilon_2 = 12.0 \text{ V}$, $R1 = 100 \Omega$, $R2 = 200 \Omega$, and $R3 = 300 \Omega$. One point of the circuit is grounded (V = 0). What are the (a) size and (b) direction (up or down) of the current through resistance 1, the (c) size and (d) direction (left or right) of the current through resistance 2, and the (e) size and (f) direction of the current through resistance 3? (g) What is the electric potential at point *A*?

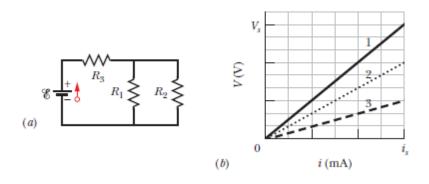


20. (a) Using the junction rule $(i_1 = i_2 + i_3)$ we write two loop rule equations: $\varepsilon_1 - i_2 R_2 - (i_2 + i_3) R_1 = 0$ $\varepsilon_2 - i_3 R_3 - (i_2 + i_3) R_1 = 0.$

Solving, we find $i_2 = 0.0182$ A (rightward, as was assumed in writing the equations as we did), $i_3 = 0.02545$ A (leftward), and $i_1 = i_2 + i_3 = 0.04365$ A (downward).

- (b) The direction is downward. See the results in part (a).
- (c) $I_2 = 0.0182$ A. See the results in part (a).
- (d) The direction is rightward. See the results in part (a).
- (e) $i_3 = 0.0254$ A. See the results in part (a).
- (f) The direction is leftward. See the results in part (a).
- (g) The voltage across R_1 equals V_A : (0.0382 A)(100 Ω) = +4.37 V.

P56-27) The ideal battery in Fig. 27-39*a* has emf $\varepsilon_1 = 10.0$ V. Plot 1 in Fig. 27-39*b* gives the electric potential difference *V* that can appear across resistor 1 of the circuit versus the current *i* in that resistor. The scale of the *V* axis is set by Vs = 18.0 V, and the scale of the *i* axis is set by $i_s = 3.00$ mA. Plots 2 and 3 are similar plots for resistors 2 and 3, respectively. What is the current in resistor 2?



56. Line 1 has slope $R_1 = 6.0 \text{ k}\Omega$. Line 2 has slope $R_2 = 4.0 \text{ k}\Omega$. Line 3 has slope $R_3 = 2.0 \text{ k}\Omega$. The parallel pair equivalence is $R_{12} = R_1 R_2 / (R_1 + R_2) = 2.4 \text{ k}\Omega$. That in series with R_3 gives an equivalence of

$$R_{123} = R_{12} + R_3 = 2.4 \text{ k}\Omega + 2.0 \text{ k}\Omega = 4.4 \text{ k}\Omega$$

The current through the battery is therefore $i = \varepsilon / R_{123} = (10 \text{ V})/(4.4 \text{ k}\Omega) = 2.27 \text{ mA}$ and the voltage drop across R_3 is $V_3 = iR_3 = (2.27 \times 10^{-3} \text{ A})(2.0 \text{ k}\Omega) = 4.55 \text{ V}$. Subtracting this (because of the loop rule) from the battery voltage leaves us with the voltage across R_2 :

$$V_2 = \varepsilon - V_3 = 10.0 \text{ V} - 4.55 \text{ V} = 5.45 \text{ V}.$$

Then Ohm's law gives the current through R2:

$$i_2 = \frac{V_2}{R_2} = \frac{5.45 \text{ V}}{4.0 \text{ k}\Omega} = 1.4 \text{ mA}.$$

27-21) Switch S in the below circuit is closed at t=0, to begin
changing an initially unchanged capacitor of Capacitance C=4910,447
through a resistor of resistance R= 32.0.2. At what time is the
potential across the capacitor equal to that across the resistor ?
$$V_R = V_C$$

 $\Rightarrow L_1$ "Half time"
 $L_2 = T \ln 2 = RC \ln 2$
 $L_1 = (32.2)(49 \times 10^6) \ln 2 = 1.09 \times 10^3 src$
 $T = 1.09 ms$

$$\begin{aligned} & V_{c} = V_{R} \\ & \varepsilon(1 - e^{-t}\tau) = \varepsilon e^{-t}\tau \\ & 1 = 2 e^{-t}\tau \\ & \pm = e^{-t}\tau \\ & 1 - \pm = -t\tau \\ & -\ln 2 = -t\tau \\ & t = -t\ln 2 \end{aligned}$$

27-33) In the below figure, circuit section AB absorbs energy at a rate of 50W when current i = 2.0A through it is in the Indicated direction. Resistance R = 2.0.2. (a) what is the potential difference between A and B? End device X Lacks internal resistance. (b) What is its emp? (c) Is point B connected to the positive terminal of X VAZZEN VAZZEN AR C VBEOU XBEOU or to the negative terminal? $(a) P = L \Delta V$ AV = 25U 50 watt = 2.0A OV | DV = 25.0V | $V_{A} - V_{B} = 25 J$ A = Hoper V B = Lower V (b) $V_A - V_B = 25.0 \text{ with}$ -iR - E = 25E = 25 - iR = 25 - [2*2] = 21V

(c) point B connected to the negative terminal of X

27-21) Switch S in the below circuit is closed at t=0, to begin
changing an initially unchanged capacitor of Capacitance C=4910,447
through a resistor of resistance R= 32.0.2. At what time is the
potential across the capacitor equal to that across the resistor ?
$$V_R = V_C$$

 $\Rightarrow L_1$ "Half time"
 $L_2 = T \ln 2 = RC \ln 2$
 $L_1 = (32.2)(49 \times 10^6) \ln 2 = 1.09 \times 10^3 src$
 $T = 1.09 ms$

$$\begin{aligned} & V_{c} = V_{R} \\ & \varepsilon(1 - e^{-t}\tau) = \varepsilon e^{-t}\tau \\ & 1 = 2 e^{-t}\tau \\ & \pm = e^{-t}\tau \\ & 1 - \pm = -t\tau \\ & -\ln 2 = -t\tau \\ & t = -t\ln 2 \end{aligned}$$