Chapter 25: Capacitance,

- · Capacitor => A device in which electrical energy can be stored. Capacitor consists of two isolated conductors (the plates) with change $+q$ and $-q$.
- · Capacitor symbol (-1+) used he all Capacitors of all geometries
- · Capacitance is a measure of how much charge must be put on the plates to produce a certain potential difference between them.

• Capacitance depends only on the geometry of the plates. 1 faracl = $1F = 1C/v$

Calculating the capacitance: Assume a charge 9 to have been placed on the plates. 121 Find the electric field \vec{E} due to this charge by using Gauss' Law $9 = \epsilon_0 \Phi = \epsilon_0 \oint \vec{E} \cdot d\vec{A}$ 13] Evaluate the potential difference V between the plates $V = -\int \vec{E} \cdot d\vec{s}$ "choose apath that follows an electric held, from
the negative plate to the possible plate Eand Js will be in opposite direction $\vec{E} \cdot \vec{d}$ = -Eds $V = fEds$ 4 Calculate C from 9 = CV II A parallel plate Capacitor plates are so Large and so close together that we can neglect the fringing of the electric tield at the edges of the plates.
 E is constant taking the plates.
 $\frac{1}{4}$ $\frac{1}{4}$ Gaussian surface that encloses just et la partie d'une path of on the positive plate. G = GEA, A is the area of the plate $\mathbf{v} = \int E ds = E \int ds = E d$, d is the plate separation \bullet $C = \frac{4}{V} = \frac{6E A}{E d} = \frac{6A}{d}$ C = E.A (Parallel plate capacitor)

31 A spherical Capaction
\nTotal charge+q
\n
$$
\epsilon
$$

\nTotal charge-q
\nand
\nthe gradient of the
\nsurface
\nand
\n
$$
\epsilon
$$

\n
$$
\epsilon
$$
<

41 An Isolated sphere Single isolated spherical conductor of raclins R by assuming the "missing plate" is a conducting sphere of infinite raclius $\begin{pmatrix} 2 \end{pmatrix}$ Spherical capacitor $C = 4\pi\epsilon_0 \frac{ab}{b-a}$ $C = 4\pi\epsilon_0 \frac{a}{1-a} \left[b\rightarrow\infty, a=R\right]$ $C = 4\pi\epsilon R \text{ (Isolated sphere)}$ You can use the electric potential for the spherical conductor V=K9 $\Rightarrow C = \frac{4}{V} = \frac{R}{k} = 4\pi\epsilon R$ example Capacitance of the carth $R \simeq 6400$ Km = 64 XIO m $C = 4\pi\epsilon$, $R = \frac{1}{9\times10^{9}}$ $64\times10^{5} = 0.711\times10^{3} = 711.4F$ All formulas Anul We have derived in the capacitance involve the constant ϵ multiplied by a quantity that has the climension of a length.

Capacitors in Parallel and in Series 11 Capacitors in parallel $B = \frac{1}{\sqrt{\frac{1}{1\sqrt$ $9_1 = C_1V$, $9_2 = C_2V$, $9_3 = C_3V$ 9 Ctotal charge) = $q_1 + q_2 + q_3 = (C_1 + C_2 + C_3)V$ $C_{eq} = \frac{q}{r} = C_1 + C_2 + C_3$ "Capacitors connected in parallel combe replaced with an equivalent capacitor that has the same total change q and the same patential V as the actual capacitors. $CC_{eq} = \sum_{j=1}^{N} C_j$ (N-Capacitors in parallel) $B = \begin{bmatrix} +q_3 & & & +q_2 & & +q_1 \\ & V & & -q_3 & V & & -q_2 & V \\ & & -q_3 & C_3 & & -q_2 & C_2 & & -q_1 & C_1 \end{bmatrix} V$ $+q$ $V_1\sqrt[4]{\begin{vmatrix}-\begin{vmatrix}-\end{vmatrix}}\end{vmatrix}}\end{vmatrix}}\begin{vmatrix}-q\begin{vmatrix}\ \hline C_1\end{vmatrix}\end{vmatrix}$ [2] Capacitors in Series $V_1 = \frac{q}{C_1}$, $V_2 = \frac{q}{C_2}$, $V_3 = \frac{q}{C_3}$ $V_2\sqrt[4]{\frac{+q}{-\overline{q}_2}}$ $B \frac{+1}{-1}V$ $V = V_1 + V_2 + V_3 = 9(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3})$ $C_{eq} = \frac{9}{V} = \frac{1}{11} + \frac{1}{11} + \frac{1}{11}$ $V_3 \sqrt[4]{\frac{+q}{-qC_3}}$ $\frac{1}{C_{24}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ $\frac{1}{C_{4}} = \sum_{j=1}^{N} \frac{1}{C_{j}} (N - \text{Capacitors in Series})$ Capacitors that are connected is series can be replaced with an Capacitois that we connected the same charge of and the same total
equivalent capacitor that has the same charge of and the actual series capacity

25-6 A potential difference V = 100 V is applied across a capacity
\namongement with capacitudes C₁ = 100 V F, C₂ = 5.0 μF and
\nC₃ = 2.00 μF, what are the q V and U 4v reach capacitor?
\nFind C₄
\n
$$
\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{10} + \frac{1}{S} = \frac{3}{10}
$$

\n $\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{10} + \frac{1}{S} = \frac{3}{10}$
\n $\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{10} + \frac{1}{S} = \frac{3}{10}$
\n $\frac{1}{C_{23}} = C_{12} + C_{3} = 3.33 \text{ J/F}$
\n $\frac{1}{C_{24}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{24}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{25}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{26}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{27}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{28}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{29}} = 5.33 \text{ J/F}$
\n $\frac{1}{C_{21}} = \frac{1}{C_{21}} \text{Var}(S)$
\n $\frac{1}{C_{21}} = \frac{1}{C_{21}} \text{Var}(S)$
\n $\frac{1}{C_{22}} = \frac{1}{C_{21}} \text{Var}(S)$
\n $\frac{1}{C_{23}} = \frac{1}{C_{23}} \text{Var}(S)$
\n $\frac{1}{C_{24}} = 5.33 \text{ J/C}$
\n $\frac{1}{C_{25}} = \frac{1}{C_{26}} \text{Var}(S)$
\n $\frac{1}{C_{26}} = \frac{1}{C_{2$

Sample problem 25.3: Capcitor 1, with C₁ = 3.55/4F, 5 changed
\nTo apotertial difference V₀ = 6.3V, using a 6.3V battery. The author
\n15 then removed, and the capacitor is connected as the below higher
\nto an unchanged capacitor 2, with C₂ = 8.95/4F, when switch S
\n15 closed, change flows between the capacitors. Find the charge on
\n16 each capacitance of a battery
\n17. G is connected to a battery
\n18. a = C₁V₀ = (3.55)(10⁻⁶)F(6.3V)
\n19₀ = 22.365/4C)
\n10₀ = 22.365/4C
\n11
$$
\frac{q_0}{r} = \frac{q_2}{r}
$$

\n12
\n13 $\frac{q_1}{r} = \frac{q_2}{r}$
\n24
\n25 $\frac{q_1}{r} = \frac{q_2}{r}$
\n26 $\frac{q_1}{r} = \frac{q_2}{r}$
\n27 $\frac{q_1}{r} = \frac{q_2}{r}$
\n28 $\frac{q_1}{r} = \frac{q_2}{r}$
\n29 $\frac{q_1}{r} = \frac{q_2}{r}$
\n30 $\frac{q_1}{r} = \frac{q_2}{r}$
\n31 $\frac{q_1}{r} = \frac{q_2}{r}$
\n32 $\frac{q_1}{r} = \frac{q_2}{r}$
\n3359.4F = 31.54F
\n34. a = 6.35MC
\n350.6 C
\n41 = 6.35MC
\n42 = 16.0MC
\n43.

Energy Stored in an Electric Fieldi- $\frac{49}{4444444444446} =$ $C = \frac{4}{11}$ $Slope = \frac{\Delta q}{\Delta V} = C$ L = Area Under the curve of Q Versus \widehat{V} $=1\sqrt{9}$ Joul $-4V$ $U = LqV$ $=\frac{1}{2}CV^{2}$ $=\frac{1}{2}(CV)V = \frac{1}{2}CV^{2}$ Joul $\frac{1}{2}$ $\frac{q^2}{2}$ $1 = \frac{1}{2}9(\frac{4}{c}) = \frac{1}{2} \frac{q^2}{c}$ $Energy Density = Energy = L$ $\frac{1}{1}$ Volume Volume for parallel plate Capacitor Volume $C = G_0 A/d$ $=\frac{1}{2}CV^2$ Volume=Ad $\frac{1}{1-\frac{1}{2}ad^{2}}$ $U = \frac{1}{2}CV^2$ = $\frac{1}{2} \epsilon_0 \frac{V^2}{\sqrt{2}} = \frac{1}{2} \epsilon_0 (\frac{V}{\sqrt{2}})^2 = \frac{1}{2} \epsilon_0 E^2 \frac{V}{\sqrt{2}}$ $\frac{2}{\delta}$ m³) $u=\frac{1}{2}\epsilon_0E$

Sample Problem 25.04. An isolated Conducting
Sphere , radius = R = 6.85cm $changle = 1.25nC$ $\frac{P}{\phi} = \frac{q}{\sqrt{\pi R^2}} = \frac{1.25nC}{\sqrt{\pi (6.85 \times 10^{-2})^2}} = \frac{21.2nC/m^2}{\sqrt{\pi (6.85 \times 10^{-2})^2}}$ $2)$ $\Rightarrow E = 0$, inside the conducting sphere $3)$ $=0$, \uparrow $E_5 = \frac{9}{4\pi\epsilon_0 R^2} = \frac{9\times10^9\times1.25\times10^{-9}}{(6.85\times10^{-2})^2}$ 5) 6.85×10^{-2} 2 $=\frac{2.4\times10^{3} N/C}{4\pi\epsilon r^{2}}$
 $=\frac{4}{4\pi\epsilon r^{2}}$
 $=\frac{4}{4\pi\epsilon R} = 9\times10^{9}\times1.25\times10^{-2}$ $6)$ $=164$ $\rightarrow \frac{V}{center}$ - 164 V $SC = 417 \epsilon_0 R = 6.85 \times 10^{-2}$ $ex^{\prime}\infty$ $7.61\times10^{-12}F$ 9x109 $7.61pF$ $-31 = \frac{92}{2C} = \frac{(1.25 \times 10^{-9})^2}{2(7.61 \times 10^{-12})}$ اهذا مفلوب =1.026 x10⁷ J
=102.6 aJ = 103 nJ C de l'is de la $U_5 = \frac{1}{2} \epsilon_0 E_5^2$ = $\frac{1}{2}6\left(\frac{9}{4\pi\epsilon R^{2}}\right)$ = 2.54×10^{5} J/m³ (v)

Capacitor With a Dielectric. If you fill the space between the plates of
a Capacitor with a dielectric, Which is an
insulating material, the Capacitance Will increase $C_{o} = \frac{\epsilon_{o}A}{\alpha t}$ air $C=kC_0, K>1$ ER3 For each Dielectric (insulating material) Dielectric Constant K = E
Dielectric strength is the maximum Electric field (Emax) the material Can Withsland In Dielectric material replace in all equation $6 \rightarrow k6$ $E = \frac{4}{4\pi k t_0 r^2}$ $E = \frac{9}{4\pi\epsilon\Gamma^2}$ $\frac{4}{\sqrt{\pi r/kt}r}$ $\frac{4}{\sqrt{\frac{4\pi c_0 r}{6}}}}$ $15 = \frac{0}{26}$ $E = \frac{0}{2(k\epsilon_0)}$
 $+ 4 = \frac{1}{2}(k\epsilon_0)E^2$ $u = \frac{1}{2}6E^{2}$ $\left(\mathfrak{n}\right)$

Sample Problem 25.05 Work and Energy when a dielectric is inserted into a Capa $\frac{C_{i=13.5p}}{C_{i}}$
 $\frac{Q_{i=13.5p}}{P_{i=12.5p}}$
 $\frac{Q_{i=13.5p}}{P_{i=12.5p}}$
 $\frac{Q_{i=13.5p}}{P_{i=12.5p}}$
 $\frac{Q_{i=13.5p}}{P_{i=13.5p}}$
 $\frac{Q_{i=13.5p}}{P_{i=13.5p}}$
 $\frac{Q_{i=13.5p}}{P_{i=13.5p}}$
 $\frac{Q_{i=13.5p}}{P_{i=13.5p}}$ $= 1.055 mJ$ $G = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ U_i , q_i , V_i , C_i $C_f, 9, 1, 1, 2, 1, 2, 6.5$ $C_{p} = K C$ = (6.5)(13.5 pF) $= 87.75 pF$ $\frac{9}{10} = \frac{9}{10} = 168.75pC$ (9 does not change because No Source (Battery) for $V_f = \frac{q_f}{C_f} = \frac{168.75pC}{87.15pF}$ $V_1 = 1.92V$ $L_f = \frac{1}{2} \frac{q_f^2}{C_f} = \frac{1}{2} \left[\frac{[168.75 \times 10^{-12}]}{87.7 \times 10^{-12}} \right]$ $U_f = 1.62 \times 10^{-10} = 0.162 \text{ nJ}$ Find the Work done by E during inserting the slab? $W_E = -\Delta U = -[U_f - U_c] = -[\circ.162 - 1.055] = -[-0.893]$ $= 0.893 nJ$ $= 893PJ$, The slab will be Sucked in $\overline{(\overline{2})}$

 $Problem (25-3)$ $=7.89cm^{2}$ $d = k_2 = d/2$ $d = 4.62$ mm $14, -11, 14, -4$ $FindC2$ This Capacitor Will be considered to be 2 Capacitors in series $C_1 = \frac{k_1 \epsilon_0 A}{\alpha/2} = 2 k_1 \epsilon_0 A$
 $C_2 = \frac{k_2 \epsilon_0 A}{\alpha/2} = 2 \frac{k_2 \epsilon_0 A}{\alpha} = 2(4) (\frac{\epsilon_0 A}{\alpha}) = 2(4) (1.51 \times 10^{12})$
 $C_1 = \frac{k_2 \epsilon_0 A}{\alpha/2} = 2 (4) (\frac{\epsilon_0 A}{\alpha}) = 2(4) (1.51 \times 10^{12})$ $\frac{d/2}{C_{12}} = \frac{d}{C_1} + \frac{d}{C_2} = \frac{d}{2k_1 \epsilon_0 A} + \frac{d}{2k_2 \epsilon_0 A} = \frac{d}{2\epsilon_0 A} \left[\frac{1}{k_1} + \frac{1}{k_2} \right]$ $\frac{1}{C_{12}} = \frac{d}{26A} \left[\frac{k_2 + k_1}{k_1 k_2} \right]$ $C_{12} = \frac{26.4 \pm k_1 k_2}{d} = \frac{6.4 \pm 2 k_1 k_2}{d}$ $C_{12} = (1.51 \rho F) \left[\frac{2(4)(11)}{11+4} \right] = 1.51 \rho F \left[\frac{88}{15} \right] = 1.51 \rho F (5.8662)$ $C_{12} = 8.86 \,\text{PF}$

<u>Problem (25-37)</u> Dielectric material Dielectric strength = 18 MV/m E_{max} $=18MV/m$ $C = 3.9x10^{2} \mu F$ Amin? For C to withstand a potential difference of $4kV$ $9X10^{2}M$ E_{max} = $18MV/m$ $4kV$ A_{min} ? $od7$ $= \frac{kE_{o}A}{\gamma}$, $E\cdot d = \Delta V$, d $\frac{A = C.d}{KE_{o}} = \frac{C}{KE_{o}} (\frac{V_{max}}{E_{max}})$
 $\frac{B.9 \times 10^{2} \times 10^{6}}{15.61(8.85 \times 10^{-12})} (\frac{4 \times 10^{3}}{18 \times 10^{6}})$ H is min When Eismax $A_{min} = 3.9x/\overline{D}^{2}x/\overline{D}^{6}$
(5.6) $(8.85x/\overline{D}^{12})$ $=\frac{3.9x10^{8}}{49.56x10^{12}}\left(2.222x10^{4}\right)$ $m_{i} = 0.175 m^{2}$ $\widehat{(\text{IV})}$