Chapter 28! Magnetic Fields

- · All magnets [Natural and Industrial magnets] have two poles (South and North pole) (NO magnetic manapole)
- Opposite magnetic poles attract each other (Attractive magnetic force), and like magnetic poles repel eachother (Repulsive magnetic force). ⇒Attractue magnetic force N-S \Rightarrow Repulsive magnetic force $N - N$, $S - S$
- · Magnetic field Lines extend from North pole to south pole outside the magnet and from South pole to North pole inside the magnet.

 $N\xi$ {s

· Magnetic field lines Form a Closed Loop. Why !! . Magnetic field lines do not cross each other Why! Magnetic flux through a closed surface equals Zero

 $\oint \vec{B} \cdot d\vec{A} = Ze0$

 \vec{B} = Magnetic field "Vector quantity $\begin{array}{cc}\n\overrightarrow{RS} & = & \overrightarrow{Res} \mid \alpha\n\end{array}$

\n- \n Magnetic Force on a charged particle:\n
	\n- A charged particle makes through a magnetic field
	$$
	\vec{B}
	$$
	, a magnetic force abc or the particle as given by\n
	$$
	\vec{F}_B = 4 \vec{v} \times \vec{B}
	$$
	\n
	\n- \n Partite's charge\n
		\n- particle's velocity
		\n- Using included \vec{J}
		\n- 1. Tésla = $\frac{1 \text{ne} \text{when}}{1 \text{c} \text{when}} = \frac{1 \text{when}}{1 \text{c$

 $\overline{141}$ \overline{F}_B does not change the Kinetic energy $(k = \frac{1}{2} m \nu^2)$ [5] Fis change the linear momentum of the changed particle by
Changing the clirection of its relocity. $\vec{p} = m \vec{v}$ The change will move in a circular motion if it has only
peopendicular component of the relocity to a uniform magnetic
field \vec{B} \vec{C} $\vec{\nu}$ \vec{B} \vec{J} θ = 90° between $\vec{\nu}$ and \vec{B} [7] If the relocity of the particle has a component parallel to the magnetic hield, the particle moves in a helical path about hield
vector \vec{B} (Spiral motion) $\theta \neq q_0$. $\begin{picture}(160,170) \put(0,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){\vector(1,0){180}} \put(150,0){$ Détermine the clirection of FB $[By$ Right hand $Rune$ Note => \odot out of the page + \hat{k}
 \otimes into the page - \hat{k} $F_B = 4 \vec{v} \times \vec{B}$ $F_B \circ F_B$
 $F_B \circ F_B$
 $F_C \circ F_C = f$
 $F_C \circ F_C$
 $F_C \circ F_C$
 $F_C \circ F_C$
 $F_C \circ F_C$ \overrightarrow{AB} $\overrightarrow{f_B}$ = outward \odot $1-\frac{1}{\sqrt{8}}$
 $1-\frac{1}{\sqrt{8}}$

Sample Problem 28.01: Magnetic force on a moving charged particle
\nAruniburn magnetic field
$$
\vec{B}
$$
, with magnitude 1.2mT, is directed vertically
\nupward-thwayand the volume of laboratory channel. A productally
\nenergy 53 MeV check the chamber, moving horizontally from south, kinetic
\nWhat magnitude of the chung force acts on the graph as it takes the channel?
\n $(m_p = 1.67 \times 10^{-27} kg$, *Neglet* Earth's magnitude field).
\n $\Rightarrow q_p = +e = +1.6 \times 10^{-19}$
\n $m_p = 1.67 \times 10^{-27} kg$
\n $R = 5.3$ MeV = 5.3×10⁶ eV ($\frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}} = 3.2 \times 10^7 m/s$
\n $K = \pm m v^2$
\n $K = \pm 1.6 \times 10^{-19} kg$
\n $\sqrt{R} = 9.4 \times 8 m$
\n $\sqrt{R} = 9.1 \times 10^{-15} M$
\n $\vec{B} = 6.1 \times 10^{-15} M$
\n $\vec{C} = \frac{1.6 \times 10^{-15} M}{1.6 \times 10^{-27} kg} = \frac{1}{3.7 \times 10^{23} m/s}$
\n $\vec{C} = \frac{1.6 \times 10^{-15} M}{1.6 \times 10^{-27} kg} = \frac{1}{3.7 \times 10^{23} m/s}$
\n $\vec{C} = \frac{1.6 \times 10^{-15} M}{1.6 \times 10^{-27} kg} = \frac{1}{3.7 \times 10^{23} m/s}$
\n $\vec{D} = \frac{1}{1.2 m T} \vec{D}$
\n $\vec{D} = \frac{1}{1.2 m T} \vec{D}$
\n $\vec{D} = \frac{1}{1.2 m T} \vec{D}$
\n $\vec{D} = \frac{1}{2} \vec{D} \vec{D} = \frac{1}{2} \vec{D} \vec{D}$
\n $\vec{E} = 9.7 \times \vec{B}$
\n $= 1.6 \times$

ł,

$$
\frac{28-56}{18}+3 \text{ proton moves through a uniform magnetic field given by}
$$
\n
$$
\vec{B} = (10^{\circ} - 20^{\circ} + 25 \hat{k})mT.
$$
\n
$$
\vec{B} = (10^{\circ} - 20^{\circ} + 25 \hat{k})mT.
$$
\n
$$
\vec{B} = \frac{1}{2} \text{ when } \vec{B} = -\frac{1}{2} \text{ with } \vec{B} = \frac{1}{2} \
$$

 $\vec{v} = (-4.2 \text{km/s})\hat{i} + (8.4 \text{km/s})\hat{j} + (2 \text{km/s})\hat{k}$

. A circulating charged particle: => A charged particle with mass m and charge magnitude 14/movingwith Nelocity \vec{v} paparclicular to a uniform magnetic field \vec{B} will travel in a circle. J + \vec{B} / magnetic force, circula motion $x = \frac{y}{x} = \frac{y}{x} = \frac{y}{x} = \frac{z}{x}$ $\vec{k} = 4 \vec{z} \times \vec{B}$ $\Rightarrow 4 \vee B \sin \theta = F_R$ Apply Newton's 2^{nd} Law $\Rightarrow \vec{F} = m\vec{a}$ $9\vee 8 = ma$, $a = \frac{\omega^2}{r}$; Centrepital acceleration $9\vee 8 = m\frac{\nu^2}{\sqrt{2}}$ $T = \frac{mv}{|q|B}$ the radius of the circule path. => periodic time T (the time h are full revolution) $T = \frac{2\pi r}{v} = \frac{2\pi}{v} \frac{mv}{|qB} = \frac{2\pi m}{hIB} (period)$ $f = \frac{1}{T} = \frac{|q|B}{2\pi m}$ [frequency] $[6] = se^{-1} = Hz$ $W = 2\pi f = \frac{191B}{m}$ [Angular frequency] [w]=rac)/sec Mee $0 \Rightarrow$ neutron $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ \circledR = proton $B \Rightarrow$ electron.

• Helical motion (Spin1 motion)

\nIf the velocity
$$
β
$$
 a charged particle has a component parallel to the magnetic field, the particle will move in a helical point about the direction $β$ is

\n
$$
(\nβ \neq 90^{\circ})
$$
 The angle between $β$ and $λ$ is\n
$$
(\nβ \neq 90^{\circ})
$$
 The angle between $β$ and $λ$ is\n
$$
(\nβ \neq 90^{\circ})
$$
 The angle between $β$ and $λ$ is\n
$$
(\nβ \neq 90^{\circ})
$$
 The angle between $β$ and $λ$ is\n
$$
(\nβ \neq 90^{\circ})
$$
 The angle between $β$ and $λ$ is\n
$$
(\nβ \neq 90^{\circ})
$$
 The angle between $β$ and $β$ is\n
$$
(\nβ \neq 90^{\circ})
$$
\n
$$
(\nβ \neq 90^{\
$$

$$
mg =
$$
 $Linear motion$ along B
 $Brth(P) \Rightarrow \rho = \gamma_{1}T = \gamma cos \phi \left(\frac{2 \pi m}{fflB} \right)$

• Lorentz force P
\nA charged particle moves in on Eledric field E and Magnech field E
\n
$$
\vec{F} = q \vec{E} + q \vec{v} \times \vec{B} = q \vec{LE} + \vec{v} \times \vec{B} \text{ Lorentz' force}
$$
\n
$$
\frac{75.50}{25.50} \text{ A motion +tawek through uniform magnetic field and electric field. The\nmagnetic field is $\vec{B} = -3.25 \hat{L} \text{ m T}$. At one instant, the velocity of the proton it
\n $\vec{v} = 2\omega_0 \text{ m/s}$. At that instant and in unit velocity, which is then
\nhence acting on the photon of the electric field (a) 4000 K K₁, (b) -41.00 K K_n,
\nand 41.00 K Vm?
\n
$$
\vec{E} = -3.25 \vec{L} \text{ m T}
$$
, $\vec{v} = 2000 \text{ m/s}$
\n
$$
\vec{E} = 4.00 \text{ k V/m}
$$
\n
$$
\vec{E} = q \vec{LE} + \vec{v} \times \vec{B}
$$
\n
$$
= q \vec{LE} + \vec{v} \times \vec{B}
$$
\n
$$
= q \vec{LE} + \vec{v} \times \vec{B}
$$
\n
$$
= q [4.00 \hat{L} + (2000 \hat{L}) + 6.5 \hat{L}]
$$
\n
$$
= 1.6 \times 10^{-19} \text{ F} + 1.6 \times 10^{-18} \text{ F} \text{ N}
$$
\n
$$
\vec{E} = -41.00 \text{ K} + 6.5 \text{ F}
$$
\n
$$
\vec{F} = 11.6 \times 10^{-19} \text{ F} + 1.6 \times 10^{-18} \text{ F}
$$
\n
$$
\vec{F} = 41.6 \times 10^{-19} \text{ F}
$$
\n
$$
\vec{F} = 41.6 \times 10^{-19} \text{ F}
$$
\n
$$
\vec{F} = 41.6 \times 10^{-19} \text{ F}
$$
\n
$$
\vec{F} = 41.6 \times 10^{-19} \text{ F}
$$
\n
$$
\vec
$$
$$

\n- Applications of a magnetic force on a charged particle.
\n- [\n [I] Cyclotron
$$
\Rightarrow
$$
 To accelerate a charged particle by electric force as they circle in a magnetic field.\n
\n- [\n The conditions are also also included in a magnetic field.\n
\n- [\n The conditions are also included in a magnetic field.\n
\n- [\n The equations are also discussed by the formula of the image.
\n- [\n The equations are also discussed in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in the image.
\n- [\n The equations are also provided in

[2] Mass Spectrometer: To measure the mass fan ion (g, m) the initially stationary ion is accelerated by the dectric field due to a potential difference V. The ion leaves S and enters as expansion B is perpendicular to the path of the ion. $\overrightarrow{B} + \overrightarrow{n}$ =) the jun will move in a Circle By the conservation of mechanical energy $DK + D() = 0$ $Imv^2=9V$ $\sqrt{v} = \sqrt{\frac{24V}{m}}$ $\vec{B} \pm \vec{v} \Rightarrow$ Circular motion $r = \frac{mv}{1918} = \frac{m}{1918}\sqrt{\frac{24V}{m}}$ (the radius filhecircle) $X = 2r$ (The distance where the ion strikes a defector $X = \frac{2m}{|q|B|} \frac{2qV}{m}$ the mass of $X^{2} = \frac{4m^{2}}{|1^{2}lB^{2}} \frac{2qV}{m}$ = $/m = \frac{|qlBX^{2}}{8V}$ determined by measuring BiX and V

128-60 Andectric field of 1.5 kVm and aperpendicular magnetic teld of 0.350T act on a moving electron to produce no net force. What is the electron's speed? $\begin{array}{ccc}\nx & x & y & \pi \\
x & x & y & x \\
x & y & y & x \\
y & y & y & x\n\end{array}$ $F_{\text{net}}/|e_{\text{c}}|_{\text{non}} = 2e^{i\theta}$ $9E = 9\sqrt{8}$ $N = \frac{E}{B} = \frac{1.5 \times 10^3 \text{ V/m}}{0.35 \text{ T}}$ $V = 4.3 \times 10^3 \text{ m/s} = 4.3 \text{ km/s}$ Suppose \vec{v} rightward \vec{E} dun ward So B must be invard to get crossed fields

U	The Hall effect (crossed fields)																				
When a unknown magnetic field \vec{B} is applied to a conducting strip carrying current \hat{B} , with the field perpendicular to the direction of the current, a that the electric potential difference V is set up across the strip.																					
A How potential difference V	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = Ed$ \n	\n $V_{\text{q}} = \vec{E} \cos \theta$ \n	\n $V_{\text{q}} = \vec{E} \sin \theta$ \n	\n $V_{\text{q}} = \frac{1}{\sqrt{2}} \cos \theta$ \n	\n $V_{\text{q}} = \frac{1}{\sqrt{2}} \cos \theta$ \n	\n $V_{\text{q}} = \frac{1}{\sqrt{2}} \sin \theta$ \n	\n $V_{\text{q}} = \frac{1}{\sqrt{2}} \sin \theta$ \n	\n $V_{\text{q}} = \frac{1}{\sqrt{2}} \sin \theta$ \n	\					

28-47) A strip f Gpper 75.0 Mm–fuck and 4.5mm: 13de is placed in a
Uniform magnetic field B of magnitude 0.65T, with B perpendicular to
the strip. A Cumerh i = 57A is then sent. Howyh the strip such
that a field potential difference V appears across the width. 14
ship. Calculate V. C. The number f change canier permite when
h copper is 8.47×10²⁸ electrons/m³?

$$
V_{\parallel} = E d
$$

= 4/8 d
 $V_{\parallel} = \frac{i}{n}$
or $V_{\parallel} = \frac{i}{n}$
 $V_{\parallel} = \frac{i}{n}$
 $\frac{1}{n}$
 $V_{\parallel} = 3.65 × 10^{5}$ volts = 36/MV
 $V_{\parallel} = 3.65 × 10^{5}$ volts = 36 MW
 $V_{\parallel} = 2.65 × 10^{5}$ volts = 36 MW
 $V_{\parallel} = 2.65 × 10^{5}$ volts = 36 MW
 $V_{\parallel} = 2.65 × 10^{5}$ volts = 36 MW
 $V_{\parallel} = 2.5$ m/s
 $V_{\parallel} = 12.5$ m/s
 $V_{\parallel} = \frac{5}{n}$
 $V_{\parallel} = \frac{3.65 × 10^{5}}{(0.65) (9.5 × 10^{5})} = 12.5$ m/s

\n- • Magnetic Force on a current-carrying wire:
\n- ⇒ A straight wire can giving a current *i* in a uniform magnetic field experimentes a relatively large force:\n
$$
\vec{F}_B = \vec{i} \vec{i} \times \vec{B}
$$
\n The direction \oint the length vector \vec{i} is that \oint the current *i*:\n
$$
\vec{F}_B = \vec{i} \vec{i} \times \vec{B}
$$
\n The direction \oint the length vector \vec{i} is that \oint the current *i*:\n
$$
\vec{F}_B = \vec{i} \vec{i} \times \vec{B}
$$
\n The direction \oint the length vector \vec{i} is the *i*-th term, \vec{i} is the *ii*-th term, \vec{i} is the *iii*-th term, \vec{i} is the *iv*-th term, <math display="

• If on external agent relates a magnetic dipole from an initial orientation
\n0; the same other orientation 0; and the dipole is shotonong both initially
\nand findly if the work. We, do he on the dipole by the agent- if
\n
$$
W_a = \Delta U = U_g - U_i = (\overrightarrow{A} \cdot \overrightarrow{B}) - (-\overrightarrow{A} \cdot \overrightarrow{B})
$$

\n $W_a = \Delta U = U_g - U_i = (\overrightarrow{A} \cdot \overrightarrow{B}) - (-\overrightarrow{A} \cdot \overrightarrow{B})$
\n $W_a = W_{\text{external}} + \frac{1}{4} + \$