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 ROTATIONAL VECTORS AND 
 ANGULAR MOMENTUM 

EXERCISES 

Section 11.1 Angular Velocity and Acceleration Vectors 

 13. INTERPRET This problem is an exercise in determining the direction and magnitude of the angular velocity 

vector. From the direction and speed at which the car is traveling, we are to deduce the angular velocity of its 

wheels. 

DEVELOP From Chapter 10 (Equation 10.3), we know that the magnitude of the angular velocity (i.e., the angular 

speed) is given by ω = vcmr. For this problem, we have vcm = (70 km/h )(103 m/km)(1 h/3600 s) = 19.44 m/s and r = 

d/2 = (0.62 m)/2 = 0.31 m. The direction of the angular velocity vector can be determined using the right-hand rule 

(see Figure 11.1).  

EVALUATE Inserting the given quantities into Equation 10.3 gives an angular speed of 

( ) ( ) 1
cm 19.44 m/s 0.31 m 63 sv rω −= = =  

to two significant figures. If the car is rolling noth, the right-hand rule determines that the direction of the anular 

velocity vector is to the left, which is west. Therefore 163 s westω −=
G

. 

ASSESS Notice that the angular speed may be reported in units of rad/s, but since radians are a dimensionless 

quantity, they are often left out, leaving s−1, which is a frequency (Hz).  

 14. INTERPRET The problem asks us to determine the angular acceleration of the wheels of a car traveling north with 

a speed of 70 km/h and that makes a 90° left turn that lasts for 25 s. 

DEVELOP The speed of the car is cm 70 km/h 19.44 m/s.v = =  Assuming that the wheels are rolling without 

slipping, the magnitude of the initial angular velocity is  

1cm 19.44 m/s 62.7 s
0.31 m

v
r

ω −= = =  

With the car going north, the axis of rotation of the wheels is east-west. Since the top of a wheel is going in the 

same direction as the car, the right-hand rule gives the direction of iωG  as west. In unit-vector notation, we write 

i
ˆ.iω ω= −

G
 

After making a left turn, the angular speed remains unchanged, but the direction of fωG  is now south (see sketch). 

In unit-vector notation, we write f
ˆ.jω ω= −

G
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EVALUATE Using Equation 11.1, we find the angular acceleration to be 

( ) ( )

( ) ( ) ( )
ave

1
2

ˆ ˆ
ˆ ˆ

62.7 s ˆ ˆ ˆ ˆ2.5 s
25 s

f i j i
i j

t t t t

i j i j

ω ωω ωω ωα

−
−

− − −−Δ
= = = = −

Δ Δ Δ Δ

= − = −

G GGG

 

The magnitude of aveαG  is 

( ) 2
ave

2 62.7 rad/s2| | 3.6 rad/s
25 st

ωα = = =
Δ

G
 

and aveαG  points in the south-east direction (in the direction of the vector ˆ ˆ).i j−  

ASSESS Angular acceleration aveαG  points in the same direction as .ωΔ
G

 The units can be reported as either rad/s2 

or s−2. 

 15. INTERPRET This problem involves calculating the magnitude of the average acceleration given the initial and 

final angular velocities, and the time interval between the two. We are also asked to find the angle that the average 

angular acceleration vector makes with the horizontal. 

DEVELOP Let the x axis be the horizontal direction (positive to the right), and the upward direction be the y axis. 

The the average angular acceleration vector is simply the difference between the final and initial angular velocities 

divided by the time interval between these two speeds (i.e., Equation 11.1). The initial angular velocity is 

( )i
ˆ45 rpm jω = , the final angular speed is ( )f

ˆ60 rpm iω = , and the time interval is t = 15 s. To find the angle θ 

the average angular acceleration vector makes with the horizontal, use the fact that that tan y xθ α α= . 

EVALUATE (a) Inserting the given quantities into Equation 11.1, we find 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2f i
1

ˆ ˆ60 rpm 45 rpm ˆ ˆ ˆ ˆ240 min 180 min 86, 400 s 64,800 s
0.25 min

i j
i j i j

t
ω ωα − − − −

−

−−
= = = − = −

Δ
 

The magnitude of the average acceleration is thus ( ) ( )2 22 2 6 286, 400 s 64,800 s 1.1 10 sα − − −= + = ×  to two 

significant figures. 

(b) The angle of the average angular acceleration vector with respect to the horiztonal is  
2

2

64,800 satan atan 37
86,400 s

y

x

α
θ

α

−

−

⎛ ⎞ ⎛ ⎞−
= = = −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

D  

ASSESS Note that the quantities used to calculate part (b) were intermediate quantities, so more significant figures 

are retained. The final result, however, is reported to two significant figures, which reflects the precision of the 

data. 

 16. INTERPRET The problem involves angular velocity and angular acceleration. We are given the initial angular 

velocity of a wheel and asked to find its final angular velocity after an angular acceleration has been applied over a 

given time interval. 

DEVELOP Draw a diagram of the situation with the initial vectors (see figure below). Take the x-axis east and the 

y-axis north, with positive angles measured CCW from the x-axis. In unit-vector notation, the initial angular 

velocity iω  and the angular acceleration α  can be expressed as 

( )
( ) ( ) ( ) ( )

( ) ( )

i i

2

2 2

ˆ ˆ140 rad/s
ˆ ˆ ˆ ˆcos sin 35 rad/s cos 90 68 sin 90 68

ˆ ˆ32.45 rad/s 13.11 rad/s

i i

i j i j

i j

α α

ω ω

α α θ θ

= =

⎡ ⎤= + = ° + ° + ° + °⎣ ⎦

= − +

 

The final angular velocity can be found by using Equation 11.1. 
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ĵ

v0 = −v0 î at
ur r

 
EVALUATE Using Equation 11.1, the angular velocity at t = 5.0 s is  

( ) ( ) ( ) ( )
( ) ( )

f i

2 2
f i

ˆ ˆ ˆ140 rad/s 32.45 rad/s 13.11 rad/s 5.0 s

ˆ ˆ22 rad/s 66 rad/s

t t
t i i j

i j

ω ωωα

ω ω α

−Δ =
Δ Δ

⎡ ⎤= + = + − +⎣ ⎦
= − +

=

 

to two significant figures. The magnitude and direction of fωG  are  

( ) ( )2 2
f 22.3 rad/s 65.6 rad/s 69 rad/sω = − + =  

and 

f,1 1
f

f,

22.3 rad/stan tan 19
65.6 rad/s

y

x

ω
θ

ω
− −⎛ ⎞ ⎛ ⎞−

= = = − °⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
 

or 19° west of north. 

ASSESS Because the x component of the angular acceleration is negative, xωΔ  is also negative. On the other 

hand, a positive yα yields 0.yωΔ >  

Section 11.2 Torque and the Vector Cross Product 

 17. INTERPRET This problem involves finding the torque about the origin given a force and the position vector that 

indicates where the force is applied.  

DEVELOP Use Equation 11.2 to find the torque. The position vector r is ( ) ( )ˆ ˆ3 m 1 mr i j= +G
. 

EVALUATE (a) For a force ( ) ˆ12 NF i=
G

, the torque is 

( ) ( ) ( ) ( )
ˆˆ ˆ

ˆˆ ˆ ˆ3 m 1 m 12  N m 3 m 1 m 0 m 12 N m
12 N 0 N 0 N

i j k
r F i j i kτ ⎡ ⎤= × = + × ⋅ = = − ⋅⎣ ⎦

KG K
 

(b) For a force ( ) ˆ12 NF j=
G

 

( ) ( ) ( ) ( )
ˆˆ ˆ

ˆˆ ˆ ˆ3 m 1 m 12  N m 3 m 1 m 0 m 36 N m
0 N 12 N 0 N

i j k
r F i j j kτ ⎡ ⎤= × = + × ⋅ = = ⋅⎣ ⎦

KG K
 

(c) For a force ( ) ˆ12 NF k=
G

 

( ) ( ) ( ) ( ) ( )
ˆˆ ˆ

ˆˆ ˆ ˆ ˆ3 m 1 m 12  N m 3 m 1 m 0 m 12 N m 36 N m
0 N 0 N 12 N

i j k
r F i j k i jτ ⎡ ⎤= × = + × ⋅ = = ⋅ + ⋅⎣ ⎦

KG K
 

ASSESS For part (c), the magnitude is ( ) ( )2 212 N m 36 N m 38 N mτ = ⋅ + ⋅ = ⋅  and the direction is 

( )atan 36 N m 12 N m 72θ = ⋅ ⋅ = D  counter clockwise from the x axis and in the x-y plane. 

 18. INTERPRET We are asked to find the torque about two different points produced by an applied force. The 

problem is about taking a cross product.  
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DEVELOP The torque vector is defined as ,r Fτ = ×
GG G

 where F
G

is the force vector and rG  is the position vector 

which points from the axis of rotation to the point where the force is acting. The direction of τG  is determined by 

the right-hand-rule.  

EVALUATE (a) For this part, ˆ(3 m) .r i=G  Therefore, with ˆ ˆ(1.3 N) (2.7 N) ,F i j= +
G

 the torque is  

( ) ( ) ( ) ( )
ˆˆ ˆ

ˆˆ ˆ ˆ3 m 1.3 N 2.7 N 3 m 0 m 0 m 8.1 N m
1.3 N 2.7 N 0 N

i j k
r F i i j kτ ⎡ ⎤= × = × + = = ⋅⎣ ⎦

GG G
 

(b) Here we have ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ( 3 m ) 1.3 m 2.4 m 4.3 m 2.4 m .r i i j i j⎡ ⎤= − − + = −⎣ ⎦
G

 Therefore, the torque is  

( ) ( ) ( ) ( )

( ) ( ) ( )

ˆˆ ˆ
ˆ ˆ ˆ ˆ4.3 m 2.4 m 1.3 N 2.7 N 4.3 m 2.4 m 0 m

1.3 N 2.7 N 0 N

ˆ ˆ ˆ11.6 N m 3.1 N m 15 N m

i j k
r F i j i j

k k k

τ ⎡ ⎤ ⎡ ⎤= × = − × + = −⎣ ⎦ ⎣ ⎦

= ⋅ + ⋅ = ⋅

GG G
 

ASSESS The torque vector τG  is perpendicular to both rG  and .F
G

 It points in the direction normal to the plane 

formed by rG  and .F
G

 

 19. INTERPRET You want to know what torque is supplied by the deltoid muscle about the shoulder joint when your 

arm is outstretched.  

DEVELOP From Equation 11.2, the torque is ,r Fτ = ×
GG G

with the magnitude equaling sin .rF θ  

EVALUATE The distance between the shoulder joint (i.e., where the arm pivots) and where the deltoid force is 

applied is given as 18 cm.r = The angle between the corresponding radial vector and the muscle force is 
o o o180 15 165 .θ = − =  The magnitude of the torque is then 

 ( ) ( ) osin 0.18 m 67 N sin165 3.1 N mrFτ θ= = = ⋅  

By the right-hand rule, we start with our fingers pointing to the right in the direction of ,rG  and then rotate them 

upwards in the direction of .F
G

Our thumb points up, so the torque of 3.1 N m⋅ points out of the page. 

ASSESS Is this enough torque to keep the arm outstretched? Let's assume the arm has a mass of about 3 kg 

(corresponding to a weight of about 30 N ), and its center of mass is 30 cm from the shoulder joint. The 

gravitational force will pull the arm down at 90° to the horizontal arm direction, thus generating a torque in the 

opposite direction with a magnitude of ( ) ( )30 N 0.3 m 9 N m.τ = ⋅�  Therefore, the deltoid muscle would need 

help from other muscles to keep the arm horizontal. 

Section 11.3 Angular Momentum 

 20. INTERPRET This problem involves a dimensional analysis of angular momentum. We are to express angular 

momentum in terms of the fundamental SI units, in terms of Newtons, and in terms of Joules. 

DEVELOP Angular momentum is given by Equation 11.3, L r p= ×
G G G

. Given that r has units of distance (m) and p 

has units of mass times velocity, we can find the SI units of angular momentum. From Newton’s second law (for 

constant mass) F = ma, we see that force is the product of mass and acceleration, so the units a newton are 

kg·m·s−2. Simiarly, energy (J) can be expressed as a force multiplied by distance (consider work, W F r= ⋅ Δ
G G

, 

Equation 6.5), so the SI units of a the joule are kg·m2·s−2. 

EVALUATE (a). Using the dimensions of linear momentum (= kg·m·s−1), the units of angular momentum are 

(kg·m·s−1)(m) = kg·m2·s−1. 

(b) Because the units of a newton are kg·m·s• 2, angular momentum can be expressed as kg·m2·s−1 = N·m·s. 
(c) Because energy (J) can be expressed as force times distance, we have J = N·m, so the units of angular 

momentum are kg·m2·s−1 = (N·m)·s = J·s. 

ASSESS From Equation 11.2, we see that torque has units of N·m, so a torque multiplied by a time gives an 

angular momentum. This is just the definition of an angular impluse. 
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 21. INTERPRET This problem asks us to find the angular momentum of a ball given its linear velocity, its mass, and 

the distance from its axis of rotatoin.  

DEVELOP The angular momentum of an object about a point is defined as (see Equation 11.3) 

L r p= ×G G
 

where pG  is the linear momentum and rG  is the position vector of the object relative to that point. We may also 

express L
G

 as  

( ) ˆsinL r p rp nθ= × =
G G G

 

where θ is the angle between rG  and pG  and n̂  is a unit vector perpendicular to both rG  and .pG  For this problem, 

we can assume that the ball is traveling in a circle of radius r and speed v. Since the velocity of the ball, ,vG  is 

perpendicular to ,rG  the magnitude of the angular momentum about the center is | | .L r p rp rmv= × = =G G
 

EVALUATE From the problem statement, we have r = 1.2m + 0.9 m = 2.1 m and v = 27 m/s. Therefore, 

( ) ( ) ( ) 2 12.1 m 7.3 kg 27 m/s 4.1 kg m sL rmv −= = = ⋅ ⋅  

ASSESS The direction of L
G

 is parallel to the axis of rotation. It is perpendicular to both vG  and .rG  

 22. INTERPRET For this problem, we are to find the angular speed given the angular momentum and the rotational 

inertia of an object. 

DEVELOP Use Equation 11.4, L Iω=
G G

 to find the angular speed of the gymnast.  

EVALUATE Given that L = 470 kg·m2·s−1 and the I = 62 kg·m2, the angular speed of the gymnast must be 
2 1

1
2

470 kg m s 7.6 s
62 kg m

L
I

ω
−

−⋅ ⋅
= = =

⋅
 

ASSESS The angular speed has units of frequency, as expected. It may equivalently be expressed as 7.6 rad/s, 

because radians are dimensionless. 

 23. INTERPRET We are given the elements of rotational inertia and the angular velocity of the hoop and are to find 

the corresponding angular momentum. We will need to use Table 10.2 to find the rotational inertia. 

DEVELOP For an object rotating about a fixed axis, its angular momentum can be expressed as (see Equation 

11.4) L Iω=
G G

, where I is the moment of inertia of the object, and ωG  is its angular velocity about its axis. From 

Table 10.2, we find that the rotational inertia of a hoop rotating about its axis is I = mr2.  

EVALUATE With ω = 170 rpm = 17.89 rad/s, the magnitude of L
G

 is  

( ) ( ) ( )22 0.64 kg 0.45 m 17.8 rad/s 2.3 J sL I mrω ω= = = = ⋅  

The direction of L
G

 is along the axis of rotation according to the right-hand rule. 

ASSESS The angular momentum vector L
G

 points in the same direction as ωG . 

 24.  INTERPRET The problem asks for the angular momentum of a spinning baseball.  

DEVELOP Equation 11.4 gives the angular momentum as .L Iω=
G G

 In this case, we are only concerned with the 

magnitude of the baseball's angular momentum. We are told to treat the ball as a uniform solid sphere spinning 

about an axis through its center, in which case its rotational inertia is given by 2 2
5I MR=  (from Table 10.1).  

EVALUATE Taking care to convert the rotational speed to rad/s, the angular momentum is 

( ) ( ) ( )212 22 2
5 5 2

2  rad/s0.145 kg 0.074 m 2000 rpm 1.7 10  J s
60 rpm

L MR πω −⎡ ⎤
= = = × ⋅⎢ ⎥

⎣ ⎦
 

ASSESS The value seems reasonable. The units are correct, since ( )2 2 2kg m /s kg m /s s J s.⋅ = ⋅ ⋅ = ⋅  
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Section 11.4 Conservation of Angular Momentum 

 25. INTERPRET This problem involves conservation of angular momentum, which we can use to find the angular 

speed of a spinning wheel after a piece of clay is dropped onto it and sticks to its surface.  

DEVELOP If the clay is dropped vertically onto a horizontally spinning wheel, the angular momentum about the 

vertical spin axis is conserved. Conservation of angular momentum is expressed as  

i f i i f fL L I Iω ω= ⇒ =
G G G G

  

For this problem, the direction of the angular velocity does not change, so this expression for conservation of 

angular momentum reduces to its scalar form, i i f fI Iω ω= . The intial rotational inertia is Ii = Iwheel = 6.40 

kg·m2·s−1, and the final rotational inertia is 2
f wheel clayI I m r= + . 

EVALUATE Inserting the given quantities into the expression from conservation of angular momentum, the final 

angular velocity is  

( ) ( )
( )

2
wheeli

f i 2 22
f wheel clay

6.40 kg·m 19.0 rpm 17.4 rpm
6.40 kg·m 2.70 kg 0.460 m

i
II

I I m r
ω ω ω

⎛ ⎞
= = = =⎜ ⎟+ +⎝ ⎠

 

ASSESS The clay increases the total rotational inertia of the system, so the angular speed decreases, as required 

by conservation of angular momentum. 

 26. INTERPRET This problem involves conservation of angular momentum and the work-energy theorem. The 

former we can use to find the angular speed of the merrry-go-round after the children sit on it, and the latter we can 

use to find the energy lost in the transaction.  

DEVELOP Conservation of angular momentum demands that i i f fI Iω ω=
G G

. The initial rotational inertia is Ii = 120 

kg·m2, the initial angular velocity is ωi = 0.50 rev/s. The final rotational inertia is If = Ii + 4mcr
2, where mc is the 

mass of one child. To find the energy lost when the children jump onto the merry-go-round, consider the work-

energy theorem Equation 6.14, net kK W f rΔ = = ⋅ Δ
G G

, where fk is the force due to friction, which acts parallel to 

rΔG . From the rotational version of the work-energy theorem, Equaiton 10.19, we see that we can find the change 

in kinetic energy using the result of part (a). 

EVALUATE (a) From conservation of momentum, we have 

( )
( ) ( )

( )

i i f f
2

i i
f i i 2 22

f i c

120kg m0.50 rev/s
4 120 kg m 4 25 kg 3.0 m

2 rad0.174 rev/s 1.09 rad/s
rev

I I
I I
I I m r

ω ω

ω ω ω

π

=

⋅= = =
+ ⋅ +

⎛ ⎞= =⎜ ⎟⎝ ⎠

 

(b) Using ωi = (0.50 rev/s)(2π rad/rev) = π rad/s, the change in kinetic energy is ΔK = Kf − Ki, which gives 

( )

( ) ( ) ( ) ( ) ( )

2 2 2
i c f i i2 2

f f i i

2 2 22 2

41 1
2 2 2
120kg m 4 25 kg 3.0 m 1.09 rad/s 120 kg m rad/s

2
386 J

I m r I
K I I

ω ω
ω ω

π

+ −
Δ = − =

⎡ ⎤⋅ + − ⋅⎣ ⎦=

=

 

ASSESS We could also find the energy lost using the fact that ΔK = Iω2 = L2/I. This gives 

( )

2

f i

22 1
2 2

1 1 1( )
2

1 1 1 120 kg m  s 386 J
2 345 kg m 120 kg m

K L
I I

π −

Δ = −

⎛ ⎞
= − ⋅ × =⎜ ⎟⎝ ⋅ ⋅ ⎠

 

where we have used the fact that angular momentum is conserved so Li = Lf = L. 
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 27. INTERPRET In this problem we are asked about the period of a star formed by a collapsing cloud. We can use 

conservation of angular momentum to find the answer. 

DEVELOP If we assume there are no external torques and no mass loss during the collapse of the star-forming 

cloud, its angular momentum is conserved, so i i f fI Iω ω=  The initial and final rotational inertias may be found 

from Table 10.2, which gives 2
i i2 5I mr=  and 2

f f2 5I mr= . From this,we can solve for the final period of the 

star using f f2 /T π ω= . 

EVALUATE Given that the mass involved does not change,conservation of angular momentum gives  

i i f f

2 2
i i f f

2

2 2
5 5

fi

f i

I I

MR MR

R
R

ω ω

ω ω

ω
ω

=

=

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 

Thus, the final period is 

( )
2 28

6 3
f i 13

7.0 10  m1.4 10  y 6.86 10  y 2.5 days
1.0 10  m

f

i

R
T T

R
−⎛ ⎞ ⎛ ⎞×= = × = × =⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

 

ASSESS In current models of star formation, the collapsing cloud does not maintain a spherical shape, forming a 

flattened disk instead, and the central star retains just a fraction of the original cloud’s mass. 

 28. INTERPRET This problem involves a skater holding two weights in his hands. His rotational speed will change 

when he brings the weights to his chest.  

DEVELOP If the skater is twirling on frictionless horizontal ice, his angular momentum about the vertical rotation 

axis is conserved: i i f f .I Iω ω= When the arms are initially outstretched, the weights contribute to the rotational 

inertia: 2
i s,out 2 .I I MR= + Here, s,outI  is the skater's rotational inertia when his arms are outstretched, and R is the 

distance the weights are from the rotational axis. When the arms are brought into the chest, we assume they no 

longer contribute to the rotational inertia, since the distance for the axis goes to zero. The final rotational inertia is 

just that of the skater with arms to his chest: f s,in .I I=  

EVALUATE Solving for the final rotational speed gives: 

( ) ( ) ( )
22

i
f i 2

f

5.7 kg m 2 2.5 kg 0.76 m
3.0 rev/s 6.1 rev/s

4.2 kg m
I
I

ω ω
⋅ +

= = =
⋅

 

ASSESS The skater doubles his speed, which seems reasonable. If he didn't have the weights in his hand, his final 

rotational speed would be 4.1 rev/s, which is only a 30% increase over the initial speed. 

PROBLEMS 

 29. INTERPRET This problem is an exercise in calculating torque, given the force and the position relative to an axis 

at which the force is applied. 

DEVELOP Use Equation 11.2, r Fτ = ×
GG G

 to calculate the torque, given that ( ) ( )ˆ ˆ18 cm 5.5 cmr i j= +G
 

and. ( ) ( )ˆ ˆ88 N 23F i j−
G

. 

EVALUATE Evaluating the cross product gives 

( ) ( ) ( ) ( ) ( )
ˆˆ ˆ

ˆˆ ˆ ˆ ˆ18 cm 5.5 cm 88 N 23 det 18 cm 5.5 cm 0 cm 9.0 N m
88 N 23 N 0 N

i j k
i j F i j kτ

⎛ ⎞
⎜ ⎟⎡ ⎤ ⎡ ⎤= + × − = = − ⋅⎣ ⎦ ⎣ ⎦ ⎜ ⎟
⎜ ⎟−⎝ ⎠

GG
 

ASSESS Thus the torque is the direction defined by the bolt. 

 30. INTERPRET The problem is an exercise in vector multiplication (cross product). It asks us to find the direction of 

a vector ,B
G

 given the directions of another vector A
G

 and their cross product .A B×
G G
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DEVELOP The cross product, ,A B×
G G

 is perpendicular to the plane defined by A
G

 and B
G

. We are given that 
2 ˆA B A k× = −

G G
 and these vectors lie in the x-y plane. For simplicity, let’s write the two vectors as 

( )
( )

ˆ ˆcos sin

ˆ ˆcos sin

A A

B B

A A i j

B B i j

θ θ

θ θ

= +

= +

G

G  

where 30Aθ = °  and Bθ  are measured counterclockwise from the x axis. Using the above expressions, the cross 

product A B×
G G

 is 

( ) ( ) ( )
( )

ˆˆ ˆ ˆ ˆcos sin cos sin cos sin sin cos

ˆsin

A A B B A B A B

A B

A B AB i j i j AB k

AB k

θ θ θ θ θ θ θ θ

θ θ

× = + × + = −

= − −

G G

 

Using the information given in the problem statement, the angle Bθ  can be calculated. 

EVALUATE The problem states that 2 ˆ.A B A k× = −
G G

 The right-hand rule implies that the angle between A
G

 and 

B
G

, measured clockwise from A
G

, is less than 180°; namely, 180A Bθ θ− < °  or 150 30 .B Aθ θ− ° < < ° =  

The magnitude of A B×
G G

 is ( ) ( )2 2sin 2 sinA B A BAB A Aθ θ θ θ− = − =  (as given, with 2B A= ), so  

( ) 1sin
2A Bθ θ− =  

or 30A Bθ θ− = °  or 150°. When this is combined with the given value of Aθ  and the range of ,Bθ  one finds that 

0Bθ = °  or 120− °  (i.e., along the x-axis or 120° clockwise from the x-axis). 

ASSESS The vector corresponding to 0Bθ = °  can be written as 1
ˆ ˆ2 .B Bi Ai= =

G
 Similarly, for 120 ,Bθ = − °  we 

have 

( ) ( ) ( ) ( )2
ˆ ˆ ˆ ˆ ˆ ˆcos 120 sin 120 2 1 2 3 2 3B B i j A i j Ai Aj⎡ ⎤⎡ ⎤= − ° + − ° = − − = − −⎣ ⎦ ⎣ ⎦

G
 

With ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆcos 30 sin 30 3 2 1 2A A i j A i j⎡ ⎤⎡ ⎤= ° + ° = +⎣ ⎦ ⎣ ⎦
G

 the cross products are  

( ) ( ) ( ) 2
1

ˆˆ ˆ ˆ3 2 1 2 2A B A i j A i A k⎡ ⎤× = + × = −⎣ ⎦
G G

 

and 

( ) ( ) 2 2 2
2

3 1 ˆ ˆˆ ˆ ˆ ˆ3 2 1 2 3
2 2

A B A i j Ai Aj A A k A k⎛ ⎞⎡ ⎤ ⎡ ⎤× = + × − − = − + = −⎜ ⎟⎣ ⎦⎣ ⎦ ⎝ ⎠
G G

 

Both results indeed agree with the condition given in the problem statement. 

 31. INTERPRET We're asked to calculate the torque exerted by the ball player in order to bring the baseball to rest.  

DEVELOP The player exerts a torque around his shoulder, which results in a stopping force on the ball. From 

Equation 11.2, the average torque is stop ,rFτ =  where we have taken into account that the vertically-held arm and 

the horizontally-directed force are at right angles, so sin 1.θ =  We won't worry about the direction of the torque, 

just the magnitude. The average stopping force is equal to stop ,F ma=  where the average acceleration can be 

found through Equation 2.11: 2
0 / 2 .a v x= Δ  Here, 0v  is the initial speed, and xΔ  is the stopping distance. We 

have neglected the negative sign because we're only looking for magnitudes.  

EVALUATE The average torque exerted by the player on the ball is: 

 ( ) ( ) ( )
( )

22
0 63 cm 0.145 kg 42 m/s

1600 N m
2 2 5.00 cm
rmv

x
τ = = = ⋅

Δ
 

ASSESS One can arrive at the answer by using Equation 10.11: .Iτ α=  In this case, the rotational inertia is that 

of the ball rotating around the shoulder joint: 2 .I mr=  The average angular acceleration relates to the ball's 

average linear acceleration through Equation 10.5: / ,a rα = so the final expression is the same: .rmaτ =  

 32. INTERPRET In this problem we are asked to verify the vector identity ( ) 0.A A B⋅ × =
G G G

 

DEVELOP The key to the proof is to realize that the cross product A B×
G G

 is perpendicular to A
G

 and .B
G
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EVALUATE Let .C A B= ×
G G G

 If C
G

is perpendicular to A
G

 and B
G

, then their scalar products must vanish:  

( )
( )

0

0

A C A A B

B C B A B

⋅ = ⋅ × =

⋅ = ⋅ × =

G G G G G

G GG G G  

(Recall that cos ,A B AB θ⋅ =
G G

 where θ is the angle between A
G

 and .B
G

) 

ASSESS An alternative approach is to use the component forms. Let’s write the vectors as  

ˆ ˆˆ ˆ ˆ ˆ,x y z x y zA A i A j A k B B i B j B k= + + = + +
G G

 

The cross product A B×
G G

 is 

( ) ( )

( ) ( ) ( )

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆˆ ˆ

x y z x y z

x x x y x z y x y y

y z z x z y z z

y z z y z x x z x y y x

A B A i A j A k B i B j B k

A B i i A B i j A B i k A B j i A B j j

A B j k A B k i A B k j A B k k

A B A B i A B A B j A B A B k

× = + + + +

= × + × + × + × + ×

+ × + × + × + ×

= − + − + −

G G

 

The dot product ( )A A B⋅ ×
G G G

 then becomes  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) 0

x y z z y y z x x z z x y y x

y z z y x z x x z y x y y x z

A A B A A B A B A A B A B A A B A B

A A A A B A A A A B A A A A B

A A B

⋅ × = − + − + −

= − + − + −

= × ⋅ =

G G G

G G G
 

In general, ( )A B C⋅ ×
G GG

 is called the triple scalar product and ( ) ( ) ,A B C A B C⋅ × = × ⋅
G G G GG G

 i.e., the “dot” and the 

“cross” in the triple scalar product can be interchanged. This is equivalent to a cyclic permutation of the three 

vectors, 

( ) ( ) ( )A B C C A B B C A⋅ × = ⋅ × = ⋅ ×
G G G G G GG G G

 

On the other hand, interchanging any two vectors introduces a minus sign,  

( ) ( ) ( ) ( )A B C C B A B A C A C B⋅ × = − ⋅ × = − ⋅ × = − ⋅ ×
G G G G G G G GG G G G

 

 33. INTERPRET This problem involves calculating the angular momentum of an object. We are given the mass 

distribution of the object, so we can find its rotational inertia, and we also know its angular velocity. 

DEVELOP Use Equation 11.4, ,L Iω=
G G

 to compute the angular momentum. The rotational inertia of the weights 

and bar about the specified axis is (see Table 10.2) 
2

2
wt bar

12
2 12
LI m m L⎛ ⎞= +⎜ ⎟⎝ ⎠

 

EVALUATE With 10.0 rpm 1.05 rad/s,ω = =  the angular momentum about this axis is 

( ) ( ) ( ) ( ) ( )2 212 25 kg 0.8 m 15 kg 1.6 m 1.05 rad/s 37 J s
12

L Iω ⎡ ⎤= = + = ⋅⎢ ⎥⎣ ⎦
 

ASSESS The greater the angular speed, the larger the angular momentum.  

 34. INTERPRET This problem involves calculating the angular momentum of an object of mass m traveling at speed v 

along a straight line. The point about which the angular momentum is to be calculated is a point a perpendicular 

distance b from the straight line. We are to show that the angular momentum is mvb, regardless of the position of 

the object on the line. 

DEVELOP Apply Equation 11.3, L r p= ×
G G G

, using the geometry as drawn in the sketch below. Note that p mv=G G
 

and b = rsinθ. 
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EVALUATE Evaluating the cross product, we find | | sinL r p pr mvbθ= × = =K K
. 

ASSESS The direction of L
K

 is also the same, for any position along the trajectory (in this case, into the page as 

sketched). 

 35. INTERPRET We need to find the angular momentum of a disk-shaped rotor that is part of a micromechanical 

device that measures blood flow. 

DEVELOP The angular momentum of the rotor is ,L Iω=  where the rotational inertia is that of a disk: 
1 2
2 .I MR=  We don't explicitly know the rotor's mass, but the material is silicon, which has a density of 

32.33 g/cm .ρ =  

EVALUATE The mass of the rotor is the density times the volume: ( )2 ,M d Rρ π= ⋅ where d is the rotor's 

thickness. The radius is half the diameter: 150 ,R mμ= and the 800-rpm rotational speed converted to SI units is: 

83.8 rad/s.ω =  So the angular momentum of the rotor during the tests is 

 
( ) ( ) ( ) ( )

4

43 3 6 6 16

2

2.33 10 kg/m 2.0 10 m 150 10 m 83.8 rad/s 3.1 10 J s
2

L I dRπω ρ ω

π − − −

= =

= × × × = × ⋅
 

ASSESS This is a very small angular momentum, but we expect it to be. Otherwise, the device would significantly 

disturb the blood flow it is designed to measure.  

 36. INTERPRET This problem asks us to find the angular momentum of an object about a given point. To do so, we 

will need to calculate the rotational inertia of the object, given its rotational inertia about its center of mass (i.e., the 

rotational inertia if it were to rotate about an axis that goes through its center of mass). We are given the new axis 

about which the object rotates, so we can apply the parallel-axis theorem to find the rotational inertia about this 

new axis. The second part of the problem involves the rotational analog of Newton’s second law, which we can use 

to find the torque required to achieve the given angular momentum in the given time. 

DEVELOP Use Equation 11.4 , L Iω=
G G

, to find the angular momentum of the bat about point P. Applying the 

parallel-axis theorem (see Equation 10.17) to the bat gives us the rotational inertia about an axis through the point 

P as Ip = Mh2 + Icm, with Icm = 0.048 kg·m2 and h = 43 cm. The angular velocity can be found using Equaiton 10.3, 

v = rω, where r is the distance from the P; r = 43 cm + 31 cm = 74 cm and v = 50 m/s. The direction of ω can be 

found using the right-hand rule, so if the bat is swung counter clockwise, the angular velocity vector is oriented out 

of the page, and if it is swung clockwise, the angular velocity vector is oriented into the page. To find the torque 

needed, apply Equation 11.5 in discreet form: ΔL/Δt = τ. 

EVALUATE (a) Inserting the given quantities into Equation 11.4 gives 

( ) ( ) ( )22 2
cm

50 m/s0.88 kg 0.43 m 0.048 kg m 14 J s
0.74 m

vL I Mh I
r

ω
⎛ ⎞⎡ ⎤= = + = + ⋅ = ⋅⎜ ⎟⎣ ⎦ ⎝ ⎠

 

The direction of the angular momentum is either out or into the plane of the page, depending on whether the bat is 

rotated counter clockwise or clockwise, respectively. 
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(b) From the rotational analog of Newton’s second law, the torque needed to acheive this angular momentum in 

0.25 s is 

P0

f i f 14.2 J s 57 N m
0.25 s

L L LL
t t t

τ

=

−Δ ⋅= = = = = ⋅
Δ Δ Δ

 

The direction of the torque is the same as that of the angular momentum because the initial momentum was zero. 

ASSESS In ft-lbs, the torque is  

( ) 1 lb 1 ft57 N m 42 ft lb
4.448 N 0.3048 m

τ
⎛ ⎞ ⎛ ⎞

= ⋅ = ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

which is a reasonable result (i.e., possible for a human to achieve). 

 37. INTERPRET This problem asks us to calculate the rotational inertia of a tire if the design reduces the angular 

momentum by a certain percentage, while keeping the linear speed fixed. 

DEVELOP The linear speed of the car is related to its angular speed as v = ωr (see Equation 10.3). Keeping v 

fixed implies  

1 1 2 2r rω ω=  

From Equation 11.4, L = Iω, the new rotational inertia can be computed. 

EVALUATE The new specifications require that  

2 2 2 2 1

1 1 1 1 2

0.7 0.7
L I I
L I I

ω ω
ω ω

= = ⇒ =  

Using 1 2 2 1r rω ω= , we obtain 

( ) ( ) ( ) ( )2 21 2
2 1 1

2 1

35 cm0.70 0.70 0.70 0.32 kg m 0.21 kg m
38 cm

R
I I I

R
ω
ω

⎛ ⎞
= = = ⋅ = ⋅⎜ ⎟⎝ ⎠

 

ASSESS The general condition is  

2 2 2 2 1 2 1
2 1

1 1 1 1 2 1 2

L I I R I R
L L

L I I R I R
ω
ω

⎛ ⎞ ⎛ ⎞
= = ⇒ = ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

A decrease in angular momentum (L2 < L1) can be achieved by either decreasing r1/r2 or I2/I1. In our problem, the 

ratio r1/r2 = (38 cm)/(35 cm) = 1.09 actually is increased. However, this change is accompanied by a greater 

decrease in rotational inertia I2/I1 = (0.206 kg·m2)/ (0.32 kg·m2) = 0.64. 

 38. INTERPRET This problem involves conservation of angular momentum, which we can use to find the angular 

speed when the mouse is at the center of the turntable. The second part involves the work-energy theorem, which 

we can use to find the work done by the mouse. The mouse does work when it exerts reaction forces to friction 

between its feet and the turntable. 

DEVELOP Apply conservation of angular momentum. Because the axis of rotation does not change, we can use 

the scalar form, so Lf = Li. The final angular momentum is Lf = Itωf and the initial angular momentum is Li = Itωi + 
mr2, where m = 19.5 g is the mass of the mouse and r = 25 cm is its distance from the axis of rotation. With the 
final angular velocity known, we can apply the work-energy theorem Equation 10.19, 

2 2
rot f f i i2 2W K I Iω ω= Δ = −  

to find the work done by the mouse. 

EVALUATE (a) Inserting the given values into the expression for conservation of angular momentum gives 

( )
( ) ( )22

f i i f 2

0.0154 kg m 0.0195 kg 0.25 m
22.0 rpm 23.7 rpm.

0.0154 kg m
I Iω ω

⎡ ⎤⋅ +⎣ ⎦= = =
⋅
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(b) From the work-energy theorem, the work done by the mouse is 

( )

( ) ( )

2 2 2
f i f f i i f f i f

22
22

1 1 1 1
2 2 2

1 2 rad 1 min 22.0 r ev/min0.0154 kg m 23.7 rev/min 1 3.49 mJ.
2 rev 60 s 23.7 r ev/min

W K K I I Iω ω ω ω ω

π

= − = − = −

⎛ ⎞ ⎛ ⎞⎛ ⎞= ⋅ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where we used conservation of angular momentum from part (a).  

ASSESS The units or rev/min had to be changed to rad/s in part (b) because rev/min are not SI units. 

 39. INTERPRET This problem involves conservation of angular momentum, which we can use to calculate the motion 

of the dog relative to the ground. 

DEVELOP Walking once around relative to the turntable, the dog describes an angular displacement of ΔθD 

relative to the ground, and the turntable one of ΔθT in the opposite direction, such that D T 2 .θ θ πΔ − Δ =  The 

vertical component of the angular momentum of the dog-and-turntable system is conserved (which was zero 

initially), so  

D T
D D T T D T0i fL L I I I I

t t
θ θω ω Δ Δ⎛ ⎞= ⇒ = + = −⎜ ⎟⎝ ⎠Δ Δ

 

where the angular velocities (which are in opposite directions) have been rewritten in terms of the angular 

displacements and the common time interval. The rotational inertias about the axis of rotation are 

( ) ( )22 2
D 17 kg 1.81 m 55.7 kg mI mR= = = ⋅  

and 2
T 95 kg m .I = ⋅  These results allow us to solve for ΔθD. 

EVALUATE  Eliminating ΔθT, we find  

( ) ( )D D T D D T D T0 2 2I I I I Iθ π θ θ π= Δ − − Δ = + Δ −  

or 
2

D T
2 2

D T

95 kg m 0.63
2 55.7 kg m 95 kg m

I
I I

θ
π

Δ ⋅
= = =

+ ⋅ + ⋅
 

In other words, ΔθD is 63% of a full circle relative to the ground. 

ASSESS We find that ΔθD , the angular displacement relative to the ground, decreases with ID. This is what we 

expect from conservation of angular momentum. 

 40. INTERPRET This problem involves conservation of momentum and the work-energy theorem. The former can be 

used to find the student’s mass given the rotational parameters of the turntable on which she is standing and the 

wheel that she is holding, and the latter can be used to find the work she does in turning the wheel upside down. 

DEVELOP Because the turntable is frictionless, there are no external torques about its axis, and the z component 

of angular momentum is conserved. The initial angular momentum is just that due to the spinning wheel,  

i W WL I ω=  

When the wheel is inverted, the student and turntable acquire an angular momentum  

Pneglect

2
f T S W T W T S S W W

T T S S W W

L L L L I m h I I

I I I

ω ω ω

ω ω ω

⎛ ⎞
= + − = + + −⎜ ⎟

⎜ ⎟⎝ ⎠

= + −

 

where we have neglected the rotational inertia due to the center of mass of the wheel, and we have subtracted the 

angular momentum of the wheel because it is not oriented in the opposite (i.e., downward) direction. We know that 

ωT = ωS = 70 rpm, and that ωW = 130 rpm. The rotational inertias are IT = 0.31 kg·m2, IS = mSr2/2 with r = 0.30 m, 
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and IW = 0.22 kg·m2, so we can solve for the student’s mass mS. Apply the rotational version of the work-energy 
theorem (Equation 10.19) to find the work done reversing the wheel. This gives 

P0
2 2 2

rot tot f tot i tot i
1 1
2 2

W K I I Iω ω ω
=

= Δ = − =  

where the initial angular velocity of the entire system is zero (note that the kinetic energy of the wheel does not 

change in this experiment) and the final angular velocity is ωf = ωT = 70 rpm. The total rotational inertia of the 

system is Itot = IT + IS (we are neglecting the rotational inertia due to the center of mass of the wheel). 

EVALUATE (a) Equating the initial and final angular momenta, we find 

 

( ) ( ) ( ) ( )
( ) ( )

T T S S W W
2

T T S
S

S

2 2
T T

S 2 2
S

2
2

2 0.22 kg m 130 rpm 0.31 kg m 70 rpm2
2 2 45 kg

0.15 m 70 rpm

W W

W W

W W

I I I I

I I m R
I

I I
m

R

ω ω ω ω
ω ω

ω

ω ω
ω

= + −

−
= =

⎛ ⎞⋅ − ⋅⎛ ⎞−
= = =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

 

(b) Evaluating the expression above for work gives 

( ) ( )

( ) ( )( )

2 2 2
tot f f

22 2
22

1 1 1 2
2 2 2

1 rev 2 rad 1 min0.31 kg m 45.1 kg 0.15 m 2 70 22 J
2 min rev 60 s

T S T SW I I I I m Rω ω

π

= = + = +

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

ASSESS From the expression for work, we see that a student with a larger radius would have to do more work to 

flip the wheel, which is reasonable because the student’s rotational inertia would be greater, so it would require 

more work to get him to rotate.  

 41. INTERPRET This problem is about the rotational motion of the skaters, given their initial linear speed and radius of 

the circle they traverse. The aim is to keep the final linear speed and centripetal force below the stated maximums. 

The key concept here is conservation of angular momentum.  

DEVELOP If the ice is frictionless, the only external force on the skaters is the force that brings the end-skater to a 

sudden stop at a point we'll call P. (Note: The forces they exert on each other through their hands are internal 

forces.) The stopping force exerts no torque about point P, so the total angular momentum about a vertical axis 

through P is conserved. Initially, the other seven skaters are each moving with the same linear momentum ( )0p mv=  

in a direction perpendicular to the line that connects them ( )sin 1θ = . So from Equation 11.3, the angular momentum 

of each skater about P is 

 ( )0 0 0| | sinn n n n nL r p r mv mv rθ= × = =G G  

where nr  is the distance between the n-th skater and the point P: ( )/ 7nr n= A  for 1, 2, ,7n = …  and 12 m.=A The 

total initial angular momentum is the sum 
7

0 01
,nn

L L
=

=∑  which will be conserved when the group starts rotating 

and has an angular momentum of f .L Iω=  Here, the rotational inertia is 
7 2

1
.nn

I mr
=

=∑  From all this we can 

determine the rotational speed, which will give us the linear speed and centripetal force on the outside skater ( )7n = . 

EVALUATE The total initial angular momentum is  

 7 70 0
0 0 01 1

7 8 4
7 7 2nn n

mv mv
L mv r n mv

= =

×⎡ ⎤= = = =⎢ ⎥⎣ ⎦
∑ ∑A A A  

where we have used 
1

( 1)/2.N

n
n N N

=
∑ = + Similarly, the rotational inertia of the 7 skaters around point P is 
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2 2 27 72 2

1 1

7 8 15 20
49 49 6 7nn n

m m mI mr n
= =

× ×⎡ ⎤= = = =⎢ ⎥⎣ ⎦
∑ ∑A A A  

where we have used 2
1

( 1)(2 1)/6.N

n
n N N N

=
∑ = + +  Since angular momentum is conserved ( )0 fL L= , we can 

solve for the angular speed: 

 0 0 0
20 2
7

4 7
5

L mv v
I m

ω = = =
A

AA
 

The outside skater will have a tangential speed of ,v ω= A  so in order to keep this below 8.0 m/s, the initial speed 

can't exceed:  

 ( )5 5
0 7 7 8.0 m/s 5.7 m/sv v= < =  

The force on the outside skater's hand is the centripetal force: 2
c .F ma m ω= = A  To keep This below 300 N, the 

initial speed can't exceed:  

 ( ) ( )
( )0

300 N 12 m5 5  5.5 m/s
7 7 60 kg

Fv
m

= < =
A  

This limit is stricter than the one above. The greatest speed that the skaters can go before the rotational maneuver is 

5.5 m/s. 

ASSESS Notice that the outside skater will be going 1.4 times faster following the maneuver. By contrast, the 

skaters closer to the point P will slow down after the maneuver ( )n nv rω= . This makes sense: to keep the total 

angular momentum constant, some skaters will gain angular momentum, while others will lose it. 

 42. INTERPRET This problem is an exercise in vector multiplication. Given that the dot product of two vectors is 

twice the magnitude of their cross product, we are to find the angle between the two vectors. 

DEVELOP Expressed mathematically, the relationship between the two vectors is 

2A B A B⋅ = ×
G GG G

 

Use the definitions of the dot and cross products (Chapters 6 and 11, respectively). The dot product is 

cosA B AB θ⋅ =
G G

 and the magnitude of the cross product is sinA B AB θ× =
G G

. Use these relationships to find the 

angle θ  between the vectors A
G

 and B
G

. 

EVALUATE Inserting the expressions for the dot and cross products into the given relationship and solving for θ 

gives 

1
cos 2 sin atan 26.6

2
AB ABθ θ θ ⎛ ⎞= ⇒ = =⎜ ⎟⎝ ⎠

D  

ASSESS Notice that the angle used for both vector products is the same angle. 

 43. INTERPRET This problem involves conservation of angular momentum, which we can use to find the angular 

speed of the bird feeder after the bird lands on it. We will need to consider the inertia of the bird feeder, which is 

given, and that of the bird, which we will take as a point particle of mass mb = 140 g rotating at 19 cm from the 

axis. Since the bird and the feeder initially have opposite angular momenta with respect to the bird-feeder axis, it is 

possible that the direction of the feeder’s angular momentum will change; so we will keep track of the direction by 

the sign of ω, which is the angular speed of the bird-feeder. 
DEVELOP Apply conservation of angular momentum. The initial angular momentum is the sum of that due to the 
bird feeder and that due to the bird. Mathematically, this is expressed as 

i bf b bf bf b bL L L I Iω ω= + = +  
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If we define the initial angular velocity of the bird feeder as the positive direction, the ωbf = 5.6 rpm, ωb = −vb/rbf, 
where we have introduced the negative sign because the bird’s initial angular velocity is opposite to that of the bird 
feeder. The rotational inertia of the bird can be taken as 2

b bfm r . The final angular momentum is  

( )f bfb bf b bfbL L I I ω= = +  

where the subscript bfb indicates the bird-feeder-bird combination. By conservation of angular momentum, we can 
equate Li and Lf and solve for the final angular speed, ωβφβ. 

EVALUATE Equating the initial and final angular momenta, we find 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2b
bf bf b bf bfb bf b bf

bf

bf bf b b bf
bfb 2

bf bf

2

22

0.12 kg m 5.6 rpm 2 rad rev 1 min 60 s 0.14 kg 1.1 m/s 0.19 m

0.12 kg m 0.14 kg 0.19 m

0.329 rad/s 3.1 rpm

b

v
I m r I m r

r
I m v r

I m r

ω ω

ωω

π

⎛ ⎞
+ − = +⎜ ⎟⎝ ⎠

−
=

+

⋅ −
=

⋅ +

= =

 

ASSESS The sign of the final angular speed is the same as the sign of the initial angular speed, so the bird feeder 

continues to rotate in the same direction, albeit at a slower speed. Thus, the angular momentum of the bird feeder 

decreases, because it has absorbed the oppositely directed angular momentum of the bird. 

 44. INTERPRET This problem involves finding the force that causes a given torque when applied at a given point. 

Because of the vector nature of the quantities involved, we can equate the different (i.e., the x and y) components 

of the vectors that are equated. 

DEVELOP Apply Equation 11.2, r Fτ = ×
GG G

, and equate the different vector components to find the y component 

of the force. The position vector is ( ) ˆ2.0 m/sr i=G , the force is ( ) ˆˆ ˆ3.1 N y zF i F j F k= + +
G

, and the torque is 

( ) ˆ4.6 N m kτ = ⋅
G

. 

EVALUATE Evaluating the cross product gives 

( ) ( ) ( )
ˆˆ ˆ

ˆ ˆˆ2.0 m 0 m 0 m 2.0 m 2.0 m 4.6 N m
3.1 N

z y

y z

i j k
F j F k k

F F
τ = = + = ⋅G

 

Equating the y components gives Fy = (4.6 N·m)/(2.0 m) = 2.3 N and Fz = 0 N. Thus, the angle the force makes 

with the x axis is θ = atan(Fy/Fx) = atan(3.1 N/2.3 N) = 37°. 

ASSESS By the right-hand rule, we can see that with both the position vector and the force vector in the x-y plane, 

the torque will be in the z direction, so we could have set Fz = 0 from the beginning.  

 45. INTERPRET The problem is about the rotational motion of the turntable. Tossing a piece of clay onto its surface is 

like a totally inelastic collision from Section 9.5. In this case, the total angular momentum is conserved.  

DEVELOP The forces that cause the clay to stick to the turntable are internal forces (i.e. between clay and 

turntable). There are no external forces that can generate a torque around the turntable’s axis, so the angular 

momentum of the turntable/clay system in the vertical direction is conserved. If we take the sense of rotation of the 

turntable to define the positive direction of vertical angular momentum, then the system’s initial angular 

momentum is 

iL I mvdω= +  

where we assume here that the clay hits the turntable with the same direction that the table is turning. After the 

collision, the clay turns at the same speed as the table, so the final angular momentum is 
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 ( )2 2
f f f fL I md I mdω ω ω= + = +  

By conservation of angular momentum, the clay's initial velocity is equal to 

 ( )f
f

I
v d

md
ω ω

ω
−

= +  

EVALUATE (a) If 1
f 2 ,ω ω= then the clay hits the table with speed: 

 ( )1 2
2 / 2

2 2
d Iv d I md

md
ω ω ω−= + = −  

(b) If f ,ω ω= then the clay hits the table with speed: .v dω=  

(c) If f 2 ,ω ω= then the clay hits the table with speed: 

 ( )22 2 /Iv d d I md
md
ωω ω= + = +   

ASSESS We have written the clay velocity in terms of ,dω which is the initial linear speed of the turntable at the 

radius where the clay hits. If the clay hits with ,v dω<  then the collision will slow down the turntable, but if 

,v dω>  the turntable will speed up.  

 46. INTERPRET This problem involves conservation of momentum, which we can use to find the final angular 

momentum of the asteroid after it is impacted by the meteorite. Because the meteorite is traveling in the equatorial 

plane of the asteroid, its angular momentum is parallel to the asteroid’s angular momentum (consider the right-

hand rule). Therefore, we can dispense with the vector notation, and consider only angular momentum about the 

asteroid’s axis. 

DEVELOP Draw a diagram of the situation (see figure below). To use conservation of momentum, we must 

express the initial and final angular momenta. For the asteroid, because we are given the mass distribution (i.e., the 

rotational inertia) and the angular speed, we will use the scalar form of Equation 11.4 La = Iaωa to express its 

angular momentum. From Table 10.2, the rotational inertia of the asteroid is Ia = 2Mr2/5, where M is the asteroid’s 

mass. For the meteorite, we know its linear velocity and its position of impact, so we will use Equation 11.3, 

m m sinL rp θ= , where pm = mvm, where m is the meteorite’s mass. The initial angular momentum of the asteroid-

meteorite system is thus 

2
i a m a a m a m

2sin sin
5

L L L I rp Mr rmvω θ ω θ= + = + = +  

where θ = 180° − 58° = 122°. The final angular momentum is  

( )2 2 2
f a f f

2
5

L I mr Mr mrω ω⎛ ⎞= + = +⎜ ⎟⎝ ⎠
 

Asteroid

r

r

588

u

vm
r

r
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EVALUATE Equating the initial and final angular momentum, we can solve for the final angular speed of the 

asteroid. The result is 

2 2 2
a m f

2 2
sin

5 5
Mr rmv Mr mrω θ ω⎛ ⎞+ = +⎜ ⎟⎝ ⎠

 

( )
( )

f a

m f

2
5 sin

Mr
m

v r
ω ω

θ ω
−

=
−

 

Expressing angular velocity in terms of the period (ω = 2π/T), we have  

 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
f a

1
m f

1 113

9
1

4

5 sin 2

4 1.2 10 kg 1.0 km 3.9 h 4.3 h
1.7 10 kg

5 8.4 km/s 60 s 1 h sin 122 2 1.0 km 3.9 h

Mr T T
m

v rT

π
θ π

π

π

− −

−

− −

−

−
= =

−

⎡ ⎤× −⎣ ⎦= = ×
⎡ ⎤−⎣ ⎦

D

 

ASSESS  If the direction of rotation had been reversed by the impact, the meteoroid’s mass would have been 20.5 

times greater. 

 47. INTERPRET This problem asks us to calculate angular momenta given the mass distribution and rotational speeds 

(Appendix E) of the various planets of our solar system and the Sun. In particular, we are asked to estimate how 

much of the solar system’s angular momentum about its center is associated with the Sun. 

DEVELOP The planets orbit the Sun in planes approximately perpendicular to the Sun’s rotation axis, so most of 

the angular momentum in the solar system is in this direction. We can estimate the orbital angular momentum of a 

planet by ,mvr where m is its mass, v its average orbital speed, and r its mean distance from the Sun. 

Compared to the orbital angular momentum of the four giant planets, everything else is negligible, except for the 

rotational angular momentum of the Sun itself, which can be estimated by assuming the Sun to be a uniform sphere 

rotating with an average period of ( )1
2 27 36  days.+  (The Sun’s period of rotation at the surface varies from 

approximately 27 days at the equator to 36 days at the poles.)  

EVALUATE The numerical data in Appendix E results in the following estimates: 

 Orbital Angular Momentum (mvr) % 

 Jupiter  4219.2 10 J s× ⋅  59.7 

 Saturn  427.85 10 J s× ⋅  24.4 

 Uranus  421.69 10 J s× ⋅  5.2 

 Neptune  422.52 10 J s× ⋅  7.8 

 Rotational Angular Momentum MR22
5( )ω  

 Sun  420.89 10 J s× ⋅  2.8 

 Total  4232.2 10 J s× ⋅  99.9 

ASSESS With orb rot ,L L>> we find that more than 97% of the total angular momentum of the solar system comes 

from the orbital angular momentum. In particular, the orbital motion of Jupiter alone accounts for roughly 60% of 

the total angular momentum.  

 48. INTERPRET To increase the surface area of this alien planet, you plan to hollow out its center. This will increase 

the rotational inertia, so to conserve angular momentum, the planet's rotation will slow down.  

DEVELOP The planet is originally a solid sphere of radius 0 .R When the planet is hollowed out, the radius of its 

outer surface is ,R and the radius of its inner surface is 4
5 ,R such that the shell thickness is 1

5 .R  No material is 

added or taken away during this alteration, so the total mass, ,M dm= ∫  should remain constant. To calculate the 

mass, divide the planet up into concentric shells of infinitesimal thickness. For a given shell of radius ,R′  the mass 

is 24 ,dm R dRρ π= ⋅ ′ ′ where ρ is the planet's density and 24 R dRπ ′ ′ is the volume of the given shell. For the 
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original planet, R′ varies from 0 to 0 ,R while for the hollowed out planet, R′ varies from 4
5 R to .R Equating the 

mass integrals for the two cases gives: 

 0 2 2 0
03 3 30 4 / 5

5
4 4     1.27

5 4

R R

R

R
R dR R dR R Rπρ πρ= → =′ ′ ′ ′

−
∫ ∫ �  

This can be used to find the increase in surface area. But to find the change in the length of the day, you have to 

find the change in the rotational inertia of the planet. The original sphere has 2 2
0 05 ,I MR= from Table 10.1. 

However, the formula for a hollow sphere in Table 10.1, 2 2
3 ,I MR=  assumes the shell is thin, which is not the 

case here. What you can do is sum over the infinitesimal shells with mass dm defined above. Each of them has 

rotational inertia of:  

 ( ) 22 82 4 4
3 33

0

M
dI dm R R dR R dR

R
π ρ′ ′ ′ ′ ′= = =  

where the mass relation for the original sphere was used: ( )4 3
03 .M Rπρ= Integrating over all the shells in the 

hollowed sphere gives: 

 ( )
5 54 4

3 3 54 / 5
0 0

2 2 1
5

R

R

M MRI dI R dR
R R

⎡ ⎤= = = −′ ′ ⎢ ⎥⎣ ⎦∫ ∫  

Notice that if R′  varies from 0 to 0 ,R as in the original case, the integration returns the familiar result of 
2 2

05 .I MR=   

EVALUATE By hollowing out the planet, the surface area increases by 

 
22

2
2

0 00

4
1.27 1.61

4
A R R
A RR

π
π

⎛ ⎞
= = = =⎜ ⎟⎝ ⎠

 

The angular momentum is conserved, so 0 0 .I Iω ω= The period is inversely proportional to rotation speed 

( )2 / ,T π ω= so the length of the day will increase by 

 ( ) ( )
52 5 3

5 500 5 4 4
2 2 5 5

0 0 005

/
1 1 2.22

MR RT I R
T I RMR

ω
ω

⎛ ⎞⎡ ⎤ ⎡ ⎤= = = − = − =⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
  

ASSESS Suppose the hollowed sphere has thickness ,Δ where .RΔ �  Then, the radii are related by 
3

0 / 3 .R R≈ Δ  Substituting this into the rotational inertia equation, and making a further approximation, gives  

 ( ) [ ]
35

5 2 22 2
3 5 3

00

2
1 1 5

5
MR RI MR MR

RR
⎛ ⎞⎡ ⎤= − − Δ ≈ Δ =⎜ ⎟⎣ ⎦ ⎝ ⎠

 

This is the formula for a hollow sphere given in Table 10.1, which shows that this expression only becomes valid 

when the thickness of the shell is much less than the radius. 

 49. INTERPRET This problem looks just like an inelastic collision, but instead of using conservation of linear 

momentum, we will use conservation of angular momentum. The angular momentum of each disk is in a single 

direction, so we can treat this as a one-dimensional problem. 

DEVELOP The masses of disk 1 and 2 are m1 = 440 g and m2 = 270 g, respectively. The radii are r1 = 0.035 m and 

r2 = 0.23 m. The initial angular speed of disk 1 is 1 180 rpmω = . Use conservation of angular momentum, Li = Lf, 

to find the final angular speed of both disks stuck together, and f i1 ,K Kη = −  where 21
2 ,K Iω=  to find the 

fraction of energy lost. 
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EVALUATE  

(a) The initial angular momentum is  

P0
2

1 1 1i 2 2i 1 1 1i
1 .
2

L I I m rω ω ω
=

= + =  

The final angular momentum is  

( ) 2 2
2 1 2 f 1 1 2 2 f

1 1
.

2 2
L I I m r m rω ω⎛ ⎞= + = +⎜ ⎟⎝ ⎠

  

Conservation of angular momentum tells us that  

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

2 2 2
1 1 1i 1 1 2 2 f

22
1 1

f 1i 2 2 2 2
1 1 2 2

1 1 1
2 2 2

440 g 3.5 cm
180 rpm 140 rpm

440 g 3.5 cm 270 g 2.3 cm

L L

m r m r m r

m r
m r m r

ω ω

ω ω

=

⎛ ⎞= +⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟+⎝ ⎠ +⎝ ⎠

 

(b) The initial kinetic energy is  

P0
2 2 2 2

i 1 1i 2 2i 1 1 1i
1 1 1 .
2 2 4

K I I m rω ω ω
=

= + =  

The final kinetic energy is 

( ) ( )2 2 2 2
f 1 2 f 1 1 2 2 f

1 1 .
2 4

K I I m r m rω ω= + = +  

so the fraction of the initial kinetic energy lost to friction is 

( )
22 2

1 1f 1 1 1i
2 2 2

i 1 1 2 2 f

1 1 1
m rK m r

K m r m r
ωη

ω
= − = − = −

+

2
1iω

( )2 2
1 1 2 2m r m r+ 1iω ( )2

1 1
2 2

1 1 2 2

2
m r

m r m r+
⎡ ⎤
⎢ ⎥⎣ ⎦

( ) ( )
( ) ( )

22 2 2
1 1 2 2 2 2

2 2 2
1 1 1 1

270 g 2.3 cm
1 0.265 27 %

440 g 3.5 cm
m r m r m r

m r m r
+

= − = = = =

 

to two significant figures. 

ASSESS Note that the fractional energy loss doesn’t depend on the initial energy. For this particular set of disks, 

27% of the initial energy will be lost in the collision regardless of how fast the bottom disk is spinning! 

 50. INTERPRET This problem describes a rotational “explosion.” Initially, there is zero angular momentum, with a 

spring compressed at the edge of a frictionless turntable. The spring is released and pushes a block off the turntable 

at an angle of 90° to the radial vector.  

Two quantities are conserved: the kinetic energy and the angular momentum. We will use both in order to solve for 

the linear speed of the mass and the rotational speed of the turntable. 

DEVELOP Conservation of energy tells us that the initial energy of the spring, 21
2 ,sU kx=  is equal to the final 

combined kinetic energies of the mass and turntable, 2 21 1
2 2 .K mv Iω= +  Conservation of angular momentum tells 

us that the angular momentum is zero before and after the release of the spring, so m t0 ,L L L= = +  where 

m | | .L p r mvb= × =G G
 These two equations will allow us to solve for the two variables v and ω. 

EVALUATE Conservation of energy gives us  

2 2 2

2 2 2

1 1 1
2 2 2

.

kx mv I

kx mv I

ω

ω

= +

= +
  

Conservation of angular momentum gives us m t0 .L L mvb Iω= + = +  
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(a) We solve the first equation for ω and substitute it into the second: 

( )

( )

2 2

2 2

2 2
2 2

2 2 2 2

2

2 2

kx mv
I

kx mvmvb I I
I

kx mvmvb I
I

v m b mI Ikx

Ikxv
m b mI

ω

ω

−
= ±

−
= − = ±

⎛ ⎞−
= ⎜ ⎟⎝ ⎠

+ =

= ±
+

 

Take this value for v and put it back into the equation for :ω  

2 2 2 2 2 2 2 2

2 2 2 2 2

kx mv kx m Ikx kx kx kx mb
I I I Im b mI mb I mb I I

ω
⎛ ⎞− ⎛ ⎞= ± = ± − = ± − = ±⎜ ⎟ ⎜ ⎟⎝ ⎠ + + +⎝ ⎠

 

ASSESS The positive and negative signs indicate that the system is symmetric and could rotate counter clockwise 

or clockwise. We can check to see that this solution makes conceptual sense by letting the mass be very small 

compared to I. In that case, v x k m→  and ω is zero, as we would expect. If b is zero, then ω is also zero and 

v x k m→  again.  

 51. INTERPRET A solid spinning ball drops onto a frictional surface. At first it slides, but due to friction its spin will 

slow down and its linear speed will increase until it is purely rolling without sliding. We want to find the ball’s 

angular speed when it begins purely rolling, and how long it takes. 

DEVELOP From the problem statement, we see that the ball’s mass is M, its radius is R, and its initial angular 

velocity around the horizontal axis is 0 .ω  The coefficient of kinetic friction between the ball and the surface is μk, 

so the frictional force is s n .fF F Mgμ μ= =  A torque acts on the ball due to the frictional force, which acts on the 

edge of the ball. This torque sMgRτ μ= − serves to slow the ball’s rotation. Use τ = Iα to find the angular 

acceleration α and then use 0 tω ω α= +  to find the resulting angular speed. The frictional force on the ball also 

accelerates the ball, so we can use F = Ma and 0v v at= +  to find the speed of the ball. Combining this with the 

fact that the ball is no longer sliding when R vω =  allows us to find the time it takes to achieve rolling motion. 
EVALUATE (a) The angular acceleration is 

k k
2

5
22 5

MgR g
I RMR

μ μτα −
= = = −  

where the negative sign comes from the fact that the frictional force always acts to counter the motion. Inserting 
this into the kinematic equation 0 tω ω α= +  gives 

k
0

5
2

g
t

R
μω ω= −  

Using the result from part (b) that kt R gω μ= , we find that  

k
0 0

k

0

5 5
2 2

2
7

g R
R g

μ ω ωω ω ω
μ

ω

⎛ ⎞
= − = −⎜ ⎟⎝ ⎠

=

 

(b) The time it takes to achieve rolling motion is found from 

k
k

MgFa g
M M

μ μ= = =  

so 
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0 sv v gtμ= +  

Inserting the condition R vω =  for rolling motion gives 

k

k

R gt
Rt

g

ω μ
ω

μ

=

=
 

Using the result from part (a) that ω = 2ω0/7, we find that 

0

k

2R
t

g
ω

μ
=   

ASSESS The answer to part (a) is surprising—it says that no matter what the size or speed of the ball, or the 

coefficient of friction, the angular speed of the ball when it stops sliding is 2/7 of its original value! However, the 

time it takes the ball to achieve rolling motion depends on the radius of the ball, its initial angular speed, and the 

coefficient of kinetic friction. Notice that the more slippery is the surface (i.e., for smaller μk), the longer it will 

take for the ball to achieve rolling motion, which is reasonable. 

INTERPRET This problem 

DEVELOP The speed 

EVALUATE Using Equation 

ASSESS Angular 

 52. INTERPRET This problem looks at a time-varying torque.  

DEVELOP The torque and angular momentum are related by the rotational analog of Newton's second law: 

/ .dL dtτ =
GG

 If we integrate the torque with respect to time, we obtain the angular momentum as a function of time. 

The given torque points in one direction, and consequently so does the angular momentum, so the vector notation 

can be dropped. 

EVALUATE The angular momentum is 

 ( ) ( )
0 0

0

sin cos 1 cos
t

t t b bL dt a b ct dt at ct at ct
c c

τ ⎡ ⎤= = + = − = + −′ ′ ′ ′ ′⎢ ⎥⎣ ⎦∫ ∫   

ASSESS We are told that the object is initially stationary, so we can verify that indeed ( )0 0.L t = =   

 53. INTERPRET We're asked to derive the precession rate for a spinning gyroscope.  

DEVELOP The torque is due to gravity. From Equation 11.2, it has a magnitude of sin ,grFτ θ=  where θ is the 

angle between L
G

 and the vertical line extending up from the point where the gyroscope touches the bottom 

support. By the right-hand rule, the torque points in the direction perpendicular to the plane defined by rG and the 

vertical.  

EVALUATE Over a short time interval, ,tΔ the angular momentum changes in the direction given by the torque: 

,L tτΔ = ⋅ Δ
G G

as shown in Figure 11.9. This change in L
G

 corresponds to a change in the rotational axis, since 

.L Iω=
G G

 We can characterize how the axis moves with a small angle / sin ,L Lφ θΔ = Δ as defined in the figure 

below. The view here is from above looking down at the gyroscope. 

L sin u

Df
DL

 
After the axis moves, the torque points in a new direction, but always in the direction perpendicular to the plane 

defined by rG and the vertical. This leads to circular motion with a rotational speed of 

 p
1 sin

sin sin sin
L mgr mgr

t t L L L L
φ τ θω

θ θ θ
Δ Δ⎛ ⎞= = = = =⎜ ⎟⎝ ⎠Δ Δ

 

ASSESS This says the precession speed will be faster if the gyroscope has a larger mass and/or a longer radial 

length. It also says that the rate is inversely proportional to the angular momentum. Since ,L Iω= we have 
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p 1/ ,ω ω∝  which means that as the gyroscope gradually spins slower around its axis (due to friction forces), it 

will precess faster around the vertical. You may have observed this behavior in a gyroscope or a spinning top.  

 54. INTERPRET We use conservation of angular momentum to find the radius of a white dwarf star. We know the 

initial radius, mass, and rotational speed; so this gives us the initial angular momentum. The final angular 

momentum will be the same, so we use it to find the radius knowing the final mass and angular speed.  

DEVELOP We're told that the star collapses with 60% of its original mass. That means 40% of the mass is "blown 

off." We'll assume these outer layers take their angular momentum with it. So we'll only deal with conservation of 

momentum in the star's core with sun0.6 .M M=  Assuming the star is uniform, this core initially occupies a 

sphere with radius: 

 ( )
sun 3

3 30 sun4 4 4
sun3 sun sun3 3

0.6
0.6

/
MMR R

M Rπ π πρ
= = =  

EVALUATE Before the collapse, the core's angular momentum is given by 0 0 ,L I ω= where 22
0 05 ,I MR= and 

0 2 / 25 d.ω π=  After the collapse, the core still has the same angular momentum, but the expression is 

now ,L Iω= where 22
5 ,I MR=  and 2 /131 s.ω π= Solving for the unknown final radius, we get: 

 ( ) 3 60 3
0 sun sun

131 s0.6 6.57 10 4.57 10  m
25 24 3600 s

R R R R
ω
ω

−= = = × = ×
⋅ ⋅

 

This radius is about 70% of the radius of the Earth, and 150 times smaller than the original star. 

ASSESS One could assume that the outer layers blow off without taking away any of the angular momentum, and 

the core inherits all of the original angular momentum of the star before the collapse: 22
sun sun 05 .L M R ω=  (This is 

unlikely but it can serve as an upper bound.) In such a case, the final radius would be 100 times smaller than the 

original star. 

 55. INTERPRET We are asked to determine what happens to a spinning gyroscope when different torques are applied 

to it. 

DEVELOP Initially, the gyroscope has no torque on it, and the angular velocity and angular momentum both point 

to the right. By applying a force on the gyroscope between the arrowhead and disk, you exert a torque given by 

r Fτ = ×
GG G

(Equation 11.2).  

EVALUATE In this case, the force F
G

points into the page and is applied at a radius rG that points to the right. By 

the right-hand rule, the torque points upward. By Equation 11.5 ( )/ ,dL dt τ=
G G

 the angular momentum will move 

in the torque's direction. Because the arrowhead points in the direction of the angular momentum, it too will move 

upward. 

The answer is (d).  

ASSESS It might seem odd that you push something in one direction, and it moves in a perpendicular direction. 

But this is just how the rotational analog of Newton's second law works. 

 56. INTERPRET We are asked to determine what happens to a spinning gyroscope when different torques are applied 

to it. 

DEVELOP As described in the previous problem, the push results is a torque .r Fτ = ×
GG G

 

EVALUATE In this case, the force F
G

points upward and is applied at a radius rG that points to the right. By the 

right-hand rule, the torque points out of the page. The angular momentum vector and the arrowhead will both move 

toward you, out of the page.  

The answer is (b).  

ASSESS Compared to the previous problem, the force has rotated by 90°, so we'd expect the torque would as well.  

 57. INTERPRET We are asked to determine what happens to a spinning gyroscope when different torques are applied 

to it. 

DEVELOP The added weight means the gyroscope is no longer balanced on the stand. There will be more 

downward force on the left-side than on the right-side. By the right-hand rule, this generates a torque that points 

out of the page.  
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EVALUATE This torque will cause the angular momentum to move slightly in the direction of the torque, i.e. out 

of the page. Recall Figure 11.9, where LΔ
G

points the same way as .τG  This shift in the angular momentum will 

start the gyroscope turning in a clockwise direction as seen from above. As it moves, the torque will change so that 

the gyroscope continues to precess clockwise about the stand. 

The answer is (d).  

ASSESS One might have wrongly assumed that since the torque is out of the page it will "push" the left-hand side 

of the gyroscope (where the weight was added), thus resulting in a counter-clockwise rotation. The torque does not 

act on a specific point, but instead acts on the whole system through its angular momentum.  

 58. INTERPRET We are asked to determine what happens to a spinning gyroscope when different torques are applied 

to it. 

DEVELOP As the gyroscope precesses over a short time interval, ,tΔ the angular momentum changes by a small 

amount: .L tτΔ = ⋅ Δ
G G

This shift corresponds to a change in the direction of L
G

 characterized by an angle: 

/L LφΔ = Δ (see Problem 11.53 for a similar case).  

EVALUATE The precession rate is equal to the rate at which φΔ  changes with time: 

 p
L

t t L L I
φ τ τω

ω
Δ Δ= = = =
Δ Δ ⋅

 

This shows that the precession rate is inversely proportional to the rotation rate of the disk, .ω  So if the rotation 

rate increases, the precession rate will decrease. 

The answer is (a).  

ASSESS We can check the units on our expression for the precession rate. The ratio / Iτ  is equal to the angular 

acceleration, α (recall Equation 10.11). So the units are 

[ ]
[ ]

2

p
1/s 1/s
1/s

α
ω

ω
⎡ ⎤ = = =⎣ ⎦  

This is what we would expect for the precession rate. 


