Chapter 21: ELECTRIC CHARGE

- 1. A coulomb is the same as:
 - A. an ampere/second
 - B. half an ampere second²
 - C. an ampere/meter²
 - D. an ampere-second
 - E. a newton·meter²

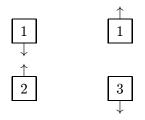
ans: D

- 2. A kiloampere hour is a unit of:
 - A. current
 - B. charge per time
 - C. power
 - D. charge
 - E. energy
 - ans: D
- 3. The magnitude of the charge on an electron is approximately:
 - A. 10^{23} C
 - B. 10^{-23} C
 - C. 10^{19} C
 - D. 10^{-19} C
 - E. $10^9 \,\mathrm{C}$
 - ans: D
- 4. The total negative charge on the electrons in 1 mol of helium (atomic number 2, molar mass 4) is:
 - A. $4.8 \times 10^4 \,\mathrm{C}$
 - $B. \quad 9.6\times 10^4\,\mathrm{C}$
 - $C. \quad 1.9\times 10^5\,C$
 - D. 3.8×10^5 C
 - E. $7.7 \times 10^5 \,\mathrm{C}$
 - ans: C
- 5. The total negative charge on the electrons in 1 kg of helium (atomic number 2, molar mass 4) is:
 - A. 48 C
 - B. $2.4 \times 10^7 \,\mathrm{C}$
 - $C. \quad 4.8\times 10^7 \, C$
 - $D. \quad 9.6\times 10^8\,C$
 - E. $1.9 \times 10^8 \,\mathrm{C}$

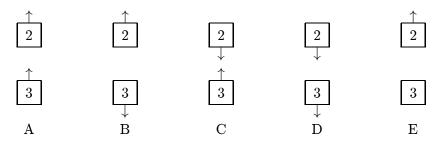
ans: C

- 6. A wire carries a steady current of 2 A. The charge that passes a cross section in 2 s is:
 - A. $3.2 \times 10^{-19} \,\mathrm{C}$
 - $B.\quad 6.4\times 10^{-19}\,C$
 - C. 1 C
 - $D. \quad 2\,C$
 - $E. \quad 4\,C$
 - ans: E
- 7. A wire contains a steady current of 2 A. The number of electrons that pass a cross section in 2s is:
 - A. 2
 - B. 4
 - C. 6.3×10^{18}
 - D. 1.3×10^{19} E. 2.5×10^{19}
 - ans: E
- 8. The charge on a glass rod that has been rubbed with silk is called positive:
 - A. by arbitrary convention
 - B. so that the proton charge will be positive
 - C. to conform to the conventions adopted for G and m in Newton's law of gravitation
 - D. because like charges repel
 - E. because glass is an insulator

ans: A


- 9. To make an uncharged object have a negative charge we must:
 - A. add some atoms
 - B. remove some atoms
 - C. add some electrons
 - D. remove some electrons
 - E. write down a negative sign

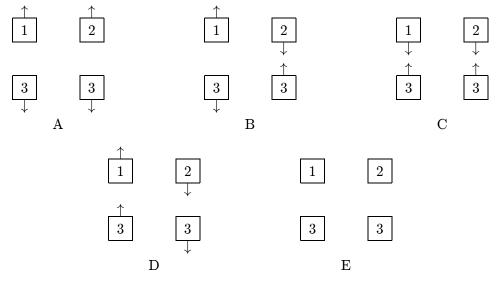
ans: C


- 10. To make an uncharged object have a positive charge:
 - A. remove some neutrons
 - B. add some neutrons
 - C. add some electrons
 - D. remove some electrons
 - E. heat it to cause a change of phase

ans: D

- 11. When a hard rubber rod is given a negative charge by rubbing it with wool:
 - A. positive charges are transferred from rod to wool
 - B. negative charges are transferred from rod to wool
 - C. positive charges are transferred from wool to rod
 - D. negative charges are transferred from wool to rod
 - E. negative charges are created and stored on the rod ans: D
- 12. An electrical insulator is a material:
 - A. containing no electrons
 - B. through which electrons do not flow easily
 - C. that has more electrons than protons on its surface
 - D. cannot be a pure chemical element
 - E. must be a crystal
 - ans: B
- 13. A conductor is distinguished from an insulator with the same number of atoms by the number of:
 - A. nearly free atoms
 - B. electrons
 - C. nearly free electrons
 - D. protons
 - E. molecules
 - ans: C
- 14. The diagram shows two pairs of heavily charged plastic cubes. Cubes 1 and 2 attract each other and cubes 1 and 3 repel each other.

Which of the following illustrates the forces of cube 2 on cube 3 and cube 3 on cube 2?

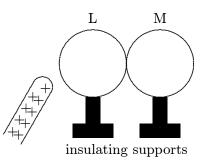


ans: C

15. The diagram shows a pair of heavily charged plastic cubes that attract each other.

Cube 3 is a conductor and is uncharged. Which of the following illustrates the forces between cubes 1 and 3 and between cubes 2 and 3?

ans: C


- 16. A neutral metal ball is suspended by a string. A positively charged insulating rod is placed near the ball, which is observed to be attracted to the rod. This is because:
 - A. the ball becomes positively charged by induction
 - B. the ball becomes negatively charged by induction
 - C. the number of electrons in the ball is more than the number in the rod
 - D. the string is not a perfect insulator
 - E. there is a rearrangement of the electrons in the ball ans: E
- 17. A positively charged insulating rod is brought close to an object that is suspended by a string. If the object is attracted toward the rod we can conclude:
 - A. the object is positively charged
 - B. the object is negatively charged
 - C. the object is an insulator
 - D. the object is a conductor
 - E. none of the above

ans: E

- 18. A positively charged insulating rod is brought close to an object that is suspended by a string. If the object is repelled away from the rod we can conclude:
 - A. the object is positively charged
 - B. the object is negatively charged
 - C. the object is an insulator
 - D. the object is a conductor
 - E. none of the above

ans: A

19. Two uncharged metal spheres, L and M, are in contact. A negatively charged rod is brought close to L, but not touching it, as shown. The two spheres are slightly separated and the rod is then withdrawn. As a result:

- A. both spheres are neutral
- B. both spheres are positive
- C. both spheres are negative
- D. L is negative and M is positive
- E. L is positive and M is negative ans: D
- 20. A positively charged metal sphere A is brought into contact with an uncharged metal sphere B. As a result:
 - A. both spheres are positively charged
 - B. A is positively charged and B is neutral
 - C. A is positively charged and B is negatively charged
 - D. A is neutral and B is positively charged
 - E. A is neutral and B is negatively charged

ans: A

- 21. The leaves of a positively charged electroscope diverge more when an object is brought near the knob of the electroscope. The object must be:
 - A. a conductor
 - B. an insulator
 - C. positively charged
 - D. negatively charged
 - E. uncharged

ans: C

- 22. A negatively charged rubber rod is brought near the knob of a positively charged electroscope. The result is that:
 - A. the electroscope leaves will move farther apart
 - B. the rod will lose its charge
 - C. the electroscope leaves will tend to collapse
 - D. the electroscope will become discharged
 - E. nothing noticeable will happen

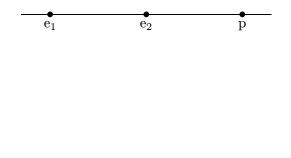
ans: C

- 23. An electroscope is charged by induction using a glass rod that has been made positive by rubbing it with silk. The electroscope leaves:
 - A. gain electrons
 - B. gain protons
 - C. lose electrons
 - D. lose protons
 - E. gain an equal number of protons and electrons

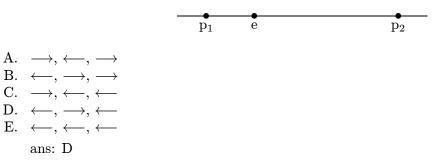
ans: A

- 24. Consider the following procedural steps:
 - 1. ground an electroscope
 - 2. remove the ground from the electroscope
 - 3. touch a charged rod to the electroscope
 - 4. bring a charged rod near, but not touching, the electroscope
 - 5. remove the charged rod
 - To charge an electroscope by induction, use the sequence:
 - A. 1, 4, 5, 2
 - B. 4, 1, 2, 5
 - C. 3, 1, 2, 5
 - D. 4, 1, 5, 2
 - E. 3, 5

ans: B


- 25. A charged insulator can be discharged by passing it just above a flame. This is because the flame:
 - A. warms it
 - B. dries it
 - C. contains carbon dioxide
 - D. contains ions
 - E. contains more rapidly moving atoms

ans: D


- 26. A small object has charge Q. Charge q is removed from it and placed on a second small object. The two objects are placed 1 m apart. For the force that each object exerts on the other to be a maximum. q should be:
 - A. 2Q
 - B. Q
 - C. Q/2
 - D. Q/4
 - E. 0
 - ans: C
- 27. Two small charged objects attract each other with a force F when separated by a distance d. If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2 the force becomes:
 - A. F/16
 - B. F/8
 - C. F/4
 - D. F/2
 - E. *F*
 - ans: C
- 28. Two identical conducting spheres A and B carry equal charge. They are separated by a distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere C is first touched to A, then to B, and finally removed. As a result, the electrostatic force between A and B, which was originally F, becomes:
 - A. F/2
 - B. F'/4
 - C. 3F/8
 - D. *F*/16
 - E. 0
 - ans: C
- 29. Two particles, X and Y, are 4 m apart. X has a charge of 2Q and Y has a charge of Q. The force of X on Y:
 - A. has twice the magnitude of the force of Y on X
 - B. has half the magnitude of the force of Y on X
 - C. has four times the magnitude of the force of Y on X
 - D. has one-fourth the magnitude of the force of Y on X
 - E. has the same magnitude as the force of Y on X ans: E
- 30. The units of $1/4\pi\epsilon_0$ are:
 - A. N^2C^2
 - B. $N \cdot m/C$
 - C. $N^2 \cdot m^2/C^2$
 - D. $N \cdot m^2/C^2$
 - E. m^2/C^2
 - ans: D

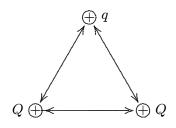
- 31. A 5.0-C charge is 10 m from a -2.0-C charge. The electrostatic force on the positive charge is:
 - A. 9.0×10^8 N toward the negative charge
 - B. 9.0×10^8 N away from the negative charge
 - C. 9.0×10^9 N toward the negative charge
 - D. 9.0×10^9 N away from the negative charge
 - E. none of these
 - ans: A
- 32. Two identical charges, 2.0 m apart, exert forces of magnitude 4.0 N on each other. The value of either charge is:
 - A. $1.8 \times 10^{-9} \text{ C}$
 - B. $2.1 \times 10^{-5} \,\mathrm{C}$
 - $\mathrm{C.} \quad 4.2 \times 10^{-5} \, \mathrm{C}$
 - $D. \quad 1.9\times 10^5\,C$
 - E. $3.8 \times 10^5 \,\mathrm{C}$

- ans: C
- 33. Two electrons $(e_1 \text{ and } e_2)$ and a proton (p) lie on a straight line, as shown. The directions of the force of e_2 on e_1 , the force of p on e_1 , and the total force on e_1 , respectively, are:

34. Two protons $(p_1 \text{ and } p_2)$ and an electron (e) lie on a straight line, as shown. The directions of the force of p_1 on e, the force of p_2 on e, and the total force on e, respectively, are:

- 35. Two particles have charges Q and -Q (equal magnitude and opposite sign). For a net force of zero to be exerted on a third charge it must be placed:
 - A. midway between Q and -Q
 - B. on the perpendicular bisector of the line joining Q and -Q, but not on that line itself
 - C. on the line joining Q and -Q, to the side of Q opposite -Q
 - D. on the line joining Q and -Q, to the side of -Q opposite Q
 - E. at none of these places (there is no place)

ans: E


- 36. Particles 1, with charge q_1 , and 2, with charge q_2 , are on the x axis, with particle 1 at x = a and particle 2 at x = -2a. For the net force on a third charged particle, at the origin, to be zero, q_1 and q_2 must be related by $q_2 =:$
 - A. $2q_1$
 - B. $4q_1$
 - C. $-2q_1$
 - D. $-4q_1$
 - E. $-q_1/4$
 - ans: B
- 37. Two particles A and B have identical charge Q. For a net force of zero to be exerted on a third charged particle it must be placed:
 - A. midway between A and B
 - B. on the perpendicular bisector of the line joining A and B but away from the line
 - C. on the line joining A and B, not between the particles
 - D. on the line joining A and B, closer to one of them than the other
 - E. at none of these places (there is no place)

ans: A

- 38. A particle with charge $2-\mu C$ is placed at the origin, an identical particle, with the same charge, is placed 2 m from the origin on the x axis, and a third identical particle, with the same charge, is placed 2 m from the origin on the y axis. The magnitude of the force on the particle at the origin is:
 - A. $9.0 \times 10^{-3} \,\mathrm{N}$
 - B. 6.4×10^{-3} N
 - $C. \quad 1.3\times 10^{-2}\,\mathrm{N}$
 - D. 1.8×10^{-2} N
 - E. $3.6 \times 10^{-2} \,\mathrm{N}$
 - ans: C
- 39. Charge Q is spread uniformly along the circumference of a circle of radius R. A point particle with charge q is placed at the center of this circle. The total force exerted on the particle can be calculated by Coulomb's law:
 - A. just use R for the distance
 - B. just use 2R for the distance
 - C. just use $2\pi R$ for the distance
 - D. the result of the calculation is zero
 - E. none of the above

ans: D

40. Two particles, each with charge Q, and a third particle, with charge q, are placed at the vertices of an equilateral triangle as shown. The total force on the particle with charge q is:

- A. parallel to the left side of the triangle
- B. parallel to the right side of the triangle
- C. parallel to the bottom side of the triangle
- D. perpendicular to the bottom side of the triangle
- E. perpendicular to the left side of the triangle
 - ans: D
- 41. A particle with charge Q is on the y axis a distance a from the origin and a particle with charge q is on the x axis a distance d from the origin. The value of d for which the x component of the force on the second particle is the greatest is:
 - A. 0
 - B. *a*
 - C. $\sqrt{2}a$
 - D. a/2
 - E. $a/\sqrt{2}$
 - ans: E
- 42. In the Rutherford model of the hydrogen atom, a proton (mass M, charge Q) is the nucleus and an electron (mass m, charge q) moves around the proton in a circle of radius r. Let kdenote the Coulomb force constant $(1/4\pi\epsilon_0)$ and G the universal gravitational constant. The ratio of the electrostatic force to the gravitational force between electron and proton is:
 - A. $kQq/GMmr^2$
 - B. GQq/kMm
 - C. kMm/GQq
 - D. GMm/kQq
 - E. kQq/GMm
 - ans: E
- 43. A particle with a charge of 5×10^{-6} C and a mass of 20 g moves uniformly with a speed of 7 m/s in a circular orbit around a stationary particle with a charge of -5×10^{-6} C. The radius of the orbit is:
 - A. 0
 - B. 0.23 m
 - C. 0.62 m
 - D. 1.6
 - E. 4.4 m ans: B

- 44. Charge is distributed uniformly on the surface of a spherical balloon (an insulator). A point particle with charge q is inside. The electrical force on the particle is greatest when:
 - A. it is near the inside surface of the balloon
 - B. it is at the center of the balloon
 - C. it is halfway between the balloon center and the inside surface
 - D. it is anywhere inside (the force is same everywhere and is not zero)
 - E. it is anywhere inside (the force is zero everywhere)
 - ans: E
- 45. Charge is distributed on the surface of a spherical conducting shell. A point particle with charge q is inside. If polarization effects are negligible the electrical force on the particle is greatest when:
 - A. it is near the inside surface of the balloon
 - B. it is at the center of the balloon
 - C. it is halfway between the balloon center and the inside surface
 - D. it is anywhere inside (the force is same everywhere and is not zero)
 - E. it is anywhere inside (the force is zero everywhere)

ans: A