Chapter 36: DIFFRACTION

- 1. Sound differs from light in that sound:
 - A. is not subject to diffraction
 - B. is a torsional wave rather than a longitudinal wave
 - C. does not require energy for its origin
 - D. is a longitudinal wave rather than a transverse wave
 - E. is always monochromatic

ans: D

- 2. Radio waves are readily diffracted around buildings whereas light waves are negligibly diffracted around buildings. This is because radio waves:
 - A. are plane polarized
 - B. have much longer wavelengths than light waves
 - C. have much shorter wavelengths than light waves
 - D. are nearly monochromatic (single frequency)
 - E. are amplitude modulated (AM).

ans: B

- 3. Diffraction plays an important role in which of the following phenomena?
 - A. The sun appears as a disk rather than a point to the naked eye
 - B. Light is bent as it passes through a glass prism
 - C. A cheerleader yells through a megaphone
 - D. A farsighted person uses eyeglasses of positive focal length
 - E. A thin soap film exhibits colors when illuminated with white light ans: C
- 4. The rainbow seen after a rain shower is caused by:
 - A. diffraction
 - B. interference
 - C. refraction
 - D. polarization
 - E. absorption

ans: C

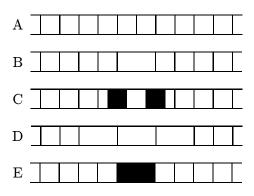
- 5. When a highly coherent beam of light is directed against a very fine wire, the shadow formed behind it is not just that of a single wire but rather looks like the shadow of several parallel wires. The explanation of this involves:
 - A. refraction
 - B. diffraction
 - C. reflection
 - D. the Doppler effect
 - E. an optical illusion

ans: B

- 6. When the atmosphere is not quite clear, one may sometimes see colored circles concentric with the Sun or the Moon. These are generally not more than a few diameters of the Sun or Moon and invariably the innermost ring is blue. The explanation for this phenomena involves:
 - A. reflection
 - B. refraction
 - C. interference
 - D. diffraction
 - E. the Doppler effect

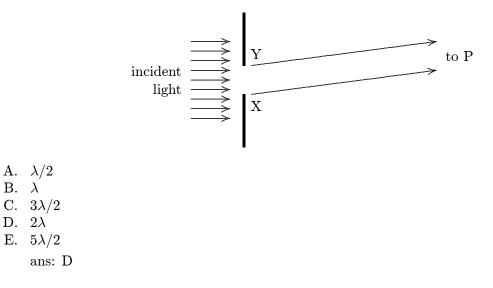
ans: D

- 7. The shimmering or wavy lines that can often be seen near the ground on a hot day are due to:
 - A. Brownian movement
 - B. reflection
 - C. refraction
 - D. diffraction
 - E. dispersion
 - ans: C
- 8. A point source of monochromatic light is placed in front of a soccer ball and a screen is placed behind the ball. The light intensity pattern on the screen is best described as:
 - A. a dark disk on a bright background
 - B. a dark disk with bright rings outside
 - C. a dark disk with a bright spot at its center
 - D. a dark disk with a bright spot at its center and bright rings outside
 - E. a bright disk with bright rings outside

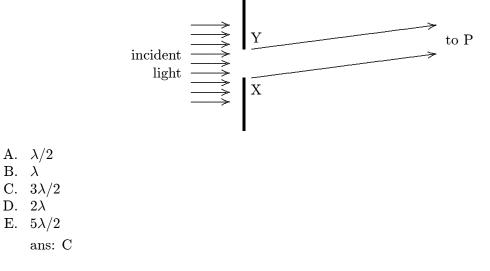

ans: D

- 9. In the equation $\sin \theta = \lambda/a$ for single-slit diffraction, θ is:
 - A. the angle to the first minimum
 - B. the angle to the second maximum
 - C. the phase angle between the extreme rays
 - D. $N\pi$ where N is an integer
 - E. $(N + 1/2)\pi$ where N is an integer ans: A
- 10. In the equation $\phi = (2\pi a/\lambda) \sin \theta$ for single-slit diffraction, ϕ is:
 - A. the angle to the first minimum
 - B. the angle to the second maximum
 - C. the phase angle between the extreme rays
 - D. $N\pi$ where N is an integer
 - E. $(N+1/2)\pi$ where N is an integer

- 11. No fringes are seen in a single-slit diffraction pattern if:
 - A. the screen is far away
 - B. the wavelength is less than the slit width
 - C. the wavelength is greater than the slit width
 - D. the wavelength is less than the distance to the screen
 - E. the distance to the screen is greater than the slit width ans: C
- 12. A student wishes to produce a single-slit diffraction pattern in a ripple tank experiment. He considers the following parameters:
 - 1. frequency
 - 2. wavelength
 - 3. water depth
 - 4. slit width


Which two of the above should be decreased to produce more bending?

- A. 1, 3
- B. 1, 4
- C. 2, 3
- D. 2, 4
- E. 3, 4
 - ans: B
- 13. A parallel beam of monochromatic light is incident on a slit of width 2 cm. The light passing through the slit falls on a screen 2 m away. As the slit width is decreased:
 - A. the width of the pattern on the screen continuously decreases
 - B. the width of the pattern on the screen at first decreases but then increases
 - C. the width of the pattern on the screen increases and then decreases
 - D. the width of the pattern on the screen remains the same
 - E. the pattern on the screen changes color going from red to blue ans: B
- 14. Monochromatic plane waves of light are incident normally on a single slit. Which one of the five figures below correctly shows the diffraction pattern observed on a distant screen?



ans: B

15. The diagram shows a single slit with the direction to a point P on a distant screen shown. At P, the pattern has its second minimum (from its central maximum). If X and Y are the edges of the slit, what is the path length difference (PX) - (PY)?

16. The diagram shows a single slit with the direction to a point P on a distant screen shown. At P, the pattern has its maximum nearest the central maximum. If X and Y are the edges of the slit, what is the path length difference (PX) - (PY)?

- 17. At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit is:
 - A. $\pi/8 \,\mathrm{rad}$

B. λ

- B. $\pi/4 \operatorname{rad}$
- C. $\pi/2 \operatorname{rad}$
- D. $\pi \operatorname{rad}$
- E. $3\pi/2$ rad ans: D

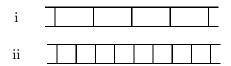
- 18. At the second minimum adjacent to the central maximum of a single-slit diffraction pattern the Huygens wavelet from the top of the slit is 180° out of phase with the wavelet from:
 - A. a point one-fourth of the slit width from the top
 - B. the midpoint of the slit
 - C. a point one-fourth of the slit width from the bottom of the slit
 - D. the bottom of the slit
 - E. none of these

- 19. A plane wave with a wavelength of 500 nm is incident normally on a single slit with a width of 5.0×10^{-6} m. Consider waves that reach a point on a far-away screen such that rays from the slit make an angle of 1.0° with the normal. The difference in phase for waves from the top and bottom of the slit is:
 - A. 0
 - $B. \quad 0.55 \, \mathrm{rad}$
 - C. $1.1 \,\mathrm{rad}$
 - D. 1.6 rad
 - E. $2.2 \operatorname{rad}$
 - ans: C
- 20. A diffraction pattern is produced on a viewing screen by illuminating a long narrow slit with light of wavelength λ . If λ is increased and no other changes are made:
 - A. the intensity at the center of the pattern decreases and the pattern expands away from the bright center
 - B. the intensity at the center of the pattern increases and the pattern contracts toward the bright center
 - C. the intensity at the center of the pattern does not change and the pattern expands away from the bright center
 - D. the intensity at the center of the pattern does not change and the pattern contracts toward the bright center
 - E. neither the intensity at the center of the pattern nor the pattern itself change ans: C
- 21. A diffraction pattern is produced on a viewing screen by illuminating a long narrow slit with light of wavelength λ . If the slit width is decreased and no other changes are made:
 - A. the intensity at the center of the pattern decreases and the pattern expands away from the bright center
 - B. the intensity at the center of the pattern increases and the pattern contracts toward the bright center
 - C. the intensity at the center of the pattern does not change and the pattern expands away from the bright center
 - D. the intensity at the center of the pattern does not change and the pattern contracts toward the bright center
 - E. neither the intensity at the center of the pattern nor the pattern itself change ans: A

22. In order to obtain a good single-slit diffraction pattern, the slit width could be:

- A. λ
- B. $\lambda/10$
- C. 10λ
- D. $10^4\lambda$
- E. $\lambda/10^4$
 - ans: C
- 23. Consider a single-slit diffraction pattern caused by a slit of width a. There is a maximum if $\sin \theta$ is equal to:
 - A. slightly more than $3\lambda/2a$
 - B. slightly less than $3\lambda/2a$
 - C. exactly $3\lambda/2a$
 - D. exactly $\lambda/2a$
 - E. very nearly $\lambda/2a$
 - ans: B
- 24. Consider a single-slit diffraction pattern caused by a slit of width a. There is a minimum if $\sin \theta$ is equal to:
 - A. exactly λ/a
 - B. slightly more than λ/a
 - C. slightly less than λ/a
 - D. exactly $\lambda/2a$
 - E. very nearly $\lambda/2a$

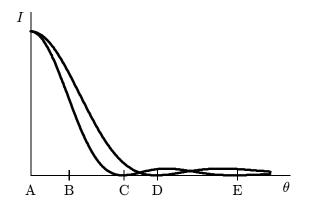
ans: A


- 25. In a single-slit diffraction pattern, the central maximum is about twice as wide as the other maxima. This is because:
 - A. half the light is diffracted up and half is diffracted down
 - B. the central maximum has both electric and magnetic fields present
 - C. the small angle approximation applies only near the central maximum
 - D. the screen is flat instead of spherical
 - E. none of the above

ans: E

- 26. The intensity at a secondary maximum of a single-slit diffraction pattern is less than the intensity at the central maximum chiefly because:
 - A. some Huygens wavelets sum to zero at the secondary maximum but not at the central maximum
 - B. the secondary maximum is further from the slits than the central maximum and intensity decreases as the square of the distance
 - C. the Huygens construction is not valid for a secondary maximum
 - D. the amplitude of every Huygens wavelet is smaller when it travels to a secondary maximum than when it travels to the central maximum
 - E. none of the above

- 27. Figure (i) shows a double-slit pattern obtained using monochromatic light. Consider the following five possible changes in conditions:
 - 1. decrease the frequency
 - 2. increase the frequency
 - 3. increase the width of each slit
 - 4. increase the separation between the slits
 - 5. decrease the separation between the slits


Which of the above would change Figure (i) into Figure (ii)?

- A. 3 only
- B. 5 only
- C. 1 and 3 only
- D. 1 and 5 only
- E. 2 and 4 only

ans: E

28. Two wavelengths, 800 nm and 600 nm, are used separately in single-slit diffraction experiments. The diagram shows the intensities on a far-away viewing screen as function of the angle made by the rays with the straight-ahead direction. If both wavelengths are then used simultaneously, at which angle is the light on the screen purely 800-nm light?

- 29. If we increase the wavelength of the light used to form a double-slit diffraction pattern:
 - A. the width of the central diffraction peak increases and the number of bright fringes within the peak increases
 - B. the width of the central diffraction peak increases and the number of bright fringes within the peak decreases
 - C. the width of the central diffraction peak decreases and the number of bright fringes within the peak increases
 - D. the width of the central diffraction peak decreases and the number of bright fringes within the peak decreases
 - E. the width of the central diffraction peak increases and the number of bright fringes within the peak stays the same

ans: E

- 30. Two slits of width a and separation d are illuminated by a beam of light of wavelength λ . The separation of the interference fringes on a screen a distance D away is:
 - A. $\lambda a/D$
 - B. $\lambda d/D$
 - C. $\lambda D/d$
 - D. dD/λ
 - E. $\lambda D/a$
 - ans: C
- 31. Two slits in an opaque barrier each have a width of 0.020 mm and are separated by 0.050 mm. When coherent monochromatic light passes through the slits the number of interference maxima within the central diffraction maximum:
 - A. is 1
 - B. is 2
 - C. is 4
 - D. is 5
 - E. cannot be determined unless the wavelength is given

ans: D

- 32. When 450-nm light is incident normally on a certain double-slit system the number of interference maxima within the central diffraction maximum is 5. When 900-nm light is incident on the same slit system the number is:
 - A. 2
 - B. 3
 - C. 5
 - D. 9
 - E. 10

- 33. In a double-slit diffraction experiment the number of interference fringes within the central diffraction maximum can be increased by:
 - A. increasing the wavelength
 - B. decreasing the wavelength
 - C. decreasing the slit separation
 - D. increasing the slit width
 - E. decreasing the slit width

ans: E

- 34. A diffraction-limited laser of length ℓ and aperture diameter d generates light of wavelength λ . If the beam is directed at the surface of the Moon a distance D away, the radius of the illuminated area on the Moon is approximately:
 - A. dD/ℓ
 - B. dD/λ
 - C. $D\lambda/\ell$
 - D. $D\lambda/d$
 - E. $\ell\lambda/d$
 - ans: D
- 35. Two stars that are close together are photographed through a telescope. The black and white film is equally sensitive to all colors. Which situation would result in the most clearly separated images of the stars?
 - A. Small lens, red stars
 - B. Small lens, blue stars
 - C. Large lens, red stars
 - D. Large lens, blue stars
 - E. Large lens, one star red and the other blue

ans: D

- 36. The resolving power of a telescope can be increased by:
 - A. increasing the objective focal length and decreasing the eyepiece focal length
 - B. increasing the lens diameters
 - C. decreasing the lens diameters
 - D. inserting a correction lens between objective and eyepiece
 - E. none of the above

ans: B

- 37. In the equation $d\sin\theta = m\lambda$ for the lines of a diffraction grating m is:
 - A. the number of slits
 - B. the slit width
 - C. the slit separation
 - D. the order of the line
 - E. the index of refraction

ans: D

- 38. In the equation $d\sin\theta = m\lambda$ for the lines of a diffraction grating d is:
 - A. the number of slits
 - B. the slit width
 - C. the slit separation
 - D. the order of the line
 - E. the index of refraction

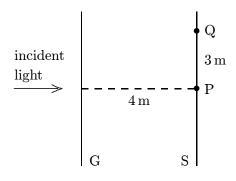
ans: C

- 39. As more slits with the same spacing are added to a diffraction grating the lines:
 - A. spread farther apart
 - B. move closer together
 - C. become wider
 - D. becomes narrower
 - E. do not change in position or width

ans: D

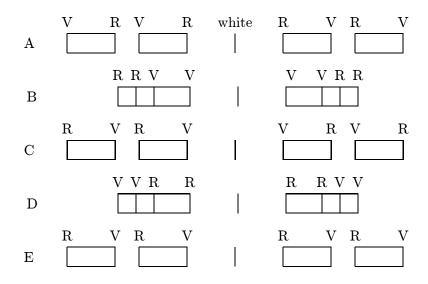
- 40. An N-slit system has slit separation d and slit width a. Plane waves with intensity I and wavelength λ are incident normally on it. The angular separation of the lines depends only on:
 - A. a and N
 - B. $a \text{ and } \lambda$
 - C. $N \text{ and } \lambda$
 - D. $d \text{ and } \lambda$
 - E. I and N
 - ans: D
- 41. 600-nm light is incident on a diffraction grating with a ruling separation of 1.7×10^{-6} m. The second order line occurs at a diffraction angle of:
 - A. 0
 - B. 10°
 - C. 21°
 - D. 42°
 - E. 45°

ans: E

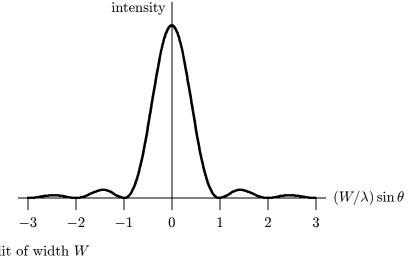

- 42. The widths of the lines produced by monochromatic light falling on a diffraction grating can be reduced by:
 - A. increasing the wavelength of the light
 - B. increasing the number of rulings without changing their spacing
 - C. decreasing the spacing between adjacent rulings without changing the number of rulings
 - D. decreasing both the wavelength and the spacing between rulings by the same factor
 - E. increasing the number of rulings and decreasing their spacing so the length of the grating remains the same

ans: B

- 43. Monochromatic light is normally incident on a diffraction grating that is 1 cm wide and has 10,000 slits. The first order line is deviated at a 30° angle. What is the wavelength, in nm, of the incident light?
 - A. 300
 - B. 400
 - C. 500
 - D. 600
 - E. 1000
 - ans: C
- 44. A light spectrum is formed on a screen using a diffraction grating. The entire apparatus (source, grating and screen) is now immersed in a liquid of refractive index 1.33. As a result, the pattern on the screen:
 - A. remains the same
 - B. spreads out
 - C. crowds together
 - D. becomes reversed, with the previously blue end becoming red
 - E. disappears because the refractive index isn't an integer


- 45. The spacing between adjacent slits on a diffraction grating is 3λ . The deviation θ of the first order diffracted beam is given by:
 - A. $\sin(\theta/2) = 1/3$
 - B. $\sin(\theta/3) = 2/3$
 - C. $\sin(\theta) = 1/3$
 - D. $\tan(\theta/2) = 1/3$
 - E. $\tan(\theta) = 2/3$
 - ans: C
- 46. When light of a certain wavelength is incident normally on a certain diffraction grating the line of order 1 is at a diffraction angle of 25° . The diffraction angle for the second order line is:
 - A. 25°
 - B. 42°
 - C. 50°
 - D. 58°
 - E. 75°
 - ans D
- 47. A diffraction grating of width W produces a deviation θ in second order for light of wavelength λ . The total number N of slits in the grating is given by:
 - A. $2W\lambda/\sin\theta$
 - B. $(W/\lambda)\sin\theta$
 - C. $\lambda W/2\sin\theta$
 - D. $(W/2\lambda)\sin\theta$
 - E. $2\lambda/\sin\theta$
 - ans: D

48. Light of wavelength λ is normally incident on a diffraction grating G. On the screen S, the central line is at P and the first order line is at Q, as shown. The distance between adjacent slits in the grating is:


- A. $3\lambda/5$
- B. $3\lambda/4$
- C. $4\lambda/5$
- D. $5\lambda/4$
- E. $5\lambda/3$
 - ans: E
- 49. 550-nm light is incident normally on a diffraction grating and exactly 6 lines are produced. The ruling separation must be:
 - A. between 2.75×10^{-7} m and 5.50×10^{-7} m
 - B. between $5.50 \times 10^{-7} \,\mathrm{m}$ and $1.10 \times 10^{-6} \,\mathrm{m}$
 - C. between $3.30\times 10^{-6}\,\mathrm{m}$ and $3.85\times 10^{-6}\,\mathrm{m}$
 - D. between $3.85\times 10^{-6}\,\mathrm{m}$ and $4.40\times 10^{-6}\,\mathrm{m}$
 - E. greater than 4.40×10^{-6} m ans: E
- 50. A mixture of 450-nm and 900-nm light is incident on a diffraction grating. Which of the following is true?
 - A. all lines of the 900-nm light coincide with even order lines of the 450-nm light
 - B. all lines of the 450-nm light coincide with even order lines of the 900-nm light
 - C. all lines of the 900-nm light coincide with odd order lines of the 450-nm light
 - D. None of the lines of the 450-nm light coincide with lines of the 900-nm light
 - E. All of the lines of the 450-nm light coincide with lines of the 900-nm light ans: A

51. A beam of white light (from 400 nm for violet to 700 nm for red) is normally incident on a diffraction grating. It produces two orders on a distant screen. Which diagram below (R =red, V = violet) correctly shows the pattern on the screen?

- 52. If white light is incident on a diffraction grating:
 - A. the first order lines for all visible wavelengths occur at smaller diffraction angles than any of the second order lines
 - B. some first order lines overlap the second order lines if the ruling separation is small but do not if it is large
 - C. some first order lines overlap second order lines if the ruling separation is large but do not if it is small
 - D. some first order lines overlap second order lines no matter what the ruling separation
 - E. first and second order lines have the same range of diffraction angles ans: A

53. Light of wavelength is normally incident on some plane optical device. The intensity pattern shown is observed on a distant screen (θ is the angle measured from the normal of the device). The device could be:

- A. a single slit of width W
- B. a single slit of width 2W
- C. two narrow slits with separation W
- D. two narrow slits with separation 2W

E. a diffraction grating with slit separation Wans: A

- 54. A person with her eye relaxed looks through a diffraction grating at a distant monochromatic point source of light. The slits of the grating are vertical. She sees:
 - A. one point of light
 - B. a hazy horizontal strip of light of the same color as the source
 - C. a hazy strip of light varying from violet to red
 - D. a sequence of horizontal points of light
 - E. a sequence of closely spaced vertical lines ans: D
- 55. Monochromatic light is normally incident on a diffraction grating. The $m^{\rm th}$ order line is at a diffraction angle θ and has width w. A wide single slit is now placed in front of the grating and its width is then slowly reduced. As a result:
 - A. both θ and w increase
 - B. both θ and w decrease
 - C. θ remains the same and w increases
 - D. θ remains the same and w decreases
 - E. θ decreases and w increases

- 56. At a diffraction line phasors associated with waves from the slits of a multiple-slit barrier:
 - A. are aligned
 - B. form a closed polygon
 - C. form a polygon with several sides missing
 - D. are parallel but adjacent phasors point in opposite directions
 - E. form the arc of a circle

- 57. For a certain multiple-slit barrier the slit separation is 4 times the slit width. For this system:
 - A. the orders of the lines that appear are all multiples of 4
 - B. the orders of lines that appear are all multiples of 2
 - C. the orders of the missing lines are all multiples of 4
 - D. the orders of the missing lines are all multiples of 2
 - E. none of the above are true

ans: C

58. The dispersion D of a grating can have units:

- A. cm
- B. 1/nm
- C. nm/cm
- D. radian
- E. none of these

ans: B

- 59. The resolving power R of a grating can have units:
 - A. cm
 - B. degree/nm
 - C. watt
 - D. nm/cm
 - E. watt/nm

ans: D

- 60. The dispersion of a diffraction grating indicates:
 - A. the resolution of the grating
 - B. the separation of lines of the same order
 - C. the number of rulings in the grating
 - D. the width of the lines
 - E. the separation of lines of different order for the same wavelength ans: B

- 61. The resolving power of a diffraction grating is defined by $R = \lambda / \Delta \lambda$. Here λ and $\lambda + \Delta \lambda$ are:
 - A. any two wavelengths
 - B. any two wavelengths that are nearly the same
 - C. two wavelengths for which lines of the same order are separated by π radians
 - D. two wavelengths for which lines of the same order are separated by 2π radians
 - E. two wavelengths for which lines of the same order are separated by half the width of a maximum
 - ans: E
- 62. A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if:
 - A. the dispersion is great
 - B. the resolution is great
 - C. the dispersion is small
 - D. the resolution is small
 - E. none of the above (line separation does not depend on either dispersion or resolution) ans: A
- 63. To obtain greater dispersion by a diffraction grating:
 - A. the slit width should be increased
 - B. the slit width should be decreased
 - C. the slit separation should be increased
 - D. the slit separation should be decreased
 - E. more slits with the same width and separation should be added to the system ans: D
- 64. Two nearly equal wavelengths of light are incident on an N-slit grating. The two wavelengths are not resolvable. When N is increased they become resolvable. This is because:
 - A. more light gets through the grating
 - B. the lines get more intense
 - C. the entire pattern spreads out
 - D. there are more orders present
 - E. the lines become more narrow ans: E
- 65. A diffraction grating just resolves the wavelengths 400.0 nm and 400.1 nm in first order. The number of slits in the grating is:
 - A. 400
 - B. 1000
 - C. 2500
 - D. 4000
 - E. not enough information is given

ans: D

- 66. What is the minimum number of slits required in a diffraction grating to just resolve light with wavelengths of 471.0 nm and 471.6 nm?
 - A. 99
 - B. 197
 - C. 393
 - D. 786
 - E. 1179
 - ans: C
- 67. X rays are:
 - A. electromagnetic waves
 - B. negatively charged ions
 - C. rapidly moving electrons
 - D. rapidly moving protons
 - E. rapidly moving neutrons

- 68. Bragg's law for x-ray diffraction is $2d\sin\theta = m\lambda$, where θ is the angle between the incident beam and:
 - A. a reflecting plane of atoms
 - B. the normal to a reflecting plane of atoms
 - C. the scattered beam
 - D. the normal to the scattered beam
 - E. the refracted beam
 - ans: A
- 69. Bragg's law for x-ray diffraction is $2d\sin\theta = m\lambda$, where the quantity d is:
 - A. the height of a unit cell
 - B. the smallest interatomic distance
 - C. the distance from detector to sample
 - D. the distance between planes of atoms
 - E. the usual calculus symbol for a differential ans: D
- 70. Which of the following is true for Bragg diffraction but not for diffraction from a grating?
 - A. Two different wavelengths may be used
 - B. For a given wavelength, a maximum may exist in several directions
 - C. Long waves are deviated more than short ones
 - D. There is only one grating spacing
 - E. Maxima occur only for particular angles of incidence ans: E

- 71. The longest x-ray wavelength that can be diffracted by crystal planes with a separation of $0.316\,\mathrm{nm}$ is:
 - A. 0.158 nm
 - B. 0.316 nm
 - C. 0.474 nm
 - D. 0.632 nm
 - E. 1.26 nm
 - ans: D
- 72. A beam of x rays of wavelength 0.20 nm is diffracted by a set of planes in a crystal whose separation is 3.1×10^{-8} cm. The smallest angle between the beam and the crystal planes for which a reflection occurs is:
 - A. 0.70 rad
 - B. 0.33 rad
 - $C. \quad 0.033 \, \mathrm{rad}$
 - $D. \quad 0.066 \, \mathrm{rad}$
 - E. no such angle exists
 - ans: C
- 73. An x-ray beam of wavelength 3×10^{-11} m is incident on a calcite crystal of lattice spacing 0.3 nm. The smallest angle between crystal planes and the x-ray beam that will result in constructive interference is:
 - A. 2.87°
 - B. 5.73°
 - C. 11.63°
 - D. 23.27°
 - E. none of these

- 74. A beam of x rays of wavelength 0.10 nm is found to diffract in second order from the face of a LiF crystal at a Bragg angle of 30° . The distance between adjacent crystal planes, in nm, is about:
 - A. 0.15
 - B. 0.20
 - C. 0.25
 - D. 0.30
 - E. 0.40
 - ans: B