## Chapter 41: CONDUCTION OF ELECTRICITY IN SOLIDS

- 1. In a pure metal the collisions that are characterized by the mean free time  $\tau$  in the expression for the resistivity are chiefly between:
  - A. electrons and other electrons
  - B. electrons with energy about equal to the Fermi energy and atoms
  - C. all electrons and atoms
  - D. electrons with energy much less than the Fermi energy and atoms
  - E. atoms and other atoms

ans: B

- 2. A certain metal has  $5.3 \times 10^{29}$  conduction electrons/m<sup>3</sup> and an electrical resistivity of  $1.9 \times 10^{-9} \,\Omega \cdot m$ . The average time between collisions of electrons with atoms in the metal is:
  - A.  $5.6 \times 10^{-33}$  s
  - B.  $1.3 \times 10^{-31}$  s
  - C.  $9.9 \times 10^{-22} \,\mathrm{s}$
  - D.  $4.6 \times 10^{-15}$  s
  - E.  $3.5 \times 10^{-14}$  s

ans: C

- 3. Which one of the following statements concerning electron energy bands in solids is true?
  - A. The bands occur as a direct consequence of the Fermi-Dirac occupancy probability function
  - B. Electrical conduction arises from the motion of electrons in completely filled bands
  - C. Within a given band, all electron energy levels are equal to each other
  - D. An insulator has a large energy separation between the highest filled band and the lowest empty band
  - E. Only insulators have energy bands

ans: D

- 4. If  $E_0$  and  $E_T$  are the average energies of the "free" electrons in a metal at 0 K and room temperature, respectively, then the ratio  $E_T/E_0$  is approximately:
  - A. 0
  - B. 1
  - C. 100
  - D.  $10^6$
  - E. infinity

ans: B

- 5. The energy gap (in eV) between the valence and conduction bands of an insulator is of the order of:
  - A.  $10^{-19}$
  - B. 0.001
  - C. 0.1
  - D. 10
  - E. 1000

ans: D

6. The energy level diagram shown applies to:





- A. a conductor
- B. an insulator
- C. a semiconductor
- D. an isolated molecule
- E. an isolated atom
- ans: A
- 7. The energy level diagram shown applies to:



- A. a conductor
- B. an insulator
- C. a semiconductor
- D. an isolated atom
- E. a free-electron gas

ans: B

8. The energy level diagram shown applies to:



- A. a conductor
- B. an insulator
- C. a semiconductor
- D. an isolated molecule
- E. an isolated atom

ans: C

- 9. Possible units for the density of states function N(E) are:
  - A.  $J/m^3$
  - B. 1/J
  - C.  $m^{-3}$
  - D.  $J^{-1} \cdot m^{-3}$
  - E.  $kg/m^3$

ans: D

- 10. The density of states for a metal depends primarily on:
  - A. the temperature
  - B. the energy
  - C. the density of the metal
  - D. the volume of the sample
  - E. none of these

ans: B

- 11. The Fermi-Dirac occupancy probability P(E) varies between:
  - A. 0 and 1
  - B. 0 and infinity
  - C. 1 and infinity
  - D. -1 and 1
  - E. 0 and  $E_F$

ans: A

- 12. For a metal at absolute temperature T, with Fermi energy  $E_F$ , the occupancy probability is given by:
  - A.  $e^{(E-E_F)/kT}$
  - B.  $e^{-(E-E_F)/kT}$
  - C.  $\frac{1}{e^{(E-E_F)/kT}+1}$
  - D.  $\frac{1}{e^{-(E-E_F)/kT}+1}$
  - E.  $\frac{1}{e^{(E-E_F)/kT}-1}$ 
    - ans: C
- 13. In a metal at 0 K, the Fermi energy is:
  - A. the highest energy of any electron
  - B. the lowest energy of any electron
  - C. the mean thermal energy of the electrons
  - D. the energy of the top of the valence band
  - E. the energy at the bottom of the conduction band
    - ans: A
- 14. The occupancy probability for a state with energy equal to the Fermi energy is:
  - A. 0
  - B. 0.5
  - C. 1
  - D. 1.5
  - E. 2
    - ans: B
- 15. The Fermi energy of a metal depends primarily on:
  - A. the temperature
  - B. the volume of the sample
  - C. the mass density of the metal
  - D. the size of the sample
  - E. the number density of conduction electrons
    - ans: E
- 16. The speed of an electron with energy equal to the Fermi energy for copper is on the order of:
  - A.  $10^6 \, \text{m/s}$
  - B.  $10^{-6} \,\mathrm{m/s}$
  - $C. 10 \,\mathrm{m/s}$
  - D.  $10^{-1} \,\mathrm{m/s}$
  - E.  $10^9 \, \text{m/s}$ 
    - ans: A

- 17. At T = 0 K the probability that a state 0.50 eV below the Fermi level is occupied is about:
  - A. 0
  - B.  $5.0 \times 10^{-9}$
  - C.  $5.0 \times 10^{-6}$
  - D.  $5.0 \times 10^{-3}$
  - E. 1
    - ans: E
- 18. At  $T = 0 \,\mathrm{K}$  the probability that a state  $0.50 \,\mathrm{eV}$  above the Fermi level is occupied is about:
  - A. 0
  - B.  $5.0 \times 10^{-9}$
  - C.  $5.0 \times 10^{-6}$
  - D.  $5.0 \times 10^{-3}$
  - E. 1
    - ans: A
- 19. At room temperature kT is about  $0.0259\,\mathrm{eV}$ . The probability that a state  $0.50\,\mathrm{eV}$  above the Fermi level is occupied at room temperature is:
  - A. 1
  - B. 0.05
  - C. 0.025
  - D.  $5.0 \times 10^{-6}$
  - E.  $4.1 \times 10^{-9}$ 
    - ans: E
- 20. At room temperature kT is about  $0.0259\,\mathrm{eV}$ . The probability that a state  $0.50\,\mathrm{eV}$  below the Fermi level is unoccupied at room temperature is:
  - A. 1
  - B. 0.05
  - C. 0.025
  - D.  $5.0 \times 10^{-6}$
  - E.  $4.1 \times 10^{-9}$ 
    - ans: E
- 21. If the density of states is N(E) and the occupancy probability is P(E), then the density of occupied states is:
  - A. N(E) + P(E)
  - B. N(E)/P(E)
  - C. N(E) P(E)
  - D. N(E)P(E)
  - E. P(E)/N(E)
    - ans: D

- 22. A hole refers to:
  - A. a proton
  - B. a positively charged electron
  - C. an electron that has somehow lost its charge
  - D. a microscopic defect in a solid
  - E. the absence of an electron in an otherwise filled band

ans: E

- 23. Electrons in a full band do not contribute to the current when an electric field exists in a solid because:
  - A. the field cannot exert a force on them
  - B. the individual contributions cancel each other
  - C. they are not moving
  - D. they make transitions to other bands
  - E. they leave the solid

ans: B

- 24. For a pure semiconductor the Fermi level is:
  - A. in the conduction band
  - B. well above the conduction band
  - C. in the valence band
  - D. well below the valence band
  - E. near the center of the gap between the valence and conduction bands

ans: E

- 25. The number density n of conduction electrons, the resistivity  $\rho$ , and the temperature coefficient of resistivity  $\alpha$  are given below for five materials. Which is a semiconductor?

  - A.  $n=10^{29}~\mathrm{m}^{-3},~\rho=10^{-8}~\Omega\cdot\mathrm{m},~\alpha=+10^{-3}~\mathrm{K}^{-1}$ B.  $n=10^{28}~\mathrm{m}^{-3},~\rho=10^{-9}~\Omega\cdot\mathrm{m},~\alpha=-10^{-3}~\mathrm{K}^{-1}$ C.  $n=10^{28}~\mathrm{m}^{-3},~\rho=10^{-9}~\Omega\cdot\mathrm{m},~\alpha=+10^{-3}~\mathrm{K}^{-1}$ D.  $n=10^{15}~\mathrm{m}^{-3},~\rho=10^3~\Omega\cdot\mathrm{m},~\alpha=-10^{-2}~\mathrm{K}^{-1}$ E.  $n=10^{15}~\mathrm{m}^{-3},~\rho=10^{-7}~\Omega\cdot\mathrm{m},~\alpha=+10^{-3}~\mathrm{K}^{-1}$

ans: D

- 26. A pure semiconductor at room temperature has:
  - A. more electrons/m<sup>3</sup> in its conduction band than holes/m<sup>3</sup> in its valence band
  - B. more electrons/m<sup>3</sup> in its conduction band than a typical metal
  - C. more electrons/m<sup>3</sup> in its valence band than at T = 0 K
  - D. more holes/m<sup>3</sup> in its valence band than electrons/m<sup>3</sup> in its valence band
  - E. none of the above

ans: E

- 27. For a metal at room temperature the temperature coefficient of resistivity is determined primarily by:
  - A. the number of electrons in the conduction band
  - B. the number of impurity atoms
  - C. the binding energy of outer shell electrons
  - D. collisions between conduction electrons and atoms
  - E. none of the above

ans: D

- 28. For a pure semiconductor at room temperature the temperature coefficient of resistivity is determined primarily by:
  - A. the number of electrons in the conduction band
  - B. the number of replacement atoms
  - C. the binding energy of outer shell electrons
  - D. collisions between conduction electrons and atoms
  - E. none of the above

ans: A

- 29. A certain material has a resistivity of  $7.8 \times 10^3 \,\Omega \cdot m$  at room temperature and it increases as the temperature is raised by  $100^{\circ}$  C. The material is most likely:
  - A. a metal
  - B. a pure semiconductor
  - C. a heavily doped semiconductor
  - D. an insulator
  - E. none of the above

ans: C

- 30. A certain material has a resistivity of  $7.8 \times 10^3 \,\Omega \cdot m$  at room temperature and it decreases as the temperature is raised by  $100^{\circ}$  C. The material is most likely:
  - A. a metal
  - B. a pure semiconductor
  - C. a heavily doped semiconductor
  - D. an insulator
  - E. none of the above

ans: B

- 31. A certain material has a resistivity of  $7.8 \times 10^{-8} \,\Omega \cdot m$  at room temperature and it increases as the temperature is raised by  $100^{\circ}$  C. The material is most likely:
  - A. a metal
  - B. a pure semiconductor
  - C. a heavily doped semiconductor
  - D. an insulator
  - E. none of the above

ans: A

| 32. | Do       | nor atoms introduced into a pure semiconductor at room temperature:                      |
|-----|----------|------------------------------------------------------------------------------------------|
|     | A.       | increase the number of electrons in the conduction band                                  |
|     | В.       | increase the number of holes in the valence band                                         |
|     |          | lower the Fermi level                                                                    |
|     |          | increase the electrical resistivity                                                      |
|     | E.       | none of the above                                                                        |
|     |          | ans: A                                                                                   |
| 33. | Acc      | ceptor atoms introduced into a pure semiconductor at room temperature:                   |
|     | A.       | increase the number of electrons in the conduction band                                  |
|     |          | increase the number of holes in the valence band                                         |
|     |          | raise the Fermi level                                                                    |
|     |          | increase the electrical resistivity                                                      |
|     | Ŀ.       | none of the above ans: B                                                                 |
|     |          | ans. D                                                                                   |
| 34. |          | acceptor replacement atom in silicon might have electrons in its outer shell.            |
|     | A.       |                                                                                          |
|     | В.       |                                                                                          |
|     | C.<br>D. |                                                                                          |
|     | D.<br>Е. |                                                                                          |
|     |          | ans: A                                                                                   |
| ٥,  |          |                                                                                          |
| 35. |          | donor replacement atom in silicon might have electrons in its outer shell.               |
|     | A.       |                                                                                          |
|     | В.       |                                                                                          |
|     | C.<br>D. |                                                                                          |
|     | Б.<br>Е. | 5                                                                                        |
|     | ъ.       | ans: E                                                                                   |
|     |          |                                                                                          |
| 36. |          | given doped semiconductor can be identified as $p$ or $n$ type by:                       |
|     |          | measuring its electrical conductivity                                                    |
|     | В.       | measuring its magnetic susceptibility                                                    |
|     | C.       | measuring its coefficient of resistivity                                                 |
|     | D.<br>E. | measuring its heat capacity performing a Hall effect experiment                          |
|     | Ľ.       | ans: E                                                                                   |
|     |          |                                                                                          |
| 37. | The      | e contact electric field in the depletion region of a $p$ - $n$ junction is produced by: |
|     | A.       | electrons in the conduction band alone                                                   |
|     | В.       | holes in the valence band alone                                                          |
|     | C.       | electrons and holes together                                                             |
|     | D.<br>E. | charged replacement atoms<br>an applied bias potential difference                        |
|     | 17.      |                                                                                          |
|     |          | ans: D                                                                                   |

- 38. For an unbiased p-n junction, the energy at the bottom of the conduction band on the n side is:
  - A. higher than the energy at the bottom of the conduction band on the p side
  - B. lower than the energy at the bottom of the conduction band on the p side
  - C. lower than the energy at the top of the valence band on the n side
  - D. lower than the energy at the top of the valence band on the p side
  - E. the same as the energy at the bottom of the conduction band on the p side ans: B
- 39. In an unbiased p-n junction:
  - A. the electric potential vanishes everywhere
  - B. the electric field vanishes everywhere
  - C. the drift current vanishes everywhere
  - D. the diffusion current vanishes everywhere
  - E. the diffusion and drift currents cancel each other ans: E
- 40. Application of a forward bias to a p-n junction:
  - A. narrows the depletion zone
  - B. increases the electric field in the depletion zone
  - C. increases the potential difference across the depletion zone
  - D. increases the number of donors on the n side
  - E. decreases the number of donors on the n side

ans: A

- 41. Application of a forward bias to a p-n junction:
  - A. increases the drift current in the depletion zone
  - B. increases the diffusion current in the depletion zone
  - C. decreases the drift current on the p side outside the depletion zone
  - D. decreases the drift current on the n side outside the depletion zone
  - E. does not change the current anywhere

ans: B

- 42. When a forward bias is applied to a p-n junction the concentration of electrons on the p side:
  - A. increases slightly
  - B. increases dramatically
  - C. decreases slightly
  - D. decreases dramatically
  - E. does not change

ans: B

- 43. Which of the following is NOT true when a back bias is applied to a p-n junction?
  - A. Electrons flow from the p to the n side
  - B. Holes flow from the p to the n side
  - C. The electric field in the depletion zone increases
  - D. The potential difference across the depletion zone increases
  - E. The depletion zone narrows

ans: B

44. Switch S is closed to apply a potential difference V across a p-n junction as shown. Relative to the energy levels of the n-type material, with the switch open, the electron levels of the p-type material are:



- A. unchanged
- B. lowered by the amount  $e^{-Ve/kT}$
- C. lowered by the amount Ve
- D. raised by the amount  $e^{-Ve/kT}$
- E. raised by the amount Ve

ans: C

45. A sinusoidal potential difference  $V_{\rm in} = V_m \sin(\omega t)$  is applied to the *p-n* junction as shown. Which graph correctly shows  $V_{\rm out}$  as a function of time?



ans: E

- 46. In normal operation the current in a MOSFIT device is controlled by changing:
  - A. the number of donors and acceptors
  - B. the width of the depletion zone
  - C. the size of the sample
  - D. the density of electron states
  - E. the temperature

ans: B

- 47. "LED" stands for:
  - A. Less Energy Donated
  - B. Light Energy Degrader
  - C. Luminescent Energy Developer
  - D. Laser Energy Detonator
  - E. none of the above

ans: E

- 48. A light emitting diode emits light when:
  - A. electrons are excited from the valence to the conduction band
  - B. electrons from the conduction band recombine with holes from the valence band
  - C. electrons collide with atoms
  - D. electrons are accelerated by the electric field in the depletion region
  - E. the junction gets hot

ans: B

- 49. The gap between the valence and conduction bands of a certain semiconductor is 0.85 eV. When this semiconductor is used to form a light emitting diode, the wavelength of the light emitted:
  - A. is in a range above  $1.5 \times 10^{-6}$  m
  - B. is in a range below  $1.5 \times 10^{-6}$  m
  - C. is always  $1.5 \times 10^{-6}$  m
  - D. is in a range centered on  $1.5 \times 10^{-6}$  m
  - E. has nothing to do with the gap

ans: B