Chapter 42: NUCLEAR PHYSICS

- 1. The smallest particle of any chemical element that can exist by itself and yet retain the qualities that distinguish it as that element is:
 - A. an electron
 - B. a proton
 - C. a neutron
 - $D. \ \ {\rm an \ atom}$
 - E. a molecule

ans: D

- 2. Of the following, which has the smallest rest energy?
 - A. A neutron
 - B. An electron
 - C. An ion
 - D. A proton
 - E. An atom
 - ans: B
- 3. The mass of an electron:
 - A. is almost the same as that of a neutron
 - B. is negative
 - C. equals that of a proton
 - D. is zero if the electron is at rest
 - E. is much less than that of a proton ans: E
- 4. The mass of a neutron:
 - A. equals that of an electron
 - B. equals that of a proton
 - C. is a little more than that of a proton
 - D. is exactly that of a proton plus an electron
 - E. is as yet unmeasured

ans: C

- 5. The mass of a hydrogen atom, in kilograms, is approximately:
 - A. 10^{-27}
 - B. 10^{-31}
 - C. 10^{-24}
 - D. 10⁻¹³
 - E. 10^{-8}

ans: A

- 6. 1 atomic mass unit is about:
 - A. $1.66 \times 10^{-31} \text{ kg}$ B. $9.11 \times 10^{-31} \text{ kg}$
 - C. $1.66 \times 10^{-27} \text{ kg}$
 - D. $9.11 \times 10^{-27} \text{ kg}$
 - E. $1.66 \times 10^{-25} \text{ kg}$
 - ans: C
- 7. The atomic number of an element is:
 - A. the whole number nearest to its mass
 - B. the number of protons in its nucleus
 - C. the nearest whole number of hydrogen atoms having the same mass as a single atom of the given element
 - D. the number of neutrons in its nucleus
 - E. its order of discovery

ans: B

- 8. Iron has atomic number 26. Naturally mined iron contains isotopes of mass numbers 54, 56, 57, and 58. Which of the following statements is FALSE?
 - A. Every atom of iron has 26 protons
 - B. Some iron atoms have 30 neutrons
 - C. Some iron atoms have 54 neutrons
 - D. The isotopes may be separated in a mass spectrometer
 - E. There are four kinds of naturally occurring iron atoms with the same chemical properties ans: C
- 9. Let Z denote the atomic number and A denote the mass number of a nucleus. The number of neutrons in this nucleus is:
 - A. Z
 - B. A-Z
 - C. A 2Z
 - D. A
 - E. 2A Z
 - ans: B
- 10. The isotopes of an element:
 - A. cannot be separated at all
 - B. occur well separated in nature
 - C. have similar chemical behavior
 - D. cannot be separated by physical methods
 - E. have equal masses

ans: C

- 11. Bromine, with atomic mass 79.942 u, is composed of nearly equal amounts of two isotopes, one of which contains 79 nucleons per atom. The mass number of the other isotope is:
 - A. 78
 - B. 79
 - C. 80
 - D. 81
 - E. 82
 - ans: D
- 12. The mass density of an atomic nucleus is:
 - A. about 10^{15} kg/m^3
 - B. about 10^{12} kg/m^3
 - C. increases with increasing nuclear mass
 - D. increases with decreasing nuclear radius
 - E. about the same as that of all other nuclei ans: E
- 13. Volumes of atomic nuclei are proportional to:
 - A. the mass number
 - B. the atomic number
 - C. the total nuclear spin
 - D. the number of neutrons
 - E. none of these

ans: A

- 14. A femtometer is:
 - A. larger than 10^{-9} m
 - B. 10^{-9} m
 - C. 10^{-12} m
 - D. 10^{-15} m
 - E. $10^{-18} \,\mathrm{m}$
 - ans: D

15. A nucleus with a mass number of 64 has a mean radius of about:

- A. 4.8 fm
- $B.~19\,\mathrm{fm}$
- $C.~77\,\mathrm{fm}$
- D. 260 fm
- E. $2.6 \times 10^5 \, \mathrm{fm}$

ans: A

- 16. A proton in a large nucleus:
 - A. attracts all other protons
 - B. repels all other protons
 - C. repels all neutrons
 - D. attracts some protons and repels others
 - E. attracts some neutrons and repels others
 - ans: D
- 17. Two protons are separated by 10^{-16} m. The nuclear (N), electrostatic (E), and gravitational (G) forces between these protons, in order of increasing strength, are:
 - A. E, N, G
 - B. N, G, E
 - $C. \quad G, E, N$
 - $D. \ G,\,N,\,E$
 - $E. \quad E, \, G, \, N$
 - ans: C
- 18. Two protons are about 10^{-10} m apart. Their relative motion is chiefly determined by:
 - A. gravitational forces
 - B. electrical forces
 - C. nuclear forces
 - D. magnetic forces
 - E. torque due to electric dipole moments

- 19. The binding energy of a nucleus is the energy that must be supplied to:
 - A. remove a nucleon
 - B. remove an alpha particle
 - C. remove a beta particle
 - D. separate the nucleus into its constituent nucleons
 - E. separate the nucleus into a collection of alpha particles ans: D
- 20. If a nucleus has mass M, Z protons (mass m_p), and N neutrons (mass m_n), its binding energy is equal to:
 - A. Mc^2
 - B. $(M Zm_p Nm_n)c^2$
 - C. $(Zm_p + Nm_n M)c^2$
 - D. $(Zm_p^p + Nm_n)c^2$
 - E. $(Zm_p^P M)c^2$

ans: C

- 21. Stable nuclei generally:
 - A. have a greater number of protons than neutrons
 - B. have low mass numbers
 - C. have high mass numbers
 - D. are beta emitters
 - E. none of the above

ans: E

- 22. Let A be the mass number and Z be the atomic number of a nucleus. Which of the following is approximately correct for light nuclei?
 - A. Z = 2A
 - B. Z = A
 - C. Z = A/2
 - D. $Z = \sqrt{A}$
 - E. $Z = A^2$ ans: C
- 23. The greatest binding energy per nucleon occurs for nuclides with masses near that of:
 - A. helium
 - B. sodium
 - C. iron
 - D. mercury
 - E. uranium
 - ans: C
 - 24. Which of the following nuclides is least likely to be detected?
 - A. 52 Fe (Z = 26)
 - B. 115 Nd (Z = 60)
 - C. 175 Lu (Z = 71)
 - D. 208 Pb (Z = 82)
 - E. 238 U (Z = 92)
 - ans: B
 - 25. The half-life of a radioactive substance is:
 - A. half the time it takes for the entire substance to decay
 - B. usually about 50 years
 - C. the time for radium to change into lead
 - D. calculated from $E = mc^2$
 - E. the time for half the substance to decay

ans: E

- 26. Which expression correctly describes the radioactive decay of a substance whose half-life is T?
 - A. $N(t) = N_0 e^{-(t \ln 2)/T}$ B. $N(t) = N_0 e^{-t/T}$ C. $N(t) = N_0 e^{-tT}$ D. $N(t) = N_0 e^{-tT \ln 2}$ E. $N(t) = N_0 e^{-t/T \ln 2}$ ans: A
- 27. Radioactive element A decays to the stable element B with a half-life T. Starting with a sample of pure A and no B, which graph below correctly shows the number of A atoms, N_A , as a function of time t?

ans: D

- 28. A large collection of nuclei are undergoing alpha decay. The rate of decay at any instant is proportional to:
 - A. the number of undecayed nuclei present at that instant
 - B. the time since the decays started
 - C. the time remaining before all have decayed
 - D. the half-life of the decay
 - E. the average time between decays

ans: A

29. The relation between the disintegration constant λ and the half-life T of a radioactive substance is:

A. $\lambda = 2T$

- B. $\lambda = 1/T$
- C. $\lambda = 2/T$
- D. $\lambda T = \ln 2$
- E. $\lambda T = \ln(1/2)$ ans: D

30. Possible units for the disintegration constant λ are:

- A. kg/s
- B. s/kg
- C. hour
- $D. \ \mathrm{day}^{-1}$
- $E. cm^{-1}$
 - ans: D
- 31. The half-life of a given nuclear disintegration $A \rightarrow B$:
 - A. depends on the initial number of A atoms
 - B. depends on the initial number of B atoms
 - C. is an exponentially increasing function of time
 - D. is an exponentially decreasing function of time
 - E. none of the above
 - ans: E
- 32. The graph shows the activity R as a function of time t for three radioactive samples. Rank the samples according to their half-lives, shortest to longest.

- A. 1, 2, 3
- B. 1, 3, 2
- $\begin{array}{cccc} C. & 2, \, 1, \, 3 \\ D. & 2, \, 3, \, 1 \end{array}$
- E. 3, 1, 2
- ans: C
- 33. The half-life of radium is about 1600 years. If a rock initially contains 1 g of radium, the amount left after 6400 years will be about:
 - A. 938 mg
 - B. 62 mg
 - C. 31 mg
 - D. 16 mg
 - E. less than 16 mg

ans: C

- 34. Starting with a sample of pure 66 Cu, 7/8 of it decays into Zn in 15 minutes. The corresponding half-life is:
 - A. 15 minutes
 - B. 5 minutes
 - C. 7 minutes
 - D. $3.75 \,\mathrm{minutes}$
 - E. 10 minutes
 - ans: B
- 35. 210 Bi (an isotope of bismuth) has a half-life of 5.0 days. The time for three-quarters of a sample of 210 Bi to decay is:
 - A. 2.5 days
 - B. 10 days
 - C. $15 \,\mathrm{days}$
 - $D. \quad 20 \, \mathrm{days}$
 - E. $3.75 \,\mathrm{days}$
 - ans: B
- 36. Radioactive ⁹⁰Sr has a half-life of 30 years. What percent of a sample of ⁹⁰Sr will remain after 60 years?
 - A. 0%
 - B. 25%
 - C. 50%
 - D. 75%
 - E. 14%
 - ans: B
- 37. The half-life of a radioactive isotope is 6.5 h. If there are initially 48×10^{32} atoms of this isotope, the number of atoms of this isotope remaining after 26 h is:
 - A. 12×10^{32}
 - B. 6×10^{32}
 - C. 3×10^{32}
 - D. 6×10^4
 - E. 3×10^2
 - ans: C
- 38. At the end of $14 \min, 1/16$ of a sample of radioactive polonium remains. The corresponding half-life is:
 - A. $(7/8) \min$
 - B. $(8/7) \min$
 - C. $(7/4) \min$
 - D. $(7/2) \min$
 - E. $(14/3) \min$

ans: D

- 39. The half-life of a radioactive isotope is 140 days. In how many days does the decay rate of a sample of this isotope decrease to one-fourth of its initial decay rate?
 - A. 35
 - B. 105
 - C. 187
 - D. 210
 - E. 280
 - ans: E
- 40. Of the three common types of radiation (alpha, beta, gamma) from radioactive sources, electric charge is carried by:
 - A. only beta and gamma
 - B. only beta
 - C. only alpha and gamma
 - D. only alpha
 - E. only alpha and beta
 - ans: E
- 41. An alpha particle is:
 - A. a helium atom with two electrons removed
 - B. an aggregate of two or more electrons
 - C. a hydrogen atom
 - D. the ultimate unit of positive charge
 - E. sometimes negatively charged
 - ans: A
- 42. A nucleus with mass number A and atomic number Z emits an alpha particle. The mass number and atomic number, respectively, of the daughter nucleus are:
 - A. A, Z 2
 - B. A 2, Z 2
 - C. A-2, Z
 - D. A 4, ZE. A - 4, Z - 2
 - ans: E
- 43. Radioactive polonium, ²¹⁴Po (Z = 84), decays by alpha emission to:
 - A. 214 Po (Z = 84)
 - B. 210 Pb (Z = 82)
 - C. 214 At (Z = 85)
 - D. 218 Po (Z = 84)
 - E. 210 Bi (Z = 83)
 - ans: B

- 44. A radium atom, 226 Ra (Z = 86) emits an alpha particle. The number of protons in the resulting atom is:
 - A. 84
 - B. 85
 - C. 86
 - D. 88
 - E. some other number

ans: A

- 45. Some alpha emitters have longer half-lives than others because:
 - A. their alpha particles have greater mass
 - B. their alpha particles have less mass
 - C. their barriers to decay are higher and wider
 - D. their barriers to decay are lower and narrower
 - E. their decays include the emission of a photon ans: C
- 46. In an alpha decay the disintegration energy appears chiefly as:
 - A. photon energies
 - B. the kinetic energies of the alpha and the daughter nucleus
 - C. the excitation energy of the daughter nucleus
 - D. the excitation energy of the alpha particle
 - E. heat
 - ans: B
- 47. Rank the following collections of particles according to the total binding energy of all the particles in each collection, least to greatest.

collection 1: ²⁴⁴Pu (Z = 94) nucleus alone collection 2: ²⁴⁰U (Z = 92) nucleus, α particle collection 3: ²⁴⁰U (Z = 92) nucleus, two separated protons, two separated neutrons

- A. 1, 2, 3
- B. 3, 2, 1
- C. 2, 1, 3
- D. 1, 3, 2
- E. 2, 3, 1
 - ans: D
- 48. A beta particle is:
 - A. a helium nucleus
 - B. an electron or a positron
 - C. a radioactive element
 - D. any negative particle
 - E. a hydrogen atom

- 49. Beta particles from various radioactive sources all have:
 - A. the same mass
 - D. the same speed
 - B. the same charge
 - E. the same deflection
 - C. the same energy in a magnetic field ans: A
- 50. A radioactive atom X emits a β^- particle. The resulting atom:
 - A. must be very reactive chemically
 - B. has an atomic number that is one more than that of X
 - C. has a mass number that is one less than that of X
 - D. must be radioactive
 - E. is the same chemical element as X
 - ans: B
- 51. A nucleus with mass number A and atomic number Z undergoes β^- decay. The mass number and atomic number, respectively, of the daughter nucleus are:
 - A. A, Z 1
 - B. A 1, Z
 - C. A + 1, Z 1
 - D. A, Z+1
 - E. A, Z 1
 - ans: D
- 52. A nucleus with mass number A and atomic number Z undergoes β^+ decay. The mass number and atomic number, respectively, of the daughter nucleus are:
 - A. A 1, Z 1
 - B. A 1, Z + 1
 - C. A + 1, Z 1D. A, Z + 1
 - E. A, Z + 1E. A, Z - 1
 - ans: E
- 53. In addition to the daughter nucleus and an electron or positron, the products of a beta decay include:
 - A. a neutron
 - B. a neutrino
 - C. a proton
 - D. an alpha particle
 - E. no other particle

- 54. The energies of electrons emitted in β^- decays have a continuous spectrum because:
 - A. the original neutron has a continuous spectrum
 - B. a neutrino can carry off energy
 - C. the emitted electron is free
 - D. energy is not conserved
 - E. the daughter nucleus may have any energy ans: B

55. If ²⁰⁴Tl (Z = 81) emits a β^- particle from its nucleus:

- A. stable Tl is formed
- B. 202 Hg (Z = 80) is formed C. 204 Pb (Z = 82) is formed
- D. radioactive Tl is formed
- E. ¹⁹⁷Au (Z = 79) is formed ans: C
- 56. An atom of ²³⁵U (Z = 92) disintegrates to ²⁰⁷Pb (Z = 82) with a half-life of about a billion years by emitting seven alpha particles and β^{-} particles:
 - A. 3
 - B. 4
 - C. 5
 - D. 6
 - E. 7
 - ans: B
- 57. When ordinary sodium (²³Na, Z = 11) is bombarded with deuterons, the products are a neutron and:
 - A. 27 Al, Z = 13
 - B. ²⁴Na, Z = 11C. ²⁴Mg, Z = 12

 - D. ${}^{25}Mg, Z = 12$
 - E. 20 Ne, Z = 10
 - ans: D
- 58. ⁶⁵Cu can be turned into ⁶⁶Cu, with no accompanying product except a gamma, if bombarded with:
 - A. protons
 - B. neutrons
 - C. deuterons
 - D. electrons
 - E. alpha particles

- 59. Magnesium has atomic number 12, hydrogen has atomic number 1, and helium has atomic number 2. In the nuclear reaction ${}^{24}Mg + {}^{2}H \rightarrow () + {}^{4}He$ the missing quantity is:
 - A. 23 Na (Z = 11)
 - B. 22 Ne (Z = 10)
 - C. ²¹Na (Z = 11)
 - D. ²¹Ne (Z = 10)
 - E. ²²Na (Z = 11)
 - ans: E
- 60. Aluminum has atomic number 13, helium has atomic number 2, and silicon has atomic number 14. In the nuclear reaction ${}^{27}\text{Al} + {}^{4}\text{He} \rightarrow {}^{30}\text{Si} + ()$ the missing particle is:
 - A. an α particle
 - B. a positron
 - C. an electron
 - D. a proton
 - E. a neutron
 - ans: D
- 61. The ⁶⁶Cu (Z = 29) produced in a nuclear bombardment is unstable, changing to ⁶⁶Zn (Z = 30) by the emission of:
 - A. a proton
 - B. a gamma ray photon
 - C. a positron
 - D. an electron
 - E. an alpha particle

ans: D

- 62. When ordinary sulfur, ³²S (Z = 16), is bombarded with neutrons, the products are ³²P (Z = 15) and:
 - A. alpha particles
 - B. protons
 - C. deuterons
 - D. gamma ray particles
 - E. electrons
 - ans: B
- 63. A certain nucleus, after absorbing a neutron, emits a β^- and then splits into two alpha particles. The (A, Z) of the original nucleus must have been:
 - A. 6, 2
 - B. 6, 3
 - C. 7, 2
 - D. 7, 3
 - E. 8, 4

ans: D

- 64. When ²³Na (Z = 11) is bombarded with protons, the products are ²⁰Ne (Z = 10) and:
 - A. a neutron
 - B. an alpha particle
 - C. a deuteron
 - D. a gamma ray particle
 - E. two beta particles
 - ans: B

65. Bombardment of ²⁸Si (Z = 14) with alpha particles may produce:

- A. a proton and ³¹P (Z = 15)
- B. hydrogen and ³²S (Z = 16)
- C. a deuteron and ²⁷Al (Z = 13)
- D. helium and ³¹P (Z = 15)
- E. 35 Cl (Z = 17) ans: A
 - ans. A
- 66. The becquerel is the correct unit to use in reporting the measurement of:
 - A. the rate of decay of a radioactive source
 - B. the ability of a beam of gamma ray photons to produce ions in a target
 - C. the energy delivered by radiation to a target
 - D. the biological effect of radiation
 - E. none of the above

ans: A

- 67. The gray is the correct unit to use in reporting the measurement of:
 - A. the rate of decay of a radioactive source
 - B. the ability of a beam of gamma ray photons to produce ions in a target
 - C. the energy per unit mass of target delivered by radiation to a target
 - D. the biological effect of radiation
 - E. none of the above

ans: C

- 68. The sievert is the correct unit to use in reporting the measurement of:
 - A. the rate of decay of a radioactive source
 - B. the ability of a beam of gamma ray photons to produce ions in a target
 - C. the energy delivered by radiation to a target
 - D. the biological effect of radiation
 - E. none of the above

ans: D