Chapter 43: ENERGY FROM THE NUCLEUS

- 1. If the nucleus of a lead atom were broken into two identical nuclei, the total mass of the resultant nuclei would be:
 - A. the same as before
 - B. greater than before
 - C. less than before
 - D. converted into radiation
 - E. converted into kinetic energy

ans: C

- 2. Consider the following energies:
 - 1. minimum energy needed to excite a hydrogen atom
 - 2. energy needed to ionize a hydrogen atom
 - 3. energy released in 235 U fission
 - 4. energy needed to remove a neutron from a ^{12}C nucleus

Rank them in order of increasing value.

- A. 1, 2, 3, 4
- B. 1, 3, 2, 4
- C. 1, 2, 4, 3
- D. 2, 1, 4, 3
- E. 2, 4, 1, 3

ans: C

- 3. The binding energy per nucleon:
 - A. increases for all fission events
 - B. increases for some, but not all, fission events
 - C. decreases for all fission events
 - D. decreases for some, but not all, fission events
 - E. remains the same for all fission events

ans: A

- 4. When uranium undergoes fission as a result of neutron bombardment, the energy released is due to:
 - A. oxidation of the uranium
 - B. kinetic energy of the bombarding neutrons
 - C. radioactivity of the uranium nucleus
 - D. radioactivity of the fission products
 - E. a reduction in binding energy

ans: E

- 5. The energy supplied by a thermal neutron in a fission event is essentially its:
 - A. excitation energy
 - B. binding energy
 - C. kinetic energy
 - D. rest energy
 - E. electric potential energy
 - ans: B
- 6. The barrier to fission comes about because the fragments:
 - A. attract each other via the strong nuclear force
 - B. repel each other electrically
 - C. produce magnetic fields
 - D. have large masses
 - E. attract electrons electrically
 - ans: A
- 7. 235 U is readily made fissionable by a thermal neutron but 238 U is not because:
 - A. the neutron has a smaller binding energy in 236 U
 - B. the neutron has a smaller excitation energy in 236 U
 - C. the potential barrier for the fragments is less in 239 U
 - D. the neutron binding energy is greater than the barrier height for $^{236}{\rm U}$ and less than the barrier height for $^{239}{\rm U}$
 - E. the neutron binding energy is less than the barrier height for 236 U and greater than the barrier height for 239 U

ans: D

- 8. An explosion does not result from a small piece of 235 U because:
 - A. it does not fission
 - B. the neutrons released move too fast
 - C. ²³⁸U is required
 - D. too many neutrons escape, preventing a chain reaction from starting
 - E. a few neutrons must be injected to start the chain reaction

ans: D

- 9. When 236 U fissions the fragments are:
 - A. always ¹⁴⁰Xe and ⁹⁴Sr
 - B. always identical
 - C. never 140 Xe and 94 Sr
 - D. never identical
 - E. none of the above
 - ans: E

- 10. Fission fragments usually decay by emitting:
 - A. alpha particles
 - B. electrons and neutrinos
 - C. positrons and neutrinos
 - D. only neutrons
 - E. only electrons
 - ans: B

11. When 236 U fissions, the products might be:

- A. 146 Ba, 89 Kr, and a proton
- B. ¹⁴⁶Ba, ⁸⁹Kr, and a neutron
- C. 148 Cs and 85 Br
- D. ¹³³I, ⁹²Sr, and an alpha particle
- E. two uranium nuclei
 - ans: B
- 12. Consider all possible fission events. Which of the following statements is true?
 - A. Light initial fragments have more protons than neutrons and heavy initial fragments have fewer protons than neutrons
 - B. Heavy initial fragments have more protons than neutrons and light initial fragments have fewer protons than neutrons
 - C. All initial fragments have more protons than neutrons
 - D. All initial fragments have about the same number of protons and neutrons
 - E. All initial fragments have more neutrons than protons
 - ans: E
- 13. Which one of the following represents a fission reaction that can be activated by slow neutrons?
 - A. ${}^{238}U_{92} + {}^{1}n_0 \rightarrow {}^{90}Kr_{36} + {}^{146}Cs_{55} + {}^{2}H_1 + {}^{1}n_0$
 - B. ${}^{239}Pu_{94} + {}^{1}n_0 \rightarrow {}^{96}Sr_{38} + {}^{141}Ba_{56} + 3{}^{1}n_0$
 - C. ${}^{238}U_{92} \rightarrow {}^{234}Th_{90} + {}^{4}He_2$

 - ans: B
- 14. In the uranium disintegration series:
 - A. the emission of a β^{-} particle increases the mass number A by one and decreases the atomic number Z by one
 - B. the disintegrating element merely ejects atomic electrons
 - C. the emission of an α particle decreases the mass number A by four and decreases the atomic number Z by two
 - D. the nucleus always remains unaffected
 - E. the series of disintegrations continues until an element having eight outermost orbital electrons is obtained

ans: C

- 15. Separation of the isotopes of uranium requires a physical, rather than chemical, method because:
 - A. mixing other chemicals with uranium is too dangerous
 - B. the isotopes are chemically the same
 - C. the isotopes have exactly the same number of neutrons per nucleus
 - D. natural uranium contains only $0.7\%^{235}$ U
 - E. uranium is the heaviest element in nature

ans: B

- 16. Which one of the following is NOT needed in a nuclear fission reactor?
 - A. Moderator
 - B. Fuel
 - C. Coolant
 - D. Control device
 - E. Accelerator
 - ans: E
- 17. The function of the control rods in a nuclear reactor is to:
 - A. increase fission by slowing down the neutrons
 - B. decrease the energy of the neutrons without absorbing them
 - C. increase the ability of the neutrons to cause fission
 - D. decrease fission by absorbing neutrons
 - E. provide the critical mass for the fission reaction ans: D
- 18. A nuclear reactor is operating at a certain power level, with its multiplication factor adjusted to unity. The control rods are now used to reduce the power output to one-half its former value. After the reduction in power the multiplication factor is maintained at:
 - A. 1/2
 - B. 1/4
 - C. 2
 - D. 4
 - E. 1
 - ans: E
- 19. The purpose of a moderator in a nuclear reactor is to:
 - A. provide neutrons for the fission process
 - B. slow down fast neutrons to increase the probability of capture by uranium
 - C. absorb dangerous gamma radiation
 - D. shield the reactor operator from dangerous radiation
 - E. none of the above

ans: B

- 20. In a neutron-induced fission process, delayed neutrons come from:
 - A. the fission products
 - B. the original nucleus just before it absorbs the neutron
 - C. the original nucleus just after it absorbs the neutron
 - D. the moderator material
 - E. the control rods

ans: A

- 21. In a nuclear reactor the fissionable fuel is formed into pellets rather than finely ground and the pellets are mixed with the moderator. This reduces the probability of:
 - A. non-fissioning absorption of neutrons
 - B. loss of neutrons through the reactor container
 - C. absorption of two neutrons by single fissionable nucleus
 - D. loss of neutrons in the control rods
 - E. none of the above

ans: A

- 22. In a subcritical nuclear reactor:
 - A. the number of fission events per unit time decreases with time
 - B. the number of fission events per unit time increases with time
 - C. each fission event produces fewer neutrons than when the reactor is critical
 - D. each fission event produces more neutrons than when the reactor is critical
 - E. none of the above

ans: A

- 23. In the normal operation of a nuclear reactor:
 - A. control rods are adjusted so the reactor is subcritical
 - B. control rods are adjusted so the reactor is critical
 - C. the moderating fluid is drained
 - D. the moderating fluid is continually recycled
 - E. none of the above

ans: B

- 24. In a nuclear power plant, the power discharged to the environment:
 - A. can be made zero by proper design
 - B. must be less than the electrical power generated
 - C. must be greater than the electrical power generated
 - D. can be entirely recycled to produce an equal amount of electrical power
 - E. is not any of the above

ans: E

- 25. The binding energy per nucleon:
 - A. increases for all fusion events
 - B. increases for some, but not all, fusion events
 - C. remains the same for some fusion events
 - D. decreases for all fusion events
 - E. decreases for some, but not all, fusion events ans: A
- 26. To produce energy by fusion of two nuclei, the nuclei must:
 - A. have at least several thousand electron volts of kinetic energy
 - B. both be above iron in mass number
 - C. have more neutrons than protons
 - D. be unstable
 - E. be magic number nuclei

ans: A

- 27. Which one of the following represents a fusion reaction that yields large amounts of energy?
 - A. ${}^{238}U_{92} + {}^{1}n_0 \rightarrow {}^{90}Kr_{36} + {}^{146}Cs_{55} + {}^{2}H_1 + {}^{1}n_0$
 - B. ${}^{239}Pu_{92} + {}^{1}n_0 \rightarrow {}^{96}Sr_{38} + {}^{141}Ba_{56} + 3{}^{1}n_0$
 - C. ${}^{238}U_{92} \rightarrow {}^{234}Th_{90} + {}^{4}He_2$

 - D. ${}^{3}\text{H}_{1} + {}^{2}\text{H}_{1} \rightarrow {}^{4}\text{He}_{2} + {}^{1}\text{n}_{0}$ E. ${}^{107}\text{Ag}_{47} + {}^{1}\text{n}_{0} \rightarrow {}^{108}\text{Ag}_{47} \rightarrow {}^{108}\text{Cd}_{48} + {}^{0}e_{-1}$ ans: D
- 28. The barrier to fusion comes about because protons:
 - A. attract each other via the strong nuclear force
 - B. repel each other electrically
 - C. produce magnetic fields
 - D. attract neutrons via the strong nuclear force
 - E. attract electrons electrically

ans: B

- 29. High temperatures are required in thermonuclear fusion so that:
 - A. some nuclei are moving fast enough to overcome the barrier to fusion
 - B. there is a high probability some nuclei will strike each other head on
 - C. the atoms are ionized
 - D. thermal expansion gives the nuclei more room
 - E. the uncertainty principle can be circumvented ans: A
- 30. For a controlled nuclear fusion reaction, one needs:
 - A. high number density n and high temperature T
 - B. high number density n and low temperature T
 - C. low number density n and high temperature T
 - D. low number density n and low temperature T
 - E. high number density n and temperature T = 0 K ans: A

- 31. Most of the energy produced by the Sun is due to:
 - A. nuclear fission
 - B. nuclear fusion
 - C. chemical reaction
 - D. gravitational collapse
 - E. induced emfs associated with the Sun's magnetic field ans: B
- 32. Nuclear fusion in stars produces all the chemical elements with mass numbers less than:
 - A. 56
 - B. 66
 - C. 70
 - D. 82
 - E. 92
 - ans: A

33. Nuclear fusion in the Sun is increasing its supply of:

- A. hydrogen
- B. helium
- C. nucleons
- D. positrons
- E. neutrons
 - ans: B
- 34. Which of the following chemical elements is not produced by thermonuclear fusion in stars?
 - A. Carbon $(Z = 6, A \approx 12)$
 - B. Silicon $(Z = 14, A \approx 28)$
 - C. Oxygen $(Z = 8, A \approx 16)$
 - D. Mercury $(Z = 80, A \approx 200)$
 - E. Chromium $(Z = 24, A \approx 52)$

ans: D

- 35. The first step of the proton-proton cycle is:
 - $A. ~~^1H + {}^1H \rightarrow {}^2H$
 - B. ${}^{1}\text{H} + {}^{1}\text{H} \rightarrow {}^{2}\text{H} + e^{+} + \nu$
 - C. $^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H} + e^{-} + \nu$
 - D. ${}^{1}\text{H} + {}^{1}\text{H} \rightarrow {}^{2}\text{H} + \gamma$
 - E. $^{1}\text{H} + ^{1}\text{H} \rightarrow ^{3}\text{H} + e^{-} + \nu$
 - ans: B
- 36. The overall proton-proton cycle is equivalent to:
 - A. $2^{1}H \rightarrow {}^{2}H$ B. $4^{1}H \rightarrow {}^{4}H$ C. $4^{1}H \rightarrow {}^{4}H + 4n$ D. $4^{1}H + 2e^{-} \rightarrow {}^{4}He + 2\nu + 6\gamma$ E. $4^{1}H + 2e^{+} \rightarrow {}^{4}He + 2\nu + 3\gamma$ ans: D

37. The energy released in a complete proton-proton cycle is about:

- A. $3 \,\mathrm{keV}$
- B. 30 keV
- C. 3 MeV
- D. 30 MeV
- $E. \quad 300 \ \mathrm{MeV}$
 - ans: D

38. For purposes of a practical (energy producing) reaction one wants a disintegration energy Q that is:

- A. positive for fusion reactions and negative for fission reactions
- B. negative for fusion reactions and positive for fission reactions
- C. negative for both fusion and fission reactions
- D. positive for both fusion and fission reactions
- E. as close to zero as possible for both fusion and fission reactions

ans: D

- 39. Lawson's number is $10^{20} \text{ s} \cdot \text{m}^{-3}$. If the density of deuteron nuclei is $2 \times 10^{21} \text{ m}^{-3}$ what should the confinement time be to achieve sustained fusion?
 - A. 16 ms
 - $B.~50\,\mathrm{ms}$
 - C. 160 ms
 - $D. \quad 250\,\mathrm{ms}$
 - $E. \quad 500 \, \mathrm{ms}$
 - ans: B
- 40. Tokamaks confine deuteron plasmas using:
 - A. thick steel walls
 - B. magnetic fields
 - C. laser beams
 - D. vacuum tubes
 - E. electric fields

ans: B

- 41. Most magnetic confinement projects attempt:
 - A. proton-proton fusion
 - B. proton-deuteron fusion
 - C. deuteron-deuteron fusion
 - D. deuteron-triton fusion
 - E. triton-triton fusion

ans: C

- 42. Compared to fusion in a tokamak, laser fusion makes use of:
 - A. smaller particle number densities
 - B. greater particle number densities
 - C. longer confinement times
 - D. higher temperatures
 - E. lower temperatures

ans: B

- 43. Most laser fusion projects attempt:
 - A. proton-proton fusion
 - B. proton-deuteron fusion
 - C. deuteron-deuteron fusion
 - D. deuteron-triton fusion
 - E. triton-triton fusion

ans: D

- 44. In laser fusion, the laser light is:
 - A. emitted by the reacting nuclei
 - B. used to cause transitions between nuclear energy levels
 - C. used to cause transitions between atomic energy levels
 - D. used to replace the emitted gamma rays
 - E. used to heat the fuel pellet

ans: E