Chapter 44: QUARKS, LEPTONS, AND THE BIG BANG

1.	Which of the following particles is stable? A. Neutron B. Proton C. Pion D. Muon E. Kaon ans: B
2.	The stability of the proton is predicted by the laws of conservation of energy and conservation of: A. momentum B. angular momentum C. baryon number D. lepton number E. strangeness ans: C
3.	When a kaon decays via the strong interaction the products must include a: A. baryon B. lepton C. strange particle D. electron E. neutrino ans: C
4.	A particle with spin angular momentum $\hbar/2$ is called a: A. lepton B. hadron C. fermion D. boson E. electron ans: C
5.	 A particle with spin angular momentum ħ is called a: A. lepton B. hadron C. fermion D. boson E. electron ans: D

- 6. An example of a fermion is a:
 A. photon
 B. pion
 C. neutrino
 D. kaon
 E. none of these
 - ans: C
- 7. An example of a boson is a:
 - A. photon
 - B. electron
 - C. neutrino
 - D. proton
 - E. neutron
 - ans: A
- 8. All particles with spin angular momentum $\hbar/2$:
 - A. interact via the strong force
 - B. travel at the speed of light
 - C. obey the Pauli exclusion principle
 - D. have non-zero rest mass
 - E. are charged

- 9. All leptons interact with each other via the:
 - A. strong force
 - B. weak force
 - C. electromagnetic force
 - D. strange force
 - E. none of these

ans: B

- 10. An electron participates in:
 - A. the strong force only
 - B. the strong and weak forces only
 - C. the electromagnetic and gravitational forces only
 - D. the electromagnetic, gravitational, and weak forces only
 - E. the electromagnetic, gravitational, and strong forces only

ans: D

- 11. Which of the following particles has a lepton number of zero?
 - $A. e^+$
 - B. μ^+
 - C. $\nu_{\rm e}$
 - D. $\overline{\nu}_{\mu}$
 - E. p

ans: E

- 12. Which of the following particles has a lepton number of +1?
 - $A. e^+$
 - B. μ^+
 - C. μ^-
 - D. $\overline{\nu}_{\rm e}$
 - E. p

- 13. π^+ represents a pion (a meson), μ^- represents a muon (a lepton), ν_e represents an electron neutrino (a lepton), ν_{μ} and p represents a proton represents a muon neutrino (a lepton). Which of the following decays might occur?
 - A. $\pi^+ \longrightarrow \mu^- + \nu_\mu$
 - B. $\pi^+ \longrightarrow p + \nu_e$
 - C. $\pi^+ \longrightarrow \mu^+ + \overline{\nu}_e$

 - D. $\pi^+ \longrightarrow p + \overline{\nu}_{\mu}$ E. $\pi^+ \longrightarrow \mu^+ + \nu_{\mu}$

ans: E

- 14. A particle can decay to particles with greater total rest mass:
 - A. only if antiparticles are produced
 - B. only if photons are also produced
 - C. only if neutrinos are also produced
 - D. only if the original particle has kinetic energy
 - E. never

ans: E

- 15. The interaction $\pi^- + p \to \pi^- + \Sigma^+$ violates the principle of conservation of:
 - A. baryon number
 - B. lepton number
 - C. strangeness
 - D. angular momentum
 - E. none of these

ans: C

- 16. The interaction $\pi^- + p \to K^- + \Sigma^+$ violates the principle of conservation of:
 - A. baryon number
 - B. lepton number
 - C. strangeness
 - D. angular momentum
 - E. none of these

ans: E

- 17. A neutral muon cannot decay into two neutrinos. Of the following conservation laws, which would be violated if it did?
 - A. Energy
 - B. Baryon number
 - C. Charge
 - D. Angular momentum
 - E. None of the above

ans: D

- 18. A positron cannot decay into three neutrinos. Of the following conservation laws, which would be violated if it did?
 - A. Energy
 - B. Baryon number
 - C. Lepton number
 - D. Linear momentum
 - E. Angular momentum

ans: C

- 19. Two particles interact to produce only photons, with the original particles disappearing. The particles must have been:
 - A. mesons
 - B. strange particles
 - C. strongly interacting
 - D. leptons
 - E. a particle, antiparticle pair

ans: E

- 20. Two baryons interact to produce pions only, the original baryons disappearing. One of the baryons must have been:
 - A. a proton
 - B. an omega minus
 - C. a sigma
 - D. an antiparticle
 - E. none of these

ans: D

- 21. A baryon with strangeness -1 decays via the strong interaction into two particles, one of which is a baryon with strangeness 0. The other might be:
 - A. a baryon with strangeness 0
 - B. a baryon with strangeness +1
 - C. a meson with strangeness -1
 - D. a meson with strangeness +1
 - E. a meson with strangeness 0

ans: C

- 22. A baryon with strangeness 0 decays via the strong interaction into two particles, one of which is a baryon with strangeness +1. The other might be:
 - A. a baryon with strangeness 0
 - B. a baryon with strangeness +1
 - C. a baryon with strangeness -1
 - D. a meson with strangeness +1
 - E. a meson with strangeness -1

ans: E

- 23. In order of increasing strength the four basic interactions are:
 - A. gravitational, weak, electromagnetic, and strong
 - B. gravitational, electromagnetic, weak, and strong
 - C. weak, gravitational, electromagnetic, and strong
 - D. weak, electromagnetic, gravitational, and strong
 - E. weak, electromagnetic, strong, and gravitational ans: A
- 24. The two basic interactions that have finite ranges are:
 - A. electromagnetic and gravitational
 - B. electromagnetic and strong
 - C. electromagnetic and weak
 - D. gravitational and weak
 - E. weak and strong

ans: E

- 25. A certain process produces baryons that decay with a lifetime of 4×10^{-24} s. The decay is a result of:
 - A. the gravitational interaction
 - B. the weak interaction
 - C. the electromagnetic interaction
 - D. the strong interaction
 - E. some combination of the above

ans: D

- 26. A certain process produces mesons that decay with a lifetime of 6×10^{-10} s. The decay is a result of:
 - A. the gravitational interaction
 - B. the weak interaction
 - C. the electromagnetic interaction
 - D. the strong interaction
 - E. some combination of the above

ans: B

- 27. Compared to the lifetimes of particles that decay via the weak interaction, the lifetimes of particles that decay via the strong interaction are:
 - A. 10^{-12} times as long
 - B. 10^{-23} times as long
 - C. 10^{24} times as long
 - D. 10^{12} times as long
 - E. about the same
 - ans: A
- 28. Strangeness is conserved in:
 - A. all particle decays
 - B. no particle decays
 - C. all weak particle decays
 - D. all strong particle decays
 - E. some strong particle decays
 - ans: D
- 29. Different types of neutrinos can be distinguished from each other by:
 - A. the directions of their spins
 - B. the leptons with which they interact
 - C. the baryons with which they interact
 - D. the number of photons that accompany them
 - E. their baryon numbers
 - ans: B
- 30. All known quarks have:
 - A. charges that are multiples of e and integer baryon numbers
 - B. charges that are multiples of e and baryon numbers that are either +1/3 or -1/3
 - C. charges that are multiples of e/3 and integer baryon numbers
 - D. charges that are multiples of e/3 and baryon numbers that are either +1/3 or -1/3
 - E. charges that are multiples of 2e/3 and baryon numbers that are either +1/3 or -1/3 ans: D
- 31. The baryon number of a quark is:
 - A. 0
 - B. 1/2
 - C. 1/3
 - D. 2/3
 - E. 1
 - ans: C

- 32. Quarks are the constituents of:
 - A. all particles
 - B. all leptons
 - C. all strongly interacting particles
 - D. only strange particles
 - E. only mesons

- 33. Any meson is a combination of:
 - A. three quarks
 - B. two quarks and an antiquark
 - C. one quark and two antiquarks
 - D. one quark and one antiquark
 - E. two quarks

ans: D

- 34. Any baryon is a combination of:
 - A. three quarks
 - B. two quarks and an antiquark
 - C. one quark and two antiquarks
 - D. one quark and one antiquark
 - E. two quarks

ans: A

- 35. The quark content of a proton is:
 - A. uuu
 - B. uud
 - C. udd
 - D. ddd
 - E. uds

ans: B

- 36. The quark content of a π^+ meson is:
 - A. uu
 - B. $u\overline{u}$
 - C. ud
 - $D. \ u\overline{d}$
 - E. $\frac{d}{d}$

ans: D

- 37. In terms of quark content a beta decay can be written:
 - A. $udd \rightarrow uud + e^- + \nu$
 - B. $udd \rightarrow udd + d\overline{d} + \nu$
 - C. $udd \rightarrow udd + d\overline{d} + e^{-}$
 - D. $udd \rightarrow uud + u\overline{d} + \nu$
 - E. $udd \rightarrow uud + u\overline{d} + e^- + \nu$

ans: A

- 38. The up quark u has charge +2e/3 and strangeness 0; the down quark d has charge -e/3 and strangeness 0; the strange quark s has charge -e/3 and strangeness -1. This means there can be no baryon with:
 - A. charge 0 and strangeness 0
 - B. charge -e and strangeness -1
 - C. charge +e and strangeness -1
 - D. charge +e and strangeness -2
 - E. charge 0 and strangeness +2

- 39. The up quark u has charge +2e/3 and strangeness 0; the down quark d has charge -e/3 and strangeness 0; the strange quark s has charge -e/3 and strangeness -1. This means there can be no meson with:
 - A. charge 0 and strangeness -1
 - B. charge -e and strangeness -1
 - C. charge +e and strangeness -1
 - D. charge +e and strangeness +1
 - E. charge 0 and strangeness +1

ans: C

- 40. Messenger particles of the electromagnetic interaction are called:
 - A. gluons
 - B. photons
 - C. W and Z
 - D. gravitons
 - E. pions

ans: B

- 41. Messenger particles of the strong interaction are called:
 - A. gluons
 - B. photons
 - C. W and Z
 - D. gravitons
 - E. pions

ans: A

- 42. Messenger particles of the weak interaction are called:
 - A. gluons
 - B. photons
 - C. W and Z
 - D. gravitons
 - E. pions

ans: C

- 43. A down quark can be changed into an up quark (plus other particles perhaps) by
 - A. the gravitational interaction
 - B. the electromagnetic interaction
 - C. the weak interaction
 - D. the strong interaction
 - E. none of these

- 44. The color theory explains why quarks:
 - A. form particles in pairs and triplets
 - B. have charge that is a multiple of e/3
 - C. have spin
 - D. have mass
 - E. none of the above

ans: A

- 45. Color is carried by:
 - A. only quarks
 - B. only leptons
 - C. only quarks and leptons
 - D. only quarks and gluons
 - E. only photons and gluons

ans: D

- 46. Hubble's law is evidence that:
 - A. the speed of light is increasing
 - B. the universe is expanding
 - C. the Earth is slowing down in its orbit
 - D. galaxies have rotational motion
 - E. none of the above

ans: B

- 47. Objects in the universe are receding from us with a speed that is proportional to:
 - A. the reciprocal of their distance from us
 - B. the reciprocal of the square of their distance from us
 - C. their distance from us
 - D. the square of their distance from us
 - E. their distance from the center of the universe

ans: C

- 48. The velocities of distant objects in the universe indicate that the time elapsed since the big bang is about:
 - A. 10^5 y
 - B. $10^{10} \, \mathrm{y}$
 - C. 10^{15} y
 - D. $10^{20} \, \text{v}$
 - E. 10^{25} y
 - ans: B
- 49. The intensity of the microwave background radiation, a remnant of the big bang:
 - A. is greatest in directions toward the center of the galaxy
 - B. is least in directions toward the center of the galaxy
 - C. is proportional to the reciprocal of the distance from us
 - D. is proportional to the square of the distance from us
 - E. is nearly the same in all directions

ans: E

- 50. As a result of the big bang there is, in addition to the microwave background radiation, a uniform distribution of background:
 - A. electrons
 - B. quarks
 - C. gluons
 - D. neutrinos
 - E. atoms

ans: D

- 51. Dark matter is suspected to exist in the universe because:
 - A. the night sky is dark between stars
 - B. the orbital period of stars in the outer parts of a galaxy is greater than the orbital period of stars near the galactic center
 - C. the orbital period of stars in the outer parts of a galaxy is less than the orbital period of stars near the galactic center
 - D. the orbital period of stars in the outer parts of a galaxy is about the same as the orbital period of stars near the galactic center
 - E. all galaxies have about the same mass

ans: D

- 52. If dark matter did not exist it is likely that:
 - A. the universe would expand forever
 - B. the universe would begin contracting soon
 - C. the night sky would be brighter
 - D. the night sky would be darker
 - E. we would be able to see the center of the universe

ans: A