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Preface

This student’s solutions manual accompanies Essential Mathematics for Economic Analysis (4th edition, FT
Prentice Hall, 2012). Its main purpose is to provide more detailed solutions to the problems marked⊂SM⊃ in the
text. The answers provided in this Manual should be used in combination with any shorter answers provided
in the main text. There are a few cases where only part of the answer is set out in detail, because the rest
follows the same pattern.

We would appreciate suggestions for improvements from our readers, as well as help in weeding out
inaccuracies and errors.

Oslo and Coventry, July 2012

Knut Sydsæter (knutsy@econ.uio.no)
Peter Hammond (hammond@stanford.edu)
Arne Strøm (arne.strom@econ.uio.no)
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C H A P T E R 1 I N T R O D U C T O R Y T O P I C S I : A L G E B R A 1

Chapter 1 Introductory Topics I: Algebra
1.3

5. (a) (2t−1)(t2−2t+1) = 2t (t2−2t+1)−(t2−2t+1) = 2t3−4t2+2t−t2+2t−1 = 2t3−5t2+4t−1
(b) (a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1) = a2 + 2a + 1+ a2 − 2a + 1− 2a2 + 2 = 4. Alternatively,
apply the quadratic identity x2 + y2 − 2xy = (x − y)2 with x = a + 1 and y = a − 1 to obtain
(a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1) = [(a + 1)− (a − 1)]2 = 22 = 4.
(c) (x + y + z)2 = (x + y + z)(x + y + z) = x(x + y + z) + y(x + y + z) + z(x + y + z) =
x2+xy+xz+yx+y2+yz+zx+zy+z2 = x2+y2+z2+2xy+2xz+2yz (d) With a = x+y+z

and b = x−y− z, (x+y+ z)2− (x−y− z)2 = a2−b2 = (a+b)(a−b) = 2x(2y+2z) = 4x(y+ z).

13. (a) a2+4ab+4b2 = (a+2b)2 by the first quadratic identity. (d) 9z2−16w2 = (3z−4w)(3z+4w),
according to the difference-of-squares formula. (e) − 1

5x2 + 2xy − 5y2 = − 1
5 (x2 − 10xy + 25y2) =

− 1
5 (x − 5y)2 (f) a4 − b4 = (a2 − b2)(a2 + b2), using the difference-of-squares formula. Since

a2 − b2 = (a − b)(a + b), the answer in the book follows.

1.4
5. (a)

1

x − 2
− 1

x + 2
= x + 2

(x − 2)(x + 2)
− x − 2

(x + 2)(x − 2)
= x + 2− x + 2

(x − 2)(x + 2)
= 4

x2 − 4
(b) Since 4x+ 2 = 2(2x+ 1) and 4x2− 1 = (2x+ 1)(2x− 1), the lowest common denominator (LCD)
is 2(2x + 1)(2x − 1). Then
6x + 25

4x + 2
− 6x2 + x − 2

4x2 − 1
= (6x + 25)(2x − 1)− 2(6x2 + x − 2)

2(2x + 1)(2x − 1)
= 42x − 21

2(2x + 1)(2x − 1)
= 21

2(2x + 1)

(c)
18b2

a2 − 9b2
− a

a + 3b
+ 2 = 18b2 − a(a − 3b)+ 2(a2 − 9b2)

(a + 3b)(a − 3b)
= a(a + 3b)

(a + 3b)(a − 3b)
= a

a − 3b

(d)
1

8ab
− 1

8b(a + 2)
= (a + 2)− a

8ab(a + 2)
= 2

8ab(a + 2)
= 1

4ab(a + 2)

(e)
2t − t2

t + 2
·
(

5t

t − 2
− 2t

t − 2

)
= t (2− t)

t + 2
· 3t

t − 2
= −t (t − 2)

t + 2
· 3t

t − 2
= −3t2

t + 2

(f)
a

(
1− 1

2a

)
0.25

= a − 1
2

1
4

= 4a − 2, so 2− a
(
1− 1

2a

)
0.25

= 2− (4a − 2) = 4− 4a = 4(1− a)

6. (a)
2

x
+ 1

x + 1
− 3 = 2(x + 1)+ x − 3x(x + 1)

x(x + 1)
= 2− 3x2

x(x + 1)

(b)
t

2t + 1
− t

2t − 1
= t (2t − 1)− t (2t + 1)

(2t + 1)(2t − 1)
= −2t

4t2 − 1

(c)
3x

x + 2
− 4x

2− x
− 2x − 1

(x − 2)(x + 2)
= 3x(x − 2)+ 4x(x + 2)− (2x − 1)

(x − 2)(x + 2)
= 7x2 + 1

x2 − 4

(d)

1

x
+ 1

y

1

xy

=

(
1

x
+ 1

y

)
xy

1

xy
· xy

= y + x

1
= x + y (e)

1

x2
− 1

y2

1

x2
+ 1

y2

=

(
1

x2
− 1

y2

)
· x2y2

(
1

x2
+ 1

y2

)
· x2y2

= y2 − x2

y2 + x2

(f) To clear the fractions within both the numerator and denominator, multiply both by xy to get
a(y − x)

a(y + x)
= y − x

y + x
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2 C H A P T E R 1 I N T R O D U C T O R Y T O P I C S I : A L G E B R A

8. (a) 1
4 − 1

5 = 5
20 − 4

20 = 1
20 , so

( 1
4 − 1

5

)−2 = ( 1
20

)−2 = 202 = 400

(b) n− n

1− 1

n

= n− n · n(
1− 1

n

)
· n
= n− n2

n− 1
= n(n− 1)− n2

n− 1
= −n

n− 1

(c) Let u = xp−q . Then
1

1+ xp−q
+ 1

1+ xq−p
= 1

1+ u
+ 1

1+ 1/u
= 1

1+ u
+ u

1+ u
= 1

(d)

(
1

x − 1
+ 1

x2 − 1

)
(x2 − 1)

(
x − 2

x + 1

)
(x2 − 1)

= (x + 1)+ 1

x3 − x − 2x + 2
= x + 2

(x + 2)(x2 − 2x + 1)
= 1

(x − 1)2

(e)
1

(x + h)2
− 1

x2
= x2 − (x + h)2

x2(x + h)2
= −2xh− h2

x2(x + h)2
, so

1

(x + h)2
− 1

x2

h
= −2x − h

x2(x + h)2

(f) Multiplying denominator and numerator by x2 − 1 = (x + 1)(x − 1) yields
10x2

5x(x − 1)
= 2x

x − 1
.

1.5

5. The answers given in the main text for each respective part emerge after multiplying both numerator
and denominator by the following: (a)

√
7 − √5 (b)

√
5 − √3 (c)

√
3 + 2 (d) x

√
y − y

√
x

(e)
√

x + h+√x (f) 1−√x + 1.

12. (a) (2x)2 = 22x = 2x2
if and only if 2x = x2, or if and only if x = 0 or x = 2. (b) Correct because

ap−q = ap/aq . (c) Correct because a−p = 1/ap. (d) 51/x = 1/5x = 5−x if and only if 1/x = −x

or−x2 = 1, so there is no real x that satisfies the equation. (e) Put u = ax and v = ay , which reduces
the equation to uv = u+ v, or 0 = uv− u− v = (u− 1)(v− 1)− 1. This is true only for special values
of u and v and so for special values of x and y. In particular, the equation is false when x = y = 1.
(f) Putting u = √x and v = √y reduces the equation to 2u · 2v = 2uv , which holds if and only if
uv = u+ v, as in (e) above.

1.6

4. (a) 2 <
3x + 1

2x + 4
has the same solutions as

3x + 1

2x + 4
−2 > 0, or

3x + 1− 2(2x + 4)

2x + 4
> 0, or

−x − 7

2x + 4
> 0

A sign diagram reveals that the inequality is satisfied for−7 < x < −2. A serious error is to multiply the
inequality by 2x + 4, without checking the sign of 2x + 4. If 2x + 4 < 0, mulitiplying by this number
will reverse the inequality sign. (It might be a good idea to test the inequality for some values of x. For
example, for x = 0 it is not true. What about x = −5?)

(b) The inequality is equivalent to
120

n
≤ 0.75, or

480− 3n

4n
≤ 0. A sign diagram reveals that the

inequality is satisfied for n < 0 and for n ≥ 160. (Note that for n = 0 the inequality makes no sense. For
n = 160, we have equality.) (c) Easy: g(g− 2) ≤ 0 etc. (d) Note that p2− 4p+ 4 = (p− 2)2, and

the inequality reduces to
p + 1

(p − 2)2
≥ 0. The fraction makes no sense if p = 2. The conclusion follows.

(e) The inequality is equivalent to
−n− 2

n+ 4
− 2 > 0, i.e.

−n− 2− 2n− 8

n+ 4
> 0, or

−3n− 10

n+ 4
> 0, etc.

(f) See the text and use a sign diagram. (Don’t cancel x2. If you do, x = 0 appears as a false solution.)

© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012



C H A P T E R 1 I N T R O D U C T O R Y T O P I C S I : A L G E B R A 3

5. (a) Use a sign diagram. (b) The inequality is not satisfied for x = 1. If x �= 1, it is obviously satisfied
if and only x + 4 > 0, i.e. x > −4 (because (x − 1)2 is positive when x �= 1). (c) Use a sign diagram.
(d) The inequality is not satisfied for x = 1/5. If x �= 1/5, it is obviously satisfied for x < 1.
(e) Use a sign diagram. (Note that (5x − 1)11 has the same sign as 5x − 1.)

(f)
3x − 1

x
> x + 3 if and only if

3x − 1

x
− (x + 3) > 0, i.e.

−(1+ x2)

x
> 0, so x < 0. (1 + x2 is

always positive.) (g)
x − 3

x + 3
> 2x − 1 if and only if

x − 3

x + 3
− (2x − 1) < 0, i.e.

−2x(x + 2)

x + 3
< 0.

Then use a sign diagram. (h) x2 − 4x + 4 = (x − 2)2, which is 0 for x = 2, and strictly positive for
x �= 2. (i) x3 + 2x2 + x = x(x2 + 2x + 1) = x(x + 1)2. Since (x + 1)2 is always ≥ 0, we see that
x3 + 2x2 + x ≤ 0 if and only if x ≤ 0.

Review Problems for Chapter 1

5. (a) (2x)4 = 24x4 = 16x4 (b) 2−1 − 4−1 = 1
2 − 1

4 = 1
4 , so (2−1 − 4−1)−1 = 4.

(c) Cancel the common factor 4x2yz2. (d) −(−ab3)−3 = −(−1)−3a−3b−9 = a−3b−9, so

[−(−ab3)−3(a6b6)2]3 = [a−3b−9a12b12]3 = [a9b3]3 = a27b9 (e)
a5 · a3 · a−2

a−3 · a6
= a6

a3
= a3

(f)

[(
x

2

)3 · 8

x−2

]−3

=
[
x3

8
· 8

x−2

]−3

=
[

x3

x−2

]−3

= (x5)−3 = x−15

9. All are straightforward, except (c), (g), and (h): (c) −√3
(√

3−√6
) = −3+√3

√
6 = −3+√3

√
3
√

2
= −3 + 3

√
2 (g) (1 + x + x2 + x3)(1 − x) = (1 + x + x2 + x3) − (1 + x + x2 + x3)x = 1 − x4

(h) (1+ x)4 = (1+ x)2(1+ x)2 = (1+ 2x + x2)(1+ 2x + x2) and so on.

12. (a) and (b) are easy. (c) ax + ay + 2x + 2y = a(x + y)+ 2(x + y) = (a + 2)(x + y)

(d) 2x2− 5yz+ 10xz− xy = 2x2+ 10xz− (xy+ 5yz) = 2x(x+ 5z)− y(x+ 5z) = (2x− y)(x+ 5z)

(e) p2 − q2 + p− q = (p− q)(p+ q)+ (p− q) = (p− q)(p+ q + 1) (f) u3 + v3 − u2v− v2u =
u2(u− v)+ v2(v − u) = (u2 − v2)(u− v) = (u+ v)(u− v)(u− v) = (u+ v)(u− v)2.

16. (a)
s

2s − 1
− s

2s + 1
= s(2s + 1)− s(2s − 1)

(2s − 1)(2s + 1)
= 2s

4s2 − 1

(b)
x

3− x
− 1− x

x + 3
− 24

x2 − 9
= −x(x + 3)− (1− x)(x − 3)− 24

(x − 3)(x + 3)
= −7(x + 3)

(x − 3)(x + 3)
= −7

x − 3

(c) Multiplying numerator and denominator by x2y2 yields
y − x

y2 − x2
= y − x

(y − x)(y + x)
= 1

x + y
.

17. (a) Cancel the factor 25ab. (b) x2 − y2 = (x + y)(x − y). Cancel x + y. (c) The fraction can be

written as
(2a − 3b)2

(2a − 3b)(2a + 3b)
= 2a − 3b

2a + 3b
. (d)

4x − x3

4− 4x + x2
= x(2− x)(2+ x)

(2− x)2
= x(2+ x)

2− x

25. Let each side have length s, and let the area be K . Then K is the sum of the areas of the triangles
ABP , BCP , and CAP in Fig. SM1.R.25, which equals 1

2 sh1 + 1
2 sh2 + 1

2 sh3 = K . It follows that
h1 + h2 + h3 = 2K/s, which is independent of where P is placed.

© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012



4 C H A P T E R 2 I N T R O D U C T O R Y T O P I C S I I : E Q U A T I O N S

P

h2 s

h1

h3s

C

B
s

A

Figure SM1.R.25

Chapter 2 Introductory Topics II: Equations

2.1

3. (a) We note first that x = −3 and x = −4 both make the equation absurd. Multiplying the equation by
the common denominator (x + 3)(x + 4) yields (x − 3)(x + 4) = (x + 3)(x − 4), i.e. x2 + x − 12 =
x2 − x − 12, and thus x = 0. (b) Multiplying by the common denominator (x − 3)(x + 3) yields
3(x + 3) − 2(x − 3) = 9, from which we get x = −6. (c) Multiplying by the common denominator
15x (assuming that x �= 0) yields 18x2 − 75 = 10x2 − 15x + 8x2, from which we get x = 5.

5. (a) Multiplying by the common denominator 12 yields 9y− 3− 4+ 4y+ 24 = 36y, and so y = 17/23.
(b) Multiplying by 2x(x + 2) yields 8(x + 2) + 6x = 2(2x + 2) + 7x, from which we find x = −4.

(c) Multiplying both numerator and denominator in the first fraction by 1− z leads to
2− 2z− z

(1− z)(1+ z)
=

6

2z+ 1
. Multiplying each side by (1− z2)(2z+ 1) yields (2− 3z)(2z+ 1) = 6− 6z2, and so z = 4.

(d) Expanding the parentheses we get p

4 − 3
8 − 1

4 + p

12 − 1
3 + p

3 = − 1
3 . Multiplying by the common

denominator 24 gives the equation 6p − 9− 6+ 2p − 8+ 8p = −8, whose solution is p = 15/16.

2.2

2. (a) Multiply both sides by abx to obtain b+a = 2abx. Hence, x = b + a

2ab
= b

2ab
+ a

2ab
= 1

2

(
1

a
+ 1

b

)
.

(b) Multiply the equation by cx + d to obtain ax + b = cAx + dA, or (a − cA)x = dA− b, and thus
x = (dA− b)/(a− cA). (c) Multiply the equation by x1/2 to obtain 1

2p = wx1/2, thus x1/2 = p/2w,
so, by squaring each side, x = p2/4w2. (d) Multiply each side by

√
1+ x to obtain 1+ x + ax = 0,

so x = −1/(1+ a). (e) x2 = b2/a2, so x = ±b/a. (f) We see immediately that x = 0.

4. (a) αx − a = βx − b if and only if (α − β)x = a − b, so x = (a − b)/(α − β).
(b) Squaring each side of

√
pq = 3q + 5 yields pq = (3q + 5)2, so p = (3q + 5)2/q.

(c) Y = 94+ 0.2(Y − (20+ 0.5Y )) = 94+ 0.2Y − 4− 0.1Y , so 0.9Y = 90, implying that Y = 100.

(d) Raise each side to the 4th power: K2 r

2w
K = Q4, so K3 = 2wQ4/r , and hence K = (

2wQ4/r
)1/3

.

(e) Multiplying numerator and denominator in the left-hand fraction by 4K1/2L3/4 leads to 2L/K = r/w,
from which we getL = rK/2w. (f) Raise each side to the 4th power: 1

16p4K−1 (r/2w) = r4. It follows
that K−1 = 32r3w/p4, so K = 1

32p4r−3w−1.
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C H A P T E R 2 I N T R O D U C T O R Y T O P I C S I I : E Q U A T I O N S 5

5. (a)
1

s
= 1

t
− 1

T
= T − t

tT
, so s = tT

T − t
. (b)

√
KLM = B + αL, so KLM = (B + αL)2, and

so M = (B + αL)2/KL. (c) Multiplying each side by x − z yields x − 2y + xz = 4xy − 4yz,
or (x + 4y)z = 4xy − x + 2y, and so z = (4xy − x + 2y)/(x + 4y). (d) V = C − CT/N , so
CT/N = C − V and thus T = N(1− V/C).

2.3

5. (a) See the text. (b) If the smaller of the two natural numbers is n, then the larger is n + 1, so the
requirement is that n2 + (n+ 1)2 = 13. This reduces to 2n2 + 2n− 12 = 0, i.e. n2 + n− 6 = 0, with
solutions n = −3 and n = 2, so the two numbers are 2 and 3. (If we had asked for integer solutions, we
would have −3 and −2 in addition.)
(c) If the shortest side is x, the other is x+14, so according to Pythagoras’s Theorem x2+(x+14)2 = 342,
or x2 + 14x − 480 = 0. The only positive solution is x = 16, and then x + 14 = 30.
(d) If the usual driving speed is x km/h and the usual time spent is t hours, then xt = 80. 16 minutes is
16/60 = 4/15 hours, so driving at the speed x+10 for t−4/15 hours gives (x+10)(t−4/15) = 80. From
the first equation, t = 80/x. Inserting this into the second equation, we get (x+10)(80/x−4/15) = 80.
Rearranging, we obtain x2 + 10x − 3000 = 0, whose positive solution is x = 50. So his usual driving
speed is 50 km/h.

2.4

4. (a) If the two numbers are x and y, then x + y = 52 and x − y = 26. Adding the two equations gives
2x = 78, so x = 39, and then y = 52−39 = 13. (b) Let the cost of one table be $x and the cost of one
chair $y. Then 5x + 20y = 1800 and 2x + 3y = 420. Solving this system yields x = 120, y = 60.
(c) Let x and y be the number of units produced of A and B, respectively. This gives the equations
x = 3

2y and 300x + 200y = 13 000. If we use the expression for x from the first equation and insert it
in the second, we get 450y + 200y = 13 000, which yields y = 20, and then x = 30. Thus, 30 units of
quality A and 20 of quality B should be produced. (d) If the person invested $x at 5% and $y at 7.2%,
then x + y = 10 000 and 0.05x + 0.072y = 676. The solution is x = 2000 and y = 8000.

2.5

2. (a) The numerator 5+x2 is never 0, so there are no solutions. (b) The equation is obviously equivalent

to
x2 + 1+ 2x

x2 + 1
= 0, or

(x + 1)2

x2 + 1
= 0, so x = −1. (c) x = −1 is clearly no solution. The given

equation is equivalent to (x+ 1)1/3− 1
3x(x+ 1)−2/3 = 0. Multiplying this equation by (x+ 1)2/3 yields

x + 1− 1
3x = 0, whose solution is x = −3/2. (d) Multiplying by x − 1 yields x + 2x(x − 1) = 0, or

x(2x − 1) = 0. Hence x = 0 or x = 1/2.

3. (a) z = 0 satisfies the equation. If z �= 0, then z − a = za + zb, or (1 − a − b)z = a. If a + b = 1
we have a contradiction. If a + b �= 1, then z = a/(1 − a − b). (b) The equation is equivalent to
(1 + λ)μ(x − y) = 0, so λ = −1, μ = 0, or x = y. (c) μ = ±1 makes the equation meaningless.
Otherwise, multiplying the equation by 1 − μ2 yields λ(1 − μ) = −λ, or λ(2 − μ) = 0, so λ = 0 or
μ = 2. (d) The equation is equivalent to b(1+ λ)(a − 2) = 0, so b = 0, λ = −1, or a = 2.
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Review Problems for Chapter 2
2. (a) Assuming x �= ±4, multiplying by the common denominator (x − 4)(x + 4) reduces the equation to

x = −x, so x = 0. (b) The given equation makes sense only if x �= ±3. If we multiply the equation by
the common denominator (x + 3)(x − 3) we get 3(x + 3)2− 2(x2− 9) = 9x + 27 or x2+ 9x + 18 = 0,
with the solutions x = −6 and x = −3. The only solution of the given equation is therefore x = −6.
(c) Subtracting 2x/3 from each side simplifies the equation to 0 = −1 + 5/x, whose only solution is
x = 5. (d) Assuming x �= 0 and x �= ±5, multiply by the common denominator x(x − 5)(x + 5) to
get x(x − 5)2− x(x2− 25) = x2− 25− (11x + 20)(x + 5). Expanding each side of this equation gives
x3 − 10x2 + 25x − x3 + 25x = x2 − 25− 11x2 − 75x − 100, which simplifies to 50x = −125− 75x

with solution x = −1.

5. (a) Multiply the equation by 5K1/2 to obtain 15L1/3 = K1/2. Squaring each side gives K = 225L2/3.
(b) Raise each side to the power 1/t to obtain 1+ r/100 = 21/t , and so r = 100(21/t − 1).
(c) abxb−1

0 = p, so xb−1
0 = p/ab. Now raise each side to the power 1/(b − 1).

(d) Raise each side to the power−ρ to get (1−λ)a−ρ+λb−ρ = c−ρ , or b−ρ = λ−1(c−ρ− (1−λ)a−ρ).
Now raise each side to the power −1/ρ.

Chapter 3 Introductory Topics II: Miscellaneous
3.1

3. (a)–(d): In each case, look at the last term in the sum and replace n by k to get an expression for the kth
term. Call it sk . Then the sum is

∑n
k=1 sk . (e) The coefficients are the powers 3n for n = 1, 2, 3, 4, 5,

so the general term is 3nxn. (f) and (g) see answers in the text.
(h) This is tricky. One has to see that each term is 198 larger that the previous term. (The problem is
related to the story about Gauss on page 56.)

7. (a)
∑n

k=1 ck2 = c · 12 + c · 22 + · · · + c · n2 = c(12 + 22 + · · · + n2) = c
∑n

k=1 k2

(b) Wrong even for n = 2: The left-hand side is (a1 + a2)
2 = a2

1 + 2a1a2 + a2
2 , but the right-hand side

is a2
1 + a2

2 . (c) Both sides equal b1 + b2 + · · · + bN . (d) Both sides equal 51 + 52 + 53 + 54 + 55.
(e) Both sides equal a2

0,j + · · · + a2
n−1,j . (f) Wrong even for n = 2. Then left-hand side is a1 + a2/2,

but the right-hand side is (1/k)(a1 + a2).

3.3
1. (a) See the text.

2∑
s=0

4∑
r=2

( rs

r + s

)2 =
2∑

s=0

[( 2s

2+ s

)2 +
( 3s

3+ s

)2 +
( 4s

4+ s

)2]
(b)

= 0+
(2

3

)2 +
(3

4

)2 +
(4

5

)2 +
(4

4

)2 +
(6

5

)2 +
(8

6

)2 = 5+ 3113

3600

(after considerable arithmetic).

(c)
m∑

i=1

n∑
j=1

(i + j 2) =
n∑

j=1

( m∑
i=1

i
)
+

m∑
i=1

( n∑
j=1

j 2
)

. After using formulae (3.2.4) and (3.2.5), we can

write this as
∑n

j=1
1
2m(m + 1) +∑m

i=1
1
6n(n + 1)(2n + 1) = n 1

2m(m + 1) + m 1
6n(n + 1)(2n + 1) =

1
6mn(2n2 + 3n+ 3m+ 4). (Note that

∑p

k=1 a = pa.)
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(d)
m∑

i=1

2∑
j=1

ij =
m∑

i=1

(i+ i2) =
m∑

i=1

i+
m∑

i=1

i2 = 1
2m(m+1)+ 1

6m(m+1)(2m+1) = 1
3m(m+1)(m+2)

4. ā is the mean of the column means āj because
1

n

n∑
j=1

āj = 1

n

n∑
j=1

(
1

m

m∑
r=1

arj

)
= 1

mn

m∑
r=1

n∑
j=1

arj = ā.

To prove (∗), note that because arj − ā is independent of the summation index s, it is a common factor
when we sum over s, so

∑m
s=1(arj − ā)(asj − ā) = (arj − ā)

∑m
s=1(asj − ā) for each r . Next, summing

over r gives
m∑

r=1

m∑
s=1

(arj − ā)(asj − ā) =
[ m∑

r=1

(arj − ā)

][ m∑
s=1

(asj − ā)

]
(∗∗)

because
∑m

s=1(arj − ā) is a common factor when we sum over r . Using the properties of sums and the
definition of āj , we have

m∑
r=1

(arj − ā) =
m∑

r=1

arj −
m∑

r=1

ā = māj −mā = m(āj − ā)

Similarly, replacing r with s as the index of summation, one also has
∑m

s=1(asj − ā) = m(āj − ā).
Substituting these values into (∗∗) then confirms (∗).

3.4

6. (a) If (i)
√

x − 4 = √x + 5− 9, then squaring each side gives (ii) x − 4 = (
√

x + 5− 9)2. Expanding
the square on the right-hand side of (ii) gives x − 4 = x + 5 − 18

√
x + 5 + 81, which reduces to

18
√

x + 5 = 90 or
√

x + 5 = 5, implying that x + 5 = 25 and so x = 20. This shows that if x is a
solution of (i), then x = 20. No other value of x can satisfy (i). But if we check this solution, we find that
with x = 20 the LHS of (i) becomes

√
16 = 4, and the RHS becomes

√
25 − 9 = 5 − 9 = −4. Thus

the LHS and the RHS are different. This means that equation (i) actually has no solutions at all. (But
note that 42 = (−4)2, i.e. the square of the LHS equals the square of the RHS. That is how the spurious
solution x = 20 managed to sneak in.)
(b) If x is a solution of (iii)

√
x − 4 = 9−√x + 5, then just as in part (a) we find that x must be a solution

of (iv) x − 4 = (9 −√x + 5 )2. Now, (9 −√x + 5 )2 = (
√

x + 5 − 9)2, so equation (iv) is equivalent
to equation (ii) in part (a). This means that (iv) has exactly one solution, namely x = 20. Inserting this
value of x into equation (iii), we find that x = 20 is a solution of (iii).
A geometric explanation of the results can be given with reference to Figure SM3.4.6.
We see that the two solid curves in the figure have no point in common, that is, the expressions

√
x − 4

and
√

x + 5−9 are not equal for any value of x. (In fact, the difference
√

x − 4−(
√

x + 5−9) increases
with x, so there is no point of intersection farther to the right, either.) This explains why the equation
in (a) has no solution. The dashed curve y = 9−√x + 5, on the other hand, intersects y = √x + 5 for
x = 20 (and only there), and this corresponds to the solution in part (b).
Comment: In part (a) it was necessary to check the result, because the transition from (i) to (ii) is only
an implication, not an equivalence. Similarly, it was necessary to check the result in part (b), since the
transition from (iii) to (iv) also is only an implication — at least, it is not clear that it is an equivalence.
(Afterwards, it turned out to be an equivalence, but we could not know that until we had solved the
equation.)
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y

-5

5

x
5 10 15 20 25

y = 9−√x + 5

y = √x − 4

y = √x + 5− 9

Figure SM3.4.6

7. (a) Here we have “iff” since
√

4 = 2. (b) It is easy to see by means of a sign diagram that x(x+ 3) < 0
precisely when x lies in the open interval (−3, 0). Therefore we have an implication from left to right
(that is, “only if”), but not in the other direction. (For example, if x = 10, then x(x + 3) = 130.)
(c) x2 < 9 ⇐⇒ −3 < x < 3, so x2 < 9 only if x < 3. If x = −5, for instance, we have x < 3 but
x2 > 9. Hence we cannot have “if” here. (d) x2 + 1 is never 0, so we have “iff” here. (e) If x > 0,
then x2 > 0, but x2 > 0 also when x < 0. (f) x4 + y4 = 0 ⇐⇒ x = 0 and y = 0, which implies that
we have “only if”. If x = 0 and, say, y = 1, then x4 + y4 = 1, so we cannot have “if” here.

9. (a) If x and y are not both nonnegative, at leat one of them must be negative, i.e. x < 0 or y < 0.
(b) If not all x are greater than or equal to a, at least one x must be less than a. (c) At least one of them
is less than 5. (Would it be easier if the statement to negate were “Neither John nor Diana is less than
5 years old”?) (d)–(f) See the answers in the text.

3.7
3. For n = 1, both sides are 1/2. As the induction hypothesis, suppose that (∗) is true for n = k. Then the

sum of the first k + 1 terms is
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · +
1

k(k + 1)
+ 1

(k + 1)(k + 2)
= k

k + 1
+ 1

(k + 1)(k + 2)

But
k

k + 1
+ 1

(k + 1)(k + 2)
= k(k + 2)+ 1

(k + 1)(k + 2)
= (k + 1)2

(k + 1)(k + 2)
= k + 1

k + 2
which is (∗) for n = k + 1. Thus, by induction, (∗) is true for all n.

4. The claim is true for n = 1. As the induction hypothesis, suppose k3 + (k + 1)3 + (k + 2)3 is divisible
by 9. Note that (k + 1)3 + (k + 2)3 + (k + 3)3 = (k + 1)3 + (k + 2)3 + k3 + 9k2 + 27k + 27 =
k3+ (k+1)3+ (k+2)3+9(k2+3k+3). This is divisible by 9 because the induction hypothesis implies
that the sum of the first three terms is divisible by 9, whereas the last term is also obviously divisible by 9.

Review Problems for Chapter 3
6. (b)⇒ false (because x2 = 16 also has the solution x = −4),⇐ true, because if x = 4, then x2 = 16.

(c)⇒ true because (x−3)2 ≥ 0;⇐ false because with y > −2 and x = 3, one has (x−3)2(y+2) = 0.
(d) ⇒ and ⇐ both true, since the equation x3 = 8 has the solution x = 2 and no others. (In the
terminology of Section 6.3, the function f (x) = x3 is strictly increasing. See Problem 6.3.3 and see the
graph in Fig. 7, page 88.)
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9. Consider Fig. A3.6.8 on page 657 in the book. Let nk denote the number of students in the set marked
Sk , for k = 1, 2, . . . , 8. Suppose the sets A, B, and C refer to those who study English, French, and
Spanish, respectively. Since 10 students take all three languages, n7 = 10. There are 15 who take French
and Spanish, so 15 = n2 + n7, and thus n2 = 5. Furthermore, 32 = n3 + n7, so n3 = 22. Also,
110 = n1 + n7, so n1 = 100. The rest of the information implies that 52 = n2 + n3 + n6 + n7, so
n6 = 52− 5− 22− 10 = 15. Moreover, 220 = n1+ n2+ n5+ n7, so n5 = 220− 100− 5− 10 = 105.
Finally, 780 = n1 + n3 + n4 + n7, so n4 = 780− 100− 22− 10 = 648. The answers are therefore:
(a) n1 = 100, (b) n3 + n4 = 648+ 22 = 670, (c) 1000−∑8

i=1 ni = 1000− 905 = 95.

10. According to Problem 3.R.3(a) there are 100 terms. Using the trick that led to (3.2.4):

R = 3+ 5+ 7+ · · · + 197+ 199+ 201

R = 201+ 199+ 197+ · · · + 7+ 5+ 3

Summing vertically term by term gives 2R = 204+ 204+ 204+· · ·+ 204+ 204+ 204 = 100× 204 =
20400, and thus R = 10200.
(b) S = 1001+ 2002+ 3003+ · · · + 8008+ 9009+ 10010 = 1001(1+ 2+ 3+ · · · + 8+ 9+ 10) =
1001 · 55 = 55055.

11. For (a) and (b) see text. (c) For n = 1, the inequality is correct by part (a) (and for n = 2, it is correct
by part (b)). As the induction hypothesis, suppose that (1 + x)n ≥ 1 + nx when n equals the arbitrary
natural number k. Because 1 + x ≥ 0, we have (1 + x)k+1 = (1 + x)k(1 + x) ≥ (1 + kx)(1 + x) =
1+ (k + 1)x + kx2 ≥ 1+ (k + 1)x, where the last inequality holds because k > 0. Thus, the induction
hypothesis holds for n = k + 1. Therefore, by induction, Bernoulli’s inequality is true for all natural
numbers n.

Chapter 4 Functions of One Variable
4.2

1. (a) f (0) = 02 + 1 = 1, f (−1) = (−1)2 + 1 = 2, f (1/2) = (1/2)2 + 1 = 1/4 + 1 = 5/4,
and f (

√
2) = (

√
2)2 + 1 = 2 + 1 = 3. (b) (i) Since (−x)2 = x2, f (x) = f (−x) for all x.

(ii) f (x+1) = (x+1)2+1 = x2+2x+1+1 = x2+2x+2 and f (x)+f (1) = x2+1+2 = x2+3. Thus
equality holds if and only if x2+2x+2 = x2+3, i.e. if and only if x = 1/2. (iii) f (2x) = (2x)2+1 =
4x2 + 1 and 2f (x) = 2x2 + 2. Now, 4x2 + 1 = 2x2 + 2 ⇔ x2 = 1/2 ⇔ x = ±√1/2 = ± 1

2

√
2.

13. (a) We require 5 − x ≥ 0, so x ≤ 5. (b) The denominator x2 − x = x(x − 1) must be different
from 0, so x �= 0 and x �= 1. (c) To begin with, the denominator must be nonzero, so we require x �= 2
and x �= −3. Moreover, since we can only take the square root of a nonnegative number, the fraction
(x − 1)/(x − 2)(x + 3) must be ≥ 0. A sign diagram reveals that Df = (−3, 1] ∪ (2,∞). Note in
particular that the function is defined with value 0 at x = 1.

4.4
10. The points that satisfy the inequality 3x + 4y ≤ 12 are those that lie on or below the straight line

3x + 4y = 12, as explained in Example 6 for a similar inequality. The points that satisfy the inequality
x − y ≤ 1, or equivalently, y ≥ x − 1, are those on or above the straight line x − y = 1. Finally, the
points that satisfy the inequality 3x + y ≥ 3, or equivalently, y ≥ 3 − 3x, are those on or above the
straight line 3x + y = 3. The set of points that satisfy all these three inequalities simultaneously is the
shaded set shown in Fig. A4.4.10 of the text.
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4.6
9. (b) We find that f (x) = Ax2+Bx+C, where A = a2

1+a2
2+· · ·+a2

n, B = 2(a1b1+a2b2+· · ·+anbn),
and C = b2

1 + b2
2 + · · · + b2

n. Now, if B2 − 4AC > 0, then according to formula (2.3.4), the equation
f (x) = Ax2 + Bx + C = 0 would have two distinct solutions, which contradicts f (x) ≥ 0 for all x.
Hence B2 − 4AC ≤ 0 and the conclusion follows.

4.7
1. (a) Following Note 2 and (6), all integer roots must divide 6. Thus ±1, ±2, ±3, and ±6 are the only

possible integer roots. Of these 8 different candidates, we find that −2, −1, 1, and 3 all are roots, and
since there can be no more than 4 roots in a polynomial equation of degree 4, we have found them all. In
fact, the equation can be written as (x + 2)(x + 1)(x − 1)(x − 3) = 0.
(b) This has the same possible integer roots as (a). But only −6 and 1 are integer solutions. (The third
root is −1/2.) (c) Neither 1 nor −1 satisfies the equation, so there are no integer roots.
(d) First multiply the equation by 4 to have integer coefficients. Then ±1, ±2, and ±4 are seen to be the
only possible integer solutions. In fact, 1, 2, −2 are all solutions.

3. (a) The answer is 2x2 + 2x + 4+ 3/(x − 1), because

(2x3 + 2x − 1)÷ (x − 1) = 2x2 + 2x + 4
2x3 − 2x2

2x2 + 2x − 1
2x2 − 2x

4x − 1
4x − 4

3 remainder
(b) The answer is x2 + 1, because

(x4 + x3 + x2 + x)÷ (x2 + x) = x2 + 1
x4 + x3

x2 + x

x2 + x

0 no remainder
(c) The answer is x3 − 4x2 + 3x + 1− 4x/(x2 + x + 1), because

(x5 − 3x4 + 1)÷ (x2 + x + 1) = x3 − 4x2 + 3x + 1
x5 + x4 + x3

− 4x4 − x3 + 1
− 4x4 − 4x3 − 4x2

3x3 + 4x2 + 1
3x3 + 3x2 + 3x

x2 − 3x + 1
x2 + x + 1

− 4x remainder
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(d) The answer is 3x5 + 6x3 − 3x2 + 12x − 12+ (28x2 − 36x + 13)/(x3 − 2x + 1), because

(3x8 x2 + 1)÷ (x3 − 2x + 1) = 3x5 + 6x3 − 3x2 + 12x − 12
3x8 − 6x6 + 3x5

6x6 − 3x5 + x2 + 1
6x6 − 12x4 + 6x3

− 3x5 + 12x4 − 6x3 + x2 + 1
− 3x5 + 6x3 − 3x2

12x4 − 12x3 + 4x2 + 1
12x4 − 24x2 + 12x

− 12x3 + 28x2 − 12x + 1
− 12x3 + 24x − 12

28x2 − 36x + 13 remainder

4. (a) Since the graph intersects the x-axis at the two points x = −1 and x = 3, we try the quad-
ratic function f (x) = a(x + 1)(x − 3), for some constant a > 0. But the graph passes through
the point (1,−2), so we need f (1) = −2. Since f (1) = −4a for our chosen function, a = 1

2 .
This leads to the formula y = 1

2 (x + 1)(x − 3). (b) Because the equation f (x) = 0 must have
roots x = −3, 1, 2, we try the cubic function f (x) = b(x + 3)(x − 1)(x − 2). Then f (0) = 6b.
According to the graph, f (0) = −12. So b = −2, and hence y = −2(x + 3)(x − 1)(x − 2).
(c) Here we try a cubic polynomial of the form y = c(x + 3)(x − 2)2, with x = 2 as a double
root. Then f (0) = 12c. rom the graph we see that f (0) = 6, and so c = 1

2 . This leads to the formula
y = 1

2 (x + 3)(x − 2)2.

8. Polynomial division gives

(x2 − γ x )÷ (x + β) = x − (β + γ )

x2 + βx

− (β + γ )x

− (β + γ )x − β(β + γ )

β(β + γ ) remainder

and so E = α
(
x − (β + γ )+ β(β + γ )

x + β

)
= αx − α(β + γ )+ αβ(β + γ )

x + β
.

4.8

4. (a) C. The graph is a parabola and since the coefficient in front of x2 is positive, it has a minimum point.
(b) D. The function is defined for x ≤ 2 and crosses the y-axis at y = 2

√
2 ≈ 2.8.

(c) E. The graph is a parabola and since the coefficient in front of x2 is negative, it has a maximum point.
(d) B. When x increases, y decreases, and y becomes close to −2 when x is large.
(e) A. The function is defined for x ≥ 2 and increases as x increases.
(f) F. Let y = 2− ( 1

2 )x . Then y increases as x increases. For large values of x, one has y close to 2.
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4.10
3. (a) 3x4x+2 = 8 when 3x4x42 = 8 or (12)x42 = 8, and so 12x = 1/2. Then x ln 12 = ln 1− ln 2 = − ln 2,

so x = − ln 2/ ln 12.
(b) Since ln x2 = 2 ln x, the equation reduces to 7 ln x = 6, so ln x = 6/7, and thus x = e6/7.
(c) One possible method is to write the equation as 4x(1− 4−1) = 3x(3− 1), or 4x · (3/4) = 3x · 2, so
(4/3)x = 8/3, implying that x = ln(8/3)/ ln(4/3). Alternatively, start by dividing both sides by 3x to
obtain (4/3)x(1−1/4) = 3−1 = 2, so (4/3)x = 8/3 as before. In (d)–(f) use the definition aloga x = x.
(d) log2 x = 2 implies that 2log2 x = 22 or x = 4. (e) logx e2 = 2 implies that xlogx e2 = x2 or e2 = x2.
Hence x = e. (f) log3 x = −3 implies that 3log3 x = 3−3 or x = 1/27.

4. (a) Directly, the equation Aert = Best implies that ert /est = B/A, so e(r−s)t = B/A. Applying ln to

each side gives (r − s)t = ln(B/A), so t = 1

r − s
ln

B

A
. Alternatively, one can apply ln to each side of

the original equation, leading to ln A+ rt = ln B + st , and then solve for t .
(b) Let t denote the number of years after 1990. Assuming continuous exponential growth, when the
GNP of the two nations is the same, one must have 1.2 · 1012 · e0.09t = 5.6 · 1012 · e0.02t . Applying the
answer found in part (a), we obtain

t = 1

0.09− 0.02
ln

5.6 · 1012

1.2 · 1012
= 1

0.07
ln

14

3
≈ 22

According to this, the two countries would have the same GNP approximately 22 years after 1990, so in

2012. (For annual GDP, which is not quite the same as GNP, the latest (June 2012) International Monetary
Fund estimates for the year 2012, in current US dollars, are 15.6 · 1012 for the USA, and 8.0 · 1012 for
China.)

Review Problems for Chapter 4
14. (a) p(x) = x(x2 + x − 12) = x(x − 3)(x + 4), because x2 + x − 12 = 0 for x = 3 and x = −4.

(b) ±1, ±2, ±4, ±8 are the only possible integer zeros. By trial and error we find that q(2) = q(−4) =
0, so 2(x − 2)(x + 4) = 2x2 + 4x − 16 is a factor for q(x). By polynomial division we find that
q(x)÷ (2x2 + 4x − 16) = x − 1/2, so q(x) = 2(x − 2)(x + 4)(x − 1/2).

17. Check by direct calculation that p(2) = 1
4 23−22− 11

4 2+ 15
2 = 2−4− 11

2 + 15
2 = 0, so x−2 must be a factor

of p(x). By direct division, we find that p(x)÷(x−2) = 1
4 (x2−2x−15) = 1

4 (x+3)(x−5), so x = −3
and x = 5 are the two other zeros. (Alternative: q(x) has the same zeros as 4p(x) = x3−4x2−11x+30.
This polynomial can only have±1, ±2, ±3, ±5, ±10, ±15, and±30 as integer zeros. It is tedious work
to find the zeros in this way.)

19. For the left-hand graph, note that for x �= 0, one has y = f (x) = a + b/x

1+ c/x
, so that y tends to a as

x becomes large positive or negative. The graph shows that a > 0. There is a break point at x = −c,
and −c > 0, so c < 0. f (0) = b/c > 0, so b < 0. The right-hand graph of the quadratic function
g is a parabola which is convex, so p > 0. Moreover r = g(0) < 0. Finally, g(x) has its minimum at
x = x∗ = −q/2p. Since x∗ > 0 and p > 0, we conclude that q < 0.

22. (a) ln(x/e2) = ln x − ln e2 = ln x − 2 for x > 0. (b) ln(xz/y) = ln(xz)− ln y = ln x + ln z− ln y for
x, y, z > 0 (c) ln(e3x2) = ln e3 + ln x2 = 3+ 2 ln x for x > 0. (In general, ln x2 = 2 ln |x|.)
(d) When x > 0, note that 1

2 ln x − 3
2 ln(1/x)− ln(x + 1) = 1

2 ln x − 3
2 (− ln x)− ln(x + 1) = 2 ln x −

ln(x + 1) = ln x2 − ln(x + 1) = ln[x2/(x + 1)].
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Chapter 5 Properties of Functions
5.3

4. (a) f does have an inverse since it is one-to-one. This is shown in the table by the fact that all the numbers
in the second row, the domain of f−1, are different. The inverse assigns to each number in the second
row, the corresponding number in the first row. In particular, f−1(2) = −1.
(b) Since f (x) increases by 2 for each unit increase in x, one has f (x) = 2x+a for a suitable constant a.
But then a = f (0) = 4, so f (x) = 2x+4. Solving y = 2x+4 for x yields x = 1

2y−2, so interchanging
x and y gives y = f−1(x) = 1

2x − 2.

9. (a) (x3− 1)1/3 = y ⇐⇒ x3− 1 = y3 ⇐⇒ x = (y3+ 1)1/3. If we use x as the independent variable,
f−1(x) = (x3 + 1)1/3. � is the domain and range for both f and f−1.

(b) The domain is all x �= 2, and for all such x one has
x + 1

x − 2
= y ⇐⇒ x + 1 = y(x − 2) ⇐⇒

(1− y)x = −2y − 1 ⇐⇒ x = −2y − 1

1− y
= 2y + 1

y − 1
. Using x as the independent variable, f−1(x) =

(2x + 1)/(x − 1). The domain of the inverse is all x �= 1.
(c) Here y = (1 − x3)1/5 + 2 ⇐⇒ y − 2 = (1 − x3)1/5 ⇐⇒ (y − 2)5 = 1 − x3 ⇐⇒ x3 =
1− (y − 2)5 ⇐⇒ x = [1− (y − 2)5]1/3. With x as the free variable, f−1(x) = [1− (x − 2)5]1/3. �

is the domain and range for both f and f−1.

10. (a) The domain is � and the range is (0,∞), so the inverse is defined on (0,∞). From y = ex+4,
ln y = x + 4, so x = ln y − 4, y > 0. (b) The range is �, which is the domain of the inverse. From
y = ln x− 4, one has ln x = y+ 4, and so x = ey+4. (c) The domain is �. On this domain the function
is increasing, with y → ln 2 as x → −∞ and y → ∞ as x → ∞. So the range of the function is
(ln 2,∞). From y = ln

(
2+ ex−3

)
one has ey = 2+ ex−3, so ex−3 = ey − 2. Hence, x = 3+ ln(ey − 2)

for y > ln 2.

5.4
1. (a) The curve intersects the axes x = 0 and y = 0 at the points (0,±√3) and (±√6, 0) respectively. It is

also entirely bounded by the rectangle whose four corners are (±√6,±√3). Moreover, it is symmetric
about both axes, since all its points take the form (±√ξ,±√η), where ξ, η are any pair of positive real
numbers satisfying ξ 2+ 2η2 = 6. Putting x = y yields the four points (±√2,±√2) on the curve. More
points can be found by fixing any x satisfying −6 < x < 6, then solving for y. (The curve is called
an ellipse. See the next section.) (b) The same argument as in (a) shows that the curve intersects only
the axis x = 0, at (0,±1). There are no points on the graph where y2 < 1. As in (a), it is symmetric
about both axes. It comes in two separate parts: below y = −1; above y = 1. Putting x2 = 1 and then
x2 = 9 yields the additional points (±1,±√2) and (±3,±√10). (The graph is a hyperbola. See the
next section.)

5.5
8. The method of completing the square used in problem 5 shows that x2 + y2 +Ax + By + C = 0 ⇐⇒

x2 +Ax + y2 +By +C = 0 ⇐⇒ x2 +Ax + ( 1
2A

)2 + y2 +By + ( 1
2B

)2 = 1
4 (A2 +B2 − 4C) ⇐⇒(

x + 1
2A

)2 + (
y + 1

2B
)2 = 1

4 (A2 + B2 − 4C). Provided that A2 + B2 > 4C, the last equation is that
of a circle centred at

(− 1
2A,− 1

2B
)

with radius 1
2

√
A2 + B2 − 4C. If A2 +B2 = 4C, the graph consists

only of the point
(− 1

2A,− 1
2B

)
. For A2 + B2 < 4C, the solution set is empty.
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5.6

1. In each case, except (c), the rule defines a function because it associates with each member of the
original set a unique member in the target set. For instance, in (d), if the volume V of a sphere is
given, the formula V = 4

3πr3 in the appendix implies that the radius is r = (3V/4π)1/3. But then
the formula S = 4πr2 in the appendix gives the surface area. Substituting for r in this formula gives
S = 4π(3V/4π)2/3 = (36π)1/3V 3/2 that expresses the surface area of a sphere as a function of its
volume.

Review Problems for Chapter 5

7. (a) The function f is defined and strictly increasing for ex > 2, i.e. x > ln 2. Its range is � because
f (x)→−∞ as x → ln 2+, and f (x)→∞ as x →∞. From y = 3+ ln(ex − 2), we get ln(ex − 2) =
y − 3, and so ex − 2 = ey−3, or ex = 2 + ey−3, so x = ln(2 + ey−3). Hence f−1(x) = ln(2 + ex−3),
x ∈ �.
(b) Note that f is strictly increasing. Moreover, e−λx → ∞ as x → −∞, and e−λx → 0 as x → ∞.
Therefore, f (x) → 0 as x → −∞, and f (x) → 1 as x → ∞. So the range of f , and therefore the

domain of f−1, is (0, 1). From y = a

e−λx + a
we get e−λx + a = a/y, so e−λx = a(1/y − 1), or

−λx = ln a + ln(1/y − 1). Thus x = −(1/λ) ln a − (1/λ) ln(1/y − 1), and therefore the inverse is
f−1(x) = −(1/λ) ln a − (1/λ) ln(1/x − 1), with x ∈ (0, 1).

Chapter 6 Differentiation

6.2

5. For parts (a)–(c) we set out the explicit steps of the recipe in (6.2.3).

(a) (A): f (a + h) = f (0 + h) = 3h + 2 (B): f (a + h) − f (a) = f (h) − f (0) = 3h + 2 − 2 = 3h

(C)–(D): [f (h)− f (0)]/h = 3 (E): [f (h)− f (0)]/h = 3→ 3 as h→ 0, so f ′(0) = 3. The slope of
the tangent at (0, 2) is 3.

(b) (A): f (a+h) = f (1+h) = (1+h)2−1 = 1+2h+h2−1 = 2h+h2 (B): f (1+h)−f (1) = 2h+h2

(C)–(D): [f (1+h)−f (1)]/h = 2+h (E): [f (1+h)−f (1)]/h = 2+h→ 2 as h→ 0, so f ′(1) = 2.

(c) (A): f (3 + h) = 2 + 3/(3 + h) (B): f (3 + h) − f (3) = 2 + 3/(3 + h) − 3 = −h/(3 + h)

(C)–(D): [f (3+ h)− f (3)]/h = −1/(3+ h) (E): [f (3+ h)− f (3)]/h = −1/(3+ h)→ −1/3 as
h→ 0, so f ′(3) = −1/3.

For parts (d)–(f) we still follow the recipe in (6.2.3), but express the steps more concisely.

(d) [f (h)− f (0)]/h = (h3 − 2h)/h = h2 − 2→−2 as h→ 0, so f ′(0) = −2.

(e)
f (−1+ h)− f (−1)

h
= −1+ h+ 1/(−1+ h)+ 2

h
, which simplifies to

h2 − 1+ 1

h(h− 1)
= h

h− 1
→ 0

as h→ 0, so f ′(0) = 0.

(f)
f (1+ h)− f (1)

h
= (1+ h)4 − 1

h
= h4 + 4h3 + 6h2 + 4h+ 1− 1

h
= h3 + 4h2 + 6h + 4→ 4 as

h→ 0, so f ′(1) = 4.
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8. (a) Applying the formula (a − b)(a + b) = a2 − b2 with a = √x + h and b = √x gives
(
√

x + h−√x)(
√

x + h+√x) = (x + h)− x = h.

(b)
f (x + h)− f (x)

h
= (
√

x + h−√x)(
√

x + h+√x)

h(
√

x + h+√x)
= 1√

x + h+√x

(c) From part (b),
f (x + h)− f (x)

h
= 1√

x + h+√x
−→
h→0

1

2
√

x
= 1

2
x−1/2.

6.5

5. (a)
1/3− 2/3h

h− 2
= 3h

(
1/3− 2/3h

)
3h(h− 2)

= h− 2

3h(h− 2)
= 1

3h
→ 1

6
as h→ 2

(b) When x → 0, then (x2 − 1)/x2 = 1− 1/x2 →−∞ as x → 0.

(c)
32t − 96

t2 − 2t − 3
= 32(t − 3)

(t − 3)(t + 1)
= 32

t + 1
→ 8, as t → 3, so 3

√
32t − 96

t2 − 2t − 3
→ 3
√

8 = 2 as t → 3.

(d)

√
h+ 3−√3

h
= (
√

h+ 3−√3)(
√

h+ 3+√3)

h(
√

h+ 3+√3)
= 1√

h+ 3+√3
−→
h→0

1

2
√

3
.

(e)
t2 − 4

t2 + 10t + 16
= (t + 2)(t − 2)

(t + 2)(t + 8)
= t − 2

t + 8
→−2

3
as t →−2.

(f) Observe that 4− x = (2+√x)(2−√x), so lim
x→4

2−√x

4− x
= lim

x→4

1

2+√x
= 1

4
.

6. (a)
f (x)− f (1)

x − 1
= x2 + 2x − 3

x − 1
= (x − 1)(x + 3)

x − 1
= x + 3→ 4 as x → 1

(b)
f (x)− f (1)

x − 1
= x + 3→ 5 as x → 2.

(c)
f (2+ h)− f (2)

h
= (2+ h)2 + 2(2+ h)− 8

h
= h2 + 6h

h
= h+ 6→ 6 as h→ 0.

(d)
f (x)− f (a)

x − a
= x2 + 2x − a2 − 2a

x − a
= x2 − a2 + 2(x − a)

x − a
= (x − a)(x + a)+ 2(x − a)

x − a

= x + a + 2→ 2a + 2 as x → a. (e) Same answer as in (d), putting x − a = h.

(f)
f (a + h)− f (a − h)

h
= (a + h)2 + 2a + 2h− (a − h)2 − 2a + 2h

h
= 4a+4→ 4a+4 as h→ 0.

6.7

3. (a) y = 1

x6
= x−6 ⇒ y ′ = −6x−7, using the power rule (6.6.4).

(b) y = x−1(x2 + 1)
√

x = x−1x2x1/2 + x−1x1/2 = x3/2 + x−1/2 ⇒ y ′ = 3
2x1/2 − 1

2x−3/2

(c) y = x−3/2 ⇒ y ′ = − 3
2x−5/2 (d) y = x + 1

x − 1
⇒ y ′ = 1 · (x − 1)− (x + 1) · 1

(x − 1)2
= −2

(x − 1)2

(e) y = x

x5
+ 1

x5
= x−4 + x−5 ⇒ y ′ = − 4

x5
− 5

x6

(f) y = 3x − 5

2x + 8
⇒ y ′ = 3(2x + 8)− 2(3x − 5)

(2x + 8)2
= 34

(2x + 8)2
(g) y = 3x−11 ⇒ y ′ = −33x−12

(h) y = 3x − 1

x2 + x + 1
⇒ y ′ = 3(x2 + x + 1)− (3x − 1)(2x + 1)

(x2 + x + 1)2
= −3x2 + 2x + 4

(x2 + x + 1)2
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6. (a) y ′ = 6x − 12 = 6(x − 2) ≥ 0 ⇐⇒ x ≥ 2, so y is increasing in [2,∞).

(b) y ′) = x3 − 3x = x(x2 − 3) = x(x − √3)(x + √3), so (using a sign diagram) y is increasing in[−√3, 0
]

and in
[√

3,∞)
.

(c) y ′ = 2(2+ x2)− (2x)(2x)

(2+ x2)2
= 2(2− x2)

(x2 + 2)2
= 2(
√

2− x)(
√

2+ x)

(x2 + 2)2
, so y is increasing in [−√2,

√
2].

(d) y ′ = (2x − 3x2)(x + 1)− (x2 − x3)

2(x + 1)2
= −2x3 − 2x2 + 2x

2(x + 1)2
= −x(x − x1)(x − x2)

(x + 1)2
, where x1,2 =

− 1
2 ∓ 1

2

√
5. Then y is increasing in (−∞, x1] and in [0, x2].

7. (a) y ′ = −1 − 2x = −3 when x = 1, so the slope of the tangent is −3. Since y = 1 when x = 1, the
point–slope formula gives y − 1 = −3(x − 1), or y = −3x + 4.

(b) y = 1− 2(x2 + 1)−1, so y ′ = 4x/(x2 + 1)2 = 1 and y = 0 when x = 1. The tangent is y = x − 1.

(c) y = x2 − x−2, so y ′ = 2x + 2x−3 = 17/4 and y = 15/4 when x = 2, hence y = (17/4)x − 19/4.

(d) y ′ = 4x3(x3 + 3x2 + x + 3)− (x4 + 1)(3x2 + 6x + 1)

[(x2 + 1)(x + 3)]2
= −1

9
and y = 1

3
when x = 0, so

y = −(x − 3)/9.

9. (a) We use the quotient rule: y = at + b

ct + d
⇒ y ′ = a(ct + d)− (at + b)c

(ct + d)2
= ad − bc

(ct + d)2

(b) y = tn
(
a
√

t + b
) = atn+1/2 + btn ⇒ y ′ = (n+ 1/2)atn−1/2 + nbtn−1

(c) y = 1

at2 + bt + c
⇒ y ′ = 0 · (at2 + bt + c)− 1 · (2at + b)

(at2 + bt + c)2
= −2at − b

(at2 + bt + c)2

6.8

3. (a) y = 1

(x2 + x + 1)5
= (x2 + x + 1)−5 = u−5, where u = x2 + x + 1. By the chain rule,

y ′ = (−5)u−6u′ = −5(2x + 1)(x2 + x + 1)−6.
(b) With u = x + √

x +√x, y = √u = u1/2, so y ′ = 1
2u−1/2u′. Now, u = x + v1/2, with

v = x + x1/2. Then u′ = 1 + 1
2v−1/2v′, where v′ = 1 + 1

2x−1/2. Thus, in the end, y ′ = 1
2u−1/2u′ =

1
2

[
x + (x + x1/2)1/2

]−1/2[
1+ ( 1

2 (x + x1/2)−1/2(1+ 1
2x−1/2)

]
. (c) See the text.

6.10

4. (a) y ′ = 3x2 + 2e2x is obviously positive everywhere, so y increases in (−∞,∞).
(b) y ′ = 10xe−4x+5x2(−4)e−4x = 10x(1−2x)e−4x . A sign diagram shows that y increases in [0, 1/2].
(c) y ′ = 2xe−x2 + x2(−2x)e−x2 = 2x(1 − x)(1 + x)e−x2

. A sign diagram shows that y increases in
(−∞,−1] and in [0, 1].

6.11

3. For most of these problems we need the chain rule. That is important in itself! But it implies in particular

that if u = f (x) is a differentiable function of x that satisfies f (x) > 0, then
d

dx
ln u = 1

u
u′ = u′

u
.

(a) y = ln(ln x) = ln u with u = ln x implies that y ′ = 1

u
u′ = 1

ln x

1

x
= 1

x ln x
.
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(b) y = ln
√

1− x2 = ln u with u = √1− x2 implies that y ′ = 1

u
u′ = 1√

1− x2

−2x

2
√

1− x2
= −x

1− x2
.

(Alternatively:
√

1− x2 = (1− x2)1/2 �⇒ y = 1
2 ln(1− x2), and so on.)

(c) y = ex ln x �⇒ y ′ = ex ln x + ex 1

x
= ex

(
ln x + 1

x

)

(d) y = ex3
ln x2 �⇒ y ′ = 3x2ex3

ln x2 + ex3 1

x2
2x = ex3

(
3x2 ln x2 + 2

x

)

(e) y = ln(ex + 1) �⇒ y ′ = ex

ex + 1
(f) y = ln(x2 + 3x − 1) �⇒ y ′ = 2x + 3

x2 + 3x − 1
(g) y = 2(ex − 1)−1 �⇒ y ′ = −2ex(ex − 1)−2 (h) y = e2x2−x �⇒ y ′ = (4x − 1)e2x2−x

5. (a) One must have x2 > 1, i.e. x > 1 or x < −1. (b) ln(ln x) is defined when ln x is defined and

positive, that is, for x > 1. (c) The fraction
1

ln(ln x)− 1
is defined when ln(ln x) is defined and different

from 1. From (b), ln(ln x) is defined when x > 1. Further, ln(ln x) = 1 ⇐⇒ ln x = e ⇐⇒ x = ee.

Conclusion:
1

ln(ln x)− 1
is defined ⇐⇒ x > 1 and x �= ee.

6. (a) The function is defined for 4 − x2 > 0, that is in (−2, 2). f ′(x) = −2x/(4 − x2) ≥ 0 in (−2, 0],
so this is where y is increasing. (b) The function is defined for x > 0. f ′(x) = x2(3 ln x + 1) ≥ 0 for
ln x ≥ −1/3, or x ≥ e−1/3, so y is increasing in [e−1/3,∞). (c) The function is defined for x > 0,

and y ′ = 2(1− ln x)(−1/x)2x − 2(1− ln x)2

4x2
= (1− ln x)(ln x − 3)

2x2
. A sign diagram reveals that y is

increasing in x when 1 ≤ ln x ≤ 3 and so for x in [e, e3].

9. In these problems we can use logarithmic differentiation. Alternatively we can write the functions in the
form f (x) = eg(x) and then use the fact that f ′(x) = eg(x)g′(x) = f (x)g′(x).

(a) Let f (x) = (2x)x . Then ln f (x) = x ln(2x), so
f ′(x)

f (x)
= 1 · ln(2x) + x · 1

2x
· 2 = ln(2x) + 1.

Hence, f ′(x) = f (x)(ln(2x) + 1) = (2x)x(ln x + ln 2 + 1). (b) f (x) = x
√

x = (
eln x

)√x = e
√

x ln x ,

so f ′(x) = e
√

x ln x · d

dx
(
√

x ln x) = x
√

x

(
ln x

2
√

x
+
√

x

x

)
= x

√
x− 1

2 ( 1
2 ln x + 1).

(c) ln f (x) = x ln
√

x = 1
2x ln x, so f ′(x)/f (x) = 1

2 (ln x+ 1), which gives f ′(x) = 1
2 (
√

x )x(ln x+ 1).

11. (a) See the answer in the text. (b) Let f (x) = ln(1+ x)− 1
2x. Then f (0) = 0 and moreover f ′(x) =

1/(x + 1)− 1
2 = (1− x)/2(x + 1), which is positive in (0, 1), so f (x) > 0 in (0, 1), and the left-hand

inequality is established. To prove the other inequality, put g(x) = x − ln(1 + x). Then g(0) = 0 and
g′(x) = 1− 1/(x + 1) = x/(x + 1) > 0 in (0, 1), so the conclusion follows.
(c) Let f (x) = 2(

√
x − 1)− ln x. Then f (1) = 0 and f ′(x) = (1/

√
x)− 1/x = (

√
x − 1)/x, which is

positive for x > 1. The conclusion follows.

Review Problems for Chapter 6

15. (a) y ′ = 2

x
ln x ≥ 0 if x ≥ 1. (b) y ′ = ex − e−x

ex + e−x
≥ 0 ⇐⇒ ex ≥ e−x ⇐⇒ e2x ≥ 1 ⇐⇒ x ≥ 0

(c) y ′ = 1− 3x

x2 + 2
= (x − 1)(x − 2)

x2 + 2
≥ 0 ⇐⇒ x ≤ 1 or x ≥ 2. (Use a sign diagram.)
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Chapter 7 Derivatives in Use

7.1

3. (a) Implicit differentiation w.r.t. x yields (∗) 1 − y ′ + 3y + 3xy ′ = 0. Solving for y ′ yields y ′ =
(1+3y)/(1−3x). The definition of the function implies that y = (x−2)/(1−3x). Substituting this in the
expression for y ′ gives y ′ = −5/(1−3x)2. Differentiating (∗) w.r.t. x gives−y ′′ +3y ′ +3y ′ +3xy ′′ = 0.
Inserting y ′ = (1+ 3y)/(1− 3x) and solving for y ′′ gives y ′′ = 6y ′/(1− 3x) = −30/(1− 3x)3.
(b) Implicit differentiation w.r.t. x yields (∗) 5y4y ′ = 6x5, so y ′ = 6x5/5y4 = (6/5)x1/5. Differentiating
(∗) w.r.t. x gives 20y3(y ′)2 + 5y4y ′′ = 30x4. Inserting y ′ = 6x5/5y4 and solving for y ′′ yields y ′′ =
6x4y−4 − 4y−1(y ′′)2 = 6x4y−4 − (144/25)x10y−9 = (6/25)x−4/5.

8. (a) y + xy ′ = g′(x)+ 3y2y ′, and solve for y ′. (b) g′(x + y)(1+ y ′) = 2x + 2yy ′, and solve for y ′.
(c) 2(xy+ 1)(y+ xy ′) = g′(x2y)(2xy+ x2y ′), and solve for y ′. (How did we differentiate g(x2y) w.r.t.
x? Well, if z = g(u) and u = x2y, then z′ = g′(u)u′ where u is a product of two functions that both
depend on x. So u′ = 2xy + x2y ′.)

10. (a) Differentiating w.r.t. x, keeping in mind that y depends on x, yields 2(x2 + y2)(2x + 2yy ′) =
a2(2x − 2yy ′). Then solve for y ′.
(b) Note that x = 0 would imply that y = 0. Excluding this possibility, we see that y ′ = 0 when
x2 + y2 = a2/2, or y2 = 1

2a2 − x2. Inserting this into the given equation yields x = ± 1
4a
√

6 and so
y = ± 1

2a
√

2. This yields the four points on the graph at which the tangent is horizontal.

7.2

4. (a) Using (ii) and (iii) to substitute for C and Y respectively in equation (i), one has Y = f (Y ) + I +
X̄ − g(Y ). Differentiating w.r.t. I yields

dY/dI = f ′(Y )(dY/dI)+ 1− g′(Y )(dY/dI) = (f ′(Y )− g′(Y ))(dY/dI)+ 1 (∗)

Thus, dY/dI = 1/
[
1− f ′(Y )+ g′(Y )

]
. Imports should increase when income increases, so g′(Y ) > 0.

It follows that dY/dI > 0. (b) Differentiating (∗) w.r.t. I yields, in simplified notation,
d2Y/dI 2 = (f ′′ −g′′)(dY/dI)+ (f ′ −g′)(d2Y/dI 2), so d2Y/dI 2 = (f ′′ −g′′)(dY/dI)/(1−f ′ +g′)2

= (f ′′ − g′′)/(1− f ′ + g′)3.

7.3

5. (a) dy/dx = −e−x−5, so dx/dy = 1/(dy/dx) = 1/− e−x−5 = −ex+5.
(b) dy/dx = −e−x/(e−x + 3), so dx/dy = −(e−x + 3)/e−x = −1− 3ex

(c) Implicit differentiation w.r.t. x yields y3 + x(3y2)(dy/dx) − 3x2y − x3(dy/dx) = 2. Solve for
dy/dx, and then invert.

7.4

3. (a) f (0) = 1 and f ′(x) = −(1+ x)−2, so f ′(0) = −1. Then f (x) ≈ f (0)+ f ′(0)x = 1− x.
(b) f (0) = 1 and f ′(x) = 5(1+ x)4, so f ′(0) = 5. Then f (x) ≈ f (0)+ f ′(0)x = 1+ 5x.
(c) f (0) = 1 and f ′(x) = − 1

4 (1− x)−3/4, so f ′(0) = − 1
4 . Then f (x) ≈ f (0)+ f ′(0)x = 1− 1

4x.
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8. Implicit differentiation yields: 3exy2 + 3xexy2
(y2 + x2yy ′)− 2y ′ = 6x + 2yy ′. (To differentiate 3xexy2

use the product rule to get 3exy2 + 3x(d/dx)exy2
. The chain rule gives (d/dx)exy2 = exy2

(y2+ x2yy ′).)
For x = 1, y = 0 we get 3− 2y ′ = 6, so y ′ = −3/2. (b) y(x) ≈ y(1)+ y ′(1)(x − 1) = − 3

2 (x − 1)

7.5
2. f ′(x) = (1 + x)−1, f ′′(x) = −(1 + x)−2, f ′′′(x) = 2(1 + x)−3, f (4)(x) = −6(1 + x)−4, f (5)(x) =

24(1+ x)−5. Then f (0) = 0, f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2, f (4)(0) = −6, f (5)(0) = 24, and so
f (x) ≈ f (0)+ 1

1!f
′(0)x + 1

2!f
′′(0)x + 1

3!f
′′′(0)x3 + 1

4!f
(4)(0)x4 + 1

5!f
(5)(0)x5 = x − 1

2x2 + 1
3x3 −

1
4x4 + 1

5x5.

3. With f (x) = 5(ln(1+x)−√1+ x ) = 5 ln(1+x)−5(1+x)1/2 we get f ′(x) = 5(1+x)−1− 5
2 (1+x)−1/2,

f ′′(x) = −5(1 + x)−2 + 5
4 (1 + x)−3/2, and so f (0) = −5, f ′(0) = 5

2 , f ′′(0) = − 15
4 . and the Taylor

polynomial of order 2 about x = 0 is f (0)+ f ′(0)x + 1
2f ′′(0)x2 = −5+ 5

2x − 15
8 x2.

7.6
4. (a) We use Taylor’s formula (3) with g(x) = (1+ x)1/3 and n = 2. Then g′(x) = 1

3 (1+ x)−2/3, g′′(x) =
− 2

9 (1+x)−5/3, and g′′′(x) = 10
27 (1+x)−8/3, so g(0) = 1, g′(0) = 1

3 , g′′(0) = − 2
9 , g′′′(c) = 10

27 (1+c)−8/3.
It follows that g(x) = 1+ 1

3x − 1
9x2 + R3(x), where R3(x) = 1

6
10
27 (1+ c)−8/3x3 = 5

81 (1+ c)−8/3x3.
(b) c ∈ (0, x) and x ≥ 0, so (1+ c)−8/3 ≤ 1, and the inequality follows.
(c) Note that 3

√
1003 = 10(1+3 ·10−3)1/3. Using the approximation in part (a) gives (1+3 ·10−3)1/3 ≈

1+ 1
3 3·10−3− 1

9 (3·10−3)2 = 1+10−3−10−6) = 1.000999, and so 3
√

1003 ≈ 10.00999. By part (b), the
error R3(x) in the approximation (1+3·10−3)1/3 ≈ 1.000999 satisfies |R3(x)| ≤ 5

81 (3·10−3)3 = 5
3 10−9.

Hence the error in the approximation 3
√

1003 ≈ 10.00999 is 10|R3(x)| ≤ 50
3 10−9 < 2 · 10−8, implying

that the answer is correct to 7 decimal places.

7.7

9. (a) ElxA = x

A

dA

dx
= 0 (b) Elx(fg) = x

fg
(fg)′ = x

fg
(f ′g + fg′) = xf ′

f
+ xg′

g
= Elxf + Elxg

(c) Elx
f

g
= x

(f/g)

(
f

g

)′
= xg

f

(
gf ′ − fg′

g2

)
= xf ′

f
− xg′

g
= Elxf − Elxg

(d) See the answer in the text. (e) Is like (d), but with +g replaced by −g, and +g′ by −g′.
(f) z = f (g(u)), u = g(x)⇒ Elxz = x

z

dz

dx
= x

u

u

z

dz

du

du

dx
= Eluf (u) Elxu

7.8
3. By the results in (7.8.3), all the functions are continuous wherever they are defined. So (a) and (d) are

defined everywhere. In (b) we must exclude x = 1; in (c) the function is defined for x < 2. Next, in
(e) we must exclude values of x that make the denominator 0. These values satisfy x2 + 2x − 2 = 0, or
(x + 1)2 = 3, so they are x = ±√3 − 1. Finally, in (f), the first fraction requires x > 0, and then the
other fraction is also defined.

7.9

1. (a) limx→0+(x
2 + 3x − 4) = 02 + 3 · 0 − 4 = −4 (b) |x| = −x for x < 0. Hence, lim

x→0−
x + |x|

x
=

lim
x→0−

x − x

x
= lim

x→0−
0 = 0. (c) |x| = x for x > 0. Hence, lim

x→0+
x + |x|

x
= lim

x→0+
x + x

x
= lim

x→0+
2 = 2.
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(d) As x → 0+ one has
√

x → 0 and so −1/
√

x →−∞. (e) As x → 3+ one has x − 3→ 0+ and so
x/(x − 3)→∞. (f) As x → 3− one has x − 3→ 0−, and so x/(x − 3)→−∞.

4. (a) Vertical asymptote, x = −1. Moreover, x2 ÷ (x + 1) = x − 1 + 1/(x + 1), so y = x − 1 is an
asymptote as x → ±∞. (b) No vertical asymptote. Moreover. (2x3 − 3x2 + 3x − 6) ÷ (x2 + 1) =
2x− 3+ (x− 3)/(x2+ 1), so y = 2x− 3 is an asymptote as x →±∞. (c) Vertical asymptote, x = 1.
Moreover, (3x2 + 2x) ÷ (x − 1) = 3x + 5 + 5/(x − 1), so y = 3x + 5 is an asymptote as x → ±∞.
(d) Vertical asymptote, x = 1. Moreover, (5x4−3x2+1)÷ (x3−1) = 5x+ (−3x2+5x+1)/(x3−1),
so y = 5x is an asymptote as x →±∞.

7. This is rather tricky because the denominator is 0 at x1,2 = 2±√3. A sign diagram shows that f (x) > 0
only in (−∞, 0) and in (x1, x2). The text explains where f increases. See also Fig. SM7.9.7.

y

x

y

−4

−2

2

4

6

x−6 −4 −2 2 4 6 8

f (x) = 3x

−x2 + 4x − 1

Figure SM7.9.7

7.10
4. Recall from (4.7.6) that any integer root of the equation f (x) = x4 + 3x3 − 3x2 − 8x + 3 = 0 must be

a factor of the constant term 3. The way to see this directly is to notice that we must have

3 = −x4 − 3x3 + 3x2 + 8x = x(−x3 − 3x2 + 3x + 8)

and if x is an integer then the bracketed expression is also an integer. Thus, the only possible integer
solutions are ±1 and ±3. Trying each of these possibilities, we find that only −3 is an integer solution.

There are three other real roots, with approximate values x0 = −1.9, y0 = 0.4, and z0 = 1.5. If we
use Newton’s method once for each of these roots we get the more accurate approximations

x1 = −1.9− f (−1.9)

f ′(−1.9)
= −1.9− −0.1749

8.454
≈ −1.9+ 0.021 = −1.879

y1 = 0.4 − f (0.4)

f ′(0.4)
= 0.4− −0.4624

−8.704
≈ 0.4− 0.053 = 0.347

z1 = 1.5 − f (1.5)

f ′(1.5)
= 1.5− −0.5625

16.75
≈ 1.5+ 0.034 = 1.534

7.12
3. (a) lim

x→1

x − 1

x2 − 1
= “0

0

” = lim
x→1

1

2x
= 1

2
(or use x2 − 1 = (x + 1)(x − 1)).

(b) lim
x→−2

x3 + 3x2 − 4

x3 + 5x2 + 8x + 4
= “0

0

” = lim
x→−2

3x2 + 6x

3x2 + 10x + 8
= “0

0

” = lim
x→−2

6x + 6

6x + 10
= 3

© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012



C H A P T E R 7 D E R I V A T I V E S I N U S E 21

(c) lim
x→2

x4 − 4x3 + 6x2 − 8x + 8

x3 − 3x2 + 4
= “0

0

” = lim
x→2

4x3 − 12x2 + 12x − 8

3x2 − 6x
= “0

0

” =

lim
x→2

12x2 − 24x + 12

6x − 6
= 2

(d) lim
x→1

ln x − x + 1

(x − 1)2
= “0

0

” = lim
x→1

(1/x)− 1

2(x − 1)
= “0

0

” = lim
x→1

(−1/x2)

2
= −1

2

(e) lim
x→1

1

x − 1
ln

(7x + 1

4x + 4

)
= lim

x→1

ln(7x + 1)− ln(4x + 4)

x − 1
= “0

0

” = lim
x→1

7

7x + 1
− 4

4x + 4
1

= 3

8

(f) lim
x→1

xx − x

1− x + ln x
=“0

0

”= lim
x→1

xx(ln x + 1)− 1

−1+ 1/x
=“0

0

”= lim
x→1

xx(ln x + 1)2 + xx(1/x)

−1/x2
= −2

(using Example 6.11.4 to differentiate xx).

8. L = lim
x→a

f (x)

g(x)
= lim

x→a

1/g(x)

1/f (x)
= “0

0

” = lim
x→a

−1/(g(x))2

−1/(f (x))2
· g′(x)

f ′(x)
= lim

x→a

(f (x))2

(g(x))2
· g′(x)

f ′(x)
=

L2 lim
x→a

g′(x)

f ′(x)
= L2 lim

x→a

1

f ′(x)/g′(x)
. The conclusion follows. (This argument ignores problems with

“division by 0”, when either f ′(x) or g′(x) tends to 0 as x tends to a.)

Review Problems for Chapter 7

10. (a) We must have
1+ x

1− x
> 0, so the domain of f is the interval −1 < x < 1. As x → 1−, one has

f (x)→ ∞; as x → −1−, one has f (x)→ −∞. Since f ′(x) = 1/(1 − x2) > 0 when −1 < x < 1,

f is strictly increasing and the range of f is �. (b) From y = 1

2
ln

1+ x

1− x
one has ln

1+ x

1− x
= 2y, so

1+ x

1− x
= e2y . Then solve for x.

12. (a) f ′(x) = 2/(2x + 4) = (x + 2)−1 and f ′′(x) = −(x + 2)−2. We get f (0) = ln 4, f ′(0) = 1/2, and
f ′′(0) = −1/4, so f (x) ≈ f (0)+ f ′(0)x + 1

2f ′′(0)x2 = ln 4+ x/2− x2/8.
(b) g′(x) = −(1/2)(1 + x)−3/2 and g′′(x) = (3/4)(1 + x)−5/2. We get g(0) = 1, g′(0) = −1/2, and
g′′(0) = 3/4, so g(x) ≈ 1− x/2+ 3x2/8.
(c) h′(x) = e2x + 2xe2x and h′′(x) = 4e2x + 4xe2x . We get h(0) = 0, h′(0) = 1, and h′′(0) = 4, so
h(x) ≈ x + 2x2.

15. With x = 1
2 and n = 5, formula (7.6.6) yields e

1
2 = 1+

1
2

1! +
( 1

2 )2

2! +
( 1

2 )3

3! +
( 1

2 )4

4! +
( 1

2 )5

5! +
( 1

2 )6

6! ec, where c

is some number between 0 and 1
2 . Now, R6( 1

2 ) =
( 1

2 )6

6! ec <
( 1

2 )6

6! 2 = 1
23040 ≈ 0.00004340, where we used the

fact that c < 1
2 implies ec < e

1
2 < 2. Thus it follows that

e
1
2 ≈ 1+ 1

2
1! +

( 1
2 )2

2! +
( 1

2 )3

3! +
( 1

2 )4

4! +
( 1

2 )5

5! = 1+ 1
2 + 1

8 + 1
48 + 1

384 + 1
3840 ≈ 1.6486979. Because the error is

less than 0.000043, the approximation e
1
2 ≈ 1.649 is correct to 3 decimal places.

23. (a) lim
x→3−

(x2 − 3x + 2) = 9− 9+ 2 = 2 (b) Tends to +∞.

(c)
3−√x + 17

x + 1
tends to +∞ as x →−1−, but to −∞ as x →−1+, so there is no limit as x →−1.
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(d) lim
x→0

(2− x)ex − x − 2

x3
= “0

0

” = lim
x→0

−ex + (2− x)ex − 1

3x2
= “0

0

” = lim
x→0

−ex − ex + (2− x)ex

6x

= lim
x→0

−xex

6x
= lim

x→0

−ex

6
= −1

6
.

(Cancelling x at the penultimate step avoids using l’Hôpital’s rule a third time.)

(e) lim
x→3

(
1

x − 3
− 5

x2 − x − 6

)
= lim

x→3

x2 − 6x + 9

x3 − 4x2 − 3x + 18
= “0

0

” = lim
x→3

2x − 6

3x2 − 8x − 3
= “0

0

” =

lim
x→3

2

6x − 8
= 1

5
(f) lim

x→4

x − 4

2x2 − 32
= “0

0

” = lim
x→4

1

4x
= 1

16
. (Can you find another way?)

(g) If x �= 2, then
x2 − 3x + 2

x − 2
= (x − 2)(x − 1)

x − 2
= x − 1, which tends to 1 as x → 2.

(h) If x �= −1, then
4−√x + 17

2x + 2
= (4−√x + 17 )(4+√x + 17 )

(2x + 2)(4+√x + 17 )
= 16− x − 17

(2x + 2)(4+√x + 17 )
=

−1

2(4+√x + 17 )
which tends to − 1

16
as x →−1.

(i) lim
x→∞

(ln x)2

3x2
= 1

3
lim

x→∞

(
ln x

x

)2

= 0, because of (7.12.3).

24. When x → 0, the numerator tends to
√

b − √d and the denominator to 0, so the limit does not exist
when d �= b. If d = b, however, then

lim
x→0

√
ax + b −√cx + b

x
= “0

0

” = lim
x→0

[ 1
2a(ax + b)−1/2 − 1

2c(cx + b)−1/2
]

1
= a − c

2
√

b

Chapter 8 Single-Variable Optimization

8.2

2. h′(x) = 8(3x2 + 4)− (8x)(6x)

(3x2 + 4)2
= 8(2−√3x)(2+√3x)

(3x2 + 4)2
, so h has stationary points at x1 = −2

√
3/3

and x2 = 2
√

3/3. A sign diagram shows that h′(x) < 0 in (−∞, x1) and in (x2,∞), whereas h′(x) > 0
in (x1, x2). Therefore h is strictly decreasing in (−∞, x1], strictly increasing in [x1, x2], and strictly
decreasing again in [x2,∞). Then, because h(x) → 0 as x → ±∞, it follows that the maximum of h

occurs at x2 = 2
√

3/3 and the minimum at x1 = −2
√

3/3.

8. (a) y ′ = ex − 2e−2x and y ′′ = ex + 4e−2x . Hence y ′ = 0 when ex = 2e−2x , or e3x = 2, i.e. x = 1
3 ln 2.

Since y ′′ > 0 everywhere, the function is convex and this is a minimum point.
(b) y ′ = −2(x − a)− 4(x − b) = 0 when x = 1

3 (a + 2b). This is a maximum point since y ′′ = −6.
(c) y ′ = 1/x − 5 = 0 when x = 1

5 . This is a maximum point since y ′′ = −1/x2 < 0 for all x > 0.

10. (a) f ′(x) = k − Aαe−αx = 0 when x = x0 = (1/α) ln(Aα/k). Note that x0 > 0 if and only if Aα > k.
Moreover f ′′(x) = Aα2e−αx > 0 for all x ≥ 0, so x0 solves the minimization problem.
(b) Substituting for A in the answer to (a) gives the expression for the optimal height x0. Its value increases
as p0 (probability of flooding) or V (cost of flooding) increases, but decreases as δ (interest rate) or k

(marginal construction cost) increases. The signs of these responses are obviously what an economist
would expect. (Not only an economist, actually.)
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8.3

2. (a) π(Q) = Q(a−Q)−kQ = (a−k)Q−Q2 so π ′(Q) = (a−k)−2Q = 0 for Q = Q∗ = 1
2 (a−k). This

maximizes π because π ′′(Q) < 0. The monopoly profit is π(Q∗) = −( 1
2 (a− k))2+ (a− k) 1

2 (a− k) =
1
4 (a − k)2. (b) dπ(Q∗)/dk = − 1

2 (a − k) = −Q∗, as in Example 3.
(c) The new profit function is π̂(Q) = π(Q) + sQ = (a − k)Q − Q2 + sQ. Then π̂ ′(Q) =
a − k − 2Q + s = 0 when Q̂ = 1

2 (a − k + s). Evidently Q̂ = 1
2 (a − k + s) = a − k provided

s = a − k, which is the subsidy required to induce the monopolist to produce a − k units.

8.4

2. In all cases the maximum and minimum exist by the extreme value theorem. Follow the recipe in (8.4.1).
(a) f ′(x) = −2 for all x in [0, 3], so the recipe tells us that both the maximum and minimum points
are at the ends of the interval [0, 3]. Since f (0) = −1 and f (3) = −7, the maximum is at x = 0, the
minimum at x = 3. (Actually the sign of f ′(x) alone implies that the maximum is at the lower end of
the interval, and the minimum at the upper end.)
(b) f (−1) = f (2) = 10 and f ′(x) = 3x2 − 3 = 0 at x = ±1. The only stationary point in the interval
[−1, 2] is x = 1, where f (1) = 6. There are two maxima at the endpoints, and a minimum at x = 1.
(c) f (x) = x+ 1/x, so f (1/2) = f (2) = 5/2 at the endpoints. Also, f ′(x) = 1− 1/x2 = 0 at x = ±1.
The only stationary point in the interval [ 1

2 , 2] is x = 1, where f (1) = 2. There are two maxima at the
endpoints, and a minimum at x = 1.
(d) At the endpoints one has f (−1) = 4 and f (

√
5) = 0. Because f ′(x) = 5x2(x2 − 3), there are two

stationary points in the interval [−1,
√

5] at x = 0 and x = √3. The values at these stationary points are
f (0) = 0 and f (

√
3) = −6

√
3. The maximum is at x = −1 and the minimum is at x = √3.

(e) f ′(x) = 3x2 − 9000x + 6 · 106 = 3(x − 1000)(x − 2000) = 0 when x = 1000 and x = 2000.
At these stationary points f (1000) = 2.5 ·109 and f (2000) = 2 ·109. There is a minimum at the endpoint
x = 0 and a maximum at x = 3000.

6. (a) (f (2)− f (1))/(2− 1) = (4− 1)/1 = 3 and f ′(x) = 2x, so f ′(x) = 3 when x = x∗ = 3/2.
(b) (f (1) − f (0))/1 = (0 − 1)/1 = −1 and f ′(x) = −x/

√
1− x2 = −1 when x = √1− x2.

Squaring each side of the last equation gives x2 = 1 − x2 and so x2 = 1
2 . This has two solutions

x = ± 1
2

√
2, of which only the positive solution satisfies x = √1− x2. So we require x = x∗ = 1

2

√
2.

(c) (f (6) − f (2))/4 = −1/6 and f ′(x) = −2/x2 = −1/6 when −12/x2 = −1 or x2 = 12, and so
x = ±√12. The required solution in [2, 6] is x = x∗ = √12 = 2

√
3.

(d) (f (4) − f (0))/4 = 1/4 = (
√

25 − √9)/4 = (5 − 3)/4 = 1/2 and f ′(x) = 1
2 2x/
√

9+ x2 =
x/
√

9+ x2 = 1/2 when 2x = √9+ x2. Squaring each side of the last equation gives 4x2 = 9+x2 and so
3x2 = 9. This has two solutionsx = ±√3, of which only the positive solution satisfiesx/

√
9+ x2 = 1/2.

So we require x = x∗ = √3.

8.5

4. (i) π(Q) = 1840Q− (2Q2 + 40Q+ 5000) = 1800Q− 2Q2 − 5000. Since π ′(Q) = 1800− 4Q = 0
for Q = 450, and π ′′(Q) = −4 < 0, it follows that Q = 450 maximizes profits.
(ii) π(Q) = 2200Q−2Q2−5000. Since π ′(Q) = 2200−4Q = 0 for Q = 550, and π ′′(Q) = −4 < 0,
it follows that Q = 550 maximizes profits.
(iii) π(Q) = −2Q2 − 100Q − 5000. Here π ′(Q) = −4Q − 100 < 0 for all Q ≥ 0, so the endpoint
Q = 0 maximizes profits.
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8.6

2. (a) Strictly decreasing, so no extreme points. (Actually the sign of f ′(x) alone implies that the maximum
is at the lower end of the interval, and the minimum at the upper end.) (b) f ′(x) = 3x2 − 3 = 0 for
x = ±1. Because f ′′(x) = 6x, we have f ′′(−1) = −6 and f ′′(1) = 6, so x = −1 is a local maximum
point, and x = 1 is a local minimum point. (c) f ′(x) = 1−1/x2 = 0 for x = ±1. With f ′′(x) = 2/x3,
we have f ′′(−1) = −2 and f ′′(1) = 2, so x = −1 is a local maximum point, and x = 1 is a local
minimum point.
(d) f ′(x) = 5x4 − 15x2 = 5x2(x2 − 3) and f ′′(x) = 20x3 − 30x. There are three stationary points at
x = 0 and x = ±√3. Because f ′′(0) = 0, whereas f ′′(−√3) = −20 · 3√3 + 30

√
3 = −30

√
3 < 0

and f ′′(
√

3) = 30
√

3 > 0, there is a local maximum at x = −√3 and a local minimum at x = √3.
(e) This parabola has a local (and global) minimum at x = 3.
(f) f ′(x) = 3x2 + 6x = 3x(x + 2) and f ′′(x) = 6x + 6. There are two stationary points at x = 0
and x = −2. Because f ′′(0) = 6 and f ′′(−2) = −6, there is a local maximum at x = −2 and a local
minimum at x = 0.

3. See the graph in Fig. SM8.6.3. (a) The function f (x) is defined if and only if x �= 0 and x ≥ −6.
f (x) = 0 at x = −6 and at x = −2. At any other point x in the domain, f (x) has the same sign as
(x + 2)/x, so f (x) > 0 if x ∈ (−6,−2) or x ∈ (0,∞).
(b) We first find the derivative of f :

f ′(x) = − 2

x2

√
x + 6+ x + 2

x

1

2
√

x + 6
= −4x − 24+ x2 + 2x

2x2
√

x + 6
= (x + 4)(x − 6)

2x2
√

x + 6

By means of a sign diagram we see that f ′(x) > 0 if −6 < x < −4, f ′(x) < 0 if −4 < x < 0,
f ′(x) < 0 if 0 < x < 6, f ′(x) > 0 if 6 < x. Hence f is strictly decreasing in [−4, 0) and in
(0, 6], strictly increasing in [−6,−4] and in [6,∞). It follows from the first-derivative test (Thm. 8.6.1)
that the two points x = −4 and x = 6 are respectively a local maximum and a local minimum, with
f (−4) = 1

2

√
2 and f (6) = 4

3

√
8 = 8

√
2/3. Also, according to the definition (8.6.1), the point x = −6

is another local minimum point.
(c) Since limx→0

√
x + 6 = 6 > 0, while limx→0−(1 + 2/x) = −∞ and limx→0+(1 + 2/x) = ∞, we

see that limx→0− f (x) = −∞ and limx→0+ f (x) = ∞. Furthermore,

lim
x→∞ f ′(x) = lim

x→∞

(x2 − 2x − 24

2x2
· 1√

x + 6

)
= lim

x→∞

((
1

2
− 1

x
− 12

x2

)
· 1√

x + 6

)
= 1

2
· 0 = 0

y

−4

−2

2

4

6

8

x−6 −4 −2 2 4 6 8 10

Figure SM8.6.3
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7. f (x) = x3 + ax + b → ∞ as x → ∞, and f (x) → −∞ as x → −∞. By the intermediate value
theorem, the continuous function f has at least one real root. We have f ′(x) = 3x2 + a. We consider
two cases.

First, in case a ≥ 0, one has f ′(x) > 0 for all x �= 0, so f is strictly increasing, and there is only
one real root. Note that 4a3 + 27b2 ≥ 0 in this case.

Second, in case a < 0, one has f ′(x) = 0 for x = ±√−a/3 = ±√p, where p = −a/3. Because
f ′′(x) = 3x, the function f has a local maximum at x = −√p, where y = b + 2p

√
p, and a local

minimum at x = √p, where y = b − 2p
√

p. If either of these local extreme values is 0, the equation
has a double root, which is the case if and only if 4p3 = b2, that is, if and only if 4a3 + 27b2 = 0.
Otherwise, the equation has three real roots if and only if the local maximum value is positive and the
local minimum value is negative. This occurs ⇐⇒ b > −2p

√
p and b < 2p

√
p ⇐⇒ |b| < 2p

√
p

⇐⇒ b2 < 4p3 ⇐⇒ 4a3 + 27b2 < 0.

8.7

3. The answers given in the text can be found in a straightforward way by considering the signs of the
following derivatives:
(a) y ′ = −e−x(1+ x), y ′′ = xe−x (b) y ′ = (x − 1)/x2, y ′′ = (2− x)/x3

(c) y ′ = x2e−x(3− x), y ′′ = xe−x(x2 − 6x + 6) (d) y ′ = 1− 2 ln x

x3
, y ′′ = 6 ln x − 5

x4

(e) y ′ = 2ex(ex − 1), y ′′ = 2ex(2ex − 1) (f) y ′ = e−x(2− x2), y ′′ = e−x(x2 − 2x − 2)

Review Problems for Chapter 8

8. (a) The answer given in the text is easily found from the derivative h′(x) = ex(2− e2x)

(2+ e2x)2
.

(b) In fact, h is strictly increasing in (−∞, 1
2 ln 2], which includes (−∞, 0]. Also lim

x→−∞h(x) = 0, and

h(0) = 1/3. Thus, h defined on (−∞, 0] has an inverse defined on (0, 1/3] with values in (−∞, 0].

To find the inverse, note that
ex

2+ e2x
= y ⇐⇒ y(ex)2 − ex + 2y = 0. This quadratic equation in ex

has the roots ex = [1±
√

1− 8y2]/2y. We require the solution to satisfy x ≤ 0 and so ex ≤ 1 when
0 < y < 1/3. Now, taking the positive square root would give ex > 1/2y > 6 when 0 < y < 1/3. So
we must have ex = [1−

√
1− 8y2]/2y, and so x = ln(1 − √

1− 8y2 ) − ln(2y). Using x as the free
variable, h−1(x) = ln(1−√1− 8x2 )− ln(2x). The function and its inverse are graphed in Fig. SM8.R.8.

y

−1.5

−1.0

−0.5

0.5

x−1.5 −1.0 −0.5 0.5

h

h−1

Figure SM8.R.8
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10. (a) Because 3
√

u is defined for all real u, the only points x not in the domain are the ones for which
x2−a = 0, or x = ±√a. So the domain of f consists of all x �= ±√a. Since 3

√
u > 0 if and only if u > 0,

the denominator in the expression for f (x), 3
√

x2 − a, is positive if and only if x2 > a, i.e. if and only if
x < −√a or x >

√
a. The numerator in the expression for f (x) is x, and a sign diagram then reveals that

f (x) is positive in (−√a, 0) and in (
√

a,∞). Since f (−x) = −x

3
√

(−x)2 − a
= − x

3
√

x2 − a
= −f (x),

the graph of f is symmetric about the origin.
(b) Writing 3

√
x2 − a as (x2 − a)1/3 and then differentiating yields

f ′(x) = 1 · (x2 − a)1/3 − x · 1
3 (x2 − a)−2/3 · 2x

(x2 − a)2/3
= x2 − a − x · 1

3 2x

(x2 − a)4/3
=

1
3 (x2 − 3a)

(x2 − a)4/3

Here the second equality was obtained by multiplying both denominator and numerator by (x2 − a)2/3.
Of course, f ′(x) is not defined at±√a. Except at these points, the denominator is always positive (since
(x2− a)4/3 = ((x2− a)1/3)4). The numerator, 1

3 (x2− 3a) = 1
3 (x+√3a)(x−√3a), is 0 at x = ±√3a,

nonnegative in (−∞,−√3a] and in [
√

3a,∞). Since f and f ′ are not defined at ±√a, we find that
f (x) is increasing in (−∞,−√3a] and in [

√
3a,∞), decreasing in [−√3a,−√a), in (−√a,

√
a), and

in (
√

a,
√

3a]. It follows that x = −√3a is a local maximum point and x = √3a is a local minimum
point.
(c) Differentiating once more, we find that

f ′′(x) =
2
3x(x2 − a)4/3 − 1

3 (x2 − 3a) · 4
3 (x2 − a)1/3 · 2x

(x2 − a)8/3
=

2
9x(9a − x2)

(x2 − a)7/3

Here the second equality was obtained by dividing each term in the denominator and the numerator by
(x2 − a)1/3, then simplifying the numerator. The resulting expression for f ′′(x) shows that there are
inflection points where x equals−3

√
a, 0, and 3

√
a. (f ′′(x) is 0 at these points, and changes sign around

each of them.)

11. Note first that f (x)→ 0 as x →±∞ (divide denominator and numerator by x3). Differentiation yields

f ′(x) = 18x2(x4 + x2 + 2)− 6x3(4x3 + 2x)

(x4 + x2 + 2)2
= −6x2(x4 − x2 − 6)

(x4 + x2 + 2)2
= −6x2(x2 − 3)(x2 + 2)

(x4 + x2 + 2)2

so f is stationary when x = 0 and when x = ±√3. Moreover, f ′ changes sign from negative to positive
as x increases through −√3, then it switches back to negative as x increases through

√
3. It follows that

x = √3 is a local (and global) maximum point, that x = −√3 is a local (and global) minimum point,
and x = 0 is neither. (It is an inflection point.) Note moreover that f (−x) = −f (x) for all x, so the
graph is symmetric about the origin. The graph of f is shown in Fig. A8.R.11 in the text.

Chapter 9 Integration

9.1

4. (a)
∫

(t3 + 2t − 3) dt =
∫

t3 dt +
∫

2t dt −
∫

3 dt = 1
4 t4 + t2 − 3t + C

(b)
∫

(x−1)2 dx =
∫

(x2−2x+1) dx = 1
3x3−x2+x+C. Alternative: Since

d

dx
(x−1)3 = 3(x−1)2,
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we have
∫

(x − 1)2 dx = 1
3 (x − 1)3 + C1. This agrees with the first answer, with C1 = C + 1/3.

(c)
∫

(x − 1)(x + 2) dx =
∫

(x2 + x − 2) dx = 1
3x3 + 1

2x2 − 2x + C

(d) Either first evaluate (x+2)3 = x3+6x2+12x+8, to get
∫

(x+2)3 dx = 1
4x4+2x3+6x2+8x+C,

or:
∫

(x + 2)3 = 1
4 (x + 2)4 + C1. (e)

∫
(e3x − e2x + ex) dx = 1

3e3x − 1
2e2x + ex + C

(f)
∫

x3 − 3x + 4

x
dx =

∫ (
x2 − 3+ 4

x

)
dx = 1

3x3 − 3x + 4 ln |x| + C

5. (a) First simplify the integrand:
(y − 2)2

√
y
= y2 − 4y + 4√

y
= y3/2 − 4y1/2 + 4y−1/2. From this we get

∫
(y − 2)2

√
y

dy=
∫

(y3/2 − 4y1/2 + 4y−1/2) dy= 2
5y5/2 − 8

3y3/2 + 8y1/2 + C.

(b) Polynomial division:
x3

x + 1
= x2−x+1− 1

x + 1
, so

∫
x3

x + 1
dx = x3

3
− x2

2
+x− ln |x+1|+C.

(c)
d

dx
(1+ x2)16 = 16(1+ x2)15 · 2x = 32x(1+ x2)15, so

∫
x(1+ x2)15 dx = 1

32 (1+ x2)16 + C.

13. f ′(x) =
∫

(x−2+x3+2) dx = −x−1+ 1

4
x4+2x+C. With f ′(1) = 1

4
we have

1

4
= −1+ 1

4
+2+C,

so C = −1. Now integration yields f (x) =
∫

(−x−1+ 1

4
x4+2x−1) dx = − ln x+ 1

20
x5+x2−x+D.

With f (1) = 0 we have 0 = − ln 1+ 1

20
+ 1− 1+D, so D = − 1

20
.

9.2

5. We do only (c) and (f):
∫ 3

−2

( 1
2x2 − 1

3x3) dx =
3

−2
( 1

6x3 − 1
12x4) =

3

−2

1
12x3(2− x) = − 27

12 + 32
12 = 5

12 .

(f)
∫ 3

2

( 1

t − 1
+ t

)
dt =

3

2

[
ln(t − 1)+ 1

2 t2
] = ln 2+ 9

2 − 4
2 = ln 2+ 5

2

6. (a) f (x) = x3 − 3x2 + 2x and so f ′(x) = 3x2 − 6x + 2 = 0 for x0 = 1−√3/3 and x1 = 1+√3/3.

We see that f ′(x) > 0 ⇐⇒ x < x0 or x > x1. Also, f ′(x) < 0 ⇐⇒ x0 < x < x1. So f is (strictly)
increasing in (−∞, x0] and in [x1,∞), and (strictly) decreasing in [x0, x1].

(b) See the graph in the text.
∫ 1

0
f (x) dx =

∫ 1

0
(x3− 3x2+ 2x) dx =

1

0

(x4

4
− x3+ x2) = 1

4
− 0 = 1

4
.

9.3

4. (a)
∫ 1

0
(xp+q + xp+r ) dx =

1

0

xp+q+1

p + q + 1
+ xp+r+1

p + r + 1
= 1

p + q + 1
+ 1

p + r + 1

(b) Equality (i) implies a+b = 6. Also, f ′′(x) = 2ax+b, so equality (ii) implies 2a+b = 18. It follows

that a = 12 and b = 6, so f ′(x) = 12x2 − 6x. But then f (x) =
∫

(12x2 − 6x) dx = 4x3 − 3x2 + C,

and since we want
∫ 2

0
(4x3 − 3x2 + C) = 18, we must have 16− 8+ 2C = 18, hence C = 5.
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5. (a) See the text. (b)
∫ 1

0
(x2 + 2)2 dx =

∫ 1

0
(x4 + 4x2 + 4) dx =

1

0
( 1

5x5 + 4
3x3 + 4x) = 83/15

(c)
∫ 1

0

x2 + x +√x + 1

x + 1
dx =

∫ 1

0

x(x + 1)+ (x + 1)1/2

x + 1
dx =

∫ 1

0
(x + (x + 1)−1/2) dx =

1

0
( 1

2x2 + 2(x + 1)1/2) = 1
2 + 2

√
2− 2 = 2

√
2− 3

2

(d) A
x + b

x + c
+ d

x
= A

x + c + b − c

x + c
+ d

x
= A+ A(b − c)

x + c
+ d

x
. Now integrate.

9. W(T ) = K(1 − e−�T )/�T . Here W(T ) → 0 as T → ∞, and by l’Hôpital’s rule, W(T ) → K as
T → 0+. For T > 0, we find W ′(T ) = Ke−�T (1 + �T − e�T )/�T 2 < 0 because e�T > 1 + �T (see
Problem 6.11.11). We conclude that W(T ) is strictly decreasing and that W(T ) ∈ (0, K).

10. (a) f ′(x) = 2√
x + 4 (

√
x + 4− 2)

> 0 for all x > 0. Also, f (x) → −∞ as x → 0, whereas

f (x)→∞ as x →∞. It follows that f is strictly increasing on (0,∞), with range equal to �. Hence f

has an inverse defined on �. To find the inverse, note that y = 4 ln(
√

x + 4−2) ⇐⇒ ln(
√

x + 4−2) =
y/4 ⇐⇒ √x + 4 = ey/4 + 2 ⇐⇒ x + 4 = (ey/4 + 2)2 ⇐⇒ x = ey/2 + 4ey/4. It follows that the
inverse is g(x) = ex/2 + 4ex/4. (b) See Fig. A9.3.10.
(c) In Fig. A9.3.10 the graphs of f and g are symmetric about the line y = x, so area A = area B. But
area B is the difference between the area of a rectangle with base a and height 10, and the area below the
graph of g over the interval [0, a]. Therefore,

A = B = 10a −
∫ a

0
(ex/2 + 4ex/4) dx = 10a − 2ea/2 − 16ea/4 + 2+ 16

Because a = f (10) = 4 ln(
√

14− 2), we have ea/2 = (
√

14− 2)2 = 14− 4
√

14+ 4 = 18− 4
√

14 and
also ea/4 = √14− 2. Hence,

A = B = 10a − 2(18− 4
√

14)− 16(
√

14− 2)+ 18 = 40 ln(
√

14− 2)+ 14− 8
√

14 ≈ 6.26

9.4
2. (a) Let n be the total number of individuals. The number of individuals with income in the interval [b, 2b]

is then N = n

∫ 2b

b

Br−2 dr = n
2b

b

−Br−1 = nB

2b
. Their total income is M = n

∫ 2b

b

Br−2r dr =

n

∫ 2b

b

Br−1 dr = n
2b

b

B ln r = nB ln 2. Hence the mean income is m = M/N = 2b ln 2.

(b) Total demand is x(p) =
∫ 2b

b

nD(p, r)f (r) dr =
∫ 2b

b

nApγ rδBr−2 dr = nABpγ

∫ 2b

b

rδ−2 dr =

nABpγ
2b

b

rδ−1

δ − 1
= nABpγ bδ−1 2δ−1 − 1

δ − 1
.

9.5

1. (a) See the text. (b)
∫

3xe4x dx = 3x · 1
4e4x −

∫
3 · 1

4e4x dx = 3
4xe4x − 3

16e4x + C

(c)
∫

(1+ x2)e−x dx = (1+ x2)(−e−x)−
∫

2x(−e−x) dx = −(1+ x2)e−x + 2
∫

xe−x dx.
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Using the answer to (a) to evaluate the last integral, we get
∫

(1+ x2)e−xdx = −(1+ x2)e−x − 2xe−x − 2e−x + C = −(x2 + 2x + 3)e−x + C

(d)
∫

xln x dx = 1
2x2 ln x −

∫
1
2x2 1

x
dx = 1

2x2 ln x −
∫

1
2x dx = 1

2x2 ln x − 1
4x2 + C

2. (a) See the text. (b) Recall that d
dx

2x = 2x ln 2, and therefore 2x/ ln 2 is the indefinite integral of 2x .
If follows that∫ 2

0
x2x dx =

2

0
x

2x

ln 2
−

∫ 2

0

2x

ln 2
dx = 8

ln 2
−

2

0

2x

(ln 2)2
= 8

ln 2
−

( 4

(ln 2)2
− 1

(ln 2)2

)
= 8

ln 2
− 3

(ln 2)2

(c) First use integration by parts on the indefinite integral. By (9.5.1) with f (x) = x2 and g(x) = ex ,

(∗)
∫

x2ex dx = x2ex −
∫

2xex dx. To evaluate the last integral we must use integration by parts once

more. With f (x) = 2x and g(x) = ex , we get
∫

2xex dx = 2xex −
∫

2ex dx = 2xex − (2ex + C).

Inserted into (∗) this gives
∫

x2ex dx = x2ex − 2xex + 2ex + C, and hence,
∫ 1

0
x2ex dx =

1

0
(x2ex −

2xex + 2ex) = (e− 2e+ 2e)− (0− 0+ 2) = e− 2. Alternatively, and more compactly, using formula

(9.5.2):
∫ 1

0
x2ex dx =

1

0
x2ex − 2

∫ 1

0
xex dx = e− 2

[ 1

0
xex −

∫ 1

0
ex dx

]
= e− 2

[
e−

1

0
ex

] = e− 2.

(d) We must write the integrand in the form f (x)g′(x). If we let f (x) = x and g′(x) = √1+ x =
(1+ x)1/2, then what is g? A certain amount of reflection should suggest choosing g(x) = 2

3 (1+ x)3/2.
Using (9.5.2) then gives

∫ 3

0
x
√

1+ x dx =
3

0
x · 2

3 (1+ x)3/2 −
∫ 3

0
1 · 2

3 (1+ x)3/2 dx

= 3 · 2
3 · 43/2 − 2

3
3
0

2
5 (1+ x)5/2 = 16− 4

15 (45/2 − 1) = 16− 4
15 · 31 = 7 11

15

Alternatively, we could have found the indefinite integral of x
√

1+ x first, and then evaluated the definite
integral by using definition (9.2.3) of the definite integral. Figure SM9.5.2(d) shows the area under the
graph of y = x

√
1+ x over the interval [0, 3], and you should ask yourself if 7 11

15 is a reasonable estimate
of the area of A.

y

1

2

3

4

5

6

x
1 2 3 4 5

A

y = x
√

1+ x

Figure SM9.5.2(d)
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6. (a) By formula (9.5.2),
∫ T

0
te−rt dt =

T

0
t
−1

r
e−rt −

∫ T

0

−1

r
e−rt dt = −T

r
e−rT + 1

r

∫ T

0
e−rt dt =

−T

r
e−rT + 1

r

T

0

−1

r
e−rt = 1

r2
(1− (1+ rT )e−rT ). Multiply this expression by b.

(b)
∫ T

0
(a + bt)e−rt dt = a

∫ T

0
e−rt dt + b

∫ T

0
te−rt dt , and so on using (a).

(c)
∫ T

0
(a−bt+ ct2)e−rt dt = a

∫ T

0
e−rt dt−b

∫ T

0
te−rt dt+ c

∫ T

0
t2e−rt dt . Use the previous results

and
∫ T

0
t2e−rt dt =

T

0
t2(−1/r)e−rt −

∫ T

0
2t (−1/r)e−rt dt = −(1/r)T 2e−rT + (2/r)

∫ T

0
te−rt dt.

9.6
2. (a) See the text. (b) With u = x3+2 we get du = 3x2 dx and

∫
x2ex3+2 dx =

∫
1
3eu du = 1

3eu+C =
1
3ex3+2+C. (c) First one might try u = x+2, which gives du = dx and

∫
ln(x + 2)

2x + 4
dx =

∫
ln u

2u
du.

This does not look simpler than the original integral. A better idea is to substitute u = ln(x + 2). Then

du = dx

x + 2
and

∫
ln(x + 2)

2x + 4
dx =

∫
1
2u du = 1

4 (u)2 + C = 1
4 (ln(x + 2))2 + C.

(d) First attempt: u = 1+x. Then, du = dx, and
∫

x
√

1+ x dx =
∫

(u−1)
√

u du =
∫

(u3/2−u1/2) du

= 2

5
u5/2− 2

3
u3/2+C = 2

5
(1+x)5/2− 2

3
(1+x)3/2+C. Second attempt: u = √1+ x. Then u2 = 1+x

and 2udu = dx. Then the integral is
∫

x
√

1+ x dx = ∫
(u2− 1)u2u du = ∫

(2u4− 2u3) du, and so on.
Check that you get the same answer. Actually, even integration by parts works in this case. See Problem
9.5.2(d).

(e) With u = 1 + x2 one has x2 = u − 1, and du = 2x dx, so
∫

x3

(1+ x2)3
dx =

∫
x2 · x

(1+ x2)3
dx =

1
2

∫
u− 1

u3
du = 1

2

∫
(u−2 − u−3) du = − 1

2u−1 + 1
4u−2 + C = −1

2(1+ x2)
+ 1

4(1+ x2)2
+ C.

(f)Withu = √4− x3, u2 = 4−x3, and 2u du = −3x2 dx, so
∫

x5
√

4− x3 dx =
∫

x3
√

4− x3 x2 dx =∫
(4−u2) u (− 2

3 )u du =
∫

(− 8
3u2+ 2

3u4) du = − 8
9u3+ 2

15u5+C = − 8
9 (4−x3)3/2+ 2

15 (4−x3)5/2+C.

6. (a) I =
∫ 1

0
(x4 − x9)(x5 − 1)12 dx =

∫ 1

0
−x4(x5 − 1)13 dx. Introduce u = x5 − 1. Then du = 5x4dx.

Now we use (9.6.2) along with the facts that u = −1 when x = 0 and u = 0 when x = 1. The integral

becomes I = −
∫ 0

−1

1
5u13 du = −

0

−1

1
70u14 = 1

70 .

(b) With u = √x one has u2 = x and 2u du = dx. Then
∫

ln x√
x

dx = 2
∫

ln u2 du = 4
∫

ln u du =
4(u ln u− u)+ C = 4

√
x ln
√

x − 4
√

x + C = 2
√

x ln x − 4
√

x + C. (Integration by parts also works
in this case, with f (x) = ln x and g′(x) = 1/

√
x.)

(c) With u = 1 + √x one has (u − 1)2 = x, so 2(u − 1) du = dx. Again we use (9.6.2) along
with the facts that u = 1 when x = 0 and u = 3 when x = 4. The specified integral becomes∫ 3

1

2(u− 1)√
u

du = 2
∫ 3

1
(u1/2−u−1/2) du = 2

3

1
( 2

3u3/2−2u1/2) = 8
3 . (The substitution u = √

1+√x

also works.)
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7. (a) With u = 1 + e
√

x one has du = 1

2
√

x
· e
√

x dx. Now x = 1 gives u = 1 + e and x = 4 gives

u = 1+ e2. Thus
∫ 4

1

e
√

x

√
x (1+ e

√
x)

dx =
∫ 1+e2

1+e

2 du

u
= 2

1+e2

1+e

ln u = 2 ln(1+ e2)− 2 ln(1+ e).

(b) A natural substitution is u = ex + 1 leading to du = ex dx and so dx = du/ex = du/(u − 1).

When x = 0, u = 2, when x = 1/3, u = e1/3 + 1. Thus,
∫ 1/3

0

dx

ex + 1
=

∫ e1/3+1

2

1

u(u− 1)
du =

∫ e1/3+1

2

(
1

u− 1
− 1

u

)
du =

e1/3+1

2

(
ln |u− 1| − ln |u|) = 1

3 − ln(e1/3 + 1)+ ln 2 = ln 2− ln(e−1/3 + 1)

because 1
3 − ln(e1/3 + 1) = ln[e1/3/(e1/3 + 1)] = − ln(e−1/3 + 1).

Rewriting the integrand as
e−x

1+ e−x
, the suggested substitution t = e−x (or even better u = 1+e−x),

dt = −e−x dx works well. Verify that you get the same answer.

(c) With z4 = 2x − 1 one has 4z3 dz = 2 dx. Also x = 8.5 gives z = 2 and x = 41 gives z = 3. The

integral becomes
∫ 3

2

2z3 dz

z2 − z
= 2

∫ 3

2

z2 dz

z− 1
= 2

∫ 3

2

(
z+1+ 1

z− 1

)
dz = 2

3

2

(
1
2z2+z+ln(z−1)

)
dz =

7+ 2 ln 2.

9.7

3. (a) See the text. (b) Using a simplified notation and the result in Example 1(a), we have∫ ∞
0

(x − 1/λ)2 λe−λx dx = −
∞

0
(x − 1/λ)2 e−λx +

∫ ∞
0

2 (x − 1/λ) e−λx dx

= 1/λ2 + 2
∫ ∞

0
xe−λx dx − (2/λ)

∫ ∞
0

e−λx dx = 1/λ2 + 2/λ2 − 2/λ2 = 1/λ2, where we have used

both the result of Example 1(a) and part (a) in order to derive the penultimate equality.

(c)
∫ ∞

0
(x − 1/λ)3 λe−λx dx = −

∞

0
(x − 1/λ)3 e−λx +

∫ ∞
0

3 (x − 1/λ)2 e−λx dx

= −1/λ3 + (3/λ)

∫ ∞
0

(x − 1/λ)2 λe−λx dx = −1/λ3 + (3/λ)(1/λ2) = 2/λ3, where we have used the

result of part (b) in order to derive the penultimate equality.

5. (a) f ′(x) = (1− 3 ln x)/x4 = 0 at x = e1/3, with f ′(x) > 0 for x < e1/3 and f ′(x) < 0 for x > e1/3.
Hence f has a maximum at (e1/3, 1/3e). Since f (x) → −∞ as x → 0+, there is no minimum. Note
that f (x)→ 0 as x →∞. (Use l’Hôpital’s rule.)

(b)
∫ b

a

x−3 ln x dx = −
b

a

1

2
x−2 ln x +

∫ b

a

1

2
x−3 dx =

b

a

(
−1

2
x−2 ln x − 1

4
x−2

)
. This diverges when

b = 1 and a→ 0. But
∫∞

1 x−3 ln x dx = 1/4.

7. Provided that both limits exist, the integral is the sum of I1 = lim
ε→0+

∫ 3

−2+ε

(
1/
√

x + 2
)
dx and I2 =

lim
ε→0+

∫ 3−ε

−2

(
1/
√

3− x
)
dx. Here I1 = lim

ε→0+

3

−2+ε

(
2
√

x + 2
) = lim

ε→0+

(
2
√

5 − 2
√

ε
) = 2

√
5, and

I2 = lim
ε→0+

3−ε

−2

(−2
√

3− x
) = lim

ε→0+

(−2
√

ε + 2
√

5
) = 2

√
5.
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12. The substitution u = (x − μ)/
√

2σ gives du = dx/σ
√

2, and so dx = σ
√

2 du. It is used in (a)–(c).

(a)
∫ +∞
−∞

f (x) dx = 1√
π

∫ +∞
−∞

e−u2
du = 1, by (9.7.8).

(b)
∫ +∞
−∞

xf (x) dx = 1√
π

∫ +∞
−∞

(μ+√2σu)e−u2
du = μ, using part (a) and Example 3.

(c)
∫ +∞
−∞

(x − μ)2f (x) dx =
∫ +∞
−∞

2σ 2u2 1

σ
√

2π
e−u2

σ
√

2 du = σ 2 2√
π

∫ +∞
−∞

u2e−u2
du. Now inte-

gration by parts yields
∫

u2e−u2
du = − 1

2ue−u2 +
∫

1
2e−u2

du, so
∫ +∞
−∞

u2e−u2
du = 1

2

√
π . Hence the

integral equals σ 2.

9.8

10. (a) If f �= r , the equation can be rewritten as ẋ = (r − f )x
(

1− x

(1− f/r)K

)
. There are two constant

solutions x ≡ 0 and x ≡ (1− f/r)K , though the latter is negative, so biologically meaningless, unless

f ≤ r . With r̄ = r − f and K̄ = (1 − f/r)K , the equation is x = r̄x
(

1 − x

K̄

)
. Using (9.8.7), the

solution is
x(t) = K̄

1+ K̄ − x0

x0
e−r̄ t

= (1− f/r)K

1+ (1− f/r)K − x0

x0
e−(r−f )t

In the special case when f = r , the equation reduces to ẋ = −rx2/K . Separating the variables gives
−dx/x2 = (r/K) dt , and integration gives 1/x = rt/K + C. If x(0) = x0, we get C = 1/x0, so the

solution is x = 1

rt/K + 1/x0
→ 0 as t →∞.

(b) When f > r , the solution to the differential equation given in part (a) is still valid even though both
K̄ and r̄ are negative. Because the fish rate f exceeds the replenishment rate r , however, the fish stock
steadily declines. Indeed, as t → ∞ one has e−(r−f )t → ∞ and in fact the solution of the equation
satisfies x(t)→ 0. That is, the fish stock tends to extinction.

9.9

2. (a) dx/dt = e2t /x2. Separate:
∫

x2 dx =
∫

e2t dt . Integrate: 1
3x3 = 1

2e2t + C1. Solve for x:

x3 = 3
2e2t + 3C1 = 3

2e2t + C, with C = 3C1. Hence, x = 3
√

3
2e2t + C. (It is important to put in the

constant at the integration step. Adding it later leads to an error: 1
3x3 = 1

2e2t , x3 = 3
2e2t , x = 3

√
3
2e2t+C.

This is a solution only if C = 0, and is not the general solution.)

(b) dx/dt = e−t ex , so
∫

e−x dx =
∫

e−t dt . Integrate: −e−x = −e−t+C1. Solve for x: e−x = e−t+C,

with C = −C1. Hence, −x = ln(e−t + C), so x = − ln(e−t + C).
(c) Directly from (9.9.3). (d) Similar to (a).

(e) By (9.9.5), x = Ce2t + e2t

∫
(−t)e−2t dt = Ce2t − e2t

∫
te−2t dt . Here

∫
te−2t dt = t (− 1

2 )e−2t +
1
2

∫
e−2t dt = (− 1

2 t − 1
4 )e−2t and thus x = Ce2t − e2t (− 1

2 t − 1
4 )e−2t = Ce2t + 1

2 t + 1
4 .

(f) By (9.9.5), x = Ce−3t + e−3t

∫
e3t tet2−3t dt = Ce−3t + e−3t

∫
tet2

dt = Ce−3t + 1
2et2−3t .
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5. (a) See the text. (b)
∫

K−α dK = ∫
γL0e

βt dt , so
1

1− α
K1−α = γL0

β
eβt + C1.

Hence, K1−α = γL0(1− α)

β
eβt + (1− α)C1. At t = 0 one has K1−α

0 = γL0(1− α)

β
+ (1− α)C1, so

K1−α = (1− α)γL0

β
(eβt − 1)+K1−α

0 , from which we find K .

Review Problems for Chapter 9

4. (a) 5/4. (Example 9.7.2.) (b)
1

0

1

20
(1+ x4)5 = 31/20 (c)

∞

0
5te−t −

∫ ∞
0

5e−t dt = 5
∞

0
e−t = −5

(d)
∫ e

1
(ln x)2 dx =

e

1
x(ln x)2 − 2

∫ e

1
ln x dx = e − 2

e

1
(x ln x − x) = e − 2

(e)
2

0

2

9
(x3 + 1)3/2 = 2

9
(93/2 − 1) = 52/9 (f)

0

−∞
1

3
ln(e3z + 5) = 1

3
(ln 6− ln 5) = 1

3
ln(6/5)

(g)
1

4

e/2

1/2
x4 ln(2x)− 1

4

∫ e/2

1/2
x3 dx = 1

4
(e/2)4 − 1

16
[(e/2)4 − (1/2)4] = (1/256)(3e4 + 1)

(h) Introduce u = √x. Then u2 = x, so 2u du = dx, and
∫ ∞

1

e−
√

x

√
x

dx =
∫ ∞

1

e−u 2u du

u
=

2
∫ ∞

1
e−u du = 2e−1.

5. (a) With u = 9 + √x one has x = (u − 9)2 and so dx = 2(u − 9) du. Also, u = 9 when x = 0 and

u = 14 when x = 25. Thus
∫ 25

0

1

9+√x
dx =

∫ 14

9

2(u− 9)

u
du =

∫ 14

9

(
2− 18

u

)
du = 10− 18 ln

14

9
.

(b) With u = √t + 2 one has t = u2 − 2 and so dt = 2u du. Also, u = 2 when t = 2 and u = 3 when

t = 7. Hence
∫ 7

2
t
√

t + 2 dt =
∫ 3

2
(u2 − 2)u · 2u du = 2

∫ 3

2
(u4 − 2u2) du = 2

3

2

(
1
5u5 − 2

3u3
)
=

2
[( 243

5 − 54
3

)− ( 32
5 − 16

3

)] = 422
5 − 76

3 = 886/15.

(c) With u = 3
√

19x3 + 8 one has u3 = 19x3 + 8 and so 3u2du = 57x2dx. Also, x = 0 gives u = 2 and

x = 1 gives u = 3. Therefore
∫ 1

0
57x2 3

√
19x3 + 8 dx =

∫ 3

2
3u3 du =

3

2

3
4u4 = 195/4.

10. (a) As in Example 9.4.3, first we need to find P ∗ and Q∗. From the equilibrium condition f (Q∗) =
100 − 0.05Q∗ = g(Q∗) = 0.1Q∗ + 10, we obtain 0.15Q∗ = 90, and so Q∗ = 600. Then P ∗ =
g(Q∗) = 0.1Q∗ + 10 = 70. Moreover,

CS =
∫ 600

0
(f (Q)− P ∗) dQ =

∫ 600

0
(30− 0.05q) dq =

600

0

(
30Q− 0.05

2
Q2) = 9000

PS =
∫ 600

0
(P ∗ − g(Q)) dQ =

∫ 600

0
(60− 0.1Q) dQ =

600

0

(
60Q− 0.1

2
Q2) = 18000

(b) Equilibrium occurs when 50/(Q∗ + 5) = 4.5+ 0.1Q∗. Clearing fractions and then simplifying, we
obtain (Q∗)2 + 50Q∗ − 275 = 0. The only positive solution is Q∗ = 5, and then P ∗ = 5.

CS =
∫ 5

0

[
50

Q+ 5
− 5

]
dQ =

5

0
[50 ln(Q+ 5)− 5Q] = 50 ln 2− 25

PS =
∫ 5

0
(5− 4.5− 0.1Q) dQ =

5

0
(0.5Q− 0.05Q2) = 2.5− 1.25 = 1.25
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11. (a) f ′(t) = 4
2 ln t · (1/t) · t − (ln t)2 · 1

t2
= 4

(2− ln t) ln t

t2
, and

f ′′(t) = 4
[2 · (1/t)− 2 ln t · (1/t)] t2 − [2 ln t − (ln t)2] 2t

t4
= 8

(ln t)2 − 3 ln t + 1

t3

(b) f ′(t) = 0 ⇐⇒ ln t (2 − ln t) = 0 ⇐⇒ ln t = 2 or ln t = 0 ⇐⇒ t = e2 or t = 1. But
f ′′(1) = 8 > 0 and f ′′(e2) = −8e−6, so t = 1 is a local minimum point and t = e2 ≈ 7.4 is a local
maximum point. We find f (1) = 0 and f (e2) = 16e−2 ≈ 2.2.

(c) The function is positive on [1, e2], so the area is A = 4
∫ e2

1

(ln t)2

t
dt . With u = ln t as a new variable,

du = 1
t
dt . When t = 1 then u = 0, and t = e2 implies u = 2. Hence, A = 4

∫ 2
0 u2 du = 4 2

0
1
3u3 = 32

3 .

13. (a) Separable.
∫

x−2 dx =
∫

t dt , and so −1/x = 1
2 t2 + C1, or x = 1/(C − 1

2 t2) (with C = −C1).

(b) and (c): Direct use of (9.9.3). (d) Using (9.9.5), x = Ce−5t + 10e−5t

∫
te5t dt . Here

∫
te5t dt =

t
1

5
e5t − 1

5

∫
e5t dt = 1

5
te5t − 1

25
e5t . Thus x = Ce−5t + 10e−5t ( 1

5 te5t − 1
25e5t ) = Ce−5t + 2t − 2

5 .

(e) x = Ce−t/2+e−t/2
∫

et/2et dt = Ce−t/2+e−t/2
∫

e3t/2 dt = Ce−t/2+e−t/2 2

3
e3t/2 = Ce−t/2+ 2

3
et .

(f) x = Ce−3t + e−3t

∫
t2e3t dt = Ce−3t + e−3t

(
1

3
t2e3t − 2

3

∫
te3t dt

)

= Ce−3t + 1
3 t2 − 2

3e−3t

(
1
3 te3t − 1

3

∫
e3t dt

)
= Ce−3t + 1

3 t2 − 2
9 t + 2

27 .

16. (a) and (b), see the text. (c) F ′′(x) = f ′(x) = −λ2ae−λx(e−λx + a)−2 + 2λ2ae−2λx(e−λx + a)−3 =
aλ2e−λx(e−λx−a)(e−λx+a)−3. Note that F ′′(x) = 0 for e−λx = a, i.e. for x0 = −(ln a/λ). Since F ′′(x)

changes sign about x0 = − ln(a/λ), this is an inflection point. F(x0) = F(−(ln a/λ)) = a/(a + a) =
1/2. See the graph in Fig. A9.R.16. (d)

∫ ∞
−∞

f (x) dx = lim
a→−∞

∫ 0

a

f (x)dx + lim
b→∞

∫ b

0
f (x) dx =

lim
a→−∞[F(0)− F(a)]+ lim

b→∞[F(b)− F(0)] = 1, by (a).

Chapter 10 Interest Rates and Present Values

10.2

6. With g(x) = (1+ r/x)x for all x > 0 one has ln g(x) = x ln(1+r/x). Differentiating gives g′(x)/g(x) =
ln(1+ r/x)+ x(−r/x2)/(1+ r/x) = ln(1+ r/x)− (r/x)/(1+ r/x), as claimed in the problem.
Putting h(u) = ln(1+ u)− u/(1+ u), one has h′(u) = u/(1+ u)2 > 0 for u > 0, so h(u) > 0 for all
u > 0, implying that g′(x)/g(x) = h(r/x) > 0 for all x > 0. So g(x) is strictly increasing for x > 0.
Because g(x) → er as x → ∞, it follows that g(x) < er for all x > 0. Continuous compounding of
interest is best for the lender.

10.4

6. Let x denote the number of years beyond 1971 that the extractable resources of iron will last. We
need to solve the equation 794 + 794 · 1.05 + · · · + 794 · (1.05)x = 249 · 103. Using (10.4.3),
794[1− (1.05)x+1]/(1− 1.05) = 249 · 103 or (1.05)x+1 = 249 · 103 · 0.05/794+ 1 = 12450/794+ 1 ≈

© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012



C H A P T E R 1 0 I N T E R E S T R A T E S A N D P R E S E N T V A L U E S 35

16.68. Using a calculator, we find x ≈ (ln 16.68/ ln 1.05)−1 ≈ 56.68, so the resources will be exhausted
part way through the year 2028.

8. (a) The quotient of this infinite series is e−rt , so the sum is f (t) = P(t)e−rt

1− e−rt
= P(t)

ert − 1
.

(b) f ′(t) = P ′(t)(ert − 1)− P(t)rert

(ert − 1)2
, and t∗ > 0 can only maximize f (t) if f ′(t∗) = 0, that is, if

P ′(t∗)(ert∗ − 1) = rP (t∗)ert∗ , which implies that
P ′(t∗)
P (t∗)

= r

1− e−rt∗ .

(c) lim
r→0

r

1− e−rt∗ =
“0

0

” = lim
r→0

1

t∗e−rt∗ =
1

t∗

11. See Fig. SM10.4.11. If p > 1, then
∑∞

n=1(1/np) = 1+∑∞
n=2(1/np) is finite because

∑∞
n=2(1/np) is the

sum of the shaded rectangles, and this sum is certainly less than the area under the curve y = 1/xp over
[1,∞), which is equal to 1/(p−1). If p ≤ 1, the sum

∑∞
n=1(1/np) is the sum of the larger rectangles in

the figure, and this sum is larger than the area under the curve y = 1/xp over [1,∞), which is unbounded
when p ≤ 1. Hence,

∑∞
n=1(1/np) diverges in this case.

y

1

x1 2 3 4

y = 1/xp

Figure SM10.4.11

10.7
5. According to (10.7.1), the internal rate must satisfy

−100 000+ 10 000

1+ r
+ 10 000

(1+ r)2
+ · · · + 10 000

(1+ r)20
= 0

After dividing all the terms by 10 000, and putting s = 1/(1 + r), we have to show that the equation
f (s) = s20 + s19 + · · · + s2 + s − 10 = 0 has a unique positive solution. Since f (0) = −10 and
f (1) = 10, by the intermediate value theorem (Theorem 7.10.1), there exists a number s∗ between 0
and 1 such that f (s∗) = 0. This s∗ is the unique positive root because f ′(s) > 0 for all s > 0. In fact,
from (10.4.3), f (s) = −10+ (s− s21)/(1− s), and f (s∗) = 0 ⇐⇒ (s∗)21− 11s∗ + 10 = 0. Problem
7.R.26 asks for an approximation to the unique root of this equation in the interval (0, 1). The answer is
s = s∗ = 0.928, so r∗ = 1/s∗ − 1 ≈ 0.0775, which means that the internal rate of return is about 7 3

4 %.

Review Problems for Chapter 10
8. (a) See the text.

(b) We use formula (10.5.3) on the future value of an annuity: (5000/0.04)[(1.04)4 − 1] = 21 232.32

(c) The last of seven payments will be on 1st January 2006, when the initial balance of 10 000 will have
earned interest for 10 years. So K must solve 10 000 · (1.04)10 + K[(1.04)8 − 1]/0.04 = 70 000. We
find that K ≈ 5990.49.
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11. (a) f ′(t) = 100e
√

t/2e−rt
( 1

4
√

t
− r

)
. We see that f ′(t) = 0 for t = t∗ = 1/16r2. Since f ′(t) > 0 for

t < t∗ and f ′(t) < 0 for t > t∗, it follows that t∗ maximizes f (t).

(b) f ′(t) = 200e−1/t e−rt
( 1

t2
− r

)
. We see that f ′(t) = 0 for t = t∗ = 1/

√
r . Since f ′(t) > 0 for t < t∗

and f ′(t) < 0 for t > t∗, it follows that t∗ maximizes f (t).

Chapter 11 Functions of Many Variables

11.2
5. (a)–(c) are easy. (d) z = xy = (eln x)y = ey ln x = eu with u = y ln x. Then z′x = euu′x = xy(y/x) =

yxy−1. Similarly z′y = euu′y = xy ln x. Moreover, z′′xx = (∂/∂x)(yxy−1) = y(y − 1)xy−2. (When
differentiating xy−1 partially w.r.t. x, one treats y as a constant, so the rule dxa/dx = axa−1 applies.)
Similarly z′′yy = (∂/∂y)(xy ln x) = xy(ln x)2 and z′′xy = (∂/∂y)(yxy−1) = xy−1 + yxy−1 ln x.

11.3
9. (a) It might help to regard the figure as a contour map of a mountain, whose level curves join points at

the same height above mean sea level. Near P the terrain is rising in the direction of the positive x-axis,
so f ′x(P ) > 0, and it is also sloping down in the direction of the positive y-axis so f ′y(P ) < 0.

Near Q, the terrain slopes in the opposite directions. Hence f ′x(Q) < 0 and f ′y(Q) > 0.
(b) (i) The line x = 1 has no point in common with any of the given level curves. (ii) The line y = 2
intersects the level curve z = 2 at x = 2 and x = 6 (approximately).
(c) If you start at the point (6, 0) and move up along the line 2x + 3y = 12, the first marked level curve
you meet is z = f (x, y) = 1. Moving further you meet level curves with higher z-values. The level
curve with the highest z-value you meet is z = 3, which is the level curve that just touches the straight
line.

10. The stated inequalities on the partial derivatives imply that

F(1, 0)− F(0, 0) =
∫ 1

0
F ′1(x, 0) dx ≥

∫ 1

0
2 dx = 2

F(2, 0)− F(1, 0) =
∫ 2

1
F ′1(x, 0) dx ≥ 2; F(0, 1)− F(0, 0) =

∫ 1

0
F ′2(0, y) dy ≤ 1

F(1, 1)− F(0, 1) =
∫ 1

0
F ′1(x, 1) dx ≥ 2; F(1, 1)− F(1, 0) =

∫ 1

0
F ′2(1, y) dy ≤ 1

11.5
3. (a) In the first week it buys 120/50 = 2.4 million shares, followed successively by 120/60 = 2 million

shares, 120/45 = 2.667 million, 120/40 = 3 million, 120/75 = 1.6 million, and finally 120/80 = 1.5 million
in the sixth week. The total is 13.167 million shares.
(b) The arithmetic mean price is $350/6 = 58.33. But the total cost at that price of the 13.167 million
shares which the fund has acquired would be $13.167×58.33 = 768.031 million. So using the arithmetic
mean price would overstate the fund’s cost by $48.031 million. A more accurate statement of the mean
price is $720 / 13.167 = 54.68 per share. Routine arithmetic shows that this is the harmonic mean of the
six prices defined by formula (c) of Example 2.
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11.6
2. (a)–(d) are routine. (e) f (x, y, z) = (x2 + y3 + z4)6 = u6, with u = x2 + y3 + z4. Then f ′1 = 6u5u′1 =

6(x2+ y3+ z4)52x = 12x(x2+ y3+ z4)5, f ′2 = 6u5u′2 = 6(x2+ y3+ z4)53y2 = 18y2(x2+ y3+ z4)5,
f ′3 = 6u5u′3 = 6(x2 + y3 + z4)54z3 = 24z3(x2 + y3 + z4)5 (f) f (x, y, z) = exyz = eu, with u = xyz,
gives f ′1 = euu′1 = exyzyz. Similarly, f ′2 = euu′2 = exyzxz, and f ′3 = euu′3 = exyzxy.

10. From f = xyz

we get (∗) ln f = yz ln x. Differentiating (∗) w.r.t x yields f ′x/f = yz/x, and so
f ′x = fyz/x = xyz

yz/x = yzxyz−1. Differentiating (∗) w.r.t y yields f ′y/f = zyz−1 ln x, and so f ′y =
zyz−1(ln x)xyz

. Differentiating (∗) w.r.t z yields f ′z/f = yz(ln y)(ln x), and so f ′z = yz(ln x)(ln y)xyz

.

11. For (x, y) �= (0, 0), f ′1 = y(x4+4x2y2−y4)(x2+y2)−2 and f ′2(x, y) = x(x4−4x2y2−y4)(x2+y2)−2.
Thus, for y �= 0, f ′1(0, y) = −y. This is also correct for y = 0, because f ′1(0, 0) = limh→0[f (h, 0) −
f (0, 0)]/h = 0. Similarly, f ′2(x, 0) = x for all x.

It follows that f ′′12(0, y) = (∂/∂y)f ′1(0, y) = −1 for all y. In particular, f ′′12(0, 0) = −1. Similarly,
f ′′21(x, 0) = (∂/∂x)f ′2(x, 0) = 1 for all x, and so f ′′21(0, 0) = 1.

Straightforward differentiation shows that, for (x, y) �= (0, 0),

f ′′12(x, y) = f ′′21(x, y) = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
(∗)

Thus, outside the origin, the two cross partials are equal, in accordance with Young’s theorem. At the
origin, however, we have seen that f ′′12(0, 0) = −1 and f ′′21(0, 0) = 1. Therefore, at least one of f ′′12
and f ′′21 must be discontinuous there. Indeed, it follows from (∗) that f ′′12(x, 0) = 1 for all x �= 0 and
f ′′12(0, y) = −1 for all y �= 0. Thus, as close to (0, 0) as we want, we can find points where f ′′12 equals
1 and also points where f ′′12 equals −1. Therefore f ′′12 cannot be continuous at (0, 0). Exactly the same
argument shows that f ′′21 cannot be continuous at (0, 0).

11.7
2. (a) Y ′K = aAKa−1 and Y ′K = aBLa−1, so KY ′K + LY ′L = aAKa + aBLa = a(AKa + BLa) = aY

(b) KY ′K+LY ′L = KaAKa−1Lb+LAKabLb−1 = aAKaLb+bAKaLa = (a+b)AKaLb = (a+b)Y

(c) Y ′K =
2aKL5 − bK4L2

(aL3 + bK3)2
and Y ′L =

2bK5L− aK2L4

(aL3 + bK3)2
, so

KY ′K + LY ′L =
2aK2L5 − bK5L2 + 2bK5L2 − aK2L5

(aL3 + bK3)2
= K2L2(aL3 + bK3)

(aL3 + bK3)2
= K2L2

aL3 + bK3
= Y .

(According to Section 12.6 the functions in (a), (b), and (c) are homogeneous of degrees a, a+ b, and 1,
respectively, so the results we obtained are immediate consequences of Euler’s Theorem, (12.6.2).)

7. Y ′K = (−μ/�)a(−�)K−�−1Aeλt
[
aK−� + bL−�

]−(μ/�)−1 = μaK−�−1Aeλt
[
aK−� + bL−�

]−(μ/�)−1
,

Y ′L = (−μ/�)b(−�)L−�−1Aeλt
[
aK−� + bL−�

]−(μ/�)−1 = μbL−�−1Aeλt
[
aK−� + bL−�

]−(μ/�)−1
.

Thus, KY ′K + LY ′L = μ(aK−� + bL−�)Aeλt
[
aK−� + bL−�

]−(μ/�)−1 = μY . (This function is homo-
geneous of degree μ, so the result is an immediate consequence of Euler’s Theorem, (12.6.2).)

11.8

4.
∂

∂m

(pD

m

)
= p

mD′m −D

m2
= p

m2
(mD′m −D) = pD

m2
[Elm D − 1] > 0 if and only if Elm D > 1,

so pD/m increases with m if Elm D > 1. (Using the formulas in Problem 7.7.9, the result also follows
from the fact that Elm(pD/m) = Elm p + Elm D − Elm m = Elm D − 1.)
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Review Problems for Chapter 11
12. (a) See the text. (b) We want to find all (x, y) that satisfy both equations (i) 4x3 − 8xy = 0 and

(ii) 4y − 4x2 + 4 = 0. From (i), 4x(x2 − 2y) = 0, which implies that x = 0, or x2 = 2y. For x = 0,
(ii) yields y = −1, so (x, y) = (0,−1) is one solution. For x2 = 2y, (ii) reduces to 4y − 8y + 4 = 0,
or y = 1. But then x2 = 2, so x = ±√2. Hence, two additional solutions are (x, y) = (±√2, 1).

Chapter 12 Tools for Comparative Statics

12.1
5. (a) If z = F(x, y) = x + y with x = f (t) and y = g(t), then F ′1 = F ′2 = 1, so the chain rule formula

(12.1.1) gives dz/dt = 1 · f ′(t)+ 1 · g′(t) = f ′(t)+ g′(t).
(b) is like (a), except that F ′2 = −1 so the chain rule gives dz/dt = f ′(t)− g′(t).
(c) If z = F(x, y) = xy with x = f (t) and y = g(t), then F ′1(x, y) = y, F ′2(x, y) = x, dx/dt = f ′(t),
and dy/dt = g′(t), so formula (12.1.1) gives
dz/dt = F ′1(x, y)(dx/dt)+ F ′2(x, y)(dy/dt) = yf ′(t)+ xg′(t) = f ′(t)g(t)+ f (t)g′(t).

(d) If z = F(x, y) = x

y
with x = f (t) and y = g(t), then F ′1(x, y) = 1

y
, F ′2(x, y) = − x

y2
,
dx

dt
= f ′(t),

and
dy

dt
= g′(t), so formula (12.1.1) gives

dz

dt
= F ′1(x, y)

dx

dt
+ F ′2(x, y)

dy

dt
= 1

y
f ′(t) − x

y2
g′(t) =

yf ′(t)− xg′(t)
y2

= f ′(t)g(t)− f (t)g′(t)
(g(t))2

.

(e) If z = F(x, y) = G(x), independent of y, with x = f (t), then F ′1 = G′ and F ′2 = 0, so (12.1.1)
gives dz/dt = G′(x) · f ′(t), which is the chain rule for one variable.

6. Let U(x) = u(x, h(x)). Then

U ′(x) = u′1 + u′2h
′(x) = αxα−1

xα + zα
+

(
αzα−1

xα + zα
− α

z

)
4a

3
x3(ax4 + b)−2/3

Because the term in large parentheses equals −αxα/z(xα + zα), simplifying gives

U ′(x) = αxα−1

xα + zα
− αxα

z(xα + zα)

4ax3

3z2
= αxα−1(3z3 − 4ax4)

3(xα + zα)z3

But z3 = ax4+b so 3z3−4ax4 = 3b−ax4. It follows that U ′(x) = 0 when x = x∗ = 4
√

3b/a, whereas
U ′(x) > 0 for x < x∗ and U ′(x) < 0 for x > x∗. Hence x∗ maximizes U .

7. Differentiating (12.1.1) w.r.t. t yields, d2z/dt2 = (d/dt)[F ′1(x, y) dx/dt] + (d/dt)[F ′2(x, y) dy/dt].
Here (d/dt)[F ′1(x, y) dx/dt] = [F ′′11(x, y) dx/dt + F ′′12(x, y) dy/dt]dx/dt + F ′1(x, y) d2x/dt2,
(d/dt)[F ′2(x, y) dy/dt] = [F ′′21(x, y) dx/dt + F ′′22(x, y) dy/dt] dy/dt + F ′2(x, y) d2y/dt2. Summing
these two while assuming that F ′′12 = F ′′21, the conclusion follows.

12.2
2. (a) Let z = F(x, y) = xy2 with x = t + s2 and y = t2s. Then F ′1(x, y) = y2, F ′2(x, y) = 2xy,

∂x/∂t = 1, and ∂y/∂t = 2ts. Then (12.2.1) gives ∂z/∂t = F ′1(x, y)(∂x/∂t) + F ′2(x, y)(∂y/∂t) =
y2 + 2xy2ts = (t2s)2 + 2(t + s2)t2s2ts = t3s2(5t + 4s2). ∂z/∂s is found in the same way.

(b)
∂z

∂t
= F ′1(x, y)

∂x

∂t
+ F ′2(x, y)

∂y

∂t
= 2y

(x + y)2
et+s + −2sx

(x + y)2
ets , etc.
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8. (a) Let v = x3 + y3 + z3 − 3xyz, so that u = ln v. Then ∂u/∂x = (1/v)(∂v/∂x) = (3x2 − 3yz)/v.
Similarly, ∂u/∂y = (3y2 − 3xz)/v, and ∂u/∂z = (3z2 − 3xy)/v. Hence,

x
∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z
= 1

v
(3x3 − 3xyz)+ 1

v
(3y3 − 3xyz)+ 1

v
(3z3 − 3xyz) = 3v

v
= 3

which proves (i). Equation (ii) is then proved by elementary algebra.
(b) Note that f is here a function of one variable. With z = f (u) where u = x2y, we get ∂z/∂x =
f ′(u)u′x = 2xyf ′(x2y). Likewise, ∂z/∂y = x2f ′(x2y), so x∂z/∂x = 2x2yf ′(x2y) = 2y∂z/∂y.

12.3

2. (a) See the text. (b) Put F(x, y) = x− y+ 3xy. Then F ′1 = 1+ 3y, F ′2 = −1+ 3x, F ′′11 = 0, F ′′12 = 3,
and F ′′22 = 0. So y ′ = −F ′1/F ′2 = −(1+ 3y)/(−1+ 3x). Moreover, using equation (12.3.3),

y ′′ = − 1

(F ′2)3

[
F ′′11(F

′
2)

2 − 2F ′′12F
′
1F
′
2 + F ′′22(F

′
1)

2] = 6(1+ 3y)(−1+ 3x)

(−1+ 3x)3
= 6(1+ 3y)

(−1+ 3x)2
.

(c) Put F(x, y) = y5 − x6. Then F ′1 = −6x5, F ′2 = 5y4, F ′′11 = −30x4, F ′′12 = 0, F ′′22 = 20y3, so
y ′ = −F ′1/F ′2 = −(−6x5/5y4) = 6x5/5y4. Moreover, using equation (12.3.3),

y ′′ = − 1

(5y4)3

[
(−30x4)(5y4)2 + 20y3(−6x5)2] = 6x4

y4
− 144x10

25y9
.

3. (a) With F(x, y) = 2x2 + xy + y2, one has y ′ = −F ′1/F ′2 = −(4x + y)/(x + 2y) = −4 at (2, 0).
Moreover, using (12.3.3) gives y ′′ = −(28x2+ 14y2+ 14xy)/(x+ 2y)3. At (2, 0) this gives y ′′ = −14.
The point–slope formula for the tangent gives y = −4x + 8.
(b) y ′ = 0 requires y = −4x. Inserting this into the original equation gives a quadratic equation for x.
Along with the corresponding values of y, this gives the two points indicated in the text.

12.4

3. (a) Here equation (∗) is P/2
√

L∗ = w. Solve for L∗. The rest is routine.
(b) The first-order condition is now

Pf ′(L∗)− C ′L(L∗, w) = 0 (∗)

To find the partial derivatives of L∗, we will differentiate (∗) partially w.r.t. P and w.
First, we find the partial derivative of Pf ′(L∗) w.r.t. P using the product rule. The result is

f ′(L∗)+Pf ′′(L∗)(∂L∗/∂P ). Then the partial derivative of C ′L(L∗, w) w.r.t. P is C ′′LL(L∗, w)(∂L∗/∂P ).
So differentiating (∗) w.r.t. P yields f ′(L∗)+Pf ′′(L∗)(∂L∗/∂P )−C ′′LL(L∗, w)(∂L∗/∂P ) = 0. Solving
for ∂L∗/∂P gives the answer.

Second, differentiating (∗) w.r.t. w yields [Pf ′′(L∗)− C ′′LL(L∗, w)](∂L∗/∂w)− C ′′Lw(L∗, w) = 0.
Solving for ∂L∗/∂w gives the answer.

6. (a) F ′1(x, y) = ey−3 + y2 and F ′2(x, y) = xey−3 + 2xy − 2. Hence, the slope of the tangent to the
level curve F(x, y) = 4 at the point (1, 3) is y ′ = −F ′1(1, 3)/F ′2(1, 3) = −10/5 = −2. Then use the
point–slope formula.
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(b) Taking the logarithm of both sides, we get (1+ c ln y) ln y = ln A+ α ln K + β ln L. Differentiating

partially with respect to K gives
c

y

∂y

∂K
ln y + (1 + c ln y)

1

y

∂y

∂K
= α

K
. Solving for ∂y/∂K yields the

given answer. Then ∂y/∂L is found in the same way.

12.5
3. With F(K, L) = AKaLb, the partial derivatives are F ′K = aF/K , F ′L = bF/L, F ′′KK = a(a− 1)F/K2,

F ′′KL = abF/KL, and F ′′LL = b(b − 1)F/L2. But then the numerator of the expression for σyx is
−F ′KF ′L(KF ′K +LF ′L) = −(aF/K)(bF/L)(a+ b)F = −ab(a+ b)F 3/KL, whereas the denominator
is KL

[
(F ′L)2F ′′KK − 2F ′KF ′LF ′′KL + (F ′K)2F ′′LL

] = KLF 3[b2a(a − 1)− 2a2b2 + a2b(b − 1)]/K2L2 =
−ab(a + b)F 3/KL. It follows that σKL = 1.

12.6
3. (2): xf ′1(x, y)+ yf ′2(x, y) = x(y2 + 3x2)+ y(2xy) = 3(x3 + xy2) = 3f (x, y)

(3): It is easy to see that f ′1(x, y) = y2 + 3x2 and f ′2(x, y) = 2xy are homogeneous of degree 2.
(4): f (x, y) = x3 + xy2 = x3[1+ (y/x)2] = x3f (1, y/x) = y3[(x/y)3 + x/y] = y3f (x/y, 1)

(5): x2f ′′11 + 2xyf ′′12 + y2f ′′22 = x2(6x)+ 2xy(2y)+ y2(2x) = 6x3 + 6xy2 = 3 · 2f (x, y)

9. Let C and D denote the the numerator and the denominator in the expression for σyx in Problem 12.5.3.
Because F is homogeneous of degree one, Euler’s theorem implies that C = −F ′1F ′2F , and (12.6.6)
implies that xF ′′11 = −yF ′′12 and yF ′′22 = −xF ′′21 = −xF ′′12. Hence,

D = xy
[
(F ′2)

2F ′′11 − 2F ′1F
′
2F
′′
12 + (F ′1)

2F ′′22

] = −F ′′12

[
y2(F ′2)

2 + 2xyF ′1F
′
2 + x2(F ′1)

2]
= −F ′′12(xF ′1 + yF ′2)

2 = −F ′′12F
2

using Euler’s theorem again. It follows that σxy = C/D = (−F ′1F ′2F)/(−F ′′12F
2) = F ′1F ′2/FF ′′12.

12.7
1. (a) and (f) are easy. For (b), note that xg′x + yg′y + zg′z = g(x, y, z) + 2. Because this is not equal to

kg(x, y, z) for any k, Euler’s theorem implies that g is not homogeneous of any degree.

(c) h(tx, ty, tz) =
√

tx +√ty +√tz

tx + ty + tz
=
√

t (
√

x +√y +√z )

t (x + y + z)
= t−1/2h(x, y, z) for all t > 0, so

h is homogeneous of degree−1/2. (d)G(tx, ty) = √txty ln
(tx)2 + (ty)2

txty
= t
√

xy ln
t2(x2 + y2)

t2xy
=

tG(x, y) for all t > 0, so G is homogeneous of degree 1. (e) xH ′x + yH ′y = x(1/x) + y(1/y) = 2.
Since 2 is not equal to k(ln x+ln y) for any constant k, Euler’s theorem implies that H is not homogeneous
of any degree.

2. (a) We find that

f (tx1, tx2, tx3) = (tx1tx2tx3)
2

(tx1)4 + (tx2)4 + (tx3)4

(
1

tx1
+ 1

tx2
+ 1

tx3

)

= t6(x1x2x3)
2

t4(x4
1 + x4

2 + x4
3)

(
1

t

) (
1

x1
+ 1

x2
+ 1

x3

)
= tf (x1, x2, x3)

so f is homogeneous of degree 1.
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(b) We find that

x(tv1, tv2, . . . , tvn) = A
(
δ1(tv1)

−� + δ2(tv2)
−� + · · · + δn(tvn)

−�
)−μ/�

= A
(
t−�(δ1v

−�

1 + δ2v
−�

2 + · · · + δnv
−�
n )

)−μ/�

= (t−�)−μ/�A
(
δ1v
−�

1 + δ2v
−�

2 + · · · + δnv
−�
n

)−μ/�

= tμA
(
δ1v
−�

1 + δ2v
−�

2 + · · · + δnv
−�
n

)−μ/� = tμx(x1, x2, x3)

so x is homogeneous of degree μ.

5. (a) We use definition (12.7.6). Suppose (x1y1)
2+1 = (x2y2)

2+1. Then (x1y1)
2 = (x2y2)

2. If t > 0, then
(tx1ty1)

2+ 1 = (tx2ty2)
2+ 1 ⇐⇒ t4(x1y1)

2+ 1 = t4(x2y2)
2+ 1 ⇐⇒ t4(x1y1)

2 = t4(x2y2)
2 ⇐⇒

(x1y1)
2 = (x2y2)

2, so f is homothetic.

(b) From
2(x1y1)

2

(x1y1)2 + 1
= 2(x2y2)

2

(x2y2)2 + 1
, we get 2(x1y1)

2[(x2y2)
2 + 1] = 2(x2y2)

2[(x1y1)
2 + 1] and

so (x1y1)
2 = (x2y2)

2. If t > 0, then
2(tx1ty1)

2

(tx1ty1)2 + 1
= 2(tx2ty2)

2

(tx2ty2)2 + 1
⇐⇒ 2t4(x1y1)

2

t4(x1y1)2 + 1
=

2t4(x2y2)
2

t4(x2y2)2 + 1
⇐⇒ (x1y1)

2

t4(x1y1)2 + 1
= (x2y2)

2

t4(x2y2)2 + 1
⇐⇒ (x1y1)

2 = (x2y2)
2, so f is homothetic.

(c) f (1, 0) = 1 = f (0, 1), but f (2, 0) = 4 �= 8 = f (0, 2). This is enough to show that f is not
homothetic. (d) g(x, y) = x2y is homogeneous of degree 3 and u→ eu is strictly increasing, so f is
homothetic according to (12.7.7).

7. Define� = ln C(tw, y)−ln C(w, y). It suffices to prove that� = ln t , because thenC(tw, y)/C(w, y) =
e� = t . We find that

� =
n∑

i=1

ai[ln(twi)− ln wi]+ 1

2

n∑
i,j=1

aij [ln(twi) ln(twj )− ln wi ln wj ]+ ln y

n∑
i=1

bi[ln(twi)− ln wi]

Since ln(twi)−ln wi = ln t+ln wi−ln wi = ln t and ln(twi) ln(twj )−ln wi ln wj = (ln t)2+ln t ln wi+
ln t ln wj , this reduces to

� = ln t

n∑
i=1

ai + 1

2
(ln t)2

n∑
i,j=1

aij + 1

2
ln t

n∑
j=1

ln wi

n∑
i=1

aij + 1

2
ln t

n∑
i=1

ln wj

n∑
j=1

aij + ln y ln t

n∑
i=1

bi

Hence, � = ln t + 0+ 0+ 0+ 0 = ln t , because of the restrictions on the parameters ai , aij , and bi .

12.8

7. We use formula (12.8.3). (a) Here, ∂z/∂x = 2x and ∂z/∂y = 2y. At (1, 2, 5), we get ∂z/∂y = 2 and
∂z/∂x = 4, so the tangent plane has the equation z− 5 = 2(x − 1)+ 4(y − 2) ⇐⇒ z = 2x + 4y − 5.
(b) From z = (y−x2)(y−2x2) = y2−3x2y+2x4 we get ∂z/∂x = −6xy+8x3 and ∂z/∂y = 2y−3x2.
Thus, at (1, 3, 2) we have ∂z/∂x = −10 and ∂z/∂y = 3. The tangent plane is given by the equation
z− 2 = −10(x − 1)+ 3(y − 3) ⇐⇒ z = −10x + 3y + 3.

8. g(0) = f (x0), g(1) = f (x). Using formula (12.2.3), it follows that

g′(t) = f ′1(x
0 + t (x − x0))(x1 − x0

1 )+ · · · + f ′n(x
0 + t (x − x0))(xn − x0

n)

Putting t = 0 gives g′(0) = f ′1(x0)(x1 − x0
1 )+ · · · + f ′n(x0)(xn − x0

n), and the conclusion follows.
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12.9

4. T (x, y, z) = [x2 + y2 + z2]1/2 = u1/2, where u = x2 + y2 + z2. Then dT = 1
2u−1/2 du =

u−1/2(x dx + y dy + z dz). For x = 2, y = 3, and z = 6, we have u = 49, T = 7 and dT =
1
7 (x dx + y dy + z dz) = 1

7 (2 dx + 3 dy + 6 dz). Thus, T (2+ 0.01, 3− 0.01, 6+ 0.02) ≈ T (2, 3, 6)+
1
7 [2 · 0.01+ 3(−0.01)+ 6 · 0.02] = 7+ 1

7 · 0.11 ≈ 7.015714. (A calculator or computer gives a better
approximation:

√
49.2206 ≈ 7.015739.)

12.11

3. Since we are asked to find the partials of y1 and y2 w.r.t. x1 only, we might as well differentiate the system
partially w.r.t. x1:

(i) 3− ∂y1

∂x1
− 9y2

2
∂y2

∂x1
= 0, (ii) 3x2

1 + 6y2
1
∂y1

∂x1
− ∂y2

∂x1
= 0

Solving these two simultaneous equations for the partials gives the answers in the text.
(An alternative method, in particular if one needs all the partials, is to use total differentiation:

(i) 3 dx1 + 2x2 dx2 − dy1 − 9y2
2 dy2 = 0, (ii) 3x2

1 dx1 − 2 dx2 + 6y2
1 dy1 − dy2 = 0

Letting dx2 = 0 and solving for dy1 and dy2 leads to dy1 = A dx1 and dy2 = B dx1, where A = ∂y1/∂x1

and B = ∂y2/∂x1.)

4. Differentiating with respect to M gives (i) I ′(r)r ′M = S ′(Y )Y ′M , (ii) aY ′M + L′(r)r ′M = 1.
(Remember that Y and r are functions of the independent variables a and M .) Writing this as a linear
equation system in standard form, we get

−S ′(Y )Y ′M + I ′(r)r ′M = 0

aY ′M + L′(r)r ′M = 1

Using either ordinary elimination or formula (2.4.2) gives

Y ′M =
I ′(r)

S ′(Y )L′(r)+ aI ′(r)
and r ′M =

S ′(Y )

S ′(Y )L′(r)+ aI ′(r)

Review Problems for Chapter 12

4. X = Ng(u), where u = ϕ(N)/N . Then du/dN = [ϕ′(N)N − ϕ(N)]/N2 = (1/N)(ϕ′(N) − u), and
by the product rule and the chain rule,

dX

dN
= g(u)+Ng′(u)

du

dN
= g(u)+ g′(u)(ϕ′(N)− u), u = ϕ(N)

N

Differentiating g(u)+ g′(u)(ϕ′(N)− u) w.r.t. N gives

d2X

dN2
= g′(u)

du

dN
+ g′′(u)

du

dN

(
ϕ′(N)− u

)
+ g′(u)

(
ϕ′′(N)− du

dN

)

= 1

N
g′′

(
ϕ(N)/N

)(
ϕ′(N)− ϕ(N)/N

)2 + g′
(
ϕ(N)/N

)
ϕ′′(N)
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11. Taking the elasticity of each side of the equation gives Elx(y2exe1/y) = Elx y2 + Elx ex + Elx e1/y = 0.
Here Elx y2 = 2 Elx y and Elx ex = x. Moreover, Elx e1/y = Elx eu, where u = 1/y, so Elx eu =
u Elx(1/y) = (1/y)(Elx 1 − Elx y) = −(1/y) Elx y. All in all, 2 Elx y + x − (1/y) Elx y = 0, so
Elx y = xy/(1 − 2y). (We used the rules for elasticities in Problem 7.7.9. If you are not comfortable
with these rules, you can find y ′ by implicit differentiation and then use Elx y = (x/y)y ′.)

16. (a) Differentiating and then gathering all terms in dp and dL on the left-hand side, one obtains

(i) F ′(L) dp + pF ′′(L) dL = dw, (ii) F(L) dp + (pF ′(L)− w) dL = L dw + dB

Since we know that pF ′(L) = w, (ii) implies that dp = (Ldw + dB)/F (L). Substituting this into (i)
and solving for dL, we obtain dL = [(F (L)− LF ′(L))dw − F ′(L)dB]/pF(L)F ′′(L). It follows that

∂p

∂w
= L

F(L)
,

∂p

∂B
= 1

F(L)
,

∂L

∂w
= F(L)− LF ′(L)

pF(L)F ′′(L)
,

∂L

∂B
= − F ′(L)

pF(L)F ′′(L)

(b) Because all variables including p are positive, whereas F ′(L) > 0 and F ′′(L) < 0, it is clear that
∂p/∂w, ∂p/∂B, and ∂L/∂B are all positive.

The sign of ∂L/∂w is the opposite of the sign of F(L)−LF ′(L). From the equations in the model,
we get F ′(L) = w/p and F(L) = (wL+B)/p, so F(L)−LF ′(L) = B/p > 0. Therefore ∂L/∂w < 0.

19. (a) The first-order necessary condition for maximum is P ′(t) = V ′(t)e−rt − rV (t)e−rt − me−rt = 0.
Cancelling e−rt , we see that t∗ can only maximize the present value provided (∗) is satisfied. The equation
says that the marginal increase V ′(t∗) in market value per unit of time from keeping the car a little longer
must equal the sum of the interest cost rV (t∗) per unit time from waiting to receive the sales revenue,
plus the maintenance cost m per unit of time.
(b) Differentiating P(t) again gives P ′′(t) = V ′′(t)e−rt−rV ′(t)e−rt−rV ′(t)e−rt+r2V (t)e−rt+rme−rt .
Gathering terms, we have P ′′(t) = [V ′′(t)−rV ′(t)]e−rt+[V ′(t)−rV (t)−m](−re−rt ). At the stationary
point t∗ the last square bracket is 0, so the condition P ′′(t∗) < 0 reduces to D = V ′′(t∗)− rV ′(t∗) < 0.

(c) Taking the differential of (∗) yields V ′′(t∗) dt∗ = dr V (t∗)+ r V ′(t∗) dt∗ = dm. Hence

∂t∗

∂r
= V (t∗)

V ′′(t∗)− rV ′(t∗)
= V (t∗)

D
and

∂t∗

∂m
= 1

V ′′(t∗)− rV ′(t∗)
= 1

D

Assuming that V (t∗) > 0 (otherwise it would be better to scrap the car immediately), both partial
derivatives are negative. A small increase in either the interest rate or the maintenance cost makes the
owner want to sell the car a bit sooner.

Chapter 13 Multivariable Optimization

13.2
3. Solving the budget equation to express x as a function of y and z yields x = 108− 3y − 4z. Then utility

as a function of y and z is U = (108− 3y − 4z)yz. Necessary first-order conditions for a maximum are
U ′y = 108z − 6yz − 4z2 = 0 and U ′z = 108y − 3y2 − 8yz = 0. Because y and z are assumed to be
positive, these two equations reduce to 6y + 4z = 108 and 3y + 8z = 108, with solution y = 12 and
z = 9. (Theorem 13.2.1 cannot be used directly to prove optimality. However, it can be applied to the
equivalent problem of maximizing ln U . See Theorem 13.6.3.)
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13.3
3. (a) The first and second order derivatives of f are f ′1(x, y) = (2x − ay)ey , f ′2(x, y) = x(x − ay − a)ey ,

f ′′11(x, y) = 2ey , f ′′12(x, y) = (2x−ay−a)ey , and f ′′22(x, y) = x(x−ay−2a)ey . The stationary points
are the solutions of the two-equation system (1) 2x − ay = 0; (2) x(x − ay − a) = 0. If x = 0, then (1)
gives y = 0 (because a �= 0). If x �= 0, then (2) gives x = ay + a, whereas (1) gives x = 1

2ay. Hence
x = −a and y = −2.

Conclusion: There are two stationary points, (0, 0) and (−a,−2).

To determine the nature of each stationary point (x0, y0), we use the second-derivative test, with A =
f ′′11(x0, y0), B = f ′′12(x0, y0), and C = f ′′22(x0, y0). The test gives

Point A B C AC − B2 Result

(0, 0) 2 −a 0 −a2 Saddle point

(−a,−2) 2e−2 −ae−2 a2e−2 a2e−4 Local minimum

(b) (x∗, y∗) = (−a,−2), and therefore

f ∗(a) = f (−a,−2) = −a2e−2 and df ∗(a)/da = −2ae−2

On the other hand, if f̂ (x, y, a) = (x2 − axy)ey , then

f̂ ′3(x, y, a) = −xyey and f̂ ′3(x
∗, y∗, a) = −x∗y∗ey∗ = −2ae−2

Thus the equation f̂ ′3(x∗, y∗, a) = df ∗(a)/da is true. (This is also what the envelope theorem tells us.
See formula (13.7.2).)

4. (a) V ′t (t, x) = f ′t (t, x)e−rt − rf (t, x)e−rt = 0, V ′x(t, x) = f ′x(t, x)e−rt − 1 = 0, so at the optimum,
f ′t (t∗, x∗) = rf (t∗, x∗) and f ′x(t∗, x∗) = ert∗ . (b) See the text.

(c) V (t, x) = g(t)h(x)e−rt − x, so V ′t = h(x)(g′(t) − rg(t))e−rt , V ′x = g(t)h′(x)e−rt − 1. Moreover,
V ′′t t = h(x)(g′′(t) − 2rg′(t) + r2g(t))e−rt , V ′′tx = h′(x)(g′(t) − rg(t))e−rt , and V ′′xx = g(t)h′′(x)e−rt .
Because the first-order condition g′(t∗) = rg(t∗) is satisfied at (t∗, x∗), there one has V ′′tx = 0, as well
as V ′′xx < 0 provided that h′′(x∗) < 0, and V ′′t t = h(x∗)[g′′(t∗) − r2g(t∗)]e−rt∗ < 0 provided that
g′′(t∗) < r2g(t∗). When both stated conditions are satisfied, one also has V ′′xxV

′′
t t − (V ′′xt )

2 > 0. These
inequalities are sufficient to ensure that (t∗, x∗) is a local maximum point.

(d) The first-order conditions in (b) reduce to e
√

t∗/2
√

t∗ = re
√

t∗ , so t∗ = 1/4r2, and 1/(x∗ + 1) =
e1/4r/e1/2r , or x∗ = e1/4r −1. We check that the two conditions in (c) are satisfied. Obviously, h′′(x∗) =
−(1 + x∗)−2 < 0. Moreover, g′′(t∗) = 1

4t∗
√

t∗
e
√

t∗(
√

t∗ − 1) = r2(1 − 2r)e1/2r , whereas r2g(t∗) =
r2e
√

t∗ = r2e1/2r . Hence g′′(t∗) < r2g(t∗) provided that r2(1− 2r) < r2, which is true for all r > 0.

6. (a) We need to have 1+x2y > 0. When x = 0, f (0, y) = 0. For x �= 0, 1+x2y > 0 ⇐⇒ y > −1/x2.
(The figure in the text shows a part of the graph of f . Note that f = 0 on the x-axis and on the y-axis.)

(b) See the text. (c) f ′′11(x, y) = 2y − 2x2y2

(1+ x2y)2
, f ′′12(x, y) = 2x

(1+ x2y)2
, and f ′′22(x, y) = −x4

(1+ x2y)2
.

The second-order derivatives at all points of the form (0, b) are f ′′11(0, b) = 2b, f ′′12(0, b) = 0, and
f ′′22(0, b) = 0. Hence AC − B2 = 0 at all the stationary points, so the second-derivative test tells us
nothing about these points. (d) See the text.
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13.4

2. (a) See the text. (b) The new profit function is π̂ = −bp2−dp2+(a+βb)p+(c+βd)p−α−β(a+c)

and the price that maximizes profits is easily seen to be p̂ = a + c + β(b + d)

2(b + d)
.

(c) In the case β = 0, the answers in part (a) simplify to p∗ = a

2b
and q∗ = c

2d
, with maximized

profit π(p∗, q∗) = a2

4b
+ c2

4d
− α. But when price discrimination is prohibited, the answer in part (b)

becomes p̂ = a + c

2(b + d)
, with maximized profit π̂(p̂) = (a + c)2

4(b + d)
− α. The firm’s loss of profit is

π(p∗, q∗) − π̂(p̂) = (ad − bc)2

4bd(b + d)
≥ 0. Note that this loss is 0 if and only if ad = bc, in which case

p∗ = q∗, so the firm wants to charge the same price in each market anyway.

4. (a) The four data points are (x0, y0) = (0, 11.29), (x1, y1) = (1, 11.40), (x2, y2) = (2, 11.49), and
(x3, y3) = (3, 11.61), where x0 corresponds to 1970, etc. (The numbers yt are approximate, as are most
subsequent results.)

Using the method of least squares set out in Example 4, we find that μx = 1
4 (0+ 1+ 2+ 3) = 1.5,

μy = 1
4 (11.29+ 11.40 + 11.49 + 11.61) = 11.45, and σxx = 1

4 [(0 − 1.5)2 + (1− 1.5)2 + (2 − 1.5)2

+ (3− 1.5)2] = 1.25.
Moreover, σxy = 1

4 [(−1.5)(11.29 − 11.45) + (−0.5)(11.40 − 11.45) + (0.5)(11.49 − 11.45) +
(1.5)(11.61 − 11.45)], which is equal to 0.13125, so formula (∗∗) implies that â = σxy/σxx = 0.105
and b̂ = μy − âμx ≈ 11.45− 0.105 · 1.5 = 11.29.

(b) With z0 = ln 274, z1 = ln 307, z2 = ln 436, and z3 = ln 524, the four data points are (x0, z0) =
(0, 5.61), (x1, z1) = (1, 5.73), (x2, z2) = (2, 6.08), and (x3, z3) = (3, 6.26). As before, μx = 1.5 and
σxx = 1.25. Moreover, μz = 1

4 (5.61+ 5.73+ 6.08+ 6.26) = 5.92 and σxz ≈ 1
4 [(−1.5)(5.61− 5.92)+

(−0.5)(5.73− 5.92)+ (0.5)(6.08− 5.92)+ (1.5)(6.26− 5.92)] = 0.2875. Hence ĉ = σxz/σxx = 0.23,
d̂ = μz − ĉμx = 5.92− 0.23 · 1.5 = 5.575.

(c) If the time trends ln(GDP) = ax+ b and ln(FA) = cx+ d had continued, then FA would have grown
to equal 1% of GNP by the time x that solves ln(FA/GNP) = ln 0.01 or (c − a)x + d − b = ln 0.01.
Hence x = (b− d + ln 0.01)/(c− a). Inserting the numerical estimates found in parts (a) and (b) gives
x ≈ (11.29 − 5.575 − 4.605)/(0.23 − 0.105) = 1.11/0.125 = 8.88. The goal would be reached in
late 1978.

5. (a) The two firms’ combined profit is px + qy − (5 + x) − (3 + 2y), or substituting for x and y,
(p−1)(29−5p+4q)+(q−2)(16+4p−6q)−8, which simplifies to 26p+24q−5p2−6q2+8pq−69.
This is a concave function of p and q. The first-order conditions are the two equations 26−10p+8q = 0
and 24−12q+8p = 0. The unique solution is p = 9, q = 8, which gives a maximum. The corresponding
production levels are x = 16 and y = 4. Firm A’s profit is 123, whereas B’s is 21.

(b) Firm A’s profit is now πA(p) = (p− 1)(29− 5p+ 4q)− 5 = 34p− 5p2 + 4pq − 4q − 34, with q

fixed. This quadratic polynomial is maximized at p = pA(q) = 1
5 (2q + 17). Likewise, firm B’s profit is

now πB(q) = qy − 3− 2y = 28q − 6q2 + 4pq − 8p − 35, with p fixed. This quadratic polynomial is
maximized at q = qB(p) = 1

3 (p + 7).

(c) Equilibrium occurs where the price pair (p, q) satisfies the two equations p = pA(q) = 1
5 (2q + 17)

and q = qB(p) = 1
3 (p + 7) simultaneously. Substituting from the second equation into the first yields
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p = 1
5

(
2 1

3 (p + 7)+ 17
)

or, after clearing fractions, 15p = 2p + 14+ 51. Hence prices are p = 5 and
q = 4, whereas production levels are x = 20, y = 12, and profits are 75 for A and 21 for B, respectively.
(d) Starting at (9, 8), first firm A moves to pA(8) = 33/5 = 6.6, then firm B answers by moving to
qA(6.6) = 13.6/3 ≈ 4.53, then firm A responds by moving to near pA(4.53) = 26.06/5 = 5.212,
and so on. After the first horizontal move away from (9, 8), the process keeps switching between moves
vertically down from the curve p = pA(q), and moves horizontally across to the curve q = qB(p), as
shown in Fig. SM13.4.5. These moves never cross either curve, and in the limit the process converges to
the equilibrium (5, 4) found in part (c).

q

2

4

6

8

10

p
2 4 6 8 10 12 14

(5, 4)

q = qB(p)

p = pA(q)

(9, 8)

y

x

4

4

(3, 3)

Figure SM13.4.5 Figure SM13.5.2

13.5
2. (a) The continuous function f is defined on a closed, bounded set S (see Fig. SM13.5.2), so the extreme

value theorem ensures that f attains both a maximum and a minimum over S. Stationary points are where
(i) f ′1(x, y) = 3x2 − 9y = 0 and (ii) f ′2(x, y) = 3y2 − 9x = 0. From (i), y = 1

3x2, which inserted
into (ii) yields 1

3x(x3 − 27) = 0. The only solutions are x = 0 and x = 3. Thus the only stationary
point in the interior of S is (x, y) = (3, 3). We proceed by examining the behaviour of f (x, y) along the
boundary of S, i.e. along the four edges of S.
(I) y = 0, x ∈ [0, 4]. Then f (x, 0) = x3 + 27, which has minimum at x = 0, and maximum at x = 4.
(II) x = 4, y ∈ [0, 4]. Then f (4, y) = y3 − 36y + 91. The function g(y) = y3 − 36y + 91, y ∈ [0, 4]
has g′(y) = 3y2 − 36 = 0 at y = √12. Possible extreme points along (II) are (4, 0), (4,

√
12), and

(4, 4).
(III) y = 4, x ∈ [0, 4]. Then f (x, 4) = x3−36x+91, and as in (II) we see that possible extreme points
are (0, 4), (

√
12, 4), and (4, 4).

(IV) x = 0, y ∈ [0, 4]. As in case (I) we obtain the possible extreme points (0, 0) and (0, 4).
This results in six candidates, where the function values are f (3, 3) = 0, f (0, 0) = 27, f (4, 0) =

f (0, 4) = 91, f (4,
√

12) = f (
√

12, 4) = 91− 24
√

12 ≈ 7.86, f (0, 0) = 27. The conclusion follows.

(b) The constraint set S = {
(x, y) : x2 + y2 ≤ 1

}
consists of points that lie on or inside a circle around

the origin with radius 1. This is a closed and bounded set, and f (x, y) = x2 + 2y2 − x is continuous.
Therefore the extreme value theorem ensures that f attains both a maximum and a minimum over S.

Stationary points for f occur where f ′x(x, y) = 2x − 1 = 0 and f ′y(x, y) = 4y = 0. So the only
stationary point for f is (x1, y1) = (1/2, 0), which is an interior point of S.

An extreme point that does not lie in the interior of S must lie on the boundary of S, that is, on the
circle x2 + y2 = 1. Along this circle we have y2 = 1− x2, and therefore

f (x, y) = x2 + 2y2 − x = x2 + 2(1− x2)− x = 2− x − x2

where x runs through the interval [−1, 1]. (It is a common error to overlook this restriction.) The function
g(x) = 2− x − x2 has one stationary point in the interior of [−1, 1], namely x = −1/2, so any extreme
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values of g(x) must occur either for this value of x or at one the endpoints ±1 of the interval [−1, 1].
Any extreme points for f (x, y) on the boundary of S must therefore be among the points

(x2, y2) = (− 1
2 , 1

2

√
3), (x3, y3) = (− 1

2 ,− 1
2

√
3), (x4, y4) = (1, 0), (x5, y5) = (−1, 0)

Now, f ( 1
2 , 0) = − 1

4 , f (− 1
2 ,± 1

2

√
3) = 9

4 , f (1, 0) = 0, and f (−1, 0) = 2. The conclusion in the text
follows.

3. The set S is shown in Fig. A13.5.3 in the book. It is clearly closed and bounded, so the continuous
function f has a maximum in S. The stationary points are where ∂f/∂x = 9 − 12(x + y) = 0 and
∂f/∂y = 8− 12(x + y) = 0. But 12(x + y) = 9 and 12(x + y) = 8 give a contradiction. Hence, there
are no stationary points at all. The maximum value of f must therefore occur on the boundary, which
consists of five parts. Either the maximum value occurs at one of the five corners or “extreme points” of
the boundary, or else at an interior point of one of five straight “edges.” The function values at the five
corners are f (0, 0) = 0, f (5, 0) = −105, f (5, 3) = −315, f (4, 3) = −234, and f (0, 1) = 2.

We proceed to examine the behaviour of f at interior points along each of the five edges.
(I) y = 0, x ∈ (0, 5). The behaviour of f is determined by the function g1(x) = f (x, 0) = 9x− 6x2 for
x ∈ (0, 5). If this function of one variable has a maximum in (0, 5), it must occur at a stationary point
where g′1(x) = 9− 12x = 0, and so at x = 3/4. We find that g1(3/4) = f (3/4, 0) = 27/8.
(II) x = 5, y ∈ (0, 3). Define g2(y) = f (5, y) = 45 + 8y − 6(5 + y)2 for y ∈ (0, 3). Here g′2(y) =
−52− 12y, which is negative throughout (0, 3), so there are no stationary points on this edge.
(III) y = 3, x ∈ (4, 5). Define g3(x) = f (x, 3) = 9x + 24 − 6(x + 3)2 for x ∈ (4, 5). Here g′3(x) =
−27− 12x, which is negative throughout (4, 5), so there are no stationary points on this edge either.
(IV) −x + 2y = 2, or y = x/2 + 1, with x ∈ (0, 4). Define the function g4(x) = f (x, x/2 + 1) =
−27x2/2 − 5x + 2 for x ∈ (0, 4). Here g′4(x) = −27x − 5, which is negative in (0, 4), so there are no
stationary points here.
(V) x = 0, y ∈ (0, 1). Define g5(y) = f (0, y) = 8y − 6y2. Then g′5(y) = 8 − 12y = 0 at y = 2/3,
with g5(2/3) = f (0, 2/3) = 8/3.

After comparing the values of f at the five corners of the boundary and at the two points found on
the edges labelled (I) and (V) rewspectively, we conclude that the maximum value of f is 27/8, which is
achieved at (3/4, 0).

5. (a) First, f ′1(x, y) = e−x(1 − x)(y − 4)y = 0 when x = 1, or y = 0, or y = 4. Second, f ′2(x, y) =
2xe−x(y − 2) = 0 when x = 0 or y = 2. It follows that the stationary points are (1, 2), (0, 0) and
(0, 4). Moreover, f ′′11(x, y) = e−x(x− 2)(y2− 4y), f ′′12(x, y) = e−x(1− x)(2y− 4), and f ′′22 = 2xe−x.

Classification of the stationary points:

(x, y) A B C AC − B2 Type of point

(1, 2) 4e−1 0 2e−1 8e−2 Local minimum

(0, 0) 0 −4 0 −16 Saddle point

(0, 4) 0 4 0 −16 Saddle point

(b) We show that the range of f is unbounded both above and below. Indeed, there is no global maximum
because f (1, y) = e−1(y2−4y)→∞ as y →∞. Nor is there any global minimum because f (−1, y) =
−e(y2 − 4y)→−∞ as y →∞.
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(c) The set S is obviously bounded. The boundary of S consists of the four edges of the rectangle, and all
points on these line segments belong to S. Hence S is closed. Since f is continuous, the extreme value
theorem tells us that f has global maximum and minimum points in S. These global extreme points must
be either stationary points if f in the interior of S, or points on the boundary of S. The only stationary
point of f in the interior of S is (1, 2). The function value at this point is f (1, 2) = −4e−1 ≈ −1.4715.

The four edges are most easily investigated separately:
(i) Along (I), y = 0 and f (x, y) = f (x, 0) is identically 0.

(ii) Along (II), x = 5 and f (x, y) = 5e−5(y2− 4y) for y ∈ [0, 4]. This has its least value for y = 2 and
its greatest value for y = 0 and for y = 4. The function values are f (5, 2) = −20e−5 ≈ −0.1348
and f (5, 0) = f (5, 4) = 0.

(iii) Along edge (III), y = 4 and f (x, y) = f (x, 4) = 0.
(iv) Finally, along (IV), x = 0 and f (x, y) = f (0, y) = 0.

Collecting all these results, we see that f attains its least value (on S) at the point (1, 2) and its
greatest value (namely 0) at all points of the line segments (I), (III) and (IV).

(d) y ′ = −f ′1(x, y)

f ′2(x, y)
= −e−x(1− x)(y − 4)y

2xe−x(y − 2)
= (x − 1)(y − 4)y

2x(y − 2)
= 0 when x = 1.

13.6

4. To calculate f ′x is routine. The derivative of
∫ z

y
et2

dt w.r.t. y, keeping z constant, can be found using

(9.3.7): it is−ey2
. The derivative of

∫ z

y
et2

dt w.r.t. z, keeping y constant, can be found using (9.3.6): it is

ez2
. Thus f ′y = 2− ey2

and f ′z = −3+ ez2
. Since each of the three partials depends only on one variable

and is 0 for two different values of that variable, there are eight stationary points (as indicated in the text).

13.7

2. (a) With profits π as given in the text, first-order conditions for a maximum are π ′K = 2
3pK−1/3− r = 0,

π ′L = 1
2pL−1/2 − w = 0, π ′T = 1

3pT −2/3 − q = 0. Thus, K−1/3 = 3r/2p, L−1/2 = 2w/p, and
T −2/3 = 3q/p. Raising each side of K−1/3 = 3r/2p to the power of −3 yields, K = (3r/2p)−3 =
(2p/3r)3 = (8/27)p3r−3. In a similar way we find L and T . (b) Routine algebra: see the text.

5. (a) Differentiating pF ′K(K∗, L∗) = r using the product rule gives dp F ′K(K∗, L∗)+pd(F ′K(K∗, L∗)) =
dr . Moreover, d(F ′K(K∗, L∗)) = F ′′KK(K∗, L∗) dK∗ + F ′′KL(K∗, L∗) dL∗. (To see why, note that
dg(K∗, L∗) = g′K(K∗, L∗) dK∗ + g′L(K∗, L∗) dL∗. Then let g = F ′K .) This explains the first dis-
played equation (replacing dK by dK∗ and dL by dL∗). The second is derived in the same way.
(b) Rearrange the equation system by moving the differentials of the exogenous prices p, r , and w to the
right-hand side, while suppressing the notation indicating that the partials are evaluated at (K∗, L∗):

pF ′′KK dK∗ + pF ′′KL dL∗ = dr − F ′K dp

pF ′′LK dK∗ + pF ′′LL dL∗ = dw − F ′L dp

Putting � = F ′′KKF ′′LL − F ′′KLF ′′LK = F ′′KKF ′′LL − (F ′′KL)2, then using (2.4.2) and cancelling p, we get

dK∗ = −F ′KF ′′LL + F ′LF ′′KL

p�
dp + F ′′LL

p�
dr + −F ′′KL

p�
dw
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In the same way

dL∗ = −F ′LF ′′KK + F ′KF ′′LK

p�
dp + −F ′′LK

p�
dr + F ′′KK

p�
dw

We can now read off the required partials. (c) See the text. (Recall that F ′′LL < 0 follows from (∗∗) in
Example 13.3.3.)

6. (a) (i) R′1(x∗1 , x∗2 )+ s = C ′1(x∗1 , x∗2 ) (marginal revenue plus subsidy equals marginal cost).
(ii) R′2(x∗1 , x∗2 ) = C ′2(x∗1 , x∗2 )+ t = 0 (marginal revenue equals marginal cost plus tax).
(b) See the text, which also introduces the notation D = (R′′11 − C ′′11)(R

′′
22 − C ′′22) − (R′′12 − C ′′12)

2.
(c) Taking the total differentials of (i) and (ii) yields

(R′′11 − C ′′11)dx∗1 + (R′′12 − C ′′12)dx∗2 = −ds, (R′′21 − C ′′21)dx∗1 + (R′′22 − C ′′22)dx∗2 = dt

Solving for dx∗1 and dx∗2 yields, after rearranging,

dx∗1 =
−(R′′22 − C ′′22)ds − (R′′12 − C ′′12)dt

D
, dx∗2 =

(R′′21 − C ′′21)ds + (R′′11 − C ′′11)dt

D

From this we find that the partial derivatives are

∂x∗1
∂s
= −R′′22 + C ′′22

D
> 0,

∂x∗1
∂t
= −R′′12 + C ′′12

D
> 0,

∂x∗2
∂s
= R′′21 − C ′′21

D
< 0,

∂x∗2
∂t
= R′′11 − C ′′11

D
< 0

where the signs follow from the assumptions in the problem and the fact that D > 0 from (b). Note
that these signs accord with economic intuition. For example, if the tax on good 2 increases, then the
production of good 1 increases, while the production of good 2 decreases.
(d) Follows from the expressions in (c) because R′′12 = R′′21 and C ′′12 = C ′′21.

Review Problems for Chapter 13
2. (a) The profit function is π(Q1, Q2) = 120Q1 + 90Q2 − 0.1Q2

1 − 0.1Q1Q2 − 0.1Q2
2. First-order

conditions for maximal profit are: π ′1(Q1, Q2) = 120 − 0.2Q1 − 0.1Q2 = 0 and π ′2(Q1, Q2) =
90 − 0.1Q1 − 0.2Q2 = 0. We find (Q1, Q2) = (500, 200). Moreover, π ′′11(Q1, Q2) = −0.2 ≤ 0,
π ′′12(Q1, Q2) = −0.1, and π ′′22(Q1, Q2) = −0.2 ≤ 0. Since also π ′′11π

′′
22 − (π ′′12)

2 = 0.03 ≥ 0,
(500, 200) maximizes profits.
(b) The profit function is now π̂(Q1, Q2) = P1Q1 + 90Q2 − 0.1Q2

1 − 0.1Q1Q2 − 0.1Q2
2. First-order

conditions for maximal profit become π̂ ′1 = P1−0.2Q1−0.1Q2 = 0 and π̂ ′2 = 90−0.1Q1−0.2Q2 = 0.
In order to induce the choice Q1 = 400, the first-order conditions imply that P1 − 80− 0.1Q2 = 0 and
90− 40− 0.2Q2 = 0. It follows that Q2 = 250 and P1 = 105.

4. (a) Stationary points: (i) f ′1(x, y) = 3x2− 2xy = x(3x− 2y) = 0, (ii) f ′2(x, y) = −x2+ 2y = 0. From
(i), x = 0 or 3x = 2y. If x = 0, then (ii) gives y = 0. If 3x = 2y, then (ii) gives 3x = x2, and so x = 0
or x = 3. If x = 3, then (ii) gives y = x2/2 = 9/2. So the stationary points are (0, 0) and (3, 9/2).
(b) (i) f ′1(x, y) = ye4x2−5xy+y2

(8x2 − 5xy + 1) = 0, (ii) f ′2(x, y) = xe4x2−5xy+y2
(2y2 − 5xy + 1) = 0.

If y = 0, then (i) is satisfied and (ii) holds only when x = 0. If x = 0, then (ii) is satisfied and (i) holds
only if y = 0. Thus, in addition to (0, 0), any other stationary point must satisfy both 8x2− 5xy+ 1 = 0
and 2y2 − 5xy + 1 = 0. Subtracting the second of these equations from the first yields 8x2 = 2y2, or
y = ±2x. Inserting y = −2x into 8x2 − 5xy + 1 = 0 yields 18x2 + 1 = 0, which has no solutions.
Inserting y = 2x into 8x2 − 5xy + 1 = 0 yields −2x2 + 1 = 0, so x = ± 1

2

√
2. We conclude that the

stationary points are: (0, 0) and ( 1
2

√
2,
√

2), (− 1
2

√
2,−√2).
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(c) Stationary points occur where: (i) f ′1(x, y) = 24xy − 48x = 24x(y − 2) = 0; and (ii) f ′2(x, y) =
12y2 + 12x2 − 48y = 12(x2 + y2 − 4y) = 0. From (i) x = 0 or y = 2. If x = 0, then (ii) gives
y(y − 4) = 0, so y = 0 or y = 4. So (0, 0) and (0, 4) are stationary points. If y = 2, then (ii) gives
x2 − 4 = 0, so x = ±2. Hence (2, 2) and (−2, 2) are also stationary points.

6. (a) With π = p(Ka+Lb+T c)−rK−wL−qT , the first-order conditions for (K∗, L∗, T ∗) to maximize
π are

π ′K = pa(K∗)a−1 − r = 0, π ′L = pb(L∗)a−1 − w = 0, π ′T = pc(T ∗)a−1 − q = 0

Hence, K∗ = (ap/r)1/(1−a), L∗ = (bp/w)1/(1−a), T ∗ = (cp/q)1/(1−a).
(b) π∗ = � + terms that do not depend on r , where � = p(ap/r)a/(1−a) − r(ap/r)1/(1−a). Some
algebraic manipulations yield

� = (a/r)a/(1−a)p1/(1−a) − (ap)1/(1−a)r−a/(1−a) = (aa/(1−a) − a1/(1−a))p1/(1−a)r−a/(1−a)

= (1− a)aa/(1−a)p1/(1−a)r−a/(1−a)

Then
∂π∗

∂r
= ∂�

∂r
= −aaa/(1−a)p1/(1−a)r−a/(1−a)−1 = −a1/(1−a)p1/(1−a)r−1/(1−a) = −(ap/r)1/(1−a).

(c) We apply (13.7.2) to this case, where π(K, L, T , p, r, w, q) = pQ − rK − wL − qT with Q =
Ka+Lb+T c, and π∗(p, r, w, q) = pQ∗−rK∗−wL∗−qT ∗. With the partial derivatives of π evaluated
at (K∗, L∗, T ∗, p, r, w, q) where output is Q∗, one should have ∂π∗/∂p = π ′p = Q∗, ∂π∗/∂r = π ′r =
−K∗, ∂π∗/∂w = π ′w = −L∗, and ∂π∗/∂w = π ′w = −T ∗. From (b), we have the second property. The
other three equations can be verified by rather tedious algebra in a similar way.

8. (a) f ′1(x, y) = 2x−y−3x2, f ′2(x, y) = −2y−x, f ′′11(x, y) = 2−6x, f ′′12(x, y) = −1, f ′′22(x, y) = −2.
Stationary points occur where 2x − y − 3x2 = 0 and −2y − x = 0. The last equation yields y = −x/2,
which inserted into the first equation gives 5

2x − 3x2 = 0. It follows that there are two stationary points,
(x1, y1) = (0, 0) and (x2, y2) = (5/6,−5/12). These points are classified in the following table:

(x, y) A B C AC − B2 Type of point

(0, 0) 2 −1 −2 −5 Saddle point

( 5
6 ,− 5

12 ) −3 −1 −2 5 Local maximum

(b) f is concave in the domain where f ′′11 ≤ 0, f ′′22 ≤ 0, and f ′′11f
′′
22− (f ′′12)

2 ≥ 0, i.e. where 2− 6x ≤ 0,
−2 ≤ 0, and (2 − 6x)(−2) − (−1)2 ≥ 0. These conditions are equivalent to x ≥ 1/3 and x ≥ 5/12.
Since 5/12 > 1/3, f is concave in the set S consisting of all (x, y) where x ≥ 5/12.
(c) The stationary point (x2, y2) = (5/6,−5/12) found in (a) does belong to S. Since f concave in S,
this is a (global) maximum point for f in S, and fmax = 25

36 − 25
144 + 25

72 − 125
216 = 125

432 .

9. (a) Stationary points require that x−1 = −ay and a(x−1) = y2−2a2y. Multiplying the first equation by
a gives−a2y = a(x−1) = y2−2a2y, by the second equation. Hence a2y = y2, implying that y = 0 or
y = a2. Since x = 1−ay, the stationary points are (1, 0) and (1−a3, a2). (Since we were asked only to
show that (1−a3, a2) is a stationary point, it would suffice to verify that it makes both partials equal to 0.)
(b) The function value at the stationary point in (a) is 1

2 (1−a3)2− (1−a3)+a3(−a3)− 1
3a6+a2 ·a4 =

− 1
2 + 1

6a6, whose derivative w.r.t. a is a5. On the other hand, the partial derivative of f w.r.t. a, keeping
x and y constant, is ∂f/∂a = y(x − 1)+ 2ay2. Evaluated at x = 1− a3, y = a2, this partial derivative
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is also a5, thus confirming the envelope theorem. (c) f ′′11 = 1, f ′′22 = −2y + 2a2, f ′′12 = a, and
f ′′11f

′′
22 − (f ′′12)

2 = a2 − 2y. Thus f is convex if and only if −2y + 2a2 ≥ 0 and −2y + a2 ≥ 0, which
is equivalent to a2 ≥ y and a2 ≥ 2y. It follows that f (x, y) is convex in that part of the xy-plane where
y ≤ 1

2a2.

10. Actually, we have nothing to add to the answer that is already in the main text. Sorry!

Chapter 14 Constrained Optimization

14.1

4. (a) With L(x, y) = x2 + y2 − λ(x + 2y − 4), the first-order conditions are L′1 = 2x − λ = 0 and
L′2 = 2y − 2λ = 0. From these equations we get 2x = y, which inserted into the constraint gives
x + 4x = 4. So x = 4/5 and y = 2x = 8/5, with λ = 2x = 8/5.
(b) The same method as in (a) gives 2x − λ = 0 and 4y − λ = 0, so x = 2y. From the constraint we get
x = 8 and y = 4, with λ = 16.
(c) The first-order conditions imply that 2x + 3y = λ = 3x + 2y, which gives x = y. So the solution is
(x, y) = (50, 50) with λ = 250.

9. (a) With L = xa + y − λ(px + y −m), the first-order conditions for (x∗, y∗) to solve the problem are
(i) L′x = a(x∗)a−1−λp = 0; (ii) L′y = 1−λ = 0. Thus λ = 1, and x∗ = x∗(p, m) = kp−1/(1−a) where
k = a1/(1−a). Then y∗ = y∗(p, m) = m− kp−a/(1−a).
(b) ∂x∗/∂p = −x∗/p(1− a) < 0, ∂x∗/∂m = 0, ∂y∗/∂p = ax∗/(1− a) > 0, and ∂y∗/∂m = 1.
(c) The optimal expenditure on good x is px∗(p, m) = kp−a/(1−a), so Elp px∗(p, m) = −a/(1−a) < 0.
In particular, the expenditure on good x will decrease as its price increases.
(d) We see that x∗ = (1/2p)2, y∗ = m − 1/4p, so U∗(p, m) = √x∗ + y∗ = (1/2p) + m − 1/4p =
m+ 1/4p, and the required identity is obvious.

10. (a) With L(x, y) = 100 − e−x − e−y − λ(px + qy − m), the first-order conditions L′x = L′y = 0
imply that e−x = λp and e−y = λq. Hence, x = − ln(λp) = − ln λ − ln p, y = − ln λ − ln q.
Inserting these expressions for x and y into the constraint yields −p(ln λ+ ln p)− q(ln λ+ ln q) = m

and so ln λ = −(m + p ln p + q ln q)/(p + q). Therefore x(p, q, m) = [m + q ln(q/p)]/(p + q),
y(p, q, m) = [m+ p ln(p/q)]/(p + q).
(b) x(tp, tq, tm) = [tm + tq ln(tq/tp)]/(tp + tq) = x(p, q, m), so x is homogeneous of degree 0.
In the same way we see that y(p, q, m) is homogeneous of degree 0.

14.2

4. (a) With L(x, y) = √x+y−λ(x+4y−100), the first-order conditions for (x∗, y∗) to solve the problem
are: (i) ∂L/∂x = 1/2

√
x∗ −λ = 0 (ii) ∂L/∂y = 1− 4λ = 0. From (ii), λ = 1/4, which inserted into

(i) yields
√

x∗ = 2, so x∗ = 4. Then y∗ = 25− 1
4 4 = 24, and maximal utility is U∗ = √x∗ + y∗ = 26.

(b) Denote the new optimal values of x and y by x̂ and ŷ. If 100 is changed to 101, still λ = 1/4 and
x̂ = 4. The constraint now gives 4+ 4ŷ = 101, so that ŷ = 97/4 = 24.25, with Û = √x̂ + ŷ = 26.25.
The increase in maximum utility is therefore Û − U∗ = 0.25 = λ. (In general, the increase in utility is
approximately equal to the value of the Lagrange multiplier.)
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(c) The necessary conditions for optimality are now ∂L/∂x = 1/2
√

x∗−λp = 0, ∂L/∂y = 1−λq = 0.
Proceeding in the same way as in (a), we find λ = 1/q,

√
x∗ = q/2p, and so x∗ = q2/4p2, with

y∗ = m/q − q/4p. (Note that y∗ > 0 ⇐⇒ m > q2/4p.) (If we solve the constraint for y, the utility
function is u(x) = √x + (m − px)/q. We see that u′(x) = 1/2

√
x − p/q = 0 for x∗ = q2/4p2 and

u′′(x) = −(1/4)x−3/2 < 0 when x > 0. So we have found the maximum.)

5. (a) The first-order conditions given in the main text imply that px∗ = pa + α/λ and qy∗ = qb + β/λ.
Substituting these into the budget constraint givesm = px∗+qy∗ = pa+qb+(α+β)/λ = pa+qb+1/λ,
so 1/λ = m− (pa + qb). The expressions given in (∗∗) are now easily established. (We can interpret a

and b as minimum subsistence quantities of the two goods, in which case the assumption pa + qb < m

means that the consumer can afford to buy (a, b).)
(b) With U∗ as given in the answer provided in the text, differentiating partially while remembering that

α + β = 1 gives
∂U∗

∂m
= α

m− (pa + qb)
+ β

m− (pa + qb)
= 1

m− (pa + qb)
= λ > 0. Moreover,

∂U∗

∂p
= −αa

m− (pa + qb)
− α

p
+ −βa

m− (pa + qb)
= −a

m− (pa + qb)
− α

p
= −aλ − α

p
, whereas

−∂U∗

∂m
x∗ = −λ

(
a + α

λp

)
= −aλ − α

p
, so

∂U∗

∂p
= −∂U∗

∂m
x∗. The last equality is shown in the same

way.

6. f (x, T ) = x

∫ T

0
[−t3 + (αT 2 + T − 1)t2 + (T − αT 3)t] dt

= x
T

0
[− 1

4 t4+(αT 2+T −1) 1
3 t3+(T −αT 3) 1

2 t2] = − 1
6αxT 5+ 1

12xT 4+ 1
6xT 3 = 1

12xT 3(2+T −2αT 2)

A similar but easier calculation shows that g(x, T ) =
∫ T

0
(xtT − xt2) dt = 1

6xT 3. The Lagrangian for

the producer’s problem is L = 1
12xT 3(2+T −2αT 2)−λ( 1

6xT 3−M). The two first-order conditions are
1

12T 3(2+T −2αT 2)− 1
6λT 3 = 0 and 1

12xT 2(6+4T −10αT 2)− 1
2λxT 2 = 0. These equations imply that

λ = 1
2 (2+T −2αT 2) = 1

6 (6+4T −10αT 2). It follows that 4αT 2 = T . One solution is T = 0, but this is
inconsistent with the constraint 1

6xT 3 = M . Hence, the solution we are interested is T = 1/4α, implying
that λ = 1+ 1/16α. Substituting into the constraint g(x, T ) = M determines x = 6MT −3 = 384Mα3.
Because xT 3 = 6M , the maximum profit is f ∗(M) = M +M/8α − αM/16α2 = M +M/16α, whose
derivative w.r.t. M is indeed λ.

We note that the maximum by itself is much easier to find if one substitutes the constraint M = 1
6xT 3

into the objective function f (x, T ), which then becomes the function −αMT 2 + 1
2MT + M of T

alone, with α and M as parameters. The first-order condition for T to maximize this expression is
−2αMT + 1

2M = 0, implying that T = 1/4α. However, this method does not find λ.

14.3
1. (a) With L(x, y) = 3xy − λ(x2 + y2 − 8), the first-order conditions are L′1 = 3y − 2λx = 0 and

L′2 = 3x − 2λy = 0. These can be rewritten as (i) 3y = 2λx and (ii) 3x = 2λy. If x = 0, then
(i) gives y = 0; conversely, if y = 0, then (ii) gives x = 0. But (x, y) = (0, 0) does not satisfy
the constraint. Hence x �= 0 and y �= 0. Equating the ratio of the left-hand sides of (i) and (ii) to
the ratio of their right-hand sides, one has y/x = x/y or x2 = y2. Finally, using the constraint gives
x2 = y2 = 4. The four solution candidates are therefore (2, 2) and (−2,−2) with λ = 3/2, as well as
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(2,−2) and (−2, 2) with λ = −3/2. The corresponding function values are f (2, 2) = f (−2,−2) = 12
and f (2,−2) = f (−2, 2) = −12.

Because f is continuous and the constraint set is a circle, which is closed and bounded, the extreme
value theorem implies that a maximum and minimum do exist. The function values tell us that (2, 2) and
(−2,−2) solve the maximization problem, whereas (−2, 2) and (2,−2) solve the minimization problem.
(b) With L = x + y − λ(x2 + 3xy + 3y2 − 3), the first-order conditions are 1 − 2λx − 3λy = 0 and
1−3λx−6λy = 0. These equations give us 1 = 2λx+3λy = 3λx+6λy. In particular, λ(3y+x) = 0.
Here λ = 0 is impossible, so x = −3y. Inserting this into the constraint reduces it to 3y2 = 3, with
solutions y = ±1. So the first-order conditions give two solution candidates (x, y, λ) = (3,−1, 1

3 ) and
(x, y, λ) = (−3, 1,− 1

3 ). Because the objective function is continuous and the constraint curve is closed
and bounded (actually, an ellipse — see (5.5.5)), the extreme value ensures that both a maximum and
minimum exist. The function values f (3,−1) = 2 and f (−3, 1) = −2 tell us that the maximum is at
(3,−1), the minimum at (−3, 1).

2. (a) With L = x2+y2−2x+1−λ(x2+4y2−16), the first-order conditions are (i) 2x−2−2λx = 0
and (ii) 2y−8λy = 0. Equation (i) implies that x �= 0 and then λ = 1−1/x, whereas equation (ii) shows
that y = 0 or λ = 1/4. If y = 0, then x2 = 16− 4y2 = 16, so x = ±4, which then gives λ = 1∓ 1/4.
If y �= 0, then λ = 1/4 and (i) gives 2x − 2 − x/2 = 0, so x = 4/3. The constraint x2 + 4y2 = 16
now yields 4y2 = 16 − 16/9 = 128/9, so y = ±√32/9 = ±4

√
2/3. Thus, there are four solution

candidates: (i) (x, y, λ) = (4, 0, 3/4), (ii) (x, y, λ) = (−4, 0, 5/4), (iii) (x, y, λ) = (4/3, 4
√

2/3, 1/4),
and (iv) (x, y, λ) = (4/3,−4

√
2/3, 1/4). Of these four, checking function values shows that (i) and (ii)

both give a maximum, whereas (iii) and (iv) both give a minimum.
(b) The Lagrangian is L = ln (2+ x2)+y2−λ(x2+2y−2). Hence, the necessary first-order conditions
for (x, y) to be a minimum point are (i) ∂L/∂x = 2x/(2+ x2)− 2λx = 0 (ii) ∂L/∂y = 2y − 2λ = 0,
(iii) x2 + 2y = 2. From (i) we get x

(
1/(2+ x2)− λ

) = 0, so x = 0 or λ = 1/(2+ x2).
(I) If x = 0, then (iii) gives y = 1, so (x1, y1) = (0, 1) is a candidate.
(II) If x �= 0, then y = λ = 1/(2+ x2) , where we used (ii). Inserting y = 1/(2+ x2) into (iii) gives
x2 + 2/(2+ x2) = 2 ⇐⇒ 2x2 + x4 + 2 = 4+ 2x2 ⇐⇒ x4 = 2 ⇐⇒ x = ± 4√2.

From (iii), y = 1− 1
2x2 = 1− 1

2

√
2. Thus, (x2, y2) = (

4√2, 1− 1
2

√
2) and (x3, y3) = (− 4√2, 1− 1

2

√
2)

are two other candidates. Comparing function values, we see that f (x1, y1) = f (0, 1) = ln 2+1 ≈ 1.69,
f (x2, y2) = f (x3, y3) = ln (2+√2 ) + (1 − 1

2

√
2 )2 = ln (2+√2 ) + 3

2 −
√

2 ≈ 1.31. Hence, the
minimum points for f (x, y) subject to the constraint are (x2, y2) and (x3, y3).

4. (a) With L = 24x − x2 + 16y − 2y2 − λ(x2 + 2y2 − 44), the first-order conditions are (i) L′1 =
24−2x−2λx = 0 and (ii) L′2 = 16−4y−4λy = 0. From (i) x(1+λ) = 12 and from (ii) y(1+λ) = 4.
Eliminating λ from (i) and (ii) we get x = 3y = 12/(1+ λ), with λ �= −1. Inserted into the constraint,
11y2 = 44, so y = ±2, and then x = ±6. So there are two candidates, (x, y) = (6, 2) and (−6,−2),
with λ = 1. Computing the objective function at these two points, the only possible maximum is at
(x, y) = (6, 2). Since the objective function is continuous and the constraint curve is closed and bounded
(an ellipse), the extreme value theorem assures us that there is indeed a maximum at this point.
(b) According to (14.2.3) the approximate change is λ · 1 = 1.
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14.4

4. Before trying to find the minimum, consider the graph of the curve
g(x, y) = 0, as shown in Fig. SM14.4.4. It consists of three pieces:
(i) the continuous curve y = √x(x + 1) in the positive quadrant; (ii)
the continuous curve y = −√x(x + 1), which is the reflection of
curve (i) about the x-axis; (iii) the isolated point (−1, 0). The prob-
lem is to minimize the square of the distance d from the point (−2, 0)

to a point on this graph. The minimum of f obviously occurs at the
isolated point (−1, 0), with f (−1, 0) = 1.

y

−6
−5

−4
−3
−2
−1

1
2

3
4
5
6

x−3−2−1 1 2 3 4

(x, y)

y2 = x(x + 1)2

d

Figure SM14.4.4

With the Lagrangian L = (x + 2)2 + y2 − λ(y2 − x(x + 1)2),
we have

L′1 = 2(x + 2)+ λ((x + 1)2 + 2x(x + 1)), L′2 = 2y(1− λ)

Note that L′2 = 2y(1−λ) = 0 only if λ = 1 or y = 0. For λ = 1, we
find that L′1 = 3(x + 1)2 + 2 > 0 for all x. For y = 0, the constraint
gives x = 0 or x = −1. At x = 0, we have L′1 = 4 + λ = 0 and
L′1 = 2 at x = −1.

Thus the Lagrange multiplier method produces a unique solution candidate (x, y) = (0, 0) with
λ = −4, which does correspond to a local minimum. The global minimum at (−1, 0), however, fails
to satisfy the first-order conditions L′1 = L′2 = 0 for any value of λ, because L′1 = 2 at this point. So
the Lagrange multiplier method cannot locate this minimum. Note that at (−1, 0) both g′1(−1, 0) and
g′2(−1, 0) are 0.

14.5

4. With L = xa + ya − λ(px + qy − m), the first-order conditions are L′1 = axa−1 − λp = 0 and
L′2 = aya−1 − λq = 0. It follows that λ �= 0 and then x = (λp/a)1/(a−1), y = (λq/a)1/(a−1). Inserting
these values of x and y into the budget constraint gives (λ/a)1/(a−1)(pa/(a−1)+qa/(a−1)) = m. To reduce
notation, define R = pa/(a−1) + qa/(a−1) as in the text answer. Then we have (λ/a)1/(1−a) = m/R.
Therefore x = mp1/(a−1)/R and y = mq1/(a−1)/R.

14.6

7. The Lagrangian is L = x + y − λ(x2 + 2y2 + z2 − 1) − μ(x + y + z − 1), which is stationary
when (i) L′x = 1 − 2λx − μ = 0; (ii) L′y = 1 − 4λy − μ = 0; (iii) L′z = −2λz − μ = 0.
From (ii) and (iii) we get 1 = λ(4y − 2z), and in particular λ �= 0. From (i) and (ii), λ(x − 2y) = 0 and
so x = 2y. Substituting this value for x into the constraints gives 6y2 + z2 = 1 and 3y + z = 1. Thus
z = 1− 3y, implying that 1 = 6y2 + (1− 3y)2 = 15y2 − 6y + 1. Hence y = 0 or y = 2/5, implying
that x = 0 or 4/5, and that z = 1 or −1/5. The only two solution candidates are (x, y, z) = (0, 0, 1)

with λ = −1/2, μ = 1, and (x, y, z) = (4/5, 2/5,−1/5) with λ = 1/2, μ = 1/5. Because x + y is
0 at (0, 0, 1) and 6/5 at (4/5, 2/5,−1/5), these are respectively the minimum and the maximum. (The
two constraints determine the curve in three dimensions which is the intersection of an ellipsoid (see
Fig. 11.4.2) and a plane. Because an ellipsoid is a closed bounded set, so is this curve. By the extreme
value theorem, the continuous function x + y does attain a maximum and a minimum over this closed
bounded set.)
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8. (a) For the given Cobb–Douglas utility function, one has U ′j (x) = αjU(x)/xj . So (14.6.6) with k = 1
implies that pj/p1 = U ′j (x)/U ′1(x) = αjx1/α1xj . Thus pjxj = (aj /a1)p1x1. Inserting this into the
budget constraint for j = 2, . . . , n, gives p1x1 + (a2/a1)p1x1 + · · · + (an/a1)p1x1 = m, which implies
that p1x1 = a1m/(a1 + · · · + an). Similarly, pjxj = ajm/(a1 + · · · + an) for k = 1, . . . , n.

(b) From (14.6.6) with k = 1, we get xa−1
j /xa−1

1 = pj/p1 and so xj/x1 = (pj/p1)
−1/(1−a), or

pjxj /p1x1 = (pj/p1)
1−1/(1−a) = (pj/p1)

−a/(1−a). Inserting this into the budget constraint for j =
2, . . . , n, gives

p1x1
[
1+ (p2/p1)

−a/(1−a) + · · · + (pn/p1)
−a/(1−a)

] = m

so
p1x1 = mp

−a/(1−a)
1

/ n∑
i=1

p
−a/(1−a)

i

Arguing similarly for each k, we get xj = mp
−1/(1−a)

j

/ n∑
i=1

p
−a/(1−a)

i for k = 1, . . . , n.

14.7
2. Here L = x + 4y + 3z− λ(x2 + 2y2 + 1

3z2 − b). So necessary first-order conditions are:
(i) L′1 = 1− 2λx = 0; (ii) L′2 = 4− 4λy = 0; (iii) L′3 = 3− 2

3λz = 0. It follows that λ �= 0, and so
x = 1/2λ, y = 1/λ, z = 9/2λ. Inserting these values into the constraint yields [(1/4)+2+(27/4)]λ−2 =
b and so λ2 = 9/b, implying that λ = ±3/

√
b. The value of the objective function is x+4y+3z = 18/λ,

so λ = −3/
√

b determines the minimum point. This is (x, y, z) = (a, 2a, 9a), where a = −√b/6. For
the last verification, see the answer in the book.

4. (a) With L = x2+y2+z−λ(x2+2y2+4z2−1), necessary conditions are: (i) ∂L/∂x = 2x−2λx = 0,
(ii) ∂L/∂y = 2y − 4λy = 0, (iii) ∂L/∂z = 1 − 8λz = 0. From (i), 2x(1 − λ) = 0, so there are two
possibilities: x = 0 or λ = 1.
(A) Suppose x = 0. From (ii), 2y(1− 2λ) = 0, so y = 0 or λ = 1/2.
(A.1) If y = 0, then the constraint gives 4z2 = 1, so z2 = 1/4, or z = ±1/2. Equation (iii) gives
λ = 1/8z, so we have two solution candidates: P1 = (0, 0, 1/2) with λ = 1/4; and P2 = (0, 0,−1/2)
with λ = −1/4.
(A.2) If λ = 1/2, then (iii) gives z = 1/8λ = 1/4. It follows from the constraint that 2y2 = 3/4 (recall
that we assumed x = 0), and hence y = ±√3/8 = ±√6/4. So new candidates are: P3 = (0,

√
6/4, 1/4)

with λ = 1/2; and P4 = (0,−√6/4, 1/4) with λ = 1/2.
(B) Suppose λ = 1. Equation (iii) yields z = 1/8, and (ii) gives y = 0. From the constraint, x2 = 15/16,
so x = ±√15/4. Candidates: P5 = (

√
15/4, 0, 1/8) with λ = 1; and P6 = (−√15/4, 0, 1/8) with

λ = 1.
For k = 1, 2, . . . , 6, let fk denote the value of the criterion function f at the candidate point Pk .

Routine calculation shows that f1 = 1/2, f2 = −1/2, f3 = f4 = 5/8, and f5 = f6 = 17/16. It follows
that both P5 and P6 solve the maximization problem, whereas P2 solves the minimization problem.
(b) See the text.

5. The Lagrangian is L = rK + wL − λ(K1/2L1/4 −Q), so necessary conditions for (K∗, L∗) to solve
the problem are: (i) L′K = r − 1

2λ(K∗)−1/2(L∗)1/4 = 0, (ii) L′L = w − 1
4λ(K∗)1/2(L∗)−3/4 = 0,

(iii) (K∗)1/2(L∗)1/4 = Q. Together (i) and (ii) imply that r/w = 2L∗/K∗ and so L∗ = rK∗/2w.
Inserting this into (iii) gives Q = (K∗)1/2(rK∗/2w)1/4 = (K∗)3/42−1/4r1/4w−1/4. Solving for K∗ gives
the answer in the text. The answers for L∗ and C∗ = rK∗+wL∗ follow if we observe that 21/3 = 2·2−2/3.
The verification of (∗) in Example 14.7.3 is easy.
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14.8
5. (a) With the Lagrangian L(x, y) = 2− (x − 1)2 − ey2 − λ(x2 + y2 − a), the Kuhn–Tucker conditions

are: (i) −2(x − 1) − 2λx = 0; (ii) −2yey2 − 2λy = 0; (iii) λ ≥ 0, with λ = 0 if x2 + y2 < a.
From (i), x = (1 + λ)−1. Moreover, (ii) reduces to y(ey2 + λ) = 0, and so y = 0 (because ey2 + λ is
always positive).
(I): Assume that λ = 0. Then equation (i) gives x = 1. In this case we must have a ≥ x2 + y2 = 1.
(II): Assume that λ > 0. Then (iii) gives x2+y2 = a, and so x = ±√a (remember that y = 0). Because
x = 1/(1+ λ) and λ > 0 we must have 0 < x < 1, so x = √a and a = x2 < 1. It remains to find the
value of λ and check that it is > 0. From equation (i) we get λ = 1/x − 1 = 1/

√
a − 1 > 0.

Conclusion: The only point that satisfies the Kuhn–Tucker conditions is (x, y) = (1, 0) if a ≥ 1 and
(
√

a, 0) if 0 < a < 1. The corresponding value of λ is 0 or 1/
√

a − 1, respectively. In both cases it
follows from Theorem 14.8.1 that we have found the maximum point, because L is concave in (x, y), as

we can see by studying the Hessian

(
L′′11 L′′12

L′′21 L′′22

)
=

(−2− 2λ 0

0 −ey2
(2+ 4y2)− 2λ

)
.

(b) If a ∈ (0, 1) we have f ∗(a) = f (
√

a, 0) = 2 − (
√

a − 1)2 − 1 = 2
√

a − a, and for a ≥ 1 we get
f ∗(a) = f (1, 0) = 1. The derivative of f ∗ is as given in the book, but note that in order to find the
derivative df ∗(a)/da when a = 1, we need to show that the right and left derivatives (see page 243 in
the book)

(f ∗)′(1+) = lim
h→0+

f ∗(1+ h)− f ∗(1)

h
and (f ∗)′(1−) = lim

h→0−
f ∗(1+ h)− f ∗(1)

h

exist and are equal. But the left and right derivatives are respectively equal to the derivatives of the
differentiable functions g−(a) = 2

√
a − a and g+(a) = 1 at a = 1, which are both 0. Hence (f ∗)′(1)

exists and equals 0.

14.9
2. The Lagrangian is L = α ln x + (1 − α) ln y − λ(px + qy − m) − μ(x − x̄), and the Kuhn–Tucker

conditions for (x∗, y∗) to solve the problem are

L′1 =
α

x∗
− λp − μ = 0 (i)

L′2 =
1− α

y∗
− λq = 0 (ii)

λ ≥ 0, and λ = 0 if px∗ + qy∗ < m (iii)

μ ≥ 0, and μ = 0 if x∗ < x̄ (iv)

We assume that α ∈ (0, 1), in which case (ii) implies that λ > 0 and so (iii) entails px∗ + qy∗ = m.
Suppose μ = 0. Then from (i) and (ii) α/px∗ = (1 − α)/qy∗, so qy∗ = (1 − α)px∗/α. Then the

budget constraint implies that px∗ + (1 − α)px∗/α = m, from which it follows that x∗ = mα/p and
y∗ = (1− α)m/q, with λ = 1/m. This is valid as long as x∗ ≤ x̄, that is m ≤ px̄/α.

Suppose μ > 0. Then x∗ = x̄ and y∗ = m/q − px̄/q = (m− px̄)/q, with λ = (1− α)/(m− px̄)

and μ = α/x̄ − λp = (αm− px̄)/x̄(m− px̄). Note that if m > px̄/α, then m > px̄ since α < 1. We
conclude that if m > px̄/α, then λ and μ are both positive and conditions (i)–(iv) are satisfied.

Since L′11 = −α/x2 < 0, L′22 = −α/y2 < 0, and L′12 = 0, the Lagrangian L(x, y) is concave, so
we have found the solution in both cases.
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3. (a) See the answer in the text. (b) With the constraints g1(x, y) = −x − y ≤ −4, g2(x, y) = −x ≤ 1,
g3(x, y) = −y ≤ −1, the Lagrangian is L = x+y−ex−ex+y−λ1(−x−y+4)−λ2(−x−1)−λ3(−y+1).
The Kuhn–Tucker conditions are that there exist nonnegative numbers λ1, λ2, and λ3 such that (i) L′x =
1 − ex − ex+y + λ1 + λ2 = 0; (ii) L′y = 1 − ex+y + λ1 + λ3 = 0; (iii) λ1(−x − y + 4) = 0;
(iv) λ2(−x − 1) = 0; (v) λ3(−y + 1) = 0. (We formulate the complementary slackness conditions as in
(14.8.5).) From (ii), ex+y = 1+ λ1 + λ3. Inserting this into (i) yields λ2 = ex + λ3 ≥ ex > 0. Because
λ2 > 0, (iv) implies that x = −1. So any solution must lie on the line (II) in the figure, which shows
that the third constraint y ≥ 1 must be slack. (Algebraically, because x + y ≥ 4 and x = −1, we have
y ≥ 4 − x = 5 > 1.) So from (v) we get λ3 = 0, and then (ii) gives λ1 = ex+y − 1 ≥ e4 − 1 > 0.

Thus from (iii), the first constraint is active, so y = 4 − x = 5. Hence the only possible solution is
(x∗, y∗) = (−1, 5). Because L(x, y) is concave, we have found the optimal point.

4. (a) The feasible set is shown in Fig. A14.9.4 in the book. (The function to be maximized is f (x, y) =
x + ay. The level curves of this function are straight lines with slope−1/a if a �= 0, and vertical lines if
a = 0. The dashed line in the figure is such a level curve (for a ≈ −0.25). The maximum point for f is
that point in the feasible region that we shall find if we make a parallel displacement of this line as far to
the right as possible (why to the right?) without losing contact with the shaded region.)

The Lagrangian is L(x, y) = x + ay − λ1(x
2 + y2 − 1) + λ2(x + y) (the second constraint must

be written as −x − y ≤ 0), so the Kuhn–Tucker conditions are:
(i) L′1(x, y) = 1− 2λ1x + λ2 = 0; (ii) L′2(x, y) = a − 2λ1y + λ2 = 0;
(iii) λ1 ≥ 0, with λ1 = 0 if x2 + y2 < 1; (iv) λ2 ≥ 0, with λ2 = 0 if x + y > 0.

(b) From (i), 2λ1x = 1 + λ2 ≥ 1. But (iii) implies that λ1 ≥ 0, so in fact λ1 > 0 and x > 0. Because
λ1 > 0, it follows from (iii) that x2 + y2 = 1, so any maximum point must lie on the circle.
(I) First consider the case x + y = 0. Then y = −x, and since x2 + y2 = 1, we get x = 1

2

√
2 (recall

that we have seen that x must be positive) and y = − 1
2

√
2. Adding equations (i) and (ii), we get

1+ a − 2λ1(x + y)+ 2λ2 = 0

and since x + y = 0, we find that λ2 = −(1+ a)/2. Now, λ2 must be ≥ 0, and therefore a ≤ −1 in this
case. Equation (i) gives λ1 = (1+ λ2)/2x = (1− a)/4x = √2(1− a)/4.
(II) Second, consider the other case x + y > 0. Then (iv) implies that λ2 = 0, so (i) and (ii) reduce to
1− 2λ1x = 0 and a− 2λ1y = 0, and so x = 1/(2λ1) and y = a/(2λ1). Inserting these into x2+ y2 = 1

yields (1/4λ1)
2(1 + a2) = 1, and so 2λ1 =

√
1+ a2 . This gives x = 1√

1+ a2
and y = a√

1+ a2
.

Because x+y = (1+a)/(2λ1), and because x+y is now assumed to be positive, we must have a > −1
in this case. Conclusion: The only points satisfying the Kuhn–Tucker conditions are the ones given in
the text. Since the feasible set is closed and bounded and f is continuous, it follows from the extreme
value theorem that extreme points exists.

5. The Lagrangian is L = y − x2 + λy + μ(y − x + 2) − ν(y2 − x), which is stationary when
(i) −2x − μ + ν = 0; (ii) 1 + λ + μ − 2νy = 0. In addition, complementary slackness requires
(iii) λ ≥ 0, with λ = 0 if y > 0; (iv) μ ≥ 0, with μ = 0 if y − x > −2; (v) ν ≥ 0, with ν = 0 if y2 < x.

From (ii), 2νy = 1 + λ + μ > 0, so y > 0. Then (iii) implies λ = 0, and 2νy = 1 + μ. From (i),
x = 1

2 (ν − μ). But x ≥ y2 > 0, so ν > μ ≥ 0, and from (v), y2 = x.
Suppose μ > 0. Then y − x + 2 = y − y2 + 2 = 0 with roots y = −1 and y = 2. Only y = 2 is

feasible. Then x = y2 = 4. Because λ = 0, conditions (i) and (ii) become−μ+ν = 8 and μ−4ν = −1,
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so ν = −7/3, which contradicts ν ≥ 0, so (x, y) = (4, 2) is not a candidate. Therefore μ = 0 after
all. Thus x = 1

2ν = y2 and, by (ii), 1 = 2νy = 4y3. Hence y = 4−1/3, x = 4−2/3. This is the only
remaining candidate. It is the solution with λ = 0, μ = 0, and ν = 1/2y = 4−1/6.

6. (a) See Fig. A14.9.6 in the text. Note that for (x, y) to be admissible, e−x ≤ y ≤ 2/3, and so ex ≥ 3/2,
which implies, in particular, that x > 0.
(b) The Lagrangian is L = −(x + 1

2 )2 − 1
2y2 − λ1(e

−x − y)− λ2(y − 2
3 ), and the first-order conditions

are: (i) −(2x + 1) + λ1e
−x = 0; (ii) −y + λ1 − λ2 = 0; (iii) λ1 ≥ 0, with λ1 = 0 if e−x < y;

(iv) λ2 ≥ 0, with λ2 = 0 if y < 2/3. From (i), λ1 = (2x + 1)ex ≥ 3/2, because of (a), implying that
y = e−x . From (ii), λ2 = λ1 − y ≥ 3/2 − 2/3 > 0, so y = 2/3 because of (iv). This gives the
solution candidate (x∗, y∗) = (ln(3/2), 2/3), with λ1 = 3[ln(3/2) + 1/2] and λ2 = 3 ln(3/2) + 5/6.
The Lagrangian is easily seen to be concave as a function of (x, y) when λ1 ≥ 0, so this is indeed the
solution.

Alternative argument: Suppose λ1 = 0. Then from (ii), y = −λ2 ≤ 0, contradicting y ≥ e−x .
So λ1 > 0, and (iii) gives y = e−x . Suppose λ2 = 0. Then from (ii), λ1 = y = e−x and (i) gives
e−2x = 2x + 1. Define g(x) = 2x + 1 − e−2x . Then g(0) = 0 and g′(x) = 2 + 2e−2x > 0. So the
equation e−2x = 2x + 1 has no solution except x = 0. Thus λ2 > 0, etc.

14.10

2. The Lagrangian without Lagrange multipliers for the nonnegativity constraints is
L = xey−x − 2ey − λ(y − 1− x/2), so the first-order conditions (14.10.3) and (14.10.4) are
(i) L′x = ey−x − xey−x + 1

2λ ≤ 0 (= 0 if x > 0); (ii) L′y = xey−x − 2e − λ ≤ 0 (= 0 if y > 0); and

(iii) λ ≥ 0 with λ = 0 if y < 1+ 1
2x.

If x = 0, then (i) implies ey + 1
2λ ≤ 0, which is impossible, so x > 0. Then from (i) we get

(iv) xey−x = ey−x + 1
2λ.

Suppose first that λ > 0. Then (iii) and y ≤ 1+ x/2 imply (v) y = 1+ 1
2x. Thus y > 0 and from

(ii) we have xey−x = 2e + λ. Using (iv) and (v), we get λ = 2ey−x − 4e = 2e(e− 1
2 x − 2). But then

λ > 0 implies that e− 1
2 x > 2, which contradicts x ≥ 0.

This leaves λ = 0 as the only possibility. Then (iv) gives x = 1. If y > 0, then (ii) yields ey−1 = 2e,
and so y − 1 = ln(2e) = ln 2+ 1. With x = 1 this contradicts the constraint y ≤ 1+ 1

2x. Hence y = 0,
so we see that (x, y) = (1, 0) is the only point satisfying all the first-order conditions, with λ = 0.

(The extreme value theorem cannot be applied because the feasible set, i.e. the set of all points
satisfying the constraints, is unbounded—it includes points (x, 0) for arbitrarily large x. However, you
were told to assume that the problem has a solution.)

3. The Lagrangian is L = x1 + 3x2 − x2
1 − x2

2 − k2 − λ(x1 − k)−μ(x2 − k). A feasible triple (x∗1 , x∗2 , k∗)
solves the problem if and only if there exist numbers λ and μ such that (i) 1−2x∗1−λ ≤ 0 (= 0 if x∗1 > 0);
(ii) 3− 2x∗2 −μ ≤ 0 (= 0 if x∗2 > 0); (iii)−2k∗ + λ+μ ≤ 0 (= 0 if k∗ > 0); (iv) λ ≥ 0 with λ = 0
if x∗1 < k∗; (v) μ ≥ 0 with μ = 0 if x∗2 < k∗.

If k∗ = 0, then feasibility requires x∗1 = 0 and x∗2 = 0, and so (i) and (ii) imply that λ ≥ 1 and
μ ≥ 3, which contradicts (iii). Thus, k∗ > 0. Next, if μ = 0, then (ii) and (iii) imply that x∗2 ≥ 3/2
and λ = 2k∗ > 0. So x∗1 = k∗ = 1/4, contradicting x∗2 ≤ k∗. So μ > 0, which implies that x∗2 = k∗.
Now, if x∗1 = 0 < k∗, then λ = 0, which contradicts (i). So 0 < x∗1 = 1

2 (1 − λ). Next, if λ > 0, then
x∗1 = k∗ = x∗2 = 1

2 (1 − λ) = 1
2 (3 − μ) = 1

2 (λ + μ) by (i), (ii), and (iii) respectively. But the last two
equalities are only satisfied when λ = −1/3 and μ = 5/3, which contradicts λ ≥ 0. So λ = 0 after all,
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with x∗2 = k∗ > 0, μ > 0, x∗1 = 1
2 (1− λ) = 1

2 . Now, from (iii) it follows that μ = 2k∗ and so, from (ii),
that 3 = 2x∗2 + μ = 4k∗. The only possible solution is, therefore, (x∗1 , x∗2 , k∗) = (1/2, 3/4, 3/4), with
λ = 0 and μ = 3/2.

Finally, with λ = 0 and μ = 3
2 , the Lagrangian x1 + 3x2 − x2

1 − x2
2 − k2 − 3

2 (x2 − k) is a quadratic
function of (x1, x2, k), which has a maximum at the stationary point (x∗1 , x∗2 , k∗). As stated at the end of
the recipe in Section 14.9, this is sufficient for the same (x∗1 , x∗2 , k∗) to solve the problem.

Review Problems for Chapter 14

3. (a) If sales x of the first commodity are increased, the increase in net profit per unit increase in x is the
sum of three terms: (i) p(x∗), which is the gain in revenue due to the extra output; (ii)−p′(x∗)x∗, which
is the loss in revenue from selling x∗ units due to the reduced price; (iii)−C ′1(x∗, y∗), which is minus the
marginal cost of the additional output. In fact p(x∗)+ p′(x∗)x∗ is the derivative of the revenue function
R(x) = p(x)x at x = x∗, usually called the marginal revenue. The first necessary condition therefore
states that the marginal revenue from increasing x must equal the (partial) marginal cost.
The argument when considering any variation in the sales y of the second commodity is just the same.
(b) With the restriction x + y ≤ m, we have to add the condition λ ≥ 0, with λ = 0 if x̂ + ŷ < m.

y

x

-4

-2

2

4

-4 -2 2 4 6

(x1, y1)

(x3, y3)

(x2, y2)

(x4, y4)

Figure SM14.R.5

5. (a) With L = x2 + y2 − 2x + 1− λ( 1
4x2 + y2 − b), the first-order conditions are:

(i) L′1 = 2x − 2− 1
2λx = 0; (ii) L′2 = 2y − 2λy = 0; (iii) 1

4x2 + y2 = b.
From (ii), (1− λ)y = 0, and thus λ = 1 or y = 0.
(I) Suppose first thatλ = 1. Then (i) givesx = 4

3 , and from (iii) we havey2 = b− 1
4x2 = b− 4

9 , which gives

y = ±
√

b − 4
9 . This gives two candidates: (x1, y1) = (4/3,

√
b − 4

9 ) and (x2, y2) = (4/3,−
√

b − 4
9 ).

(II) If y = 0, then from (iii), x2 = 4b, i.e. x = ±2
√

b. This gives two further candidates: (x3, y3) =
(2
√

b, 0) and (x4, y4) = (−2
√

b, 0). The objective function evaluated at the candidates are: f (x1, y1) =
f (x2, y2) = b−1/3, f (x3, y3) = (2

√
b−1)2 = 4b−4

√
b+1, f (x4, y4) = (−2

√
b−1)2 = 4b+4

√
b+1

Clearly, (x4, y4) is the maximum point. To decide which of the points (x3, y3), (x1, y1), or (x2, y2) give
the minimum, we have to decide which of the two values 4b − 4

√
b + 1 and b − 1

3 is smaller. The

difference is 4b − 4
√

b + 1 − (
b − 1

3

) = 3
(
b − 4

3

√
b + 4

9

) = 3
(√

b − 2
3

)2
> 0 since b > 4

9 . Thus the
minimum occurs at (x1, y1) and (x2, y2).
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The constraint x2/4+y2 = b describes the ellipse indicated in Fig. SM14.R.5. The objective function
f (x, y) = (x−1)2+y2 is the square of the distance between (x, y) and the point (1, 0). The level curves
for f are therefore circles centred at (1, 0), and in the figure we see those two that pass through the
maximum and minimum points.

7. (a) With L = x2 − 2x + 1+ y2 − 2y − λ[(x + y)
√

x + y + b − 2
√

a], the first-order conditions are:
(i) L′1 = 2x − 2− λ[

√
x + y + b + (x + y)/2

√
x + y + b ] = 0,

(ii) L′2 = 2y − 2− λ[
√

x + y + b + (x + y)/2
√

x + y + b ] = 0.
From these equations it follows immediately that 2x − 2 = 2y − 2, so x = y. The constraint gives

2x
√

2x + b = 2
√

a. Cancelling 2 and then squaring each side. one obtains the second equation in (∗).
(b) Differentiating yields: (i) dx = dy; (ii) 6x2 dx + x2 db + 2bx dx = da. From these equations we
easily read off the first-order partials of x and y w.r.t. a and b. Further,

∂2x

∂a2
= ∂

∂a

(
∂x

∂a

)
= ∂

∂a

1

6x2 + 2bx
= − 12x + 2b

(6x2 + 2bx)2

∂x

∂a
= − 12x + 2b

(6x2 + 2bx)3
= − 6x + b

4x3(3x + b)3

8. With L = 10 − (x − 2)2 − (y − 1)2 − λ(x2 + y2 − a), the Kuhn–Tucker conditions are:
(i) L′x = −2(x − 2) − 2λx = 0; (ii) L′y = −2(y − 1) − 2λy = 0; (iii) λ ≥ 0, with λ = 0 if
x2 + y2 < a. Since the Lagrangian is concave when λ ≥ 0, these conditions are sufficient for a max-
imum. One case occurs when λ = 0, implying that (x, y) = (2, 1). This is valid when a ≥ x2+ y2 = 5.
The other case is when λ > 0. Then (i) implies that x = 2/(1+ λ) and (ii) implies that y = 1/(1+ λ).
Because (iii) implies that x2 + y2 = a, we have 5/(1+ λ)2 = a and so λ = √5/a− 1, which is positive
when a < 5. The solution then is (x, y) = (2

√
a/5,
√

a/5).

9. (a) See main text. (b) The numbers (i)–(vi) in the following refer to the answer to (a) in the main text.
From (ii) and (vi) we see that λ1 = 0 is impossible. Thus λ1 > 0, and from (iii) and (v), we see that
(vii) (x∗)2 + r(y∗)2 = m.
(I): Assume λ2 = 0. Then from (i) and (ii), y∗ = 2λ1x

∗ and x∗ = 2λ1ry
∗, so x∗ = 4λ2

1rx
∗. But (vi)

implies that x∗ �= 0. Hence λ2
1 = 1/4r and thus λ1 = 1/2

√
r . Then y∗ = x∗/

√
r , which inserted into

(vii) and solved for x∗ yields x∗ = √m/2 and then y∗ = √m/2r . Note that x∗ ≥ 1 ⇐⇒ √
m/2 ≥

1 ⇐⇒ m ≥ 2. Thus, for m ≥ 2, a solution candidate is x∗ = √m/2 and y∗ = √m/2r , with
λ1 = 1/2

√
r and λ2 = 0.

(II): Assume λ2 > 0. Then x∗ = 1 and from (vii) we have r(y∗)2 = m − 1. By (ii), one has y∗ ≥ 0,
so y∗ = √(m− 1)/r . Inserting these values into (i) and (ii), then solving for λ1 and λ2, one obtains
λ1 = 1/2

√
r(m− 1) and furthermore, λ2 = (2−m)/

√
r(m− 1). Note that λ2 > 0 ⇐⇒ 1 < m < 2.

Thus, for 1 < m < 2, the only solution candidate is x∗ = 1, y∗ = √(m− 1)/r , with λ1 = 1/2
√

r(m− 1)

and λ2 = (2−m)/
√

r(m− 1).
The objective function is continuous and the constraint set is obviously closed and bounded, so by the

extreme value theorem there has to be a maximum. The solution candidates we have found are therefore
optimal. (Alternatively, L′′11 = −2λ1 ≤ 0, L′′22 = −2rλ1 ≤ 0, and � = L′′11L

′′
22 − (L′′12)

2 = 4rλ2
1 − 1.

In the case m ≥ 2, � = 0, and in the case 1 < m < 2, � = 1/(m− 1) > 0. Thus in both cases, L(x, y)

is concave.)
(c) For m ≥ 2, V (r, m) = m/2

√
r , so V ′m = 1/2

√
r = λ1, and V ′r = −m/4

√
r3, whereas L′r =

−λ1(y
∗)2 = −(1/2

√
r)m/2r = −m/4

√
r3.

For 1 < m < 2, V (r, m) = √(m− 1)/r , soV ′m = 1/2
√

r(m− 1) = λ1, andV ′r = −(1/2)
√

(m− 1)/r3,
whereas L′r = −λ1(y

∗)2 = −[1/2
√

r(m− 1)](m− 1)/r = −(1/2)
√

(m− 1)/r3.
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Chapter 15 Matrix and Vector Algebra

15.1

6. The equation system is:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.712y − c = −95.05

0.158x − s + 0.158c = 34.30

x − y − s + c = 0

x = 93.53

.

Solve the first equation for y as a function of c. Insert this expression for y and x = 93.53 into the third
equation. Solve it to get s as a function of c. Insert the results into the second equation and solve for c,
and then solve for y and s in turn. The answer is given in the main text.

15.3

6. (a) We know that A is an m × n matrix. Let B be a p × q matrix. The matrix product AB is defined if
and only if n = p, and BA is defined if and only if q = m. So for both AB and BA to be defined, it is
necessary and sufficient that B is an n×m matrix.

(b) We know from part (a) that B must be a 2 × 2 matrix. So let B =
(

x y

z w

)
. Then BA =

(
x y

z w

) (
1 2
2 3

)
=

(
x + 2y 2x + 3y

z+ 2w 2z+ 3w

)
;AB =

(
1 2
2 3

) (
x y

z w

)
=

(
x + 2z y + 2w

2x + 3z 2y + 3w

)
.

Hence, BA = AB if and only if (i) x+ 2y = x+ 2z, (ii) 2x+ 3y = y+ 2w, (iii) z+ 2w = 2x+ 3z, and
(iv) 2z + 3w = 2y + 3w. Equations (i) and (iv) are both true if and only if y = z; then equations (ii)
and (iii) are also both true if and only if, in addition, x = w − y. To summarize, all four equations hold
if and only if y = z and x = w − y. Hence, the matrices B that commute with A are precisely those of
the form

B =
(

w − y y

y w

)
= w

(
1 0
0 1

)
+ y

(−1 1
1 0

)

where y and w can be any real numbers.

15.4

2. We start by performing the multiplication

⎛
⎝ a d e

d b f

e f c

⎞
⎠

⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ ax + dy + ez

dx + by + f z

ex + fy + cz

⎞
⎠. Next,

(x, y, z)

⎛
⎝ ax + dy + ez

dx + by + f z

ex + fy + cz

⎞
⎠ = (ax2 + by2 + cz2 + 2dxy + 2exz+ 2fyz), which is a 1× 1 matrix.

8. (a) Direct verification yields (i) A2 = (a + d)A− (ad − bc)I2 =
(

a2 + bc ab + bd

ac + cd bc + d2

)

(b) For the matrix A in (a), A2 = 0 if a + d = 0 and ad = bc, so one example with A2 = 0 �= A is

A =
(

1 1
−1 −1

)
.

(c) By part (a), A3 = (a + d)A2 − (ad − bc)A. So A3 = 0 implies that (a + d)A2 = (ad − bc)A and
then, multiplying each side by A once more, that (a + d)A3 = (ad − bc)A2. If A3 = 0, therefore, one
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has two cases: (i) A2 = 0; (ii) ad − bc = 0. But in the second case, one has (a+ d)A2 = 0, which gives
rise to two subcases: (a) A2 = 0; (b) ad − bc = 0 and (a + d) = 0. Now, even in case (ii)(b), the result
of part (a) implies that A2 = 0, which is therefore true in every case.

15.5
6. In general, for any natural number n > 3, one has ((A1A2 · · ·An−1)An)

′ = A′n(A1A2 · · ·An−1)
′.

As the induction hypothesis, suppose the result is true for n − 1. Then the last expression becomes
A′nA′n−1 · · · , A′2A′1, so the result is true for n.

8. (a) TS = S is shown in the text. A similar argument shows that T2 = 1
2 T+ 1

2 S. To prove the last equality,
we do not have to consider the individual elements. Instead, we premultiply the last equation by T and
then use TS = S to obtain T3 = TT2 = T( 1

2 T+ 1
2 S) = 1

2 T2 + 1
2 TS = 1

2 ( 1
2 T+ 1

2 S)+ 1
2 S = 1

4 T+ 3
4 S.

(b) We prove by induction that the appropriate formula is (∗) Tn = 21−nT+ (1−21−n)S. This formula is
correct for n = 1 (and, by part (a), also for n = 2, 3). Suppose (∗) is true for n = k. Then premultiplying
by T and using the two first equalities in (a), one obtains Tk+1 = TTk = T(21−kT + (1 − 21−k)S) =
21−kT2+(1−21−k)TS = 21−k( 1

2 T+ 1
2 S)+(1−21−k)S = 2−kT+2−kS+S−2·2−kS = 2−kT+(1−2−k)S,

which is formula (∗) for n = k + 1.

15.6
3. By using the following elementary operations successively: (i) subtract the third equation from the first;

(ii) subtract the new first equation from the two others; (iii) interchange the second and the third equation;
(iv) multiply the second equation by −3 and add it to the third equation, we find that

⎛
⎝

w x y z

2 1 4 3 1
1 3 2 −1 3c

1 1 2 1 c2

⎞
⎠ ∼

⎛
⎝ 1 0 2 2 1− c2

0 1 0 −1 2c2 − 1
0 0 0 0 −5c2 + 3c + 2

⎞
⎠

We can tell from the last matrix that the system has solutions if and only if −5c2 + 3c + 2 = 0, that is,
if and only if c = 1 or c = −2/5. For these particular values of c we get the solutions in the text. (The
final answer can take many equivalent forms depending on how you arrange the elementary operations.)

4. (a) After moving the first row down to row number three, then applying elementary row operations, we
obtain the successive augmented matrices

⎛
⎝ 1 2 1 b2

3 4 7 b3

a 1 a + 1 b1

⎞
⎠ ∼

⎛
⎝ 1 2 1 b2

0 −2 4 b3 − 3b2

0 1− 2a 1 b1 − ab2

⎞
⎠ ∼

⎛
⎝ 1 2 1 b2

0 1 −2 3
2b2 − 1

2b3

0 1− 2a 1 b1 − ab2

⎞
⎠

∼
⎛
⎝ 1 2 1 b2

0 1 −2 3
2b2 − 1

2b3

0 0 3− 4a b1 + (2a − 3
2 )b2 + ( 1

2 − a)b3

⎞
⎠

Obviously, there is a unique solution if and only if a �= 3/4.

(b) Put a = 3/4 in part (a). Then the last row in the matrix in (a) becomes (0, 0, 0, b1 − 1
4b3). It follows

that if b1 �= 1
4b3 there is no solution. If b1 = 1

4b3 there is an infinite set of solutions. For an arbitrary real
t , there is a unique solution with z = t . Then the second equation gives y = 3

2b2 − 1
2b3 + 2t , and finally

the first equation gives x = −2b2 + b3 − 5t .
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15.8

2. (a) See the text. (b) According to the point–point formula, the line L through (3, 1) and (−1, 2) has the
equation x2 = − 1

4x1 + 7
4 or x1 + 4x2 = 7. The line segment S is traced out by having x1 run through

[3,−1] as x2 runs through [1, 2]. Now, λa + (1 − λ)b = (−1 + 4λ, 2 − λ). Any point (x1, x2) on L

satisfies x1+ 4x2 = 7 and equals (−1+ 4λ, 2− λ) for λ = 1
4 (x1+ 1) = 2− x2. So there is a one-to-one

correspondence between points: (i) that lie on the line segment joining a = (3, 1) and b = (−1, 2);
(ii) whose coordinates can be written as (−1+ 4λ, 2− λ) for some λ in [0, 1].

15.9

3. First, note that (5, 2, 1)− (1, 0, 2) = (4, 2,−1) and (2,−1, 4)− (1, 0, 2) = (1,−1, 2) are two vectors in
the plane. The normal (p1, p2, p3) to the plane must be orthogonal to both these vectors, so (4, 2,−1) ·
(p1, p2, p3) = 4p1+ 2p2−p3 = 0 and (1,−1, 2) · (p1, p2, p3) = p1−p2+ 2p3 = 0. One solution of
these two equations is (p1, p2, p3) = (1,−3,−2). Then using formula (4) with (a1, a2, a3) = (2,−1, 4)

yields (1,−3,−2) · (x1 − 2, x2 + 1, x3 − 4) = 0, or x1 − 3x2 − 2x3 = −3.
A more pedestrian approach is to assume that the equation is ax+ by+ cz = d and require the three

points to satisfy the equation: a + 2c = d, 5a + 2b + c = d, 2a − b + 4c = d. Solve for a, b, and c in
terms of d , insert the results into the equation ax + by + cz = d and cancel d.

Review Problems for Chapter 15

8. (b)

⎛
⎝ 2 2 −1 2

1 −3 1 0
3 4 −1 1

⎞
⎠ ←← ∼

⎛
⎝ 1 −3 1 0

2 2 −1 2
3 4 −1 1

⎞
⎠ −2 −3
←
←

∼
⎛
⎝ 1 −3 1 0

0 8 −3 2
0 13 −4 1

⎞
⎠ 1/8

∼
⎛
⎝ 1 −3 1 0

0 1 −3/8 1/4
0 13 −4 1

⎞
⎠ −13
←

∼
⎛
⎝ 1 −3 1 0

0 1 −3/8 1/4
0 0 7/8 −9/4

⎞
⎠

8/7

∼
⎛
⎝ 1 −3 1 0

0 1 −3/8 1/4
0 0 1 −18/7

⎞
⎠ ←3 ∼

⎛
⎝ 1 0 −1/8 3/4

0 1 −3/8 1/4
0 0 1 −18/7

⎞
⎠ ←←

3/8 1/8

∼
⎛
⎝ 1 0 0 3/7

0 1 0 −5/7
0 0 1 −18/7

⎞
⎠. The solution is x1 = 3/7, x2 = −5/7, x3 = −18/7.

(c)

(
1 3 4 0
5 1 1 0

) −5
← ∼

(
1 3 4 0
0 −14 −19 0

)
−1/14

∼
(

1 3 4 0
0 1 19/14 0

) ←
−3
∼

(
1 0 −1/14 0
0 1 19/14 0

)

The solution is x1 = (1/14)x3, x2 = −(19/14)x3, where x3 is arbitrary. (One degree of freedom.)

11. (a) See main text. (b) In (a) we saw that a can be produced even without throwing away outputs. For b
to be possible if we are allowed to throw away output, there must exist a λ in [0, 1] such that 6λ+ 2 ≥ 7,
−2λ + 6 ≥ 5, and −6λ + 10 ≥ 5. These inequalities reduce to λ ≥ 5/6, λ ≤ 1/2, λ ≤ 5/6, which are
incompatible.
(c) Revenue= R(λ) = p1x1+p2x2+p3x3 = (6p1− 2p2− 6p3)λ+ 2p1+ 6p2+ 10p3. If the constant
slope 6p1 − 2p2 − 6p3 is > 0, then R(λ) is maximized at λ = 1; if 6p1 − 2p2 − 6p3 is < 0, then R(λ)
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is maximized at λ = 0. Only in the special case where 6p1 − 2p2 − 6p3 = 0 can the two plants both
remain in use.

12. If PQ − QP = P, then PQ = QP + P, and so P2Q = P(PQ) = P(QP + P) = (PQ)P + P2 =
(QP+P)P+P2 = QP2+2P2. Thus, P2Q−QP2 = 2P2. Moreover, P3Q = P(P2Q) = P(QP2+2P2) =
(PQ)P2 + 2P3 = (QP + P)P2 + 2P3 = QP3 + 3P3 Hence, P3Q−QP3 = 3P3.

To prove the result for general k, suppose as the induction hypothesis that PnQ − QPn = nPn

for n = k. Then, for n = k + 1, one has PnQ = P(PkQ) = P(QPk + kPk) = (PQ)Pk + kPk+1 =
(QP + P)Pk + kPk+1 = QPk+1 + (k + 1)Pk+1, so the induction hypothesis is also true for n = k + 1.

Chapter 16 Determinants and Inverse Matrices

16.1
9. (a) See answer in main text. (b) The suggested substitutions produce the two equations

Y1 = c1Y1 + A1 +m2Y2 −m1Y1; Y2 = c2Y2 + A2 +m1Y1 −m2Y2

or

(1− c1 −m1)Y1 −m2Y2 = A1; −m1Y1 + (1− c2 −m2)Y2 = A2

which can be rewritten in the matrix form(
1− c1 −m1 −m2

−m1 1− c2 −m2

) (
Y1

Y2

)
=

(
A1

A2

)

For these to soluble, we need to assume that D = (1 − c1 − m1)(1 − c2 − m2) − m1m2 �= 0. When
D �= 0, the answers in the text can be derived using Cramer’s rule.
(c) Y2 depends linearly on A1. Economists usually assume that D given in part (b) is positive, as it will
be provided that the parameters c1, c2, m1, m2 are all sufficiently small. Then increasing A1 by one unit
changes Y2 by the factor m1/D ≥ 0, so Y2 increases when A1 increases.

Here is an economic explanation: An increase in A1 increases nation 1’s income, Y1. This in turn
increases nation 1’s imports, M1. However, nation 1’s imports are nation 2’s exports, so this causes nation
2’s income, Y2, to increase, and so on.

16.2

1. (a) Sarrus’s rule yields:

∣∣∣∣∣∣
1 −1 0
1 3 2
1 0 0

∣∣∣∣∣∣ = 0− 2+ 0− 0− 0− 0 = −2.

(b) By Sarrus’s rule,

∣∣∣∣∣∣
1 −1 0
1 3 2
1 2 1

∣∣∣∣∣∣ = 3− 2− 0− 0− 4− (−1) = −2.

(c) Because a21 = a31 = a32 = 0, the only non-zero term in the expansion (3) is the product of the
terms on the main diagonal. The determinant is therefore adf . Alternatively, Sarrus’s rule gives the same
answer.

(d) By Sarrus’s rule,

∣∣∣∣∣∣
a 0 b

0 e 0
c 0 d

∣∣∣∣∣∣ = aed + 0+ 0− bec − 0− 0 = e(ad − bc).
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3. (a) The determinant of the coefficient matrix is |A| =
∣∣∣∣∣∣

1 −1 1
1 1 −1
−1 −1 −1

∣∣∣∣∣∣ = −4.

The numerators in (16.2.4) are (verify!)

∣∣∣∣∣∣
2 −1 1
0 1 −1
−6 −1 −1

∣∣∣∣∣∣ = −4 ,

∣∣∣∣∣∣
1 2 1
1 0 −1
−1 −6 −1

∣∣∣∣∣∣ = −8 ,

∣∣∣∣∣∣
1 −1 2
1 1 0
−1 −1 −6

∣∣∣∣∣∣ = −12

Hence, (4) yields the solution x1 = 1, x2 = 2, and x3 = 3. Inserting this into the original system of
equations confirms that this is a correct answer.
(b) The determinant of the coefficient matrix is equal to−2, and the numerators in (16.2.4) are all 0, so the
unique solution is x1 = x2 = x3 = 0. (c). Follow the pattern in (a) to get the answer in the main text.

8. (a) Substituting T = d + tY into the expression for C gives C = a − bd + b(1− t)Y . Substituting for
C in the expression for Y then yields Y = a + b(Y − d − tY )+A0. Then solve for Y , T , and C in turn
to derive the answers given in (b) below.

(b) We write the system as

⎛
⎝ 1 −1 0
−b 1 b

−t 0 1

⎞
⎠

⎛
⎝ Y

C

T

⎞
⎠ =

⎛
⎝ A0

a

d

⎞
⎠. With D =

∣∣∣∣∣∣
1 −1 0
−b 1 b

−t 0 1

∣∣∣∣∣∣ = 1+bt−b,

Cramer’s rule yields

Y =

∣∣∣∣∣∣
A0 −1 0
a 1 b

d 0 1

∣∣∣∣∣∣
D

= a − bd + A0

1− b(1− t)
, C =

∣∣∣∣∣∣
1 A0 0
−b a b

−t d 1

∣∣∣∣∣∣
D

= a − bd + A0b(1− t)

1− b(1− t)

T =

∣∣∣∣∣∣
1 −1 A0

−b 1 a

−t 0 d

∣∣∣∣∣∣
D

= t (a + A0)+ (1− b)d

1− b(1− t)

(This problem is meant to train you in using Cramer’s rule. It is also a warning against its overuse, since
solving the equations by systematic elimination is much more efficient.)

16.3

1. Each of the three determinants is a sum of 4! = 24 terms. In (a) there is only one nonzero term. In fact,
according to (16.3.4), the value of the determinant is 24. (b) Only two terms in the sum are nonzero:
the product of the elements on the main diagonal, which is 1 · 1 · 1 · d, with a plus sign; and the term

∣∣∣∣∣∣∣∣

1 0 0 1
0 1 0 0
0 0 1 0
a b c d

∣∣∣∣∣∣∣∣
Since there are 5 rising lines between the pairs, the sign of the product 1 · 1 · 1 · a must be minus. So the
value of the determinant is d − a. (c) 4 terms are nonzero. See the text.
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16.4
14. The description in the answer in the text amounts to the following steps:

Dn =

∣∣∣∣∣∣∣∣

a + b a · · · a

a a + b · · · a
...

...
. . .

...

a a · · · a

∣∣∣∣∣∣∣∣

← · · · ←
1 · · ·

. . .

1

=

∣∣∣∣∣∣∣∣

na + b na + b · · · na + b

a a + b · · · a
...

...
. . .

...

a a · · · a + b

∣∣∣∣∣∣∣∣

= (na + b)

∣∣∣∣∣∣∣∣

1 1 · · · 1
a a + b · · · a
...

...
. . .

...

a a · · · a + b

∣∣∣∣∣∣∣∣

−a · · · −a

← · · ·
. . .

←
= (na + b)

∣∣∣∣∣∣∣∣

1 1 · · · 1
0 b · · · 0
...

...
. . .

...

0 0 · · · b

∣∣∣∣∣∣∣∣
According to (16.3.4), the last determinant is bn−1. Thus Dn = (na + b)bn−1.

16.5
1. (a) See the text. (b) One possibility is to expand by the second row or the third column (because they

both have two zero entries). But it is easier first to use elementary operations to get a row or a column
with at most one non-zero element. For example:

∣∣∣∣∣∣∣∣

1 2 3 4
0 −1 0 11
2 −1 0 3
−2 0 −1 3

∣∣∣∣∣∣∣∣

−2 2

←
←

=

∣∣∣∣∣∣∣∣

1 2 3 4
0 −1 0 11
0 −5 −6 −5
0 4 5 11

∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣
−1 0 11
−5 −6 −5

4 5 11

∣∣∣∣∣∣
−5 4
←
←

=
∣∣∣∣∣∣
−1 0 11

0 −6 −60
0 5 55

∣∣∣∣∣∣ = −1

∣∣∣∣−6 −60
5 55

∣∣∣∣ = −(−330+ 300) = 30

(c) See text for the simple answer.
When computing determinants one can use elementary column as well as row operations, but column

operations become meaningless when solving linear equation systems using Gaussian elimination.

16.6

8. B2+B =
(

3/2 −5
−1/4 3/2

)
+

(−1/2 5
1/4 −1/2

)
=

(
1 0
0 1

)
= I. One can either verify by direct matrix

multiplication that B3 − 2B + I = 0, or somewhat more easily, use the relation B2 + B = I to argue
that B2 = I − B and so B3 − 2B+ I = B(I − B)− 2B+ I = B− B2 − 2B+ I = −B2 − B+ I = 0.
Furthermore B2 + B = I implies that B(B+ I) = I. It follows from (16.6.4) that B−1 = B+ I.

16.7

1. (a) |A| = 10− 12 = −2, and the adjoint is

(
C11 C21

C12 C22

)
=

(
5 −3
−4 2

)
, so the inverse is

A−1 = − 1
2

(
5 −3
−4 2

)
=

(−5/2 3/2
2 −1

)
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(b) The adjoint of B is

adj B =
⎛
⎝ C11 C21 C31

C12 C22 C32

C13 C23 C33

⎞
⎠ =

⎛
⎝ 1 4 2

2 −1 4
4 −2 −1

⎞
⎠

and |B| = b11C11 + b21C21 + b31C31 = 1 · 1 + 2 · 4 + 0 · 2 = 9 by expansion along the first column.
Hence,

B−1 = 1
9 (adj B) = 1

9

⎛
⎝ 1 4 2

2 −1 4
4 −2 −1

⎞
⎠

(c) Since the second column of C equals−2 times its third column, the determinant of C is zero, so there
is no inverse.

3. The determinant of I − A is |I − A| = 0.496, and the adjoint is adj(I − A) =
⎛
⎝ 0.72 0.64 0.40

0.08 0.76 0.32
0.16 0.28 0.64

⎞
⎠.

Hence (I − A)−1 = 1

0.496
· adj(I − A) ≈

⎛
⎝ 1.45161 1.29032 0.80645

0.16129 1.53226 0.64516
0.32258 0.56452 1.29032

⎞
⎠, rounded to five decimal

places. If you want an exact answer, note that
1000

496
= 125

62
and adj(I−A) =

⎛
⎝ 0.72 0.64 0.40

0.08 0.76 0.32
0.16 0.28 0.64

⎞
⎠ =

1

25

⎛
⎝ 18 16 10

2 19 8
4 7 16

⎞
⎠. This gives (I− A)−1 = 5

62

⎛
⎝ 18 16 10

2 19 8
4 7 16

⎞
⎠.

4. Let B denote the n × p matrix whose kth column has the elements b1k, b2k, . . . , bnk . The p systems of
n equations in n unknowns can be expressed as AX = B, where A is n × n and X is n × p. Following
the method illustrated in Example 2, exactly the same row operations that transform the n × 2n matrix
(A : I) into (I : A−1) will also transform the n × (n + p) matrix (A : B) into (I : B∗), where
B∗ is the matrix with elements b∗ij . (In fact, because these row operations are together equivalent to
premultiplication by A−1, it must be true that B∗ = A−1B.) When k = r , the solution to the system is
x1 = b∗1r , x2 = b∗2r , . . . , xn = b∗nr .

5.
(

1 2 1 0
3 4 0 1

) −3
← ∼

(
1 2 1 0
0 −2 −3 1

)
− 1

2
∼

(
1 2 1 0
0 1 3

2 − 1
2

)←
−2

(a)

∼
(

1 0 −2 1
0 1 3

2 − 1
2

)

⎛
⎝ 1 2 3 1 0 0

2 4 5 0 1 0
3 5 6 0 0 1

⎞
⎠ −2 −3
←
←

∼
⎛
⎝ 1 2 3 1 0 0

0 0 −1 −2 1 0
0 −1 −3 −3 0 1

⎞
⎠ ←
←

(b)

∼
⎛
⎝ 1 2 3 1 0 0

0 −1 −3 −3 0 1
0 0 −1 −2 1 0

⎞
⎠ −1
−1

∼
⎛
⎝ 1 2 3 1 0 0

0 1 3 3 0 −1
0 0 1 2 −1 0

⎞
⎠←−2

∼
⎛
⎝ 1 0 −3 −5 0 2

0 1 3 3 0 −1
0 0 1 2 −1 0

⎞
⎠ ←
←
−3 3

∼
⎛
⎝ 1 0 0 1 −3 2

0 1 0 −3 3 −1
0 0 1 2 −1 0

⎞
⎠

(c) We see that the third row equals the first row multiplied by −3, so the matrix has no inverse.
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16.8

1. (a) The determinant |A| of the coefficient matrix is |A| =
∣∣∣∣∣∣

1 2 −1
2 −1 1
1 −1 −3

∣∣∣∣∣∣ = 19.

The determinants in (16.8.2) are

∣∣∣∣∣∣
−5 2 −1

6 −1 1
−3 −1 −3

∣∣∣∣∣∣ = 19 ,

∣∣∣∣∣∣
1 −5 −1
2 6 1
1 −3 −3

∣∣∣∣∣∣ = −38 ,

∣∣∣∣∣∣
1 2 −5
2 −1 6
1 −1 −3

∣∣∣∣∣∣ = 38

According to (16.8.4) the solution is x = 19/19 = 1, y = −38/19 = −2, and z = 38/19 = 2. Inserting
this into the original system of equations confirms that this is the correct answer.

(b) The determinant |A| of the coefficient matrix is

∣∣∣∣∣∣∣∣

1 1 0 0
1 0 1 0
0 1 1 1
0 1 0 1

∣∣∣∣∣∣∣∣
. Subtracting the fourth column from

the second leaves only one non-zero element in the second column, and so reduces the determinant to

−
∣∣∣∣∣∣
1 1 0
0 1 1
0 0 1

∣∣∣∣∣∣ = −1. We ask you to check that the other determinants in (16.8.2) are

∣∣∣∣∣∣∣∣

3 1 0 0
2 0 1 0
6 1 1 1
1 1 0 1

∣∣∣∣∣∣∣∣
= 3 ,

∣∣∣∣∣∣∣∣

1 3 0 0
1 2 1 0
0 6 1 1
0 1 0 1

∣∣∣∣∣∣∣∣
= −6 ,

∣∣∣∣∣∣∣∣

1 1 3 0
1 0 2 0
0 1 6 1
0 1 1 1

∣∣∣∣∣∣∣∣
= −5 ,

∣∣∣∣∣∣∣∣

1 1 0 2
1 0 1 3
0 1 1 6
0 1 0 1

∣∣∣∣∣∣∣∣
= 5

According to (16.8.4) the solution is x = −3, y = 6, z = 5, and u = −5. Inserting this into the original
system of equations confirms that this is the correct answer. (Of course, there is a much quicker way
to solve these four equations. Subtracting the fourth from the third yields z = 5 immediately. Then the
second equation gives x = −3; the first gives y = 6; and the last gives u = −5.)

3. According to Theorem 16.8.2, the system has nontrivial solutions if and only if the determinant of the
coefficient equal to 0. Expansion along the first row gives

∣∣∣∣∣∣
a b c

b c a

c a b

∣∣∣∣∣∣ = a

∣∣∣∣ c a

a b

∣∣∣∣− b

∣∣∣∣ b a

c b

∣∣∣∣+ c

∣∣∣∣ b c

c a

∣∣∣∣
= a(bc − a2)− b(b2 − ac)+ c(ab − c2) = 3abc − a3 − b3 − c3.

Thus the system has nontrivial solutions if and only if 3abc − a3 − b3 − c3 = 0.

Review Problems for Chapter 16

5. Expanding along column 3 gives |A| =
∣∣∣∣∣∣
q −1 q − 2
1 −p 2− p

2 −1 0

∣∣∣∣∣∣ = (q − 2)

∣∣∣∣ 1 −p

2 −1

∣∣∣∣− (2− p)

∣∣∣∣ q −1
2 −1

∣∣∣∣ =
(q − 2)(−1+ 2p)− (2− p)(−q + 2) = (q − 2)(p + 1), but there are many other ways.
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|A+ E| =
∣∣∣∣∣∣
q + 1 0 q − 1

2 1− p 3− p

3 0 1

∣∣∣∣∣∣ = (1− p)

∣∣∣∣ q + 1 q − 1
3 1

∣∣∣∣ = 2(p − 1)(q − 2)

For the rest, see the answer in the text.

8. (a) This becomes easy after noting that

U2 =

⎛
⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

n n . . . n

n n . . . n
...

...
. . .

...

n n . . . n

⎞
⎟⎟⎠ = nU

(b) The trick is to note that

A =
⎛
⎝ 4 3 3

3 4 3
3 3 4

⎞
⎠ =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠+

⎛
⎝ 3 3 3

3 3 3
3 3 3

⎞
⎠ = I3 + 3U

From (a), (I3 + 3U)(I3 + bU) = I3 + (3+ b+ 3 · 3bU) = I3 + (3+ 10b)U. This can be made equal to
I3 by choosing b = −3/10. It follows that

A−1 = (I3 + 3U)−1 = I3 − (3/10)U =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠−

⎛
⎝

3
10

3
10

3
10

3
10

3
10

3
10

3
10

3
10

3
10

⎞
⎠ = 1

10

⎛
⎝ 7 −3 −3
−3 7 −3
−3 −3 7

⎞
⎠

10. (a) Gaussian elimination with the indicated elementary row operations yields
⎛
⎝ a 1 4 2

2 1 a2 2
1 0 −3 a

⎞
⎠ ←
←
∼

⎛
⎝ 1 0 −3 a

2 1 a2 2
a 1 4 2

⎞
⎠ −2 −a

←
←

∼
⎛
⎝ 1 0 −3 a

0 1 a2 + 6 −2a + 2
0 1 3a + 4 −a2 + 2

⎞
⎠ −1
←

∼
⎛
⎝ 1 0 −3 a

0 1 a2 + 6 −2a + 2
0 0 −a2 + 3a − 2 −a2 + 2a

⎞
⎠

It follows that the system has a unique solution if and only if−a2 + 3a− 2 �= 0, i.e. if and only if a �= 1
and a �= 2.

If a = 2, the last row consists only of 0’s so there are infinitely many solutions, whereas if a = 1,
there are no solutions.
(b) If we perform the same elementary operations on the associated extended matrix as in (a), then the

fourth column is transformed from

⎛
⎝ b1

b2

b3

⎞
⎠ first to

⎛
⎝ b3

b2

b1

⎞
⎠, then second to

⎛
⎝ b3

b2 − 2b3

b1 − ab3

⎞
⎠, and finally third

to

⎛
⎝ b3

b2 − 2b3

b1 − b2 + (2− a)b3

⎞
⎠. Thus, the final extended matrix is

⎛
⎝ 1 0 −3 b3

0 1 a2 + 6 b2 − 2b3

0 0 −a2 + 3a − 2 b1 − b2 + (2− a)b3

⎞
⎠
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We see that there are infinitely many solutions if and only if all elements in the last row are 0, which is
true if and only if either (i) a = 1 and b1 − b2 + b3 = 0, or (ii) a = 2 and b1 = b2.

15. (a) See the text. (b) The trick is to note that the cofactor expansions of |A|, |B| and |C| along the rth
row take the respective forms

∑n
j=1 arjCrj ,

∑n
j=1 brjCrj and

∑n
j=1(arj + brj )Crj for exactly the same

collection of cofactors Crj (j = 1, 2, . . . , n). Then, of course,

|C| =
n∑

j=1

(arj + brj )Crj =
n∑

j=1

arjCrj +
n∑

j=1

brjCrj = |A| + |B|

16. It is a bad idea to use “brute force” here. Note instead that rows 1 and 3 and rows 2 and 4 in the determinant
have “much in common”. So begin by subtracting row 3 from row 1, and row 4 from row 2. According
to Theorem 16.4.1(F), this does not change the value of the determinant. This gives, if we thereafter use
Theorem 16.4.1(C),

∣∣∣∣∣∣∣∣

0 a − b 0 b − a

b − a 0 a − b 0
x b x a

a x b x

∣∣∣∣∣∣∣∣
= (a − b)2

∣∣∣∣∣∣∣∣

0 1 0 −1
−1 0 1 0

x b x a

a x b x

∣∣∣∣∣∣∣∣
= (a − b)2

∣∣∣∣∣∣∣∣

0 1 0 0
−1 0 1 0

x b x a + b

a x b 2x

∣∣∣∣∣∣∣∣
The last equality is obtained by adding column 2 to column 4 in the middle determinant. If we expand
the last determinant by the row 1, we obtain successively

−(a − b)2

∣∣∣∣∣∣
−1 1 0
x x a + b

a b 2x

∣∣∣∣∣∣ = −(a − b)2[−2x2 + b(a + b)− 2x2 + a(a + b)]

= (a − b)2[4x2 − (a + b)2] = (a − b)2[2x − (a + b)][2x + (a + b)]

The conclusion follows.

Chapter 17 Linear Programming

17.1
3. The set A corresponds to the shaded polygon in Fig. SM17.1. The following arguments explain the

answers given in the text.
(a) The solution is obviously at the uppermost point P in the polygon because it has the largest x2

coordinate among all points in A. Point P is where the two lines −2x1 + x2 = 2 and x1 + 2x2 = 8
intersect, and the solution of these two equations is (x1, x2) = (4/5, 18/5).
(b) The point in A with the largest x1 coordinate is obviously Q = (8, 0).
(c) The line 3x1 + 2x2 = c for one typical value of c is the dashed line in Fig. SM17.1.3. As c increases,
the line moves out farther and farther to the north-east. The line that has the largest value of c, and still
has a point in common with A, is the one that passes through the point Q in the figure.
(d) The line 2x1 − 2x2 = c (or x2 = x1 − c/2) makes a 45◦ angle with the x1 axis, and intersects the x1

axis at c/2. As c decreases, the line moves up and to the left. The line in this family that has the smallest
value of c, and still has a point in common with A, is the one that passes through the point P in the figure.
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(e) The line 2x1+4x2 = c is parallel to the line x1+2x2 = 8 in the figure. As c increases, the line moves
out farther and farther to the north-east. The line with points in common with A that has the largest value
of c is obviously the one that coincides with the line x1 + 2x2 = 8. So all points on the line segment
between P and Q are solutions.
(f) The line−3x1− 2x2 = c is parallel to the dashed line in the figure, and intersects the x1 axis at−c/3.
As c decreases, the line moves out farther and farther to the north-east, so the solution is at Q = (8, 0).
(We could also argue like this: Minimizing −3x1 − 2x2 subject to (x1, x2) ∈ A is obviously equivalent
to maximizing 3x1 + 2x2 subject to (x1, x2) ∈ A, so the solution is the same as the one in part (c).)

x2

x1

P

A

Q

8

4

−2x1 + x2 = 2

3x1 + 2x2 = c

x1 + 2x2 = 8

Figure SM17.1.3

17.2
1. (a) See Fig. A17.1.1a in the text. When 3x1 + 2x2 ≤ 6 is replaced by 3x1 + 2x2 ≤ 7 in Problem 17.1.1,

the feasible set expands because the steeper line through P is moved out to the right. The new optimal
point is at the intersection of the lines 3x1+ 2x2 = 7 and x1+ 4x2 = 4, and it follows that the solution is
(x1, x2) = (2, 1/2). The old maximum value of the objective function was 36/5. The new optimal value
is 3 · 2+ 4 · 1

2 = 8 = 40/5, and the difference in optimal value is u∗1 = 4/5.
(b) When x1+4x2 ≤ 4 is replaced by x1+4x2 ≤ 5, the feasible set expands because the line x1+4x2 = 4
is moved up. The new optimal point is at the intersection of the lines 3x1+2x2 = 6 and x1+4x2 = 5, and
it follows that the solution is (x1, x2) = (7/5, 9/10). The old maximum value of the objective function
was 36/5. The new optimal value is 39/5, and the difference in optimal value is u∗2 = 3/5.
(c) See answer in the main text.

17.3
1. (a) From Fig. A17.3.1a in the text it is clear as c increases, the dashed line moves out farther and farther to

the north-east. The line that has the largest value of c and still has a point in common with the feasible set,
is the one that passes through the point P , which has coordinates (x, y) = (0, 3), where the associated
maximum value is 2 · 0+ 3 · 7 = 21.
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(b) In Fig. A17.3.1b, as c decreases, the dashed line moves farther and farther to the south-west. The
line that has the smallest value of c and still has a point in common with the feasible set, is the one that
passes through the point P , which has coordinates (u1, u2) = (0, 1). The associated minimum value is
20u1 + 21u2 = 21.
(c) Yes, because the maximum of the primal in (a) and the minimum of the dual in (b) both equal 21.

3. (a) See the text. (b) The problem is illustrated graphically in Fig. SM17.3.3, which makes clear the
answer given in the main text.
(c) Relaxing the first constraint to 2x1 + x2 ≤ 17 allows the solution to move out to the intersection of
the two lines 2x1 + x2 = 17 and x1 + 2x2 = 11. So the new solution is x1 = 23/3, x2 = 5/3, where the
profit is 3900.

Relaxing the second constraint to x1 + 4x2 ≤ 17 makes no difference, because some capacity in
division 2 remained unused anyway at (7, 2).

Relaxing the third constraint to x1+2x2 ≤ 12, the solution is no longer where the lines 2x1+x2 = 16
and x1 + 2x2 = 12 intersect, namely at (x1, x2) = (20/3, 8/3), because this would violate the second
constraint x1 + 4x2 ≤ 16. Instead, as a carefully drawn graph shows, the solution occurs where the first
and second constraints both bind, at the intersection of the two lines 2x1 + x2 = 16 and x1 + 4x2 = 16,
namely at (x1, x2) = (48/7, 16/7). The resulting profit is 27200/7 = 3885 5

7 < 3900. So it is division
1 that should have its capacity increased. Indeed, if the capacity of division 3 is increased by 1 hour per
day, some of that increase has to go to waste because of the limited capacities in divisions 1 and 2.

x2

5

x1
5 10

2x1 + x2 = 16

400x1 + 500x2 = constant

x1 + 2x2 = 11

(x∗1 , x∗2 ) = (7, 2)

x1 + 4x2 = 16

Figure SM17.3.3

17.4
2. (a) The problem is similar to Problem 17.3.3. The linear program is set out in the main text. As a care-

fully drawn graph will show, the solution occurs at the intersection of the two lines 6x1 + 3x2 = 54 and
5x1 + 5x2 = 50, where (x1, x2) = (8, 2). Note that the maximum profit is 300 · 8+ 200 · 2 = 2800.
(b) The dual problem is

min (54u1 + 48u2 + 50u3) subject to

⎧⎪⎨
⎪⎩

6u1 + 4u2 + 5u3 ≥ 300

3u1 + 6u2 + 5u3 ≥ 200

u1, u2, u3 ≥ 0
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The optimal solution of the primal is x∗1 = 8, x∗2 = 2. Since the optimal solution of the primal has
both x∗1 and x∗2 positive, the first two constraints in the dual are satisfied with equality at the optimal
triple (u∗1, u∗2, u∗3). But the second constraint of the primal problem is satisfied with inequality, because
4x∗1 + 6x∗2 = 44 < 48. Hence u∗2 = 0, with 6u∗1 + 5u∗3 = 300 and 3u∗1 + 5u∗3 = 200. It follows that
u∗1 = 100/3, u∗2 = 0, and u∗3 = 20. Moreover, the optimum value 54u∗1 + 48u∗2 + 50u∗3 = 2800 of the
dual equals the optimum value of the primal.
(c) See the text.

17.5

3. (a) See the text. (b) The dual is given in the text. It is illustrated graphically in Fig. SM17.5.3, where (1)
labels the first, (2) the second, and (3) the third constraint. The parallel dashed lines are level curves of
the objective 300x1+ 500x2. We see from the figure that optimum occurs at the point where the first and
the third constraint are satisfied with equality—i.e., where 10x∗1 + 20x∗2 = 10 000 and 20x∗1 + 20x∗2 =
11 000. The solution is x∗1 = 100 and x∗2 = 450. The maximum value of the objective function is
300 · 100+ 500 · 450 = 255 000.

y
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300

400

500

600

700

800

900

1000

x
100 200 300 400 500 600 700 800 900 1000

(2)

(1)

(3)

Figure SM17.5.3

By complementary slackness, those constraints in the dual problem that correspond to variables which are
positive at the optimum of the primal must be satisfied with equality. Since the second constraint in the
primal in the optimum is satisfied with strict inequality, (20·100+10·450 < 8000), we havey∗2 = 0. Hence
10y∗1 + 20y∗3 = 300, 20y∗1 + 20y∗3 = 500. It follows that the solution of the primal problem is y∗1 = 20,
y∗2 = 0, y∗3 = 5. The maximum value of the objective function is 10 000 · 20+ 8 000 · 0+ 11 000 · 5 =
255 000.
(c) If the cost per hour in factory 1 increases by 100, this has no effect on the constraints in the primal,
but does increase the right-hand side of the first constraint of the dual by 100. An approximate answer
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of 100 · 20 = 2000 is the increase in cost that would result from choosing the same feasible point
(y∗1 , y∗2 , y∗3 ) = (20, 0, 5) in the primal. This may over-estimate the increased minimum cost, however,
because it may be better to switch some production away from factory 1, now it has become more
expensive. To find the exact answer, we check whether any production is switched by considering the
dual linear program again. It is unchanged except that constraint (1) becomes 10x1 + 20x2 ≤ 10100.
Looking again at Fig. SM17.5.3, the solution to the dual still occurs at the intersection of the lines (1) and
(3), even after (1) has been shifted out. In particular, therefore, the solution to the altered primal satisfies
exactly the same constraints (including nonnegativity constraints) with equality, and is therefore the same
point. So the earlier estimate of 2000 for the increased cost is indeed accurate.

Review Problems for Chapter 17

2. (a) Regard the given LP problem as the primal and denote it by (P). Its dual is shown in answer section and
is denoted by (D). If you draw the feasible set for (D) and a line−x1+x2 = c, you see that as c increases,
the line moves to the northwest. The line with the largest value of c which intersects the feasible set does
so at the point (0, 8), at the intersection of three lines −x1 + 2x2 = 16, −2x1 − x2 = −8, and x1 = 0
that define three of the constraints, but the constraint x1 ≥ 0 is redundant.
(b) We see that when x1 = 0 and x2 = 8, the second and fourth constraints in (D) are satisfied with
strict inequality, so y2 = y4 = 0 at the optimum of (P). Also, since x2 = 8 > 0, the second constraint
in (P) must be satisfied with equality at the optimum — i.e., 2y1 − y3 = 1. But then we see that the
objective function in (P) can be reduced from 16y1+6y2−8y3−15y4 to 16y1−8y3 = 8(2y1−y3) = 8.
We conclude that any (y1, y2, y3, y4) of the form (y1, y2, y3, y4) = ( 1

2 (1 + b), 0, b, 0) must solve (P)
provided its components are nonnegative and the first constraint in (P) is satisfied. (The second constraint
we already know is satisfied with equality.) The first constraint reduces to − 1

2 (1 + b) − 2b ≥ −1, or
b ≤ 1

5 . We conclude that ( 1
2 (1+ b), 0, b, 0) is optimal provided 0 ≤ b ≤ 1

5 .
(c) The objective function in (D) changes to kx1 + x2, but the constraints remain the same. The solution
(0, 8) found in part (a) also remains unchanged provided that the slope−k of the level curve x2 = 8−kx1

through the point (0, 8) remains positive and no less than the slope 1/2 of the line−x1+2x2 = 16. Hence
k ≤ − 1

2 .

4. (a) If a = 0, it is a linear programming problem, whose answer appears in the main text.
(b) When a ≥ 0 we follow the techniques in Section 14.10 and consider the Lagrangian

L = (500− ax1)x1 + 250x2 − λ1(0.04x1 + 0.03x2 − 100)− λ2(0.025x1 + 0.05x2 − 100)

− λ3(0.05x1 − 100)− λ4(0.08x2 − 100)

Then the Kuhn–Tucker conditions (with nonnegativity constraints) are: there exist numbers λ1, λ2, λ3,
and λ4, such that

∂L/∂x1 = 500− 2ax1 − 0.04λ1 − 0.025λ2 − 0.05λ3 ≤ 0 (= 0 if x1 > 0) (i)

∂L/∂x2 = 250− 0.03λ1 − 0.05λ2 − 0.08λ4 ≤ 0 (= 0 if x2 > 0) (ii)

λ1 ≥ 0, and λ1 = 0 if 0.04x1 + 0.03x2 < 100 (iii)

λ2 ≥ 0, and λ2 = 0 if 0.025x1 + 0.05x2 < 100 (iv)

λ3 ≥ 0, and λ3 = 0 if 0.05x1 < 100 (v)

λ4 ≥ 0, and λ4 = 0 if 0.08x2 < 100 (vi)
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(c) The Kuhn–Tucker conditions are sufficient for optimality since the Lagrangian is easily seen to be
concave in (x1, x2) for a ≥ 0. To find when (x1, x2) = (2000, 2000/3) remains optimal, we must find
Lagrange multipliers such that all the Kuhn–Tucker conditions are still satisfied. Note that (i) and (ii)
must still be satisfied with equality. Moreover, the inequalities in (iv) and (vi) are strict, so λ2 = λ4 = 0.
Then (ii) gives λ1 = 25000/3. It remains to check for which values of a one can satisfy (i) for a λ3 that
also satisfies (v). From (i), 0.05λ3 = 500− 4000a − 0.04(25000/3) = 500/3− 4000a ≥ 0 if and only
if a ≤ 1/24.

5. (a) See the answer in the main text. (b) The admissible set is shown as the shaded infinite polygon in
Fig. SM17.R.5. Lines I, II, and III show where the respective constraints are satisfied with equality. The
dotted lines are level curves for the objective function 100y1+ 100y2. We see that the objective function
has its smallest value at P , the intersection of the two lines I and II. The coordinates (y∗1 , y∗2 ) for P are
given by the two equations 3y∗1 + 2y∗2 = 6 and y∗1 + 2y∗2 = 3. Thus P = (y∗1 , y∗2 ) = (3/2, 3/4). The
optimal value of the objective function is 100(y∗1 + y∗2 ) = 225.

(c) Since the dual has a solution, the duality theorem tells us that (a) also has an optimal solution, which
we denote by (x∗1 , x∗2 , x∗3 ). Since the third constraint in the dual is satisfied with inequality, we must have
x∗3 = 0. Moreover, both constraints in the primal must be satisfied with equality at the optimum because
both dual variables are positive in optimum. Hence 3x∗1 + x∗2 = 100 and 2x∗1 + 2x∗2 = 100, which gives
x∗1 = x∗2 = 25. The maximal profit is 6x∗1 + 3x∗2 + 4x∗3 = 225, equal to the value of the primal, as
expected.

(d) To a first-order approximation, profit increases by y∗1 �b1 = 1.5, so the new maximal profit is 226.5.
For this approximation to be exact, the optimal point in the dual must not change when b1 is increased
from 100 to 101. This is obviously true, as one sees from Fig. SM17.R.5.

(e) The maximum value in the primal is equal to the minimum value in the dual. Given the same approxi-
mation as in part (d), this equals b1y

∗
1 + b2y

∗
2 , which is obviously homogeneous of degree 1 in b1 and b2.

More generally, let F(b1, b2) denote the minimum value of the dual set out in part (b). Given any α > 0,
note that minimizing αb1y1 + αb2y2 over the constraint set of the dual gives the same solution (y∗1 , y∗2 )

as minimizing b1y1+b2y2 over the same constraint set. Hence F(αb1, αb2) = αF(b1, b2) for all α > 0,
so F is homogeneous of degree 1.
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