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Although a PMF (PDF) indicates the values taken by a random variable (r.v.)
and their associated probabilities, often we are not interested in the entire PMF.
Thus, in the PMF of Example A.13 we may not want the individual probabilities
of obtaining no heads, one head, or two heads. Rather, we may wish to find out
the average number of heads obtained when tossing a coin several times. In other
words, we may be interested in some summary characteristics, or more techni-
cally, the moments of a probability distribution. Two of the most commonly
used summary measures or moments are the expected value (called the first
moment of the probability distribution) and the variance (called the second moment
of the probability distribution). On occasion, we will need higher moments of
probability distributions, which we will discuss as we progress.

EXPECTED VALUE: A MEASURE OF CENTRAL TENDENCY

The expected value of a discrete r.v. X, denoted by the symbol E(X) (read as E
of X), is defined as follows:

E(X) = D xf(X) (B.1)

X

where f(X) is the PMF of X and where X x means the sum over all values of x!

Verbally, the expected value of a random variable is the weighted average of its
possible values, with the probabilities of these values [i.e., f(X)] serving as the
weights. Equivalently, it is the sum of products of the values taken by the r.v. and their
corresponding probabilities. The expected value of an r.v. is also known as its average

IThe expected value of a continuous r.v. is defined similarly, with the summation symbol being re-
placed by the integral symbol. Thatis: E(X) = [xf(x)dx, where the integral is over all the values of X.
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THE EXPECTED VALUE OF A RANDOM VARIABLE X, THE
NUMBER SHOWN ON A DIE

Number shown Probability Number X Probability
(1) () )
X f(X) Xf(X)
1 1/6 1/6
2 1/6 2/6
3 1/6 3/6
4 1/6 4/6
5 1/6 5/6
6 1/6 6/6

E(X)=21/6=3.5

or mean value, although, more correctly, it is called the population mean value
for reasons to be discussed shortly.

Example B.1.

Suppose we roll a die numbered 1 through 6 several times. What is the
expected value of the number shown? As given previously (see Example A.6),
we have the situation shown in Table B-1.

Applying the definition of the expected value given in Eq. (B.1), we see
that the expected value is 3.5.

Is it strange that we obtained this value, since the r.v. here is discrete and can
take only one of the six values 1 through 6? The expected, or average, value of
3.5 in this example means that if we were to roll the die several times, then on
the average, we would obtain the number 3.5, which is between 3 and 4. If, in a
contest, someone were to give you as many dollars as the number shown on the
die, then in several rolls of the die you would anticipate receiving on the aver-
age $3.50 per roll of the die.

Geometrically, the expected value of the preceding example is shown in
Figure B-1.

Example B.2.

In the PC/printer sales example (Example A.17), what is the expected value
of the number of PCs sold? This can be obtained easily from Table A-4 by
multiplying the values of X (PCs sold) by their associated probabilities (i.e.,
fIX]) and summing the product. Thus,

E(X) = 0(0.08) + 1(0.12) + 2(0.24) + 3(0.24) + 4(0.32) = 2.60

That is, the average number of PCs sold per day is 2.60. Keep in mind that
this is an average. On any given day the number of PCs sold will be any one
of the numbers between 0 and 4.
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FIGURE B-1  The expected value, E(X), of a discrete random
variable (Example B.1)

You can easily verify that E(Y) = 2.35; that is, the average number of
printers sold is 2.35.

Properties of Expected Value
The following properties of the expected value will prove very useful in the
main chapters of the text:

1. The expected value of a constant is that constant itself. Thus, if b is a
constant,

E(b) =b (B.2)
For example, if b = 2, E(2) = 2.

2. The expectation of the sum of two random variables is equal to the sum
of the expectations of those random variables. Thus, for the random vari-

ables X and Y:2
E(X +Y) = E(X) + E(Y) (B.3)
3. However,
E(X)
E(X/Y) # 7E(Y) (B.4)

2This property can be generalized to more than two random variables. Thus, E(X + Y + W + Z) =
E(X) + E(Y) + E(W) + E(2).
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That is, the expected value of the ratio of two random variables is not
equal to the ratio of the expected values of those random variables.
4. Also, in general,

E(XY) # E(X)E(Y) (B.5)

That is, in general, the expected value of the product of two random vari-
ables is not equal to the product of the expectations of those random
variables. However, there is an exception to the rule. If X and Y are inde-
pendent random variables, then it is true that

E(XY) = E(X)E(Y) (B.6)

Recall that X and Y are said to be independent if and only if
f(X,Y) = f(X)f(Y), for all values of X and Y, that is, when the joint PMF
(PDF) is equal to the product of the individual PMFs (PDFs) of the two
random variables for all values of the variables.

5. E(X?) # [EX)]? (B.7)

That is, the expected value of the square of X (or any random variable) is
not equal to the square of the expected value of X.
6. If 2 is a constant, then

E@X) = aE(X) (B.8)

That is, the expectation of a constant times an r.v. is equal to the constant
times the expectation of the r.v.
7. If a and b are constants, then

E@X + b) = aE(X) + E(b)
=aEX) + b (B.9)
In deriving result (7), we use properties (1), (2), and (6). Thus,
E@4X +7)=4E(X) + E(7) = 4E(X) + 7
From Eq. (B.9) we see that E is a linear operator, which is also evident from

Eq. (B4).

Expected Value of Multivariate Probability Distributions

The concept of the expected value of a random variable can be extended easily
to multivariate PMF or PDF. In the bivariate PMF, it can be shown that

EXY) = > D xyf(X, Y) (B.10)
x oy

That is, we take each pair of X and Y values, multiply them by their joint prob-
ability, and sum over all the values of X and Y.



438 APPENDIXES

Example B.3.
Continuing with our PC/printer sales example, and applying Eq. (B.10), we get
E (XY) = (1)(1)(0.05) + (1)(2)(0.06) + (1)(3)(0.02) + (1)(4)(0.01) - -~
+ (4)(1)(0.01) + 4(2)(0.01) + 4(3)(0.01) + (4)(3)(0.05) + (4)(4)(0.15)
= 7.06

which is the expected value of the product of the two random variables.

Recall that if two variables are independent, the expected value of their product
is equal to the product of their individual expected values; that is, E(XY) =
E(X)E(Y). Is this the case in our illustrative example? As we saw in Example B.2,
E(X) =260 and E(Y) = 2.35. Therefore, E (X)E(Y) = (2.60)(2.35) = 6.11 #
E(XY) = 7.06, showing that the two variables are not independent.

In passing, note that the formula for the expected value of the product of two
random variables given in Eq. (B.10) is for two discrete random variables. In the
case of two continuous random variables, in Eq. (B.10) we would replace the
double summation sign by the double integral sign.

B.2 VARIANCE: A MEASURE OF DISPERSION

The expected value of an r.v. simply gives its center of gravity, but it does not
indicate how the individual values are spread, dispersed, or distributed around
this mean value. The most popular numerical measure of this spread is called
the variance, which is defined as follows.

Let X be an r.v. and E(X) be its expected value, which for notational simplic-
ity may be denoted by ., (where p is the Greek letter mu). Then the variance of
X is defined as

var(X) = 02 = E(X — ) (B.11)

where p, = E(X) and where the Greek letter o2 (sigma squared) is the com-
monly used symbol for the variance. As Equation (B.11) shows, the variance of
X (or any r.v.) is simply the expected value of the squared difference between an
individual X value and its expected or mean value. The variance thus defined
shows how the individual X values are spread or distributed around its
expected, or mean, value. If all X values are precisely equal to E(X), the variance
will be zero, whereas if they are widely spread around the expected value, it
will be relatively large, as shown in Figure B-2. Notice that the variance cannot
be a negative number. (Why?)

The positive square root of 0%, 0, is known as the standard deviation (s.d.).
Equation (B.11) is the definition of variance. To compute the variance, we use
the following formula:

var(X) = D (X — w)*f(X) (B.12)
X
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FIGURE B-2  Hypothetical PDFs of continuous random variables all
with the same expected value

if X is a discrete r.v. In case of a continuous random variable, we replace the
summation symbol by the integral symbol.

As Equation (B.12) shows, to compute the variance of a discrete r.v., we sub-
tract the expected value of the variable from a given value of the variable,
square the difference, and multiply the squared difference by the probability
associated with that X value. We do this for each value assumed by the X variable
and sum the products thus obtained. An example follows.

Example B.4.

We continue with Example B.1. There we showed that the expected value of
the number in the repeated roll of a die is 3.5. To compute the variance for
that problem, we set up Table B-2.

Thus, the variance of this example is 2.9167. Taking the positive square
root of this value, we obtain a standard deviation (s.d.) of 1.7078.

Properties of Variance

The variance as defined earlier has the following properties, which we will find
useful in our discussion of econometrics in the main chapters of the text.

1. The variance of a constant is zero. By definition, a constant has no
variability.
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TABLE B-2

THE VARIANCE OF A RANDOM VARIABLE X, THE
NUMBER SHOWN ON A DIE

Number Shown Probability

X f(X) (X—px)? (X)
1 1/6 (1-3.5)2 (1/6)
2 1/6 (2-35)° (1/6)
3 1/6 (3-3.5)2 (1/6)
4 1/6 (4 —3.5)2 (1/6)
5 1/6 (5—3.5)% (1/6)
6 1/6 (6 —3.5)2 (1/6)

Sum =2.9167

. If X and Y are two independent random variables, then

var(X + Y) = var(X) + var(Y)
and var(X — Y) = var(X) + var(Y) (B.13)

That is, the variance of the sum or difference of two independent random
variables is equal to the sum of their individual variances.

. If b is a constant, then

var(X + b) = var(X) (B.14)

That is, adding a constant number to (the values of) a variable does not
change the variance of that variable. Thus, var (X + 7) = var(X).

. If a is constant, then

var (aX) = a?var (X) (B.15)

That is, the variance of a constant times a variable is equal to the square
of that constant times the variance of that variable. Thus, var (5X) =
25 var (X).

. If a and b are constant, then

var (aX + b) = a*var(X) (B.16)
which follows from properties (3) and (4). Thus,

var (5X + 9) = 25 var(X)

. If Xand Y are independent random variables and a and b are constants, then

var(@X + bY) = a®var(X) + b?var(Y) (B.17)
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This property follows from the previous properties. Thus,
var(3X + 5Y) = 9var(X) + 25 var(Y)

7. For computational convenience, the variance formula Eq. (B.11) can also
be written as

var(X) = E(X?) — [E(X)]? (B.18)

which says that the variance of X is equal to the expected value of X
squared minus the square of the expected value of X.? Note that

E(X?) = D ¥*f(X) (B.19)

for a discrete r.v. For a continuous r.v., replace the summation sign with
the integral sign.

The proofs of the various expressions above can be obtained from the basic
definition of variance (see the optional exercises given at the end of this
appendix).

Chebyshev’s Inequality

How adequate are the expected value and variance of a random variable to
describe a PMF or PDF of such a random variable? That is, knowing just these
two summary numbers of a random variable, say X, can we compute the prob-
ability that X lies in a certain range? In a remarkable theorem, known as
Chebyshev’s inequality, the Russian mathematician Pafnuty Lvovich Chebyshev
(1821-1894) showed that that is indeed possible.

Specifically, if X is a random variable with mean ., and a variance of o2, then
for any positive constant ¢ the probability that X lies inside the interval [, — coy,
Wy + co,]isatleast1 — %, that is

1

PIIX = py| =col =1- (B.20)
C

where the symbol | | means the absolute value of.*

3The proof is as follows:
E(X — w)® = E(X* — 2Xu, + 13)
= E(X) — 2m,E(X) + E(ud)
= E(X) — 2pf + p3 = E(X) — b3

Keep in mind that ., is a constant.
“The inequality works quite well if ¢ > 1.
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In words this inequality states that at least the fraction (1 — é) of the total
probability of X lies within c standard deviations of its mean or expected value.
Put differently, the probability that a random variable deviates from its mean
value by more than ¢ standard deviations is less than or at the most equal to 1/c%

What is remarkable about this inequality is that we do not need to know the
actual PDF or PMF of a random variable. Of course, if we know the actual PDF
or PMF, probabilities such as Eq. (B.20) can be computed easily, as we will show
when we consider some specific probability distributions in Appendix C.

Example B.5. [llustration of Chebyshev’s Inequality

The average number of donuts sold in a donut shop between 8 a.m. and

9 a.m. is 100 with a variance of 25. What is the probability that on a given day

the number of donuts sold between 8 a.m. and 9 a.m. is between 90 and 110?
By Chebyshev’s inequality, we have:

1
Pl X = | SCO'X]=1—*2

C1 (B.21)
P[|X — 100] = 5¢c] =1 Y

C

Since (110 — 100) = (100 — 90) = 10, we see that 5¢ = 10. Therefore,c = 2.1t
therefore follows that (1 — %) = % = 0.75. That is, the probability that
between 90 and 110 donuts are sold between 8 a.m. and 9 a.m. is at least
75 percent. By the same token, the probability that the number of donuts sold
between 8 a.m. and 9 a.m. exceeds 110 or is less than 90 is 25 percent.

Coefficient of Variation

Before moving on, note that since the standard deviation (or variance) depends
on the units of measurement, it may be difficult to compare two or more stan-
dard deviations if they are expressed in different units of measurement. To get
around this difficulty, use the coefficient of variation (V), a measure of relative
variation, which is defined as follows:

v =% 100 (B.22)
Mx
Verbally, the V is the ratio of the standard deviation of a random variable X to
its mean value multiplied by 100. Since the standard deviation and the mean
value of a random variable are measured in the same units of measurement, V
is unitless; that is, it is a pure number. We can therefore compare the V values of
two or more random variables directly.

Example B.6.

An instructor teaches two sections of an introductory econometrics class
with 15 students in each class. On the midterm examination, class A scored
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an average of 83 points with a standard deviation of 10, and class B scored an
average 88 points with a standard deviation of 16. Which class performed
relatively better? If we use V as defined in Eq. (B.22), we get:
10 16
Vi = -+ 100 = 12.04 d Vg=—--100 = 18.181
4= g3 00 048 an B = 3g 00 = 18.18

Since the relative variability of class A is lower, we can say that class A did
relatively better than class B.

B.3 COVARIANCE

The expected value and variance are the two most frequently used summary
measures of a univariate PMF (or PDF). The former gives us the center of grav-
ity, and the latter tells us how the individual values are distributed around the
center of gravity. But once we go beyond the univariate probability distribu-
tions (e.g., the PMF of Example B.2), we need to consider, in addition to the
mean and variance of each variable, some additional characteristics of multi-
variate PFs, such as the covariance and correlation, which we will now discuss.

Let X and Y be two random variables with means E(X) = u, and E(Y) = p,.
Then the covariance (cov) between the two variables is defined as

cov(X,Y) = E[(X — p)(Y — py)]
= E(XY) — papy (B.23)

As Equation (B.23) shows, a covariance is a special kind of expected value
and is a measure of how two variables vary or move together (i.e., co-vary), as
shown in Example B.7, which follows. In words, Eq. (B.23) states that to find the
covariance between two variables, we must express the value of each variable
as a deviation from its mean value and take the expected value of the product.
How this is done in practice follows.

The covariance between two random variables can be positive, negative, or zero.
If two random variables move in the same direction (i.e., if they both increase) as
in Example B.7 below, then the covariance will be positive, whereas if they move
in the opposite direction (i.e., if one increases and the other decreases), the co-
variance will be negative. If, however, the covariance between the two variables
is zero, it means that there is no (linear) relationship between the two variables.

To compute the covariance as defined in Eq. (B.23), we use the following for-
mula, assuming X and Y are discrete random variables:

cov(X,Y) = D DX — ux)(Y — w)f(X,Y)
x oy
= D DXYA(X,Y) — pxiy (B.24)
Xy

= E(XY) — pxpmy
where E(XY) is computed from Eq. (B.10).
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Note the double summation sign in this expression because the covariance
requires the summation of both variables over the range of their values. Using
the integral notation of calculus, a similar formula can be devised to compute
the covariance of two continuous random variables.

Example B.7.

Once again, return to our PC/printer sales example. To find out the covari-
ance between computer sales (X) and printer sales (Y), we use formula (B.24).
We have already computed the first term on the right-hand side of this equa-
tion in Example (B.3), which is 7.06. We have already found that w, = 2.60
and p, = 2.35. Therefore, the covariance in this example is

cov(X,Y) = 7.06 — (2.60)(2.35) = 0.95

which shows that PC sales and printer sales are positively related.

Properties of Covariance

The covariance as defined earlier has the following properties, which we will
find quite useful in regression analysis in the main chapters of the text.

1. If X and Y are independent random variables, their covariance is zero. This
is easy to verify. Recall that if two random variables are independent,

E(XY) = E(X)E(Y) = pxpy,

Substituting this expression into Eq. (B.23), we see at once that the
covariance of two independent random variables is zero.

2. cov(a + bX,c +dY) = bdcov(X,Y) (B.25)
where g, b, ¢, and d are constants.
3. cov (X, X) = var(X) (B.26)

That is, the covariance of a variable with itself is simply its variance,
which can be verified from the definitions of variance and covariance
given previously. Obviously, then, cov (Y, Y) = var(Y).

4. If X and Y are two random variables but are not necessarily independent,
then the variance formulas given in Eq. (B.13) need to be modified as
follows:

var(X + Y) = var(X) + var(Y) + 2 cov (X, Y) (B.27)
var(X — Y) = var(X) + var(Y) — 2cov(X,Y) (B.28)

Of course, if the two variables are independent, formulas (B.27) and (B.28) will
coincide with Eq. (B.13).
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B.4 CORRELATION COEFFICIENT

In the PC/printer sales example just considered we found that the covariance
between PC sales and computer sales was 0.95, which suggests that the two
variables are positively related. But the computed number of 0.95 does not give
any idea of how strongly the two variables are positively related because the
covariance is unbounded (i.e., —00 < cov[X, Y] < o0). We can find out how
strongly any two variables are related in terms of what is known as the
(population) coefficient of correlation, which is defined as follows:

_cov(X,Y)

0,0y

(B.29)

where p (rho) denotes the coefficient of correlation.

As is clear from Equation (B.29), the correlation between two random vari-
ables X and Y is simply the ratio of the covariance between the two variables
divided by their respective standard deviations. The correlation coefficient thus
defined is a measure of linear association between two variables, that is, how
strongly the two variables are linearly related.

Properties of Correlation Coefficient

The correlation coefficient just defined has the following properties:

1. Like the covariance, the correlation coefficient can be positive or nega-
tive. It is positive if the covariance is positive and negative if the covari-
ance is negative. In short, it has the same sign as the covariance.

2. The correlation coefficient is a measure of linear relationship between two
variables.

3. The correlation coefficient always lies between —1 and +1. Symbolically,

1=p=1 (B.30)

If the correlation coefficient is +1, it means that the two variables are
perfectly positively linearly related (asin Y = By + B,X), whereas if the
correlation coefficient is —1, it means they are perfectly negatively lin-
early related. Typically, p lies between these limits.

4. The correlation coefficient is a pure number; that is, it is devoid of units of
measurement. On the other hand, other characteristics of probability dis-
tributions, such as the expected value, variance, and covariance, depend
on the units in which the original variables are measured.

5. If two variables are (statistically) independent, their covariance is zero.
Therefore, the correlation coefficient will be zero. The converse, however, is
not true. That is, if the correlation coefficient between two variables is zero,
it does not mean that the two variables are independent. This is because the
correlation coefficient is a measure of linear association or linear relationship
between two variables, as noted previously. For example, if Y = X2, the
correlation between the two variables may be zero, butby no means are the
two variables independent. Here Y is a nonlinear function of X.
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FIGURE B-3  Some typical patterns of the correlation coefficient, p

6. Correlation does not necessarily imply causality. If one finds a positive
correlation between lung cancer and smoking, it does not necessarily

mean that smoking causes lung cancer.

Figure B-3 gives some typical patterns of correlation coefficients.

Example B.8.

Let us continue with the PC/printer sales example. We have already seen
that the covariance between the two variables is 0.95. From the data given in
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Table A-4, we can easily verify that o, = 1.2649 and o, = 1.4124. Then, using
formula (B.29), we obtain

0.95

= = (05317
(1.2649)(1.4124)

p

Thus, the two variables are positively correlated, although the value of the
correlation coefficient is rather moderate. This probably is not surprising, for
not everyone purchasing a PC buys a printer.

The use of the correlation coefficient in the regression context is discussed in
Chapter 3.
Incidentally, Eq. (B.29) can also be written as:

Cov(X,Y) = po,oy (B.31)

That is, the covariance between two variables is equal to the coefficient of
correlation between the two times the product of the standard deviations of
the two.

Variances of Correlated Variables

In Eq. (B.27) and Eq. (B.28) we gave formulas for the variance of variables that
are not necessarily independent. Knowing the relationship between covariance
and correlation, we can express these formulas alternatively as follows:

var(X +Y) = var(X) + var(Y) + 2poyo, (B.32)
var(X — Y) = var(X) + var(Y) — 2poyo, (B.33)

Of course, if the correlation between two random variables is zero, then
var(X + Y) and var(X — Y) are both equal to var(X) + var(Y), as we saw before.
As an exercise, you can find the variance of (X + Y) of our PC/printer example.

B.5 CONDITIONAL EXPECTATION

Another statistical concept that is especially important in regression analysis is
the concept of conditional expectation, which is different from the expectation
of an r.v. considered previously, which may be called the unconditional expec-
tation. The difference between the two concepts of expectations can be explained
as follows.

Return to our PC/printer sales example. In this example X is the number of
PCs sold per day (ranging from 0 to 4) and Y is the number of printers sold per
day (ranging from 0 to 4). We have seen that E(X) = 2.6 and E(Y) = 2.35. These
are unconditional expected values, for in computing these values we have not
put any restrictions on them.
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But now consider this question: What is the average number of printers sold
(Y) if it is known that on a particular day 3 PCs were sold? Put differently, what
is the conditional expectation of Y given that X = 3? Technically, what is
E(Y|X = 3)? This is known as the conditional expectation of Y. Similarly, we
could ask: Whatis E(Y | X = 1)?

From the preceding discussion it should be clear that in computing the un-
conditional expectation of an r.v., we do not take into account information about
any other r.v., whereas in computing the conditional expectation we do.

To compute such conditional expectations, we use the following definition of
conditional expectation

EX|Y =y) = DXfX|Y =y) (B.34)
X

which gives the conditional expectation of X, where X is a discrete r.v,
f(X|Y = y)is the conditional PDF of X given in Eq. (A.20), and X x means the
sum over all values of X. In relation to Equation (B.34), E(X), considered earlier,
is called the unconditional expectation. Computationally, E(X | Y = y) is similar to
E(X) except that instead of using the unconditional PDF of X, we use its condi-
tional PDF, as seen clearly in comparing Eq. (B.34) with Eq. (B.1).

Similarly,

EY|X =2 = DYfY|X =x) (B.35)
Y

gives the conditional expectation of Y. Let us illustrate with an example.

Example B.9.

Let us compute E(Y | X = 2) for our PC/printer sales example. That is, we
want to find out the conditional expected value of printers sold, knowing
that 2 PCs have been sold per day. Using formula (B.34), we have

4
EY|X =2) = ;Yf(y|x=2)

= f(Y=1|X=2) +2f(Y =2|X = 2)
+3f(Y = 3|X = 2) + 4f(Y = 4|X = 2)
= 1.875

Note: f(Y = 1|X =2) = ﬁ%), and so on (see Table A-3).
As these calculations show, the conditional expectation of Y given that
X = 2, is about 1.88, whereas, as shown previously, the unconditional ex-
pectation of Y was 2.35. Just as we saw previously that the conditional PDFs
and marginal PDFs are generally different, the conditional and uncondi-

tional expectations in general are different too. Of course, if the two variables
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are independent, the conditional and unconditional expectations will be the
same. (Why?)

Conditional Variance

Just as we can compute the conditional expectation of a random variable, we
can also compute its conditional variance, var(Y'| X). For Example B.9, for
instance, we may be interested in finding the variance of Y, given that X = 2,
var(Y | X = 2). We can use formula (B.11) for the variance of X, except that we
now have to use the conditional expectation of Y and the conditional PDE. To
see how this is actually done, see Optional Exercise B.23. Incidentally, the vari-
ance formula given in Eq. (B.11) may be called the unconditional variance of X.

Just as conditional and unconditional expectations of an r.v,, in general, are
different, the conditional and unconditional variances, in general, are different
also. They will be the same, however, if the two variables are independent.

As we will see in Chapter 2 and in subsequent chapters, the concepts of con-
ditional expectation and conditional variance will play an important role in
econometrics. Referring to the civilian labor force participation rate (CLFPR)
and the civilian unemployment rate (CUNR) example discussed in Chapter 1,
will the unconditional expectation of CLFPR be the same as the conditional
expectation of CLFPR, conditioned on the knowledge of CUNR? If they are the
same, then, the knowledge of CUNR is not particularly helpful in predicting
CLFPR. In such a situation, regression analysis is not very useful. On the other
hand, if the knowledge of CUNR enables us to forecast CLFPR better than with-
out that knowledge, regression analysis becomes a very valuable research tool,
as we show in the main chapters of the text.

B.6 SKEWNESS AND KURTOSIS

To conclude our discussion of the characteristics of probability distributions, we
discuss the concepts of skewness and kurtosis of a probability distribution, which
tell us something about the shape of the probability distribution. Skewness (S)
is a measure of asymmetry, and kurtosis (K) is a measure of tallness or flatness
of a PDEF, as can be seen in Figure B-4.

To obtain measures of skewness and kurtosis, we need to know the third
moment and the fourth moment of a PMF (PDF). We have already seen that the
first moment of the PMF (PDF) of a random variable X is measured by
E(X) = pyx, the mean of X, and the second moment around the mean (i.e., the
variance) is measured by E(X — w2 In like fashion, the third and fourth mo-
ments around the mean value can be expressed as:

Third moment: E(X — p,)> (B.36)

Fourth moment: E(X — p,)* (B.37)
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FIGURE B-4
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(a) Skewness; (b) kurtosis

And, in general, the rth moment around the mean value can be expressed as
rth moment: E(X — )" (B.38)

Given these definitions, the commonly used measures of skewness and kurtosis
are as follows:

_ EX — l~’~x)3

o3

S

_ third moment about mean

= B.
cube of standard deviation (B.39)

Since for a symmetrical PDF the third (and all odd order) moments are zero, for
such a PDF the S value is zero. The prime example is the normal distribution,
which we will discuss more fully in Appendix C. If the S value is positive, the
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PDF is right-, or positively, skewed, and if it is negative, it is left-, or negatively,
skewed. (See Fig. B-4[a]).
_ EX — !
[E(X — px)’T
fourth moment

= (B.40)
square of second moment

PDFs with values of K less than 3 are called platykurtic (fat or short-tailed), and
those with values of K greater than 3 are called leptokurtic (slim or long-tailed),
as shown in Fig. B-4(b). For a normal distribution the K value is 3, and such a
PDF is called mesokurtic.

Since we will be making extensive use of the normal distribution in the main
text, the knowledge that for such a distribution the values of S and K are zero
and 3, respectively, will help us to compare other PDFs with the normal
distribution.

The computational formulas to obtain the third and fourth moments of a
PDF are straightforward extensions of the formula given in Eq. (B.11), namely,

Third moment: D (X — p,)*f(X) (B.41)
Fourth moment: E(X - px)4f(X) (B.42)

where X is a discrete r.v. For a continuous r.v. we will replace the summation

sign by the integral sign ( /).

Example B.10.

Consider the PDF given in Table B-1. For this PDF we have already seen that
E(X) = 3.5 and Var (X) = 2.9167. The calculations of the third and fourth
moments about the mean value are as follows:

X f(X) (X~ x)® f(X) (X mx)* £(X)
1 1/6 (1-3.5)%(1/6) (1-3.5)* (1/6)
2 1/6 (2-3.5)% (1/6) (2 - 3.5)* (1/6)
3 1/6 (3—13.5)° (1/6) (3-3.5)* (1/6)
4 1/6 (4—3.5)% (1/6) (4 —3.5)* (1/6)
5 1/6 (5-3.5)% (1/6) (5 3.5)* (1/6)
6 )3 )4

1/6 (6 —3.5)%(1/6) (6 —3.5)* (1/6)

Sum= 0 14.732

From the definitions of skewness and kurtosis given before, verify that for
the present example the skewness coefficient is zero (Is that surprising?) and
that the kurtosis value is 1.7317. Therefore, although the PDF given above is
symmetrical around its mean value, it is platykurtic, or much flatter than the
normal distribution, which should be apparent from its shape in Fig. B-4(b).
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B.7 FROMTHE POPULATION TO THE SAMPLE

Sample Mean

To compute the characteristics of probability distributions, such as the expected
value, variance, covariance, correlation coefficient, and conditional expected
value, we obviously need the PMF (PDF), that is, the whole sample space or
population. Thus, to find out the average income of all the people living in New
York City at a given time, obviously we need information on the population of
the whole city. Although conceptually there is some finite population of New
York City at any given time, it is simply not practical to collect information
about each member of the population (i.e., outcome, in the language of proba-
bility). What is done in practice is to draw a “representative” or a “random”
sample from this population and to compute the average income of the people
sampled.’

But will the average income obtained from the sample be equal to the true
average income (i.e., expected value of income) in the population as a whole?
Most likely it will not. Similarly, if we were to compute the variance of the in-
come in the sampled population, would that equal the true variance that we
would have obtained had we studied the whole population? Again, most likely
it would not.

How then could we learn about population characteristics like the expected
value, variance, etc., if we only have one or two samples from a given popula-
tion? And, as we will see throughout the main chapters of the book, in practice,
invariably we have to depend on one or more samples from a given population.

The answer to this very important question will be the focus of our attention
in Appendix D. But meanwhile, we must find the sample counterparts, the sam-
ple moments, of the various population characteristics that we discussed in the
preceding sections.

Let X denote the number of cars sold per day by a car dealer. Assume that the
r.v. X follows some PDF. Further, suppose we want to find out the average num-
ber [i.e.,, E(X)] of cars sold by the dealer in the first 10 days of each month.
Assume that the car dealer has been in business for 10 years but has no time to
look up the sales figures for the first 10 days of each month for the past 10 years.
Suppose that he decides to pick at random the past data for one month and
notes the sales figures for the first 10 days of that month, which are as follows:
9,11,11, 14, 13,9, 8, 9, 14, and 12. This is a sample of 10 values. Notice that he
has data for 120 months, and if he had decided to choose another month, he
probably would have obtained 10 other values.

If the dealer adds up the 10 sales values and divides the sum by 10 (i.e., the
sample size), the number he would obtain is known as the sample mean.

5The precise meaning of a random sample will be explained in Appendix C.
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The sample mean of an r.v. X is generally denoted by the symbol X (read as
X bar) and is defined as

(B.43)

where 3" X, as usual, means the sum of the X values from 1 to 11, where n is the
sample size.

The sample mean thus defined is known as an estimator of E(X), which we
can now call the population mean. An estimator is simply a rule or formula that tells
us how to go about estimating a population quantity, such as the population mean.
In Appendix D we will show how X is related to E(X).

For the sample just given, the sample mean is

9+ 1+ + - +12 110
10 10

X:

which we call an estimate of the population mean. An estimate is simply the nu-
merical value taken by an estimator, 11 in the preceding example. In our example,
the average number of cars sold in the first 10 days of the month is 11. But keep
in mind that this number will not necessarily equal E(X); to compute the latter,
we will have to take into account the sales data for the first 10 days of each of
the other 119 months. In short, we will have to consider the entire PDF of car
sales. But as we show in Appendix D, often the estimate, such as 11, obtained
from a given sample is a fairly good “proxy” for the true E(X).

The ten sample values given previously are not all equal to the sample mean of
11. The variability of the ten values from this sample mean can be measured by
the sample variance, denoted by Sf, which is an estimator of 0%, which we can now
call the population variance. The sample variance is defined as

no(xX. — X 2
$2 = zy (B.44)
s n—-1

which is simply the sum of the squared difference of an individual X value from
its (sample) mean value divided by the total number of observations less one.®
The expression (n — 1) is known as the degrees of freedom, whose precise
meaning will be explained in Appendix C. S,, the positive square root of S2, is

called the sample standard deviation (sample s.d.).

®If the sample size is reasonably large, we can divide by n instead of (n — 1).
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For the sample of 10X values given earlier, the sample variance is

9 — 11> + 11 — 11)%> + - + (12 — 11)?
9

$2 =

44
=— =489
9 8

and the sample s.d. is S, = V4.89 ~ 2.21. Note that 4.89 is an estimate of the
population variance and 2.21 is an estimate of the population s.d. Again, an esti-
mate is a numerical value taken by an estimator in a given sample.

Sample Covariance

Example B.11.

Suppose we have a bivariate population of two variables Y (stock prices) and
X (consumer prices). Suppose further that from this bivariate population we
obtain the random sample shown in the first two columns of Table B-3. In this
example, stock prices are measured by the Dow Jones average and consumer
prices by the Consumer Price Index (CPI). The other entries in this table are
discussed later.

TABLE B-3  SAMPLE COVARIANCE AND SAMPLE CORRELATION COEFFICIENT
BETWEEN DOW JONES AVERAGE (Y) AND CONSUMER PRICE
INDEX (X) OVER THE PERIOD 1998-2007

Dow CPI B B
Y X (Y=Y)X-X)
Year (1) ) (3)

1998 8,625.52 163.00 (8625.5 — 10367.8)(163 — 183.6)
1999 10,464.88 166.60  (10464.9 — 10367.8)(166.6 — 183.6)
2000 10,734.90 172.20 — —

2001 10,189.13 177.10 — —

2002 9,226.43 179.90 — —

2003 8,993.59 184.00 — —

2004 10,317.39 188.90 — —

2005 10,547.67 195.30 — —

2006 11,408.67 201.60 (11408.7 — 10367.8)(201.6 — 183.6)
2007 13,169.98 207.34 (13170 — 10367.8)(207.3 — 183.6)

Sum 103,678.16  1,835.94 ~121,992.73
- 103,678.16
Y = 10 = 10367.8 Sample var(Y)=1,708,150
- 1,835.94
X = T 183.594 Sample var(X) =216.898

Source: Data on X and Y are from the Economic Report of the President, 2008,
Tables B-95, B-96, and B-60, respectively.
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Analogous to the population covariance defined in Eq. (B.23), the sample
covariance between two random variables X and Y is defined as
(X — X)(Y; - Y)

Sample cov (X, Y) = -1 (B.45)

which is simply the sum of the cross products of the two random variables
expressed as deviations from their (sample) mean values and divided by
the degrees of freedom, (n — 1). (If the sample size is large, we may use n as
the divisor.) The sample covariance defined in Equation (B.45) is thus the
estimator of the population covariance. Its numerical value in a given in-
stance will provide an estimate of the population covariance, as in the fol-
lowing example.

In Table B-3 we have given the necessary quantities to compute the sam-
ple covariance, which in the present case is

121,992.73
Sample cov (X, Y) = # = 13,554.75

Thus, in the present case the covariance between stock prices and consumer
prices is positive. Some analysts believe that investment in stocks is a hedge
against inflation; that is, as inflation increases, stock prices increase, too.
Apparently, for the period 1998 to 2007 that seems to be the case, although
empirical evidence on this subject is not unequivocal.

Sample Correlation Coefficient

In Eq. (B.29) we defined the population correlation coefficient between two ran-
dom variables. Its sample analogue, or estimator, which we denote by the sym-
bol r, is as follows:

SitiXi - X)) - Y)/(n — 1)
S¢Sy
sample cov (X, Y)

T sd(X)sd(Y) (B.46)

The sample correlation coefficient thus defined has the same properties as
the population correlation coefficient p; they both lie between —1 and +1.

For the data given in Table B-3 you can easily compute the sample standard
deviations of Y and X, and therefore can compute the sample correlation coeffi-
cient r, an estimate of p, which turns out to be

13,554.75
r =
(14.727)(1306.962)
= 0.7042

Thus, in our example stock prices and consumer prices are pretty positively cor-
related because the computed value is close to 1.
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Sample Skewness and Kurtosis

B.8 SUMMARY

To compute sample skewness and sample kurtosis values, we use the sample
third and fourth moments (compare with Egs. [B.36] and [B.37]). The sample
third moment (compare with the formula for sample variance) is

S(X - X)?
En—l)) (B.47)
and the sample fourth moment is
X — X)
2211—1)) (B.48)

Using the data given in Table B-3, calculate the sample third and fourth mo-
ments and divide them by the standard deviation value to the third and fourth
powers, respectively. Verify that the sample skewness and kurtosis measures
for the Dow Jones average are 0.6873 and 2.9447, respectively, suggesting that
the distribution of the Dow Jones average is positively skewed and that it is flat-
ter than a normal distribution.

After introducing several fundamental concepts of probability, random vari-
ables, probability distributions, etc., in Appendix A, in this appendix we dis-
cussed some major characteristics or moments of probability distributions of
random variables, such as the expected value, variance, covariance, correlation,
skewness, kurtosis, conditional expectation, and conditional variance. We also
discussed the famous Chebyshev’s inequality. The discussion of these concepts
has been somewhat intuitive, for our objective here is not to teach statistics per
se but simply to review some of its major concepts that are needed to follow the
various topics discussed in the main chapters of this book.

In this appendix we also presented several important formulas. These for-
mulas tell us how to compute the probabilities of random variables and how to
estimate the characteristics of probability distributions (i.e., the moments), such
as the expected or mean value, variance, covariance, correlation, and condi-
tional expectation. In presenting these formulas, we made a careful distinction
between the population moments and sample moments and gave the appropriate
computing formulas. Thus, E(X), the expected value of the r.v. X, is a population
moment, that is, the mean value of X if the entire population of the X values
were known. On the other hand, X is a sample moment, that is, the average
value of X if it is based on sample values of X and not on the entire population.
In statistics the dichotomy between the population and the sample is very im-
portant, for in most applications we have only one or two samples from some
population of interest and often we want to draw inferences about the popula-
tion moments on the basis of the sample moments. We will explain how this is
done in Appendixes C and D.
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KEY TERMS AND CONCEPTS

QUESTIONS

The key terms and concepts introduced in this appendix are

Characteristics (moments) of
univariate PMFs
a) expected value (population
mean value)
b) variance
¢) standard deviation (s.d.)
d) coefficient of variation (V)
Characteristics of multivariate PDFs
a) covariance
b) (population) coefficient of
correlation
¢) correlation
d) conditional expectation
e) unconditional expectation
f) conditional variance

g) unconditional variance
h) skewness (S)
i) kurtosis (K)

Population vs. sample

a) sample moments

b) sample mean

¢) estimator; estimate

d) sample variance

e) degrees of freedom

f) sample standard deviation
(sample s.d.)

g) sample covariance

h) sample correlation

i) sample skewness

j) sample kurtosis

B.1. What is meant by the moments of a PDF? What are the most frequently used

moments?
B.2. Explain the meaning of
. expected value
. variance
. standard deviation
. covariance
. correlation
. conditional expectation
xplain the meaning of
. sample mean
. sample variance
. sample standard deviation
. sample covariance
e. sample correlation

-0 QU T

B.3.

[es]

o n T W

B.4. Why is it important to make the distinction between population moments and

sample moments?

B.5. Fill in the gaps in the manner of (1) below.
a. The expected value or mean is a measure of central tendency.

b. The variance is a measure of . . .
¢. The covariance is a measure of . . .
d. The correlation is a measure of . . .

B.6. A random variable (r.v.) X has a mean value of $50 and its standard deviation

(s.d.) is $5. Is it correct to say that its variance is $25 squared? Why or why not?

B.7. Explain whether the following statements are true or false. Give reasons.

a. Although the expected value of an r.v. can be positive or negative, its vari-
ance is always positive.
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PROBLEMS

TABLE B-4

TABLE B-5

B.8.

B.9.

b. The coefficient of correlation will have the same sign as that of the covari-

ance between the two variables.

¢. The conditional and unconditional expectations of an r.v. mean the same thing.
d. If two variables are independent, their correlation coefficient will always be

Zero.

e. If the correlation coefficient between two variables is zero, it means that the

two variables are independent.

£ E(3) = 5
g E[X — pxl® = [EX — px)P?

Refer to Problem A.12.

a. Find the expected value of X.

b. What is the variance and standard deviation of X?

c. What is the coefficient of variation of X?

d. Find the skewness and kurtosis values of X.

The following table gives the anticipated 1-year rates of return from a certain
investment and their probabilities.

ANTICIPATED 1-YEAR RATE OF RETURN
FROM A CERTAIN INVESTMENT

Rate of return (X) % f(X)
-20 0.10

-10 0.15

10 0.45

25 0.25

30 0.05

Total 1.00

B.10.

a. What is the expected rate of return from this investment?

b. Find the variance and standard deviation of the rate of return.

c. Find the skewness and kurtosis coefficients.

d. Find the cumulative distribution function (CDF) and obtain the probability
that the rate of return is 10 percent or less.

The following table gives the joint PDF of random variables X and Y, where

X = the first-year rate of return (%) expected from investment A, and

Y = the first-year rate of return (%) expected from investment B.

RATES OF RETURN ON TWO INVESTMENTS

X (%)
¥(%) -10 0 20 30
20 0.27 0.08 0.16 0.00
50 0.00 0.04 0.10 0.35




TABLE B-6

B.11.

B.12.

B.13.
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a. Find the marginal distributions of Y and X.

b. Calculate the expected rate of return from investment B.

c. Find the conditional distribution of Y, given X = 20.

d. Are X and Y independent random variables? How do you know? Hint:

4 2
E(XY) = > > XY f(X; Y))
=

You are told that E(X) = 8 and var (X) = 4. What are the expected values and
variances of the following expressions?

a.Y=3X+2

b.Y =06X — 4

Y =X/4

d. Y = aX + b, where a and b are constants
e.Y=3X>+2

How would you express these formulas verbally?

Consider formulas (B.32) and (B.33). Let X stand for the rate of return on a se-
curity, say, IBM, and Y the rate of return on another security, say, General
Foods. Let s§( = 16, s% =9, and r = —0.8. What is the variance of (X + Y) in
this case? Is it greater than or smaller than var (X) + var (Y)? In this instance,
is it better to invest equally in the two securities (i.e., diversify) than in either
security exclusively? This problem is the essence of the portfolio theory of fi-
nance. (See, for example, Richard Brealey and Stewart Myers, Principles of
Corporate Finance, McGraw-Hill, New York, latest edition.)

Table B-6 gives data on the number of new business incorporations (Y) and the
number of business failures (X) for the United States from 1984 to 1995.

a. Whatis the average value of new business incorporations? And the variance?
b. What is the average value of business failures? And the variance?

c. What is the covariance between Y and X? And the correlation coefficient?

NUMBER OF NEW BUSINESS
INCORPORATIONS (Y) AND NUMBER OF
BUSINESS FAILURES (X), UNITED STATES,

1984-1995

YEAR Y X
1984 634,991 52,078
1985 664,235 57,253
1986 702,738 61,616
1987 685,572 61,111
1988 685,095 57,097
1989 676,565 50,361
1990 647,366 60,747
1991 628,604 88,140
1992 666,800 97,069
1993 706,537 86,133
1994 741,778 71,558
1995 766,988 71,128

Source: Economic Report of the President, 2004,
Table B-96, p. 395.
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B.14.

B.15.

B.16.

d. Are the two variables independent?

e. If there is correlation between the two variables, does this mean that one
variable causes the other variable? That is, do new incorporations cause
business failures, or vice versa?

For Problem A.13, find out the var (X + Y). How would you interpret this

variance?

Refer to Table 1-2 given in Problem 1.6.

a. Compute the covariances between the S&P 500 index and the CPI and be-
tween the three-month Treasury bill rate and the CPI. Are these population
or sample covariances?

b. Compute the correlation coefficients between the S&P 500 index and the CPI
and between the three-month Treasury bill rate and the CPI. A priori, would
you expect these correlation coefficients to be positive or negative? Why?

c. If there is a positive relationship between the CPI and the three-month
Treasury bill rate, does that mean inflation, as measured by the CPI, is the
cause of higher T bill rates?

Refer to Table 1-3 in Problem 1.7. Let ER stand for U.K. pound/$ exchange rate

(i.e., the number of U.K. pounds per U.S. dollar) and RPR stand for the ratio of

the U.S. CP1/U.K. CPL Is the correlation between ER and RPR expected to be

positive or negative? Why? Show your computations. Would your answer
change if you found correlation between ER and (1/RPR)? Why?

OPTIONAL EXERCISES

B.17

B.18

B.19.
B.20.

B.21.

B.22.

B.23.

B.24

. Find the expected value of the following PDF:

XZ

fX) = 5 0=x=3
. Show that
a. E(X?) = [E(X)]? Hint: Recall the definition of variance.
b. cov (X, Y) = E[(X — wx)(Y — py)]
= E(XY) — pxpy

where pxy = E(X) and py = E(Y).
How would you express these formulas verbally?
Establish Eq. (B.15). Hint: Var (aX) = E[aX — E@X)]? and simplify.

Establish Eq. (B.17). Hint: Var (aX + bY) = E[(aX + bY) — E@aX + bY)]? and
simplify.

According to Chebyshev’s inequality, what percentage of any set of data must
lie within ¢ standard deviations on either side of the mean value if () ¢ = 2.5
and (b) c = 8?

Show that E(X — k)® = var (X) + [E(X) — k]>. For what value of k will
E(X — k)?> be minimum? And what is that value of k?

For the PC/printer sales example discussed in this appendix compute the con-
ditional variance of Y (printers sold) given that X (PCs sold) is 2. Hint: Use the
conditional expectation given in Example B.9 and use the formula:

var (Y|X =2) = J[Y; — E(Y|X = 2Pf(Y|X = 2)
. Compute the expected value and variance for the PDF given in Problem A.19.



