CHAPTER

BASIC IDEAS OF
LINEAR REGRESSION:
THE TWO-VARIABLE
MODEL

In Chapter 1 we noted that in developing a model of an economic phenomenon
(e.g., the law of demand) econometricians make heavy use of a statistical tech-
nique known as regression analysis. The purpose of this chapter and Chapter 3
is to introduce the basics of regression analysis in terms of the simplest possible
linear regression model, namely, the two-variable model. Subsequent chapters
will consider various modifications and extensions of the two-variable model.

2.1 THE MEANING OF REGRESSION

Asnoted in Chapter 1, regression analysis is concerned with the study of the re-
lationship between one variable called the explained, or dependent, variable and
one or more other variables called independent, or explanatory, variables.
Thus, we may be interested in studying the relationship between the quan-
tity demanded of a commodity in terms of the price of that commodity, income
of the consumer, and prices of other commodities competing with this com-
modity. Or, we may be interested in finding out how sales of a product (e.g., au-
tomobiles) are related to advertising expenditure incurred on that product. Or,
we may be interested in finding out how defense expenditures vary in relation
to the gross domestic product (GDP). In all these examples there may be some
underlying theory that specifies why we would expect one variable to be de-
pendent or related to one or more other variables. In the first example, the law of
demand provides the rationale for the dependence of the quantity demanded of
a product on its own price and several other variables previously mentioned.
For notational uniformity, from here on we will let Y represent the dependent
variable and X the independent, or explanatory, variable. If there is more than
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22 PART ONE: THE LINEAR REGRESSION MODEL

one explanatory variable, we will show the various X's by the appropriate sub-
scripts (X1, Xo, X3, etc.).

It is very important to bear in mind the warning given in Chapter 1 that,
although regression analysis deals with the relationship between a dependent
variable and one or more independent variables, it does not necessarily imply
causation; that is, it does not necessarily mean that the independent variables are
the cause and the dependent variable is the effect. If causality between the two
exists, it must be justified on the basis of some (economic) theory. As noted ear-
lier, the law of demand suggests that if all other variables are held constant, the
quantity demanded of a commodity is (inversely) dependent on its own price.
Here microeconomic theory suggests that the price may be the causal force and
the quantity demanded the effect. Always keep in mind that regression does not nec-
essarily imply causation. Causality must be justified, or inferred, from the theory that
underlies the phenomenon that is tested empirically.

Regression analysis may have one of the following objectives:

1. To estimate the mean, or average, value of the dependent variable, given
the values of the independent variables.

2. To test hypotheses about the nature of the dependence—hypotheses sug-
gested by the underlying economic theory. For example, in the demand
function mentioned previously, we may want to test the hypothesis that
the price elasticity of demand is, say, —1.0; that is, the demand curve has
unitary price elasticity. If the price of the commodity goes up by 1 per-
cent, the quantity demanded on the average goes down by 1 percent,
assuming all other factors affecting demand are held constant.

3. To predict, or forecast, the mean value of the dependent variable, given
the value(s) of the independent variable(s) beyond the sample range.
Thus, in the S.A.T. example discussed in Appendix C, we may wish to
predict the average score on the critical reasoning part of the S.A.T. for a
group of students who know their scores on the math part of the test (see
Table 2-15).

4. One or more of the preceding objectives combined.

2.2 THE POPULATION REGRESSION FUNCTION (PRF):
A HYPOTHETICAL EXAMPLE

To illustrate what all this means, we will consider a concrete example. In the last
two years of high school, most American teenagers take the S.A.T. college en-
trance examination. The test consists of three sections: critical reasoning (formerly
called the verbal section), mathematics, and an essay portion, each scored on a
scale of 0 to 800. Since the essay portion is more difficult to score, we will focus pri-
marily on the mathematics section. Suppose we are interested in finding out
whether a student’s family income is related to how well students score on the
mathematics section of the test. Let Y represent the math S.A.T. score and X rep-
resent annual family income. The income variable has been broken into 10 classes:
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MATHEMATICS S.A.T. SCORES IN RELATION TO ANNUAL FAMILY INCOME

Math S.A.T. Scores

Family Income

Student $5,000 $15,000 $25,000 $35,000 $45,000 $55,000 $65,000 $75,000 $90,000 $150,000

1 460 480 460 520 500 450 560 530 560 570

2 470 510 450 510 470 540 480 540 500 560

3 460 450 530 440 450 460 530 540 470 540

4 420 420 430 540 530 480 520 500 570 550

5 440 430 520 490 550 530 510 480 580 560

6 500 450 490 460 510 480 550 580 480 510

7 420 510 440 460 530 510 480 560 530 520

8 410 500 480 520 440 540 500 490 520 520

9 450 480 510 490 510 510 520 560 540 590

10 490 520 470 450 470 550 470 500 550 600
Mean 452 475 478 488 496 505 512 528 530 552

(<$10,000), ($10,000-$20,000), ($20,000-$30,000), ..., ($80,000-$100,000), and
(>%$100,000). For simplicity, we have used the midpoints of each of the classes,
estimating the last class midpoint at $150,000, for the analysis. Assume that a
hypothetical population of 100 high school students is reported in Table 2-1.

Table 2.1 can be interpreted as follows: For an annual family income of
$5,000, one student scored a 460 on the math section of the S.A.T. Nine other stu-
dents had similar family incomes, and their scores, together with the first stu-
dent, averaged to 452. For a family income of $15,000, one student scored a 480
on the section, and the average of 10 students in that income bracket was 475.
The remaining columns are similar.

A scattergram of these data is shown in Figure 2-1. For this graph, the hori-
zontal axis represents annual family income and the vertical axis represents the
students’ math S.A.T. scores. For each income level, there are several S.A.T.
scores; in fact, in this instance there are 10 recorded scores.! The points con-
nected with the line are the mean values for each income level. It seems as
though there is a general, overall upward trend in the math scores; higher
income levels tend to be associated with higher math scores. This is especially
evident with the connected open circles, representing the average scores per
income level. These connected circles are formally called the conditional mean
or conditional expected values (see Appendix B for details). Since we have
assumed the data represent the population of score values, the line connecting
the conditional means is called the population regression line (PRL). The PRL
gives the average, or mean, value of the dependent variable (math S.A.T. scores in this

!For simplicity, we are assuming there are 10 scores for each income level. In reality, there may
be a very large number of scores for each X (income) value, and each income level need not have the
same number of observations.
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FIGURE 2-1
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example) corresponding to each value of the independent variable (here, annual family
income) in the population as a whole. Thus, corresponding to an annual income of
$25,000, the average math S.A.T. score is 478, whereas corresponding to an an-
nual income of $45,000, the average math S.A.T. score is 496. In short, the PRL
tells us how the mean, or average, value of Y (or any dependent variable) is
related to each value of X (or any independent variable) in the whole population.

Since the PRL in Figure 2-1 is approximately linear, we can express it mathe-
matically in the following functional form:

E(lez) = B1 + Bin (2.1)

which is the mathematical equation of a straight line. In Equation (2.1), E (Y| X;)
means the mean, or expected value, of Y corresponding to, or conditional upon,
a given value of X. The subscript i refers to the ith subpopulation. Thus, in
Table 2-1, E(Y | X; = 5000) is 452, which is the mean, or expected, value of Y in
the first subpopulation (i.e., corresponding to X = $5000).

The last row of Table 2-1 gives the conditional mean values of Y. It is very
important to note that E(Y | X;) is a function of X; (linear in the present example).
This means that the dependence of Y on X, technically called the regression of Y
on X, can be defined simply as the mean of the distribution of Y values (as in
Table 2-1), which has the given X. In other words, the population regression line
(PRL) is a line that passes through the conditional means of Y. The mathematical
form in which the PRL is expressed, such as Eq. (2.1), is called the population
regression function (PRF), as it represents the regression line in the population
as a whole. In the present instance the PRF is linear. (The more technical mean-
ing of linearity is discussed in Section 2.6.)
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In Eq. (2.1), By and B, are called the parameters, also known as the regression
coefficients. B; is also known as the intercept (coefficient) and B, as the slope
(coefficient). The slope coefficient measures the rate of change in the (conditional) mean
value of Y per unit change in X. If, for example, the slope coefficient (B,) were
0.001, it would suggest that if annual family income were to increase by a dol-
lar, the (conditional) mean value of Y would increase by 0.001 points. Because of
the scale of the variables, it is easier to interpret the results for a one-thousand-
dollar increase in annual family income; for each one-thousand-dollar increase
in annual family income, we would expect to see a 1 point increase in the
(conditional) mean value of the math S.A.T. score. By is the (conditional) mean
value of Y if X is zero; it gives the average value of the math S.A.T. score if the
annual family income were zero. We will have more to say about this interpre-
tation of the intercept later in the chapter.

How do we go about finding the estimates, or numerical values, of the inter-
cept and slope coefficients? We explore this in Section 2.8.

Before moving on, a word about terminology is in order. Since in regression
analysis, as noted in Chapter 1, we are concerned with examining the behavior
of the dependent variable conditional upon the given values of the independent vari-
able(s), our approach to regression analysis can be termed conditional regression
analysis.2 As a result, there is no need to use the adjective “conditional” all the
time. Therefore, in the future expressions like E (Y | X;) will be simply written as E (Y),
with the explicit understanding that the latter in fact stands for the former. Of course,
where there is cause for confusion, we will use the more extended notation.

2.3 STATISTICAL OR STOCHASTIC SPECIFICATION
OF THE POPULATION REGRESSION FUNCTION

As wejust discussed, the PRF gives the average value of the dependent variable
corresponding to each value of the independent variable. Let us take another
look at Table 2-1. We know, for example, that corresponding to X = $75,000, the
average Y is 528 points. But if we pick one student at random from the 10 students
corresponding to this income, we know that the math S.A.T. score for that stu-
dent will not necessarily be equal to the mean value of 528. To be concrete, take
the last student in this group. His or her math S.A.T. score is 500, which is below
the mean value. By the same token, if you take the first student in that group, his
or her score is 530, which is above the average value.

How do you explain the score of an individual student in relation to income?
The best we can do is to say that any individual’s math S5.A.T. score is equal to

2The fact that our analysis is conditional on X does not mean that X causes Y. It is just that we
want to see the behavior of Y in relation to an X variable that is of interest to the analyst. For exam-
ple, when the Federal Reserve Bank (the Fed) changes the Federal funds rate, it is interested in find-
ing out how the economy responds. During the economic crisis of 2008 in the United States, the Fed
reduced the Federal Funds rate several times to resuscitate the ailing economy. One of the key de-
terminants of the demand for housing is the mortgage interest rate. It is therefore of great interest to
prospective homeowners to track the mortgage interest rates. When the Fed reduces the Federal
Funds rate, all other interest rates follow suit.
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FIGURE 2-2
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the average for that group plus or minus some quantity. Let us express this
mathematically as

Y,' = B1 + BzX,' + u; (2.2)

where u is known as the stochastic, or random, error term, or simply the error
term.> We have already encountered this term in Chapter 1. The error term is a
random variable (r.v.), for its value cannot be controlled or known a priori. As we
know from Appendix A, an r.v. is usually characterized by its probability distrib-
ution (e.g., the normal or the t distribution).

How do we interpret Equation (2.2)? We can say that a student’s math S.A.T.
score, say, the ith individual, corresponding to a specific family income can be
expressed as the sum of two components. The first component is (B; + B,X)),
which is simply the mean, or average, math score in the ith subpopulation;
that is, the point on the PRL corresponding to the family income. This compo-
nent may be called the systematic, or deterministic, component. The second
component is u#;, which may be called the nonsystematic, or random, component
(i-e., determined by factors other than income). The error term u; is also known
as the noise component.

To see this clearly, consider Figure 2-2, which is based on the data of Table 2-1.

As this figure shows, at annual family income = $5000, one student scores 470
on the test, whereas the average math score at this income level is 452. Thus, this

3The word stochastic comes from the Greek word stokhos meaning a “bull’s eye.” The outcome of
throwing darts onto a dart board is a stochastic process, that is, a process fraught with misses. In sta-
tistics, the word implies the presence of a random variable—a variable whose outcome is deter-
mined by a chance experiment.
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student’s score exceeds the systematic component (i.e., the mean for the group)
by 18 points. So his or her u component is +18 units. On the other hand, at
income =$75,000, a randomly chosen second student scores 500 on the math test,
whereas the average score for this group is 528. This person’s math score is less
than the systematic component by 28 points; his or her 1 component is thus —28.

Eq. (2.2) is called the stochastic (or statistical) PRE, whereas Eq. (2.1) is called
the deterministic, or nonstochastic, PRF. The latter represents the means of the
various Y values corresponding to the specified income levels, whereas the for-
mer tells us how individual math S.A.T. scores vary around their mean values
due to the presence of the stochastic error term, u.

What is the nature of the u term?

2.4 THE NATURE OF THE STOCHASTIC ERROR TERM

1. The error term may represent the influence of those variables that are not
explicitly included in the model. For example in our math S.A.T. scenario
it may very well represent influences, such as a person’s wealth, the area
where he or she lives, high school GPA, or math courses taken in school.

2. Even if we included all the relevant variables determining the math test
score, some intrinsic randomness in the math score is bound to occur that
cannot be explained no matter how hard we try. Human behavior, after
all, is not totally predictable or rational. Thus, u may reflect this inherent
randomness in human behavior.

3. u may also represent errors of measurement. For example, the data on
annual family income may be rounded or the data on math scores may
be suspect because in some communities few students plan to attend col-
lege and therefore don’t take the test.

4. The principle of Ockham’s razor—that descriptions be kept as simple as
possible until proved inadequate—would suggest that we keep our re-
gression model as simple as possible. Therefore, even if we know what
other variables might affect Y, their combined influence on Y may be so
small and nonsystematic that you can incorporate it in the random
term, . Remember that a model is a simplification of reality. If we truly
want to build reality into a model it may be too unwieldy to be of
any practical use. In model building, therefore, some abstraction from re-
ality isinevitable. By the way, William Ockham (1285-1349) was an English
philosopher who maintained that a complicated explanation should
not be accepted without good reason and wrote “Frustra fit per plura, quod
fieri potest per pauciora—It is vain to do with more what can be done with
less.”

It is for one or more of these reasons that an individual student’s math S.A.T.
score will deviate from his or her group average (i.e., the systematic compo-
nent). And as we will soon discover, this error term plays an extremely crucial
role in regression analysis.
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2.5 THE SAMPLE REGRESSION FUNCTION (SRF)

TABLE 2-2

How do we estimate the PRF of Eq. (2.1), that is, obtain the values of B; and B,?
If we have the data from Table 2-1, the whole population, this would be a rela-
tively straightforward task. All we have to do is to find the conditional means of
Y corresponding to each X and then join these means. Unfortunately, in prac-
tice, we rarely have the entire population at our disposal. Often we have only a
sample from this population. (Recall from Chapter 1 and Appendix A our dis-
cussion regarding the population and the sample.) Our task here is to estimate
the PRF on the basis of the sample information. How do we accomplish this?

Pretend that you have never seen Table 2-1 but only had the data given in
Table 2-2, which presumably represent a randomly selected sample of Y values
corresponding to the X values shown in Table 2-1.

Unlike Table 2-1, we now have only one Y value corresponding to each X.
The important question that we now face is: From the sample data of Table 2-2,
can we estimate the average S.A.T. math score in the population as a whole
corresponding to each X? In other words, can we estimate the PRF from the
sample data? As you can well surmise, we may not be able to estimate the PRF
accurately because of sampling fluctuations, or sampling etrror, a topic we discuss
in Appendix C. To see this clearly, suppose another random sample, which is
shown in Table 2-3, is drawn from the population of Table 2-1. If we plot the
data of Tables 2-2 and 2-3, we obtain the scattergram shown in Figure 2-3.

Through the scatter points we have drawn visually two straight lines that fit
the scatter points reasonably well. We will call these lines the sample regression
lines (SRLs). Which of the two SRLs represents the true PRL? If we avoid the
temptation of looking at Figure 2-1, which represents the PRL, there isno way we
can be sure that either of the SRLs shown in Figure 2-3 represents the true PRL.
For if we had yet another sample, we would obtain a third SRL. Supposedly, each
SRL represents the PRL, but because of sampling variation, each is at best an
approximation of the true PRL. In general, we would get K different SRLs for K
different samples, and all these SRLs are not likely to be the same.

A RANDOM SAMPLE TABLE 2-3 A RANDOM SAMPLE
FROM TABLE 2-1 FROM TABLE 2-1
Y X Y X

410 5000 420 5000
420 15000 520 15000
440 25000 470 25000
490 35000 450 35000
530 45000 470 45000
530 55000 550 55000
550 65000 470 65000
540 75000 500 75000
570 90000 550 90000

590 150000 600 150000
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Now analogous to the PRF that underlies the PRL, we can develop the con-
cept of the sample regression function (SRF) to represent the SRL. The sample
counterpart of Eq. (2.1) may be written as

?i = bl + bZX,- (2.3)

where / is read as “hat” or “cap,” and

where f/l = estimator of E(Y | X;), the estimator of the population conditional mean
by = estimator of B;
b, = estimator of B,

As noted in Appendix D, an estimator, or a sample statistic, is a rule or a for-
mula that suggests how we can estimate the population parameter at hand. A
particular numerical value obtained by the estimator in an application, as we
know, is an estimate. (See Appendix D for the discussion on point and interval
estimators.)

If we look at the scattergram in Figure 2-3, we observe that not all the sample
data lie exactly on the respective sample regression lines. Therefore, just as
we developed the stochastic PRF of Eq. (2.2), we need to develop the stochastic
version of Eq. (2.3), which we write as

Y,' = b1 + bzXl' + ¢ (2.9)

where ¢; = the estimator of u;.
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FIGURE 2-4

We call ¢; the residual term, or simply the residual. Conceptually, it is analo-
gous to u; and can be regarded as the estimator of the latter. It is introduced in
the SRF for the same reasons as u; was introduced in the PRF. Simply stated, e;
represents the difference between the actual Y values and their estimated values from the
sample regression. That is,

=Y — Y (2.5

To summarize, our primary objective in regression analysis is to estimate the
(stochastic) PRF

Y,«=B1+Bin+ul-
on the basis of the SRF
Yi=b1+b2X,'+€i

because more often than not our analysis is based on a single sample from some
population. But because of sampling variation, our estimate of the PRF based
on the SRF is only approximate. This approximation is shown in Figure 2-4.
Keep in mind that we actually do not observe By, B, and u. What we observe are their
proxies, by, by, and e, once we have a specific sample.

For a given Xj, shown in this figure, we have one (sample) observation, Y;. In
terms of the SRF, the observed Y; can be expressed as

Yi = ?[ + el- (2.6)
SRF: Y, = b, + b, X,
”

PRF: E(Y|X) = B, + B, X;

Math S.A.T. Score

Annual Family Income ($)

The population and sample regression lines
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and in terms of the PRF it can be expressed as
Yi = E(YlX,) + u; 2.7)

Obviously, in Figure 2-4, 3?1 underestimates the true mean value E(Y | X;) for
the X; shown therein. By the same token, for any Y to the right of point A in
Figure 2-4 (e.g., Y},), the SRF will overestimate the true PRF. But you can read-
ily see that such over- and underestimation is inevitable due to sampling
fluctuations.

The important question now is: Granted that the SRF is only an approxima-
tion of the PRF, can we find a method or a procedure that will make this ap-
proximation as close as possible? In other words, how should we construct the
SREF so that b; is as close as possible to By and b; is as close as possible to B,, be-
cause generally we do not have the entire population at our disposal? As we
will show in Section 2.8, we can indeed find a “best-fitting” SRF that will mirror
the PRF as faithfully as possible. It is fascinating to consider that this can be done
even though we never actually determine the PRF itself.

2.6 THE SPECIAL MEANING OF THE TERM
“LINEAR” REGRESSION

Since in this text we are concerned primarily with “linear” models like Eq. (2.1),
it is essential to know what the term linear really means, for it can be interpreted
in two different ways.

Linearity in the Variables

The first and perhaps the more “natural” meaning of linearity is that the condi-
tional mean value of the dependent variable is a linear function of the indepen-
dent variable(s) as in Eq. (2.1) or Eq. (2.2) or in the sample counterparts, Egs. (2.3)
and (2.4). In this interpretation, the following functions are not linear:

E(Y) = By + BX? (2.8)
1

E(Y) = By + By— (2.9)
X;

because in Equation (2.8) X appears with a power of 2, and in Eq. (2.9) it appears
in the inverse form. For regression models linear in the explanatory variable(s),
the rate of change in the dependent variable remains constant for a unit change in
the explanatory variable; that is, the slope remains constant. But for a regression

A function Y = f(X) is said to be linear in X if (1) X appears with a power of 1 only; that is,
terms such as X? and VX are excluded; and (2) X is not multiplied or divided by another variable
(e.g., X - Z and X/Z, where Z is another variable).
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model nonlinear in the explanatory variables the slope does not remain constant.

This can be seen more clearly in Figure 2-5.

As Figure 2-5 shows, for the regression (2.1), the slope—the rate of change in
E(Y)—the mean of Y, remains the same, namely, B, no matter at what value of X
we measure the change. But for regression, say, Eq. (2.8), the rate of change in the
mean value of Y varies from point to point on the regression line; it is actually

a curve here.?

Linearity in the Parameters

The second interpretation of linearity is that the conditional mean of the depen-
dent variable is a linear function of the parameters, the B’s; it may or may not be
linear in the variables. Analogous to a linear-in-variable function, a function is
said to be linear in the parameter, say, By, if B, appears with a power of 1 only.
On this definition, models (2.8) and (2.9) are both linear models because B; and
B, enter the models linearly. It does not matter that the variable X enters non-

linearly in both models. However, a model of the type

E(Y) = By + B3X;

is nonlinear in the parameter model since B, enters with a power of 2.

In this book we are primarily concerned with models that are linear in the
parameters. Therefore, from now on the term linear regression will mean a regres-
sion that is linear in the parameters, the B’s (i.e., the parameters are raised to the
power of 1 only); it may or may not be linear in the explanatory variables.®

5Those who know calculus will recognize that in the linear model the slope, that is, the deriva-
tive of Y with respect to X, is constant, equal to By, but in the nonlinear model Eq. (2.8) it is equal to
—By(1/ X,Z), which obviously will depend on the value of X at which the slope is measured, and is

therefore not constant.

%This is not to suggest that nonlinear (in-the-parameters) models like Eq. (2.10) cannot be esti-
mated or that they are not used in practice. As a matter of fact, in advanced courses in econometrics

such models are studied in depth.
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2.7 TWO-VARIABLE VERSUS MULTIPLE LINEAR REGRESSION

So far in this chapter we have considered only the two-variable, or simple,
regression models in which the dependent variable is a function of just one
explanatory variable. This was done just to introduce the fundamental ideas of
regression analysis. But the concept of regression can be extended easily to the
case where the dependent variable is a function of more than one explanatory
variable. For instance, if the math S.A.T. score is a function of income (X3), num-
ber of math classes taken (X3), and age of the student (X4), we can write the
extended math S.A.T. function as

E(Y) = Bl + BZXZi + B3X3i + B4X41’ (211)

[Note: E(Y) = E(Y | X2;, X3i, X4i)-]

Equation (2.11) is an example of a multiple linear regression, a regression in
which more than one independent, or explanatory, variable is used to explain
the behavior of the dependent variable. Model (2.11) states that the (condi-
tional) mean value of the math S.A.T. score is a linear function of income, num-
ber of math classes taken, and age of the student. The score function of a student
(i.e., the stochastic PRF) can be expressed as

Yi = Bl + BzXzi + B3X3i + B4X4i +u;

which shows that the individual math S.A.T. score will differ from the group
mean by the factor u, which is the stochastic error term. As noted earlier, even
in a multiple regression we introduce the error term because we cannot take
into account all the forces that might affect the dependent variable.

Notice that both Egs. (2.11) and (2.12) are linear in the parameters and are
therefore linear regression models. The explanatory variables themselves do not
need to enter the model linearly, although in the present example they do.

2.8 ESTIMATION OF PARAMETERS: THE METHOD
OF ORDINARY LEAST SQUARES

As noted in Section 2.5, we estimate the population regression function (PRF)
on the basis of the sample regression function (SRF), since in practice we only
have a sample (or two) from a given population. How then do we estimate the
PRF? And how do we find out whether the estimated PRF (i.e., the SRF) is a
“good” estimate of the true PREF? We will answer the first question in this chap-
ter and take up the second question—of the “goodness” of the estimated PRF—
in Chapter 3.

To introduce the fundamental ideas of estimation of the PRF, we consider the
simplest possible linear regression model, namely, the two-variable linear re-
gression in which we study the relationship of the dependent variable Y to a single
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explanatory variable X. In Chapter 4 we extend the analysis to the multiple
regression, where we will study the relationship of the dependent variable Y to
more than one explanatory variable.

The Method of Ordinary Least Squares

Although there are several methods of obtaining the SRF as an estimator of the
true PRF, in regression analysis the method that is used most frequently is that
of least squares (LS), more popularly known as the method of ordinary least
squares (OLS).” We will use the terms LS and OLS methods interchangeably. To
explain this method, we first explain the least squares principle.

The Least Squares Principle Recall our two-variable PRF, Eq. (2.2):
Y; = By + BoX; + u;

Since the PRF is not directly observable (Why?), we estimate it from the SRF
Y =b + X + ¢

which we can write as

e; = actual Y; — predicted Y;

=Y - ¥;
=Y; — by — byX; [using Eq. (2.3)]

which shows that the residuals are simply the differences between the actual
and estimated Y values, the latter obtained from the SRF, Eq. (2.3). This can be
seen more vividly in Figure 2-4.

Now the best way to estimate the PRF is to choose b; and b, the estimators of
By and B,, in such a way that the residuals ¢; are as small as possible. The method
of ordinary least squares (OLS) states that b; and b, should be chosen in such a
way that the residual sum of squares (RSS), Ee,z, is as small as possible.8

Algebraically, the least squares principle states

Minimize Y e = 3(Y; — Y)?
= (Y — by — bX;)? (2.13)

"Despite the name, there is nothing ordinary about this method. As we will show, this method has
several desirable statistical properties. It is called OLS because there is another method, called the
generalized least squares (GLS) method, of which OLS is a special case.

8Note that the smaller the ¢; is, the smaller their sum of squares will be. The reason for consider-
ing the squares of e¢; and not the ¢; themselves is that this procedure avoids the problem of the sign
of the residuals. Note that e; can be positive as well as negative.
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As you can observe from Eq. (2.13), once the sample values of Y and X are
given, RSS is a function of the estimators by and b,. Choosing different values
of by and b, will yield different e’s and hence different values of RSS. To see
this, just rotate the SRF shown in Figure 2-4 any way you like. For each rota-
tion, you will get a different intercept (i.e., b1) and a different slope (i.e., b,). We
want to choose the values of these estimators that will give the smallest possi-
ble RSS.

How do we actually determine these values? This is now simply a matter of
arithmetic and involves the technique of differential calculus. Without going
into detail, it can be shown that the values of b and b, that actually minimize the
RSS given in Eq. (2.13) are obtained by solving the following two simultaneous
equations. (The details are given in Appendix 2A at the end of this chapter.)

EYI = 7’11’)1 + bszi (2.14)

D YiX;

where 7 is the sample size. These simultaneous equations are known as the
(least squares) normal equations.

In Equations (2.14) and (2.15) the unknowns are the b’s and the knowns are
the quantities involving sums, squared sums, and the sum of the cross-products
of the variables Y and X, which can be easily obtained from the sample at hand.
Now solving these two equations simultaneously (using any high school alge-
bra trick you know), we obtain the following solutions for b; and b,.

b > X+ b > X? (2.15)

by =Y — bX (2.16)

which is the estimator of the population intercept, B;. The sample intercept is
thus the sample mean value of Y minus the estimated slope times the sample
mean value of X.

2y
2 72%2
_ 22X = X)(Yi - Y)
3(X; - X)?
EXZYZ - I’IX?
- —EXIZ —— (2.17)

which is the estimator of the population slope coefficient B,. Note that
xi=(X;=X) and y;=(Y; - Y)

that is, the small letters denote deviations from the sample mean values, a convention
that we will adopt in this book. As you can see from the formula for by, it is simpler
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to write the estimator using the deviation form. Expressing the values of a variable
from its mean value does not change the ranking of the values, since we are subtracting
the same constant from each value. Note that b, and b, are solely expressed in terms
of quantities that can be readily computed from the sample at hand. Of course,
these days the computer will do all the calculations for you.

The estimators given in Equations (2.16) and (2.17) are known as OLS esti-
mators, since they are obtained by the method of OLS.

Before proceeding further, we should note a few interesting features of the
OLS estimators given in Egs. (2.16) and (2.17):

1. The SRF obtained by the method of OLS passes through the sample
mean values of X and Y, which is evident from Eq. (2.16), for it can be
written as

? = b] + bzy (2.18)

2. The mean value of the residuals, é(=2Xe;/n) is always zero, which
provides a check on the arithmetical accuracy of the calculations (see
Table 2-4).

3. The sum of the product of the residuals e and the values of the explana-
tory variable X is zero; that is, these two variables are uncorrelated (on
the definition of correlation, see Appendix B). Symbolically,

>eX;=0 (2.19)

This provides yet another check on the least squares calculations. R
4. The sum of the product of the residuals ¢; and the estimated Y;(=Y;)
is zero; that is, X¢;Y; is zero (see Question 2.25).

2.9 PUTTING IT ALL TOGETHER

Let us use the sample data given in Table 2-2 to compute the values of b; and b,.
The necessary computations involved in implementing formulas (2.16) and
(2.17) are laid out in Table 2-4. Keep in mind that the data given in Table 2-2 are
a random sample from the population given in Table 2-1.

From the computations shown in Table 2-4, we obtain the following sample
math S5.A.T. score regression:

A

Y; = 432.4138 + 0.0013X; (2.20)

where Y represents math S.A.T. score and X represents annual family income.
Note that we have put a cap on Y to remind us that it is an estimator of the true popu-
lation mean corresponding to the given level of X (recall Eq. 2.3). The estimated
regression line is shown in Figure 2-6.
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TABLE 2-4 RAW DATA (FROM TABLE 2-2) FOR MATH S.A.T. SCORES

Yo X 2vX X x oy xR VP 2y

A

Yi €

6,‘2 Ee[X[

410 5000 2050000 25000000 —51000 —97 2601000000 9409 4947000
420 15000 6300000 225000000 —41000 —87 1681000000 7569 3567000
440 25000 11000000 625000000 —31000 —67 961000000 4489 2077000
490 35000 17150000 1225000000 —21000 —17 441000000 289 357000
530 45000 23850000 2025000000 —11000 23 121000000 529 —253000
530 55000 29150000 3025000000 —1000 23 1000000 529 —23000
550 65000 35750000 4225000000 9000 43 81000000 1849 387000
540 75000 40500000 5625000000 19000 33 361000000 1089 627000
570 90000 51300000 8100000000 34000 63 1156000000 3969 2142000
590 150000 88500000 22500000000 94000 83 8836000000 6889 7802000

439.073 —29.0733
452.392 ~32.3922
465.711 -25.7112
479.030 10.9698
492.349 37.6509
505.668 24.3319
518.987 31.0129

532.306  7.69397

552.284 17.7155
632.198 —42.1982

845.255  1482737.069
1049.257  1328081.897
661.066 797047.4138
120.337 —230366.3793
1417.587  —414159.4828
592.0412  —24331.89655
961.8019  279116.3793
59.1971  146185.3448
313.8396  602327.5862
1780.694 —3966637.931

5070 560000 305550000 47600000000 0 0 16240000000 36610 21630000 5070 0

7801.0776 0

Note: x; = (X; — X); y; = (Y; — Y); X = 56000; Y = 507.

_ Fitted Line Plot
Y = 432.4138 + 0.0013X
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FIGURE 2-6  Regression line based on data from Table 2-4

Interpretation of the Estimated Math S.A.T. Score Function

The interpretation of the estimated math S.A.T. score function is as follows:
The slope coefficient of 0.0013 means that, other things remaining the same, if
annual family income goes up by a dollar, the mean or average math S.A.T.
score goes up by about 0.0013 points. The intercept value of 432.4138 means
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that if family income is zero, the mean math score will be about 432.4138.
Very often such an interpretation has no economic meaning. For example, we
have no data where an annual family income is zero. As we will see throughout
the book, often the intercept has no particular economic meaning. In general you
have to use common sense in interpreting the intercept term, for very often
the sample range of the X values (family income in our example) may not
include zero as one of the observed values. Perhaps it is best to interpret the
intercept term as the mean or average effect on Y of all the variables omitted from
the regression model.

2.10 SOME ILLUSTRATIVE EXAMPLES

TABLE 2-5

Now that we have discussed the OLS method and learned how to estimate a
PRE, let us provide some concrete applications of regression analysis.

Example 2.1. Years of Schooling and Average Hourly Earnings

Based on a sample of 528 observations, Table 2-5 gives data on average
hourly wage Y($) and years of schooling (X).

Suppose we want to find out how Y behaves in relation to X. From human
capital theories of labor economics, we would expect average wage to
increase with years of schooling. That is, we expect a positive relationship
between the two variables; it would be bad news if such were not the case.

The regression results based on the data in Table 2-5 are as follows:

A

Y. = —0.0144 + 0.7241X; (2.21)

AVERAGE HOURLY WAGE BY EDUCATION

Years of schooling Average hourly wage ($) Number of people
6 4.4567 3
7 5.7700 5
8 5.9787 15
9 7.3317 12

10 7.3182 17
11 6.5844 27
12 7.8182 218
13 7.8351 37
14 11.0223 56
15 10.6738 13
16 10.8361 70
17 13.6150 24
18 13.5310 31

Source: Arthur S. Goldberger, Introductory Econometrics, Harvard University
Press, Cambridge, Mass., 1998, Table 1.1, p. 5 (adapted).
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As these results show, there is a positive association between education
and earnings, which accords with prior expectations. For every additional
year of schooling, the mean wage rate goes up by about 72 cents per hour.’
The negative intercept in the present instance has no particular economic
meaning.

Example 2.2. Okun’s Law

Based on the U.S. data for 1947 to 1960, the late Arthur Okun of the Brookings
Institution and a former chairman of the President’s Council of Economic
Advisers obtained the following regression, known as Okun’s law:

Y, = —0.4(X; — 2.5) (2.22)

where Y; = change in the unemployment rate, percentage points
X; = percent growth rate in real output, as measured by real GDP
2.5=the long-term, or trend, rate of growth of output historically
observed in the United States

In this regression the intercept is zero and the slope coefficient is —0.4.
Okun’s law says that for every percentage point of growth in real GDP above
2.5 percent, the unemployment rate declines by 0.4 percentage points.

Okun’s law has been used to predict the required growth in real GDP to
reduce the unemployment rate by a given percentage point. Thus, a growth
rate of 5 percent in real GDP will reduce the unemployment rate by 1 per-
centage point, or a growth rate of 7.5 percent is required to reduce the
unemployment rate by 2 percentage points. In Problem 2.17, which gives
comparatively more recent data, you are asked to find out if Okun’s law still
holds.

This example shows how sometimes a simple (i.e., two-variable) regres-
sion model can be used for policy purposes.

Example 2.3. Stock Prices and Interest Rates

Stock prices and interest rates are key economic indicators. Investors in stock
markets, individual or institutional, watch very carefully the movements in
the interest rates. Since interest rates represent the cost of borrowing money,
they have a vast effect on investment and hence on the profitability of a com-
pany. Macroeconomic theory would suggest an inverse relationship between
stock prices and interest rates.

As a measure of stock prices, let us use the S&P 500 composite index
($1941-1943 =10), and as a measure of interest rates, let us use the three-month

%Since the data in Table 2-5 refer to the mean wage for the various categories, the slope coefficient
here should strictly be interpreted as the average increase in the mean hourly earnings.
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FIGURE 2-7

S&P 500 Index
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Treasury bill rate (%). Table 2-6, found on the textbook’s Web site, gives data
on these variables for the period 1980-2007.

Plotting these data, we obtain the scattergram as shown in Figure 2-7. The
scattergram clearly shows that there is an inverse relationship between the
two variables, as per theory. But the relationship between the two is not
linear (i.e., straight line); it more closely resembles Figure 2-5(b). Therefore,
let us maintain that the true relationship is:

Y, = By + By(1/X)) + u; (2.23)

Note that Eq. (2.23) is a linear regression model, as the parameters in the
model are linear. It is, however, nonlinear in the variable X. If youlet Z=1/X,
then the model is linear in the parameters as well as the variables Y and Z.

Using the EViews statistical package, we estimate Eq. (2.23) by OLS, giving
the following results:

Y, = 404.4067 + 996.866(1/X;) 2.24)

How do we interpret these results? The value of the intercept has no practi-
cal economic meaning. The interpretation of the coefficient of (1/X) is rather
tricky. Literally interpreted, it suggests that if the reciprocal of the three-
month Treasury bill rate goes up by one unit, the average value of the
S&P 500 index will go up by about 997 units. This is, however, not a very en-
lightening interpretation. If you want to measure the rate of change of
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(mean) Y with respect to X (i.e., the derivative of Y with respect to X), then
as footnote 5 shows, this rate of change is given by —B,(1/X?), which de-
pends on the value taken by X. Suppose X = 2. Knowing that the estimated
B, is 996.866, we find the rate of change at this X value as —249.22 (approx).
That is, starting with a Treasury bill rate of about 2 percent, if that rate goes
up by one percentage point, on average, the S&P 500 index will decline by
about 249 units. Of course, an increase in the Treasury bill rate from 2 percent
to 3 percent is a substantial increase.

Interestingly, if you had disregarded Figure 2-5 and had simply fitted
the straight line regression to the data in Table 2-6, (found on the textbook’s
Web site), you would obtain the following regression:

Y, = 1229.3414 — 99.4014X, (2.25)

Here the interpretation of the intercept term is that if the Treasury bill rate were
zero, the average value of the S&P index would be about 1229. Again, this
may not have any concrete economic meaning. The slope coefficient here
suggests that if the Treasury bill rate were to increase by one unit, say, one
percentage point, the average value of the S&P index would go down by about
99 units.

Regressions (2.24) and (2.25) bring out the practical problems in choosing an
appropriate model for empirical analysis. Which is a better model? How do we
know? What tests do we use to choose between the two models? We will pro-
vide answers to these questions as we progress through the book (see Chapter 5).
A question to ponder: In Eq. (2.24) the sign of the slope coefficient is positive,
whereas in Eq. (2.25) it is negative. Are these findings conflicting?

Example 2.4. Median Home Price and Mortgage Interest Rate in the
United States, 1980-2007

Over the past several years there has been a surge in home prices across the
United States. It is believed that this surge is due to sharply falling mortgage
interest rates. To see the impact of mortgage interest rates on home prices,
Table 2-7 (found on the textbook’s Web site) gives data on median home
prices (1000 $) and 30-year fixed rate mortgage (%) in the United States for
the period 1980-2007.

These data are plotted in Figure 2-8.

As a first approximation, if you fit a straight line regression model, you
will obtain the following results, where Y = median home price (1000 $) and
X =30-year fixed rate mortgage (%):

}A/t = 329.0041 — 17.3694X, (2.26)
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FIGURE 2-8
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These results show that if the mortgage interest rate goes up by 1 percentage
point,'” on average, the median home price goes down by about 17.4 units or
about $17,400. (Note: Y is measured in thousands of dollars.) Literally inter-
preted, the intercept coefficient of about 329 would suggest that if the mort-
gage interest rate were zero, the median home price on average would be
about $329,000, an interpretation that may stretch our credulity.

It seems that falling interest rates do have a substantial impact on home
prices. A question: If we had taken median family income into account, would
this conclusion still stand?

Example 2.5. Antique Clocks and Their Prices

The Triberg Clock Company of Schonachbach, Germany, holds an annual an-
tique clock auction. Data on about 32 clocks (the age of the clock, the number
of bidders, and the price of the winning bid in marks) are given in Table 2-14
in Problem 2.19. Note that this auction took place about 25 years ago.

If we believe that the price of the winning bid depends on the age of the
clock—the older the clock, the higher the price, ceteris paribus—we would
expect a positive relationship between the two. Similarly, the higher the num-
ber of bidders, the higher the auction price because a large number of bidders
for a particular clock would suggest that that clock is more valuable, and
hence we would expect a positive relationship between the two variables.

Note that there is a difference between a 1 percentage point increase and a 1 percent increase.

For example, if the current interest rate is 6 percent but then goes to 7 percent, this represents a
1 percentage point increase; the percentage increase is, however, (7 3 6) X 100 = 16.6%.
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Using the data given in Table 2-14, we obtained the following OLS
regressions:

Price =—191.6662 + 10.4856 Age (2.27)
Price = 807.9501 + 54.5724 Bidders (2.28)

As these results show, the auction price is positively related to the age of the
clock, as well as to the number of bidders present at the auction.

In Chapter 4 on multiple regression we will see what happens when we
regress price on age and number of bidders together, rather than individu-
ally, as in the preceding two regressions.

The regression results presented in the preceding examples can be obtained eas-
ily by applying the OLS formulas Eq. (2.16) and Eq. (2.17) to the data presented
in the various tables. Of course, this would be very tedious and very time-
consuming to do manually. Fortunately, there are several statistical software
packages that can estimate regressions in practically no time. In this book we
will use the EViews and MINITAB software packages to estimate several re-
gression models because these packages are comprehensive, easy to use, and
readily available. (Excel can also do simple and multiple regressions.)
Throughout this book, we will reproduce the computer output obtained from these pack-
ages. But keep in mind that there are other software packages that can estimate
all kinds of regression models. Some of these packages are LIMDEP, MICROFIT,
PC-GIVE, RATS, SAS, SHAZAM, SPSS, and STATA.

In this chapter we introduced some fundamental ideas of regression analysis.
Starting with the key concept of the population regression function (PRF), we
developed the concept of linear PRE. This book is primarily concerned with lin-
ear PRFs, that is, regressions that are linear in the parameters regardless of
whether or not they are linear in the variables. We then introduced the idea of
the stochastic PRF and discussed in detail the nature and role of the stochastic
error term u. PRF is, of course, a theoretical or idealized construct because, in
practice, all we have is a sample(s) from some population. This necessitated the
discussion of the sample regression function (SRF).

We then considered the question of how we actually go about obtaining the
SRF. Here we discussed the popular method of ordinary least squares (OLS)
and presented the appropriate formulas to estimate the parameters of the PRF.
We illustrated the OLS method with a fully worked-out numerical example as
well as with several practical examples.

Our next task is to find out how good the SRF obtained by OLS is as an esti-
mator of the true PRE. We undertake this important task in Chapter 3.
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KEY TERMS AND CONCEPTS

QUESTIONS

The key terms and concepts introduced in this chapter are

Regression analysis
a) explained, or dependent,
variable
b) independent, or explanatory,
variable
Scattergram; scatter diagram
Population regression line (PRL)
a) conditional mean, or conditional
expected, values
Population regression
function (PRF)
Regression coefficients; parameters
a) intercept
b) slope
Conditional regression analysis
Stochastic, or random, error term;
error term
a) noise component
b) stochastic, or statistical, PRF

¢) deterministic, or nonstochastic,
PRF
Sample regression line (SRL)
Sample regression function (SRF)
Estimator; sample statistic
Estimate
Residual term e; residual
Linearity in variables
Linearity in parameters
a) linear regression
Two-variable, or simple, regression
vs. multiple linear regression
Estimation of parameters
a) the method of ordinary least
squares (OLS)
b) the least squares principle
¢) residual sum of squares (RSS)
d) normal equations
e) OLS estimators

2.1. Explain carefully the meaning of each of the following terms:

. Stochastic PRF.

. Linear regression model.
Stochastic error term (u;).

. Residual term (e;).

. Conditional expectation.

. Unconditional expectation.

PR 0 0 TN

. Population regression function (PRF).
. Sample regression function (SRF).

i. Regression coefficients or parameters.

j- Estimators of regression coefficients.
2.2. What is the difference between a stochastic population regression function

(PRF) and a stochastic sample regression function (SRF)?
2.3. Since we do not observe the PRF, why bother studying it? Comment on this

statement.

2.4. State whether the following statements are true, false, or uncertain. Give your

reasons. Be precise.

a. The stochastic error term u; and the residual term ¢; mean the same thing.
b. The PRF gives the value of the dependent variable corresponding to each

value of the independent variable.

c. Alinear regression model means a model linear in the variables.



PROBLEMS

2.5.

2.6.

2.7.

2.8.

i
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. In the linear regression model the explanatory variable is the cause and the

dependent variable is the effect.

. The conditional and unconditional mean of a random variable are the same

thing.

. In Eq. (2.2) the regression coefficients, the B’s, are random variables, whereas

the b’s in Eq. (2.4) are the parameters.

. In Eq. (2.1) the slope coefficient B, measures the slope of Y per unit change in
X

. In practice, the two-variable regression model is useless because the behav-

ior of a dependent variable can never be explained by a single explanatory
variable.

The sum of the deviation of a random variable from its mean value is always
equal to zero.

What is the relationship between
a. By and by; b. B; and by; and ¢. u; and ¢;,? Which of these entities can be ob-

C

served and how?
an you rewrite Eq. (2.22) to express X as a function of Y? How would you

interpret the converted equation?

The following table gives pairs of dependent and independent variables. In
each case state whether you would expect the relationship between the two
variables to be positive, negative, or uncertain. In other words, tell whether the

slope coefficient will be positive, negative, or neither. Give a brief justification
in each case.
Dependent variable Independent variable
(a) GDP Rate of interest
(b) Personal savings Rate of interest
(c) Yield of crop Rainfall
(d) U.S. defense expenditure Soviet Union’s defense expenditure
(e) Number of home runs hit by Annual salary
a star baseball player
(f) A president’s popularity Length of stay in office
(g) A student’s first-year grade- S.A.T. score
point average
(h) A student’s grade in econometrics Grade in statistics
(i) Imports of Japanese cars U.S. per capita income

State whether the following models are linear regression models:

oA T o

-

. Y; = By + By(1/X))

.Y; =By + ByInX; +
.InY; =By + B X; + u;
.InY; =By + BpInX; + u;

.Y,‘ = Bl + BngXi + u;
Y; =By + B3 X; + u

Note: In stands for the natural log, that is, log to the base e. (More on this in

C

hapter 4.)
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2.9.

TABLE 2-8 HYP

Table 2-8 gives data on weekly family consumption expenditure (Y) (in dollars)
and weekly family income (X) (in dollars).

OTHETICAL DATA ON WEEKLY CONSUMPTION

EXPENDITURE AND WEEKLY INCOME

Weekly income Weekly consumption expenditure
®X) $) (V)

80 55, 60, 65, 70, 75

100 65, 70, 74, 80, 85, 88
120 79, 84, 90, 94, 98
140 80, 93, 95, 103, 108, 113, 115
160 102, 107, 110, 116, 118, 125
180 110, 115, 120, 130, 135, 140
200 120, 136, 140, 144, 145
220 135, 137, 140, 152, 157, 160, 162
240 137, 145, 155, 165, 175, 189
260 150, 152, 175, 178, 180, 185, 191

2.10.

2.11.

a. For each income level, compute the mean consumption expenditure,
E(Y | X;), that is, the conditional expected value.

b. Plot these data in a scattergram with income on the horizontal axis and
consumption expenditure on the vertical axis.

c. Plot the conditional means derived in part () in the same scattergram cre-
ated in part (D).

d. What can you say about the relationship between Y and X and between
mean Y and X?

e. Write down the PRF and the SRF for this example.

f. Is the PRF linear or nonlinear?

From the data given in the preceding problem, a random sample of Y was

drawn against each X. The result was as follows:

70 65 90 95 110 115 120 140 155 150

X 80 100 120 140 160 180 200 220 240 260

a. Draw the scattergram with Y on the vertical axis and X on the horizontal axis.

b. What can you say about the relationship between Y and X?

c. What is the SRF for this example? Show all your calculations in the manner
of Table 2-4.

d. On the same diagram, show the SRF and PRE.

e. Are the PRF and SRF identical? Why or why not?

Suppose someone has presented the following regression results for your con-

sideration:

Y, = 2.6911 — 0.4795X,

where Y = coffee consumption in the United States (cups per person per day)
X =retail price of coffee ($ per pound)
t = time period
a. Is this a time series regression or a cross-sectional regression?
b. Sketch the regression line.
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c. What is the interpretation of the intercept in this example? Does it make
economic sense?

d. How would you interpret the slope coefficient?

e. Is it possible to tell what the true PRF is in this example?

f. The price elasticity of demand is defined as the percentage change in the
quantity demanded for a percentage change in the price. Mathematically, it
is expressed as

Elasticity = Slope(%)

That is, elasticity is equal to the product of the slope and the ratio of X to Y,
where X = the price and Y = the quantity. From the regression results pre-
sented earlier, can you tell what the price elasticity of demand for coffee is?
If not, what additional information would you need to compute the price
elasticity?

2.12. Table 2-9 gives data on the Consumer Price Index (CPI) for all items

(1982-1984 = 100) and the Standard & Poor’s (S&P) index of 500 common
stock prices (base of index: 1941-1943 = 10).

CONSUMER PRICE INDEX (CPl) AND
S&P 500 INDEX (S&P), UNITED
STATES, 1978-1989

Year CPI S&P

1978 65.2 96.02
1979 72.6 103.01
1980 82.4 118.78
1981 90.9 128.05
1982 96.5 119.71
1983 99.6 160.41
1984 103.9 160.46
1985 107.6 186.84
1986 109.6 236.34
1987 113.6 286.83
1988 118.3 265.79
1989 124.0 322.84

Source: Economic Report of the President,
1990, Table C-58, for CPI and Table C-93 for
the S&P index.

a. Plot the data on a scattergram with the S&P index on the vertical axis and

CPI on the horizontal axis.

b. What can you say about the relationship between the two indexes? What

does economic theory have to say about this relationship?

c. Consider the following regression model:

(S&P)t = Bl + BzCPIt + Uy

Use the method of least squares to estimate this equation from the preced-
ing data and interpret your results.

d. Do the results obtained in part (c) make economic sense?
e. Do you know why the S&P index dropped in 1988?
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TABLE 2-10

2.13. Table 2-10 gives data on the nominal interest rate (Y) and the inflation rate (X)
for the year 1988 for nine industrial countries.

NOMINAL INTEREST RATE (Y) AND
INFLATION (X) IN NINE INDUSTRIAL
COUNTRIES FOR THE YEAR 1988

Country Y (%) X (%)
Australia 119 7.7
Canada 9.4 4.0
France 7.5 3.1

Germany 4.0 1.6
Italy 11.3 4.8
Mexico 66.3 51.7
Switzerland 22 2.0
United Kingdom 10.3 6.8
United States 7.6 4.4

Source: Rudiger Dornbusch and Stanley
Fischer, Macroeconomics, 5th ed., McGraw-
Hill, New York, 1990, p. 652. The original data
are from various issues of International
Financial Statistics, published by the
International Monetary Fund (IMF).

a.

b.
c

Plot these data with the interest rate on the vertical axis and the inflation
rate on the horizontal axis. What does the scattergram reveal?

Do an OLS regression of Y on X. Present all your calculations.

If the real interest rate is to remain constant, what must be the relationship
between the nominal interest rate and the inflation rate? That is, what must
be the value of the slope coefficient in the regression of Y on X and that of
the intercept? Do your results suggest that this is the case? For a theoretical
discussion of the relationship among the nominal interest rate, the inflation
rate, and the real interest rate, see any textbook on macroeconomics and
look up the topic of the Fisher equation, named after the famous American
economist, Irving Fisher.

2.14. The real exchange rate (RE) is defined as the nominal exchange rate (INE)
times the ratio of the domestic price to foreign price. Thus, RE for the United
States against UK is

REys = NEys(UScp1/ UKcpy)

. From the data given in Table 1-3 of Problem 1.7, compute REys.
. Using a regression package you are familiar with, estimate the following

regression:

NEUS = B1 + B2 REUS + u (1)

. A priori, what do you expect the relationship between the nominal and real

exchange rates to be? You may want to read up on the purchasing power
parity (PPP) theory from any text on international trade or macroeconomics.

. Are the a priori expectations supported by your regression results? If not,

what might be the reason?
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*e. Run regression (1) in the following alternative form:

lnNEUs = Al + Az In REUS + u (2)

where In stands for the natural logarithm, that is, log to the base e. Interpret
the results of this regression. Are the results from regressions (1) and
(2) qualitatively the same?

2.15. Refer to problem 2.12. In Table 2-11 we have data on CPI and the S&P 500
index for the years 1990 to 2007.

TABLE 2-11  CONSUMER PRICE INDEX (CPIl) AND S&P 500
INDEX (S&P), UNITED STATES, 1990-2007

Year CPI S&P

1990 130.7 334.59
1991 136.2 376.18
1992 140.3 415.74
1993 1445 451.41
1994 148.2 460.42
1995 152.4 541.72
1996 156.9 670.50
1997 160.5 873.43
1998 163.0 1085.50
1999 166.6 1327.33
2000 172.2 1427.22
2001 1771 1194.18
2002 179.9 993.94
2003 184.0 965.23
2004 188.9 1130.65
2005 195.3 1207.23
2006 201.6 1310.46
2007 207.3 1477.19

Source: Economic Report of the President, 2008.

2.16.

a. Repeat questions (a) to (e) from problem 2.12.

b. Do you see any difference in the estimated regressions?

c. Now combine the two sets of data and estimate the regression of the S&P
index on the CPL

d. Are there noticeable differences in the three regressions?

Table 2-12, found on the textbook’s Web site, gives data on average starting pay

(ASP), grade point average (GPA) scores (on a scale of 1 to 4), GMAT scores, an-

nual tuition, percent of graduates employed at graduation, recruiter assess-

ment score (5.0 highest), and percent of applicants accepted in the graduate

business school for 47 well-regarded business schools in the United States for

the year 2007-2008. Note: Northwestern University ranked 4th (in a tie with

MIT and University of Chicago) but was removed from the data set because

there was no information available about percent of applicants accepted.

a. Using a bivariate regression model, find out if GPA has any effect on ASP.

b. Using a suitable regression model, find out if GMAT scores have any rela-
tionship to ASP.

*Optional.
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TABLE 2-14

2.17.

2.18.

2.19.

¢. Does annual tuition have any relationship to ASP? How do you know?
If there is a positive relationship between the two, does that mean it
pays to go to the most expensive business school? Can you argue that a
high-tuition business school means a high-quality MBA program? Why
or why not?

d. Does the recruiter perception have any bearing on ASP?

Table 2-13 (found on the textbook’s Web site) gives data on real GDP (Y) and

civilian unemployment rate (X) for the United States for period 1960 to 2006.

a. Estimate Okun’s law in the form of Eq. (2.22). Are the regression results
similar to the ones shown in (2.22)? Does this suggest that Okun’s law is
universally valid?

b. Now regress percentage change in real GDP on change in the civilian un-
employment rate and interpret your regression results.

c. If the unemployment rate remains unchanged, what is the expected (per-
cent) rate of growth in real GDP? (Use the regression in [b]). How would
you interpret this growth rate?

Refer to Example 2.3, for which the data are as shown in Table 2-6 (on the text-

book’s Web site).

a. Using a statistical package of your choice, confirm the regression results
given in Eq. (2.24) and Eq. (2.25). .

b. For both regressions, get the estimated values of Y (i.e., Y;) and compare
them with the actual Y values in the sample. Also obtain the residual values,
e;. From this can you tell which is a better model, Eq. (2.24) or Eq. (2.25)?

Refer to Example 2.5 on antique clock prices. Table 2-14 gives the underlying

data.

a. Plot clock prices against the age of the clock and against the number of
bidders. Does this plot suggest that the linear regression models shown in
Eq. (2.27) and Eq. (2.28) may be appropriate?

AUCTION DATA ON PRICE, AGE OF
CLOCK, AND NUMBER OF BIDDERS

Number of Number of
Observations  Price  Age bidders Observations  Price  Age bidders
1 1235 127 13 17 854 143 6
2 1080 115 12 18 1483 159 9
3 845 127 7 19 1055 108 14
4 15652 150 9 20 1545 175 8
5 1047 156 6 21 729 108 6
6 1979 182 11 22 1792 179 9
7 1822 156 12 23 1175 111 15
8 1253 132 10 24 1593 187 8
9 1297 137 9 25 1147 137 8
10 946 113 9 26 1092 153 6
11 1713 137 15 27 1152 117 13
12 1024 117 11 28 1336 126 10
13 2131 170 14 29 785 111 7
14 1550 182 8 30 744 115 7
15 1884 162 11 31 1356 194 5
16 2041 184 10 32 1262 168 7
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b. Would it make any sense to plot the number of bidders against the age of
the clock? What would such a plot reveal?

Refer to the math S.A.T. score example discussed in the text. Table 2-4 gives

the necessary raw calculations to obtain the OLS estimators. Look at the

columns Y (actual Y) and Y (estimated Y) values. Plot the two in a scattergram.

What does the scattergram reveal? If you believe that the fitted model

[Eq. (2.20)] is a “good” model, what should be the shape of the scattergram? In

the next chapter we will see what we mean by a “good” model.

Table 2-15 (on the textbook’s Web site) gives data on verbal and math S.A.T.

scores for both males and females for the period 1972-2007.

a. You want to predict the male math score (Y) on the basis of the male ver-
bal score (X). Develop a suitable linear regression model and estimate its
parameters.

b. Interpret your regression results.

c. Reverse the roles of Y and X and regress the verbal score on the math score.
Interpret this regression

d. Let a; be the slope coefficient in the regression of the math score on the ver-
bal score and let b, be the slope coefficient of the verbal score on the math
score. Multiply these two values. Compare the resulting value with the 12
obtained from the regression of math score on verbal score or the #* value
obtained from the regression of verbal score on math score. What conclusion
can you draw from this exercise?

Table 2-16 (on the textbook’s Web site) gives data on investment rate (ipergdp)

and savings rate (spergdp), both measured as percent of GDP, for a cross-

section of countries. These rates are averages for the period 1960-1974.*

a. Plot the investment rate on the vertical axis and the savings rate on the hor-
izontal axis.

b. Eyeball a suitable curve from the scatter diagram in (a).

c. Now estimate the following model

ipergdp; = By + Bj spergdp; + u;

d. Interpret the estimated coefficients.
e. What general conclusion do you draw from your analysis?
Note: Save your results for further analysis in the next chapter.

Prove that X¢; = 0, and hence show thate = 0.
Prove that Xepx; = 0.

Prove that Xe; i/i = 0, that is, that the sum of the product of residuals e; and the
estimated Y is allvays Zero.

Prove that Y = }7, that is, that the means of the actual Y values and the
estimated Y values are the same.

*Source of data: Martin Feldstein and Charles Horioka, “Domestic Savings and International
Capital Flows,” Economic Journal, vol. 90, June 1980, pp. 314-329.
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2.27. Prove that Xxy; = 2xy; = 2xy;, where x; = (X; — X) and y; = (Y; — Y).

2.28. Prove that Xx; = Xy; = 0, where x;and y; are as defined in Problem 2.27.

2.29. For the math S.A.T. score example data given in Table 2-4, verify that state-
ments made in Question 2.23 hold true (save the rounding errors).

APPENDIX 2A: Derivation
of Least-Squares Estimates

We start with Eq. (2.13):
Sei= 20 b bXy) (2A.1)
Using the technique of partial differentiation from calculus, we obtain:
> et/aby = 220(Y; — by — brX)(—1) (2A.2)
9>er /aby = 220(Y; — by — brX)(— X)) (2A.3)

By the first order condition of optimization, we set these two derivations to zero
and simplify, which will give

DY =nby + by > X; A4

DYX;

which are Egs. (2.14) and (2.15), respectively, given in the text.
Solving these two equations simultaneously, we get the formulas given in
Egs. (2.16) and (2.17).

by DX + by > X? (2A.5)



