CHAPTER

THE TWO-VARIABLE
MODEL: HYPOTHESIS
TESTING

In Chapter 2 we showed how the method of least squares works. By applying
that method to our math S.A.T. sample data given in Table 2-2, we obtained the
following math S.A.T. score function:

A

Y; = 432.4138 + 0.0013X; (2.20)

where Y represents math S.A.T. score and X represents annual family income,
measured in dollars.

This example illustrated the estimation stage of statistical inference. We now
turn our attention to its other stage, namely, hypothesis testing. The important
question that we raise is: How “good” is the estimated regression line given in
Equation (2.20)? That is, how can we tell that it really is a good estimator of the
true population regression function (PRF)? How can we be sure just on the basis
of a single sample given in Table 2-2 that the estimated regression function
(i.e., the sample regression function [SRF]) is in fact a good approximation of the
true PRF?

We cannot answer this question definitely unless we are a little more specific
about our PRF, Eq. (2.2). As Eq. (2.2) shows, Y; depends on both X; and u;. Now
we have assumed that the X; values are known or given—recall from Chapter 2
that our analysis is a conditional regression analysis, conditional upon the given
X’s. In short, we treat the X values as nonstochastic. The (nonobservable) error
term u is of course random, or stochastic. (Why?) Since a stochastic term (u) is
added to a nonstochastic term (X) to generate Y, Y becomes stochastic, too. This
means that unless we are willing to assume how the stochastic u terms are gener-
ated, we will not be able to tell how good an SRF is as an estimate of the true PRFE.
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54 PART ONE: THE LINEAR REGRESSION MODEL

In deriving the ordinary least squares (OLS) estimators so far, we did not say how
the u; were generated, for the derivation of OLS estimators did not depend on
any (probabilistic) assumption about the error term. But in testing statistical hy-
potheses based on the SRF, we cannot make further progress, as we will show
shortly, unless we make some specific assumptions about how u; are generated.
This is precisely what the so-called classical linear regression model (CLRM)
does, which we will now discuss. Again, to explain the fundamental ideas, we
consider the two-variable regression model introduced in Chapter 2. In Chapter 4
we extend the ideas developed here to the multiple regression models.

3.1 THE CLASSICAL LINEAR REGRESSION MODEL
The CLRM makes the following assumptions:

A3.1.

The regression model is linear in the parameters; it may or may not be linear in
the variables. That is, the regression model is of the following type.

Yi = B1 + BzX,‘ + u; (2.2)

As will be discussed in Chapter 4, this model can be extended to include
more explanatory variables.

A3.2.

The explanatory variable(s) X is uncorrelated with the disturbance term u.
However, if the X variable(s) is nonstochastic (i.e., its value is a fixed number),
this assumption is automatically fulfilled. Even if the X value(s) is stochastic,
with a large enough sample size this assumption can be related without
severely affecting the analysis.!

This assumption is not a new assumption because in Chapter 2 we stated that
our regression analysis is a conditional regression analysis, conditional upon the
given X values. In essence, we are assuming that the X’s are nonstochastic.
Assumption (3.1) is made to deal with simultaneous equation regression models,
which we will discuss in Chapter 11.

A3.3.

Given the value of X;, the expected, or mean, value of the disturbance term u
is zero. That s,

Eu|X) =0 (3.1)

Recall our discussion in Chapter 2 about the nature of the random term u;.
It represents all those factors that are not specifically introduced in the model.

IFor further discussion, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill,
New York, 2009.
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\ PRF: E(Y X)) = B; + B, X;

0

Conditional distribution of disturbances u;

What Assumption (3.1) states is that these other factors or forces are not related
to X; (the variable explicitly introduced in the model) and therefore, given the
value of X;, their mean value is zero.? This is shown in Figure 3-1.

A34.

The variance of each u; is constant, or homoscedastic (homo means equal and
scedastic means variance). That is

var(u)) = o? (3.2)

Geometrically, this assumption is as shown in Figure 3-2(a). This assumption
simply means that the conditional distribution of each Y population corre-
sponding to the given value of X has the same variance; that is, the individual
Y values are spread around their mean values with the same variance.? If this is
not the case, then we have heteroscedasticity, or unequal variance, which is
depicted in Figure 3-2(b).* As this figure shows, the variance of each Y popula-
tion is different, which is in contrast to Figure 3-2(a), where each Y population
has the same variance. The CLRM assumes that the variance of u is as shown in
Figure 3-2(a).

2Note that Assumption (3.2) only states that X and u are uncorrelated. Assumption (3.3) adds
that not only are X and u uncorrelated, but also that given the value of X, the mean of u (which
represents umpteen factors) is zero.

3Since the X values are assumed to be given, or nonstochastic, the only source of variation in Y
is from u. Therefore, given X;, the variance of Y; is the same as that of u;. In short, the conditional
variances of u; and Y; are the same, namely, o2 Note, however, that the unconditional variance of Y,
as shown in Appendix B, is E[Y; — E(Y)]>. As we will see, if the variable X has any impact on Y, the
conditional variance of Y will be smaller than the unconditional variance of Y. Incidentally, the
sample counterpart of the unconditional variance of Y is 3(Y; — Y)?/(n — 1).

“There is a debate in the literature regarding whether it is homoscedasticity or homoskedasticity
and heteroscedasticity or heteroskedasticty. Both seem to be acceptable.
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PRF: Y, = B, + B, X;

PRE: Y, = B, + B, X
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FIGURE 3-2 (a) Homoscedasticity (equal variance); (b) Heteroscedasticity (unequal variance)
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FIGURE 3-3  Patterns of autocorrelation: (a) No autocorrelation; (b) positive autocorrelation; (c) negative
autocorrelation

A3.5.

There is no correlation between two error terms. This is the assumption of no

autocorrelation.
Algebraically, this assumption can be written as

cov (u;, uj) =0 i#]j (3.3)

Here cov stands for covariance (see Appendix B) and i and j are any two error
terms. (Note: If i = j, Equation (3.3) will give the variance of u, which by Eq. (3.2)
is a constant).

Geometrically, Eq. (3.3) can be shown in Figure 3-3.

Assumption (3.5) means that there is no systematic relationship between two
error terms. It does not mean that if one u is above the mean value, another error
term u will also be above the mean value (for positive correlation), or that if
one error term is below the mean value, another error term has to be above the
mean value, or vice versa (negative correlation). In short, the assumption of no
autocorrelation means the error terms u; are random.
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Since any two error terms are assumed to be uncorrelated, it means that any
two Y values will also be uncorrelated; that is, cov(Y;, Yj) = 0. This is because
Y; = By + ByX; + u; and given that the B’s are fixed numbers and that X is
assumed to be fixed, Y will vary as u varies. So, if the u’s are uncorrelated, the
Y’s will be uncorrelated also.

A3.6.

The regression model is correctly specified. Alternatively, there is no specifi-
cation bias or specification error in the model used in empirical analysis.

What this assumption implies is that we have included all the variables that
affect a particular phenomenon. Thus, if we are studying the demand for auto-
mobiles, if we only include prices of automobiles and consumer income and do
not take into account variables such as advertising, financing costs, and gaso-
line prices, we will be committing model specification errors. Of course, it is not
easy to determine the “correct” model in any given case, but we will provide
some guidelines in Chapter 7.

You might wonder about all these assumptions. Why are they needed? How
realistic are they? What happens if they are not true? How do we know that a
particular regression model in fact satisfies all these assumptions? Although
these questions are certainly pertinent, at this stage of the development of our
subject matter, we cannot provide totally satisfactory answers to all of them.
However, as we progress through the book, we will see the utility of these
assumptions. As a matter of fact, all of Part II is devoted to finding out what
happens if one or more of the assumptions of CLRM are not fulfilled.

But keep in mind that in any scientific inquiry we make certain assumptions
because they facilitate the development of the subject matter in gradual steps,
not because they are necessarily realistic. An analogy might help here. Students
of economics are generally introduced to the model of perfect competition
before they are introduced to the models of imperfect competition. This is done
because the implications derived from this model enable us to better appreciate
the models of imperfect competition, not because the model of perfect competi-
tion is necessarily realistic, although there are markets that may be reasonably
perfectly competitive, such as the stock market or the foreign exchange market.

3.2 VARIANCES AND STANDARD ERRORS OF ORDINARY
LEAST SQUARES ESTIMATORS

One immediate result of the assumptions just introduced is that they enable us
to estimate the variances and standard errors of the ordinary least squares
(OLS) estimators given in Egs. (2.16) and (2.17). In Appendix D we discuss the
basics of estimation theory, including the notions of (point) estimators, their
sampling distributions, and the concepts of the variance and standard error of
the estimators. Based on our knowledge of those concepts, we know that the
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OLS estimators given in Eqs. (2.16) and (2.17) are random variables, for their val-
ues will change from sample to sample. Naturally, we would like to know
something about the sampling variability of these estimators, that is, how they
vary from sample to sample. These sampling variabilities, as we know now, are
measured by the variances of these estimators, or by their standard errors (se),
which are the square roots of the variances. The variances and standard errors
of the OLS estimators given in Egs. (2.16) and (2.17) are as follows:?

_ 22X

= Yy (3.4)
on D
(Note: This formula involves both small x and capital X.)

se (b)) = Vvar (b)) (3.5)

2
o
var (b)) = o3, =

2 Esz
se (by) = Vvar (by) (3.7)

where var = the variance and se = the standard error, and where o2 is the vari-
ance of the disturbance term u;, which by the assumption of homoscedasticity is
assumed to be the same for each u.

Once ¢? is known, then all the terms on the right-hand sides of the preceding
equations can be easily computed, which will give us the numerical values of
the variances and standard errors of the OLS estimators. The homoscedastic o
is estimated from the following formula:

L
02_71—2

var (b)) = of

(3.6)

(3.8)

where 62 is an estimator of o2 (recall we use " to indicate an estimator) and 26,2
is the residual sum of squares (RSS), that is, E(Yi — ¥,)? the sum of the
squared difference between the actual Y and the estimated Y. (See the next to
the last column of Table 2-4.)

The expression (1 — 2) is known as the degrees of freedom (d.f.), which, as
noted in Appendix C, is simply the number of independent observations.®

Once ¢; is computed, as shown in Table 2-4, Ee,z can be computed easily.
Incidentally, in passing, note that

6= \Vé (3.9)

5The proofs can be found in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, pp. 93-94.

®Notice that we can compute ¢; only when ¥; is computed. But to compute the latter, we must
first obtain by and b,. In estimating these two unknowns, we lose 2 d.f. Therefore, although we have
n observations, the d.f. are only (n — 2).
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TABLE 3-1 COMPUTATIONS FOR THE S.A.T. EXAMPLE

Estimator Formula Answer Equation number
e?
82 2<n - 2> 975.1347 (3.10)
6 V62 = \/975.1347 31.2271 (3.11)
X2 % 1010

var (by) ( b ’2)62 - 476 x10 -(975.1347)  285.8153 (3.12)
n> x* 10(1.624 x 10')

se (by) Vvar(by) = V285.8153 16.9061 (3.13)

2

var (by) = 975'134711 6.0045 % 109 (3.14)
Sx? 1.624 x 10

se (bp) Vvar(b,) = V6.0045 x 10 ° 0.0000775 (3.15)

Note: The raw data underlying the calculations are given in Table 2-4. In computing the variances of the
estimators, o has been replaced by its estimator, 62.

which is known as the standard error of the regression (SER), which is simply
the standard deviation of the Y values about the estimated regression line.” This
standard error of regression is often used as a summary measure of the goodness
of fit of the estimated regression line, a topic discussed in Section 3.6. As you
would suspect, the smaller the value of &, the closer the actual Y value is to its
estimated value from the regression model.

Variances and Standard Errors of the Math S.A.T. Score Example

Using the preceding formulas, let us compute the variances and standard errors
of our math S.A.T. score example. These calculations are presented in Table 3-1.
(See Egs. [3.10] to [3.15] therein.)

Summary of the Math S.A.T. Score Function

Let us express the estimated S.A.T. score function in the following form:

A

Y: = 432.4138 + 0.0013X;
se = (16.9061)(0.000245)

(3.16)

where the figures in parentheses are the estimated standard errors. Regression
results are sometimes presented in this format (but more on this in Section 3.8).
Such a presentation indicates immediately the estimated parameters and their

"Note the difference between the standard error of regression ¢ and the standard deviation of Y.

2
E(Y,'i—llf), whereas the former is
P

measured from the estimated value (i.e., ¥; from the sample regression). See also footnote 3.

The latter is measured, as usual, from its mean value, as Sy =
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standard errors. For example, it tells us that the estimated slope coefficient of
the math S.A.T. score function (i.e., the coefficient of the annual family income
variable) is 0.0013 and its standard deviation, or standard error, is 0.000245. This
is a measure of variability of b, from sample to sample.

What use can we make of this finding? Can we say, for example, that our
computed b, lies within a certain number of standard deviation units from the
true B,? If we can do that, we can state with some confidence (i.e., probability)
how good the computed SRF, Equation (3.16), is as an estimate of the true PRF.
This is, of course, the topic of hypothesis testing.

But before discussing hypothesis testing, we need a bit more theory. In
particular, since by and b, are random variables, we must find their sampling,
or probability, distributions. Recall from Appendixes C and D that a random
variable (r.v.) has a probability distribution associated with it. Once we deter-
mine the sampling distributions of our two estimators, as we will show in
Section 3.4, the task of hypothesis testing becomes straightforward. But even
before that we answer an important question: Why do we use the OLS
method?

3.3 WHY OLS? THE PROPERTIES OF OLS ESTIMATORS

The method of OLS is used popularly not only because it is easy to use but also
because it has some strong theoretical properties, which are summarized in the
well-known Gauss-Markov theorem.

Gauss-Markov Theorem

Given the assumptions of the classical linear regression model, the OLS esti-
mators have minimum variance in the class of linear estimators; that is, they
are BLUE (best linear unbiased estimators).

We provide an overview of the BLUE property in Appendix D. In short, the
OLS estimators have the following properties:

1. by and b; are linear estimators; that is, they are linear functions of the ran-
dom variable Y, which is evident from Equations (2.16) and (2.17).

2. They are unbiased; that is, E(b;) = B; and E(b,) = B,. Therefore, in
repeated applications, on average, b; and b, will coincide with their true
values B; and B,, respectively.

3. E(6%) = o that s, the OLS estimator of the error variance is unbiased. In
repeated applications, on average, the estimated value of the error vari-
ance will converge to its true value.

4. by and b, are efficient estimators; that is, var (b) is less than the variance
of any other linear unbiased estimator of By, and var (b,) is less than the

8For proof, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009,
pp- 95-96.



CHAPTER THREE: THE TWO-VARIABLE MODEL: HYPOTHESIS TESTING 61

variance of any other linear unbiased estimator of B;. Therefore, we will
be able to estimate the true By and B, more precisely if we use OLS rather
than any other method that also gives linear unbiased estimators of the
true parameters.

The upshot of the preceding discussion is that the OLS estimators possess
many desirable statistical properties that we discuss in Appendix D. It is for this
reason that the OLS method has been used popularly in regression analysis, as
well as for its intuitive appeal and ease of use.

Monte Carlo Experiment

In theory the OLS estimators are unbiased, but how do we know that in practice
this is the case? To find out, let us conduct the following Monte Carlo experiment.
Assume that we are given the following information:

Yi = Bl + BzXl' + u;
=15+ 2.0X; + u;

where u; ~ N(0, 4).

That is, we are told that the true values of the intercept and slope coefficients
are 1.5 and 2.0, respectively, and that the error term follows the normal distrib-
ution with a mean of zero and a variance of 4. Now suppose you are given 10
valuesof X:1,2,3,4,5,6,7,8,9, 10.

Given this information, you can proceed as follows. Using any statistical
package, you generate 10 values of u; from a normal distribution with mean
zero and variance 4. Given By, By, the 10 values of X, and the 10 values of u; gen-
erated from the normal distribution, you will then obtain 10 values of Y from
the preceding equation. Call this experiment or sample number 1. Go to the nor-
mal distribution table, collect another 10 values of u;, generate another 10 values
of Y, and call it sample number 2. In this manner obtain 21 samples.

For each sample of 10 values, regress Y; generated above on the X values and
obtain by, by, and *. Repeat this exercise for all 21 samples. Therefore, you will
have 21 values each of by, by, and 6°>. We conducted this experiment and
obtained the results shown in Table 3-2.

From the data given in this table, we have computed the mean, or average,
values of by, by, and &2, which are, respectively, 1.4526, 1.9665, and 4.4743,
whereas the true values of the corresponding coefficients, as we know, are 1.5,
2.0, and 4.0.

What conclusion can we draw from this experiment? It seems that if we
apply the method of least squares time and again, on average, the values of the
estimated parameters will be equal to their true (population parameter) values.
That is, OLS estimators are unbiased. In the present example, had we conducted
more than 21 sampling experiments, we would have come much closer to the
true values.
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TABLE 3-2 MONTE CARLO EXPERIMENT: Y;=1.5+2X; + u;

u~ N(0, 4)
by by 52

2.247 1.840 2.7159
0.360 2.090 7.1663
-2.483 2.558 3.3306
0.220 2.180 2.0794
3.070 1.620 4.3932
2.570 1.830 7.1770
2.551 1.928 5.7552
0.060 2.070 3.6176
-2.170 2.537 3.4708
1.470 2.020 4.4479
2.540 1.970 2.1756
2.340 1.960 2.8291
0.775 2.050 1.5252
3.020 1.740 1.5104
0.810 1.940 4.7830
1.890 1.890 7.3658
2.760 1.820 1.8036
-0.136 2.130 1.8796
0.950 2.030 4.9908
2.960 1.840 45514
3.430 1.740 5.2258
by = 1.4526 b, = 1.9665 G2 = 4.4743

3.4 THE SAMPLING, OR PROBABILITY, DISTRIBUTIONS
OF OLS ESTIMATORS

Now that we have seen how to compute the OLS estimators and their stan-
dard errors and have examined some of the properties of these estimators, we
need to find the sampling distributions of these estimators. Without that
knowledge we will not be able to engage in hypothesis testing. The general
notion of sampling distribution of an estimator is discussed in Appendix C
(see Section C.2).

To derive the sampling distributions of the OLS estimators b; and b,, we need
to add one more assumption to the list of assumptions of the CLRM. This
assumption is

A3.7.

In the PRF Y; = By + ByX; + u; the error term u; follows the normal distribu-
tion with mean zero and variance 2. That is,

u; ~ N(0, 6?)
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What is the rationale for this assumption? There is a celebrated theorem in
statistics, known as the central limit theorem (CLT), which we discuss in
Appendix C (see Section C.1), which states that:

Central Limit Theorem

If there is a large number of independent and identically distributed ran-
dom variables, then, with a few exceptions,9 the distribution of their sum
tends to be a normal distribution as the number of such variables
increases indefinitely.

Recall from Chapter 2 our discussion about the nature of the error term, u;. As
shown in Section 2.4, the error term represents the influence of all those forces
that affect Y but are not specifically included in the regression model because
there are so many of them and the individual effect of any one such force (i.e.,
variable) on Y may be too minor. If all these forces are random, and if we let u
represent the sum of all these forces, then by invoking the CLT we can assume
that the error term u follows the normal distribution. We have already assumed
that the mean value of u; is zero and that its variance, following the homoscedas-
ticity assumption, is the constant o2. Hence, we have Equation (3.17).

But how does the assumption that u follows the normal distribution help us
to find out the probability distributions of b; and b,? Here we make use of
another property of the normal distribution discussed in Appendix C, namely,
any linear function of a normally distributed variable is itself normally distributed.
Does this mean that if we prove that by and b, are linear functions of the nor-
mally distributed variable u;, they themselves are normally distributed? That’s
right! You can indeed prove that these two OLS estimators are in fact linear
functions of the normally distributed u;. (For proof, see Exercise 3.24).10

Now we know from Appendix C that a normally distributed r.v. has two
parameters, the mean and the variance. What are the parameters of the normally
distributed by and b,? They are as follows:

bl ~ N(B1, 0'%1) (3.18)

by ~ N(By, o2,) (3.19)

where the variances of b; and b; are as given in Eq. (3.4) and Eq. (3.6).

In short, by and b; each follow the normal distribution with their means equal
to true By and B, and their variances given by Egs. (3.4) and (3.6) developed
previously. Geometrically, the distributions of these estimators are as shown in
Figure 3-4.

One exception is the Cauchy probability distribution, which has no mean or variance.
19t may also be noted that since Y; = By + BoX; + u;if u; ~ N(0, 0?), then Y; ~ N(B; + B,X, 0?)
because Y; is a linear combination of u;. (Note that By, B, are constants and X; fixed).
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(Normal) sampling distributions of by and b,

3.5 HYPOTHESIS TESTING

Recall that estimation and hypothesis testing are the two main branches of sta-
tistical inference. In Chapter 2 we showed how OLS helps us to estimate the
parameters of linear regression models. In this chapter the classical framework
enabled us to examine some of the properties of OLS estimators. With the
added assumption that the error term u; is normally distributed, we were able
to find the sampling (or probability) distributions of the OLS estimators,
namely, the normal distribution. With this knowledge we are now equipped to
deal with the topic of hypothesis testing in the context of regression analysis.

Let us return to our math S.A.T. example. The estimated math S.A.T. score
function is given in Eq. (2.20). Suppose someone suggests that annual family
income has no relationship to a student’s math S.A.T. score.

HoiBz =0

In applied regression analysis such a “zero” null hypothesis, the so-called
straw man hypothesis, is deliberately chosen to find out whether Y is related to
X at all. If there is no relationship between Y and X to begin with, then testing a
hypothesis that B, = —2 or any other value is meaningless. Of course, if the
zero null hypothesis is sustainable, there is no point at all in including X in the
model. Therefore, if X really belongs in the model, you would fully expect to
reject the zero null hypothesis Hy in favor of the alternative hypothesis Hy, which
says, for example, that B, # 0; that is, the slope coefficient is different from zero.
It could be positive or it could be negative.
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Our numerical results show that b, =0.0013. You would therefore expect that
the zero null hypothesis is not tenable in this case. But we cannot look at the nu-
merical results alone, for we know that because of sampling fluctuations, the
numerical value will change from sample to sample. Obviously, we need some
formal testing procedure to reject or not reject the null hypothesis. How do we
proceed?

This should not be a problem now, for in Equation (3.19) we have shown that
b, follows the normal distribution with mean = B, and var(b,) = o/ Ex,z Then,
following our discussion about hypothesis testing in Appendix D, Section D.5,
we can use either:

1. The confidence interval approach or
2. The test of significance approach

to test any hypotheses about B, as well as By.
Since by follows the normal distribution, with the mean and the variance
stated in expression (3.19), we know that

b - B
 se(by)

b, — B (3.20)
222~ N@©,1)

follows the standard normal distribution. From Appendix C we know the proper-
ties of the standard normal distribution, particularly, the property that ~95 per-
cent of the area of the normal distribution lies within two standard deviation
units of the mean value, where ~ means approximately. Therefore, if our null
hypothesis is B, = 0 and the computed b, = 0.0013, we can find out the proba-
bility of obtaining such a value from the Z, or standard normal, distribution
(Appendix E, Table E-1). If this probability is very small, we can reject the null
hypothesis, but if it is large, say, greater than 10 percent, we may not reject the
null hypothesis. All this is familiar material from Appendixes C and D.

But, there is a hitch! To use Equation (3.20) we must know the true o?. This is
not known, but we can estimate it by using 6* given in Eq. (3.8). However, if
we replace o in Eq. (3.20) by its estimator G, then, as shown in Appendix C,
Eq. (C.8), the right-hand side of Eq. (3.20) follows the ¢t distribution with (n — 2)
d.f., not the standard normal distribution; that is,

b, — B
222y, (3.21)
G / N Exlz
Or, more generally,
bz - Bz
~t, _ 3.22
se(by)  "? 3.22)

Note that we lose 2 d.f. in computing 6 for reasons stated earlier.
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Therefore, to test the null hypothesis in the present case, we have to use the ¢
distribution in lieu of the (standard) normal distribution. But the procedure of
hypothesis testing remains the same, as explained in Appendix D.

Testing Hy:B, = 0 versus Hj: B, # 0: The Confidence
Interval Approach

For our math S.A.T. example we have 10 observations, hence the d.f. are
(10 — 2) = 8. Let us assume that «, the level of significance or the probability of
committing a type I error, is fixed at 5 percent. Since the alternative hypothesis is
two-sided, from the ¢ table given in Appendix E, Table E-2, we find that for 8 d.f.,

P(—2.306 = t = 2.306) = 0.95 (3.23)
That is, the probability that a t value (for 8 d.f.) lies between the limits (—2.306,

2.306) is 0.95 or 95 percent; these, as we know;, are the critical t values. Now by
substituting for t from expression (3.21) into the preceding equation, we obtain

b, — By
6/1123@2

Rearranging inequality (3.24), we obtain

P| —2.306 = =2306 | =095 (3.24)

N N

g g

P| b, — 2.306 =B, = b, + 2.306 = 0.95 (3.25)
/ 2 / 2
EXz' Exi
Or, more generally,
P[(by — 2.306 se(by) = By = by + 2.306 se(by)] = 0.95 (3.26)

which provides a 95% confidence interval for B,. In repeated applications 95 out
of 100 such intervals will include the true B,. As noted previously, in the
language of hypothesis testing such a confidence interval is known as the region
of acceptance (of Hp) and the area outside the confidence interval is known as the
rejection region (of Hp).

Geometrically, the 95% confidence interval is shown in Figure 3-5(a).

Now following our discussion in Appendix D, if this interval (i.e., the accep-
tance region) includes the null-hypothesized value of B,, we do not reject the
hypothesis. But if it lies outside the confidence interval (i.e., it lies in the rejec-
tion region), we reject the null hypothesis, bearing in mind that in making either
of these decisions we are taking a chance of being wrong a certain percent, say,
5 percent, of the time.
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(a) 95% confidence interval for B, (8 d.f.); (b) 95% confidence
interval for the slope coefficient of the math S.A.T. score
example

All that remains to be done for our math S.A.T. score example is to obtain
the numerical value of this interval. But that is now easy, for we have already
obtained se(b,) = 0.000245, as shown in Eq. (3.16). Substituting this value in
Eq. (3.26), we now obtain the 95% confidence interval as shown in Figure 3-5(b).

0.0013 — 2.306(0.000245) = B, = 0.0013 + 2.306(0.000245)

That is,
0.00074 = B, = 0.00187 (3.27)

Since this interval does not include the null-hypothesized value of 0, we can
reject the null hypothesis that annual family income is not related to math S.A.T.
scores. Put positively, income does have a relationship to math S.A.T. scores.

A cautionary note: As noted in Appendix D, although the statement given
in Eq. (3.26) is true, we cannot say that the probability is 95 percent that the
particular interval in Eq. (3.27) includes the true B,, for unlike Eq. (3.26),
expression (3.27) is not a random interval; it is fixed. Therefore, the probability
is either 1 or 0 that the interval in Eq. (3.27) includes B,. We can only say that if
we construct 100 intervals like the interval in Eq. (3.27), 95 out of 100 such in-
tervals will include the true By; we cannot guarantee that this particular interval
will necessarily include Bj.

Following a similar procedure exactly, the reader should verify that the 95%
confidence interval for the intercept term By is

393.4283 = By = 471.3993 (3.28)

If, for example, Hy:B1 = 0 vs. Hy:B; # 0, obviously this null hypothesis will be
rejected too, for the preceding 95% confidence interval does not include 0.
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On the other hand, if the null hypothesis were that the true intercept term is 400,
we would not reject this null hypothesis because the 95% confidence interval
includes this value.

The Test of Significance Approach to Hypothesis Testing

The key idea underlying this approach to hypothesis testing is that of a test
statistic (see Appendix D) and the sampling distribution of the test statistic under
the null hypothesis, Hy. The decision to accept or reject Hj is made on the basis
of the value of the test statistic obtained from the sample data.

To illustrate this approach, recall that

b, — B,
t=——= 22
se(by) (3.22)

follows the t distribution with (n — 2) d.f. Now if we let
Hy:B, = B3
where B3 is a specific numerical value of B, (e.g., B3 = 0), then
se(by)

estimator — hypothesized value

(3.29)

standard error of the estimator

can be readily computed from the sample data. Since all the quantities in
Equation (3.29) are now known, we can use the t value computed from
Eq. (3.29) as the test statistic, which follows the t distribution with (n — 2)
d.f. Appropriately, the testing procedure is called the # test.'!

Now to use the t test in any concrete application, we need to know three
things:

1. The d.f., which are always (n — 2) for the two-variable model

2. The level of significance, «, which is a matter of personal choice,
although 1, 5, or 10 percent levels are usually used in empirical analysis.
Instead of arbitrarily choosing the « value, you can find the p value (the
exact level of significance as described in Appendix D) and reject the null
hypothesis if the computed p value is sufficiently low.

3. Whether we use a one-tailed or two-tailed test (see Table D-2 and
Figure D-7).

The difference between the confidence interval and the test of significance approaches lies in
the fact that in the former we do not know what the true B; is and therefore try to guess it by estab-
lishing a (1 — «) confidence interval. In the test of significance approach, on the other hand, we
hypothesize what the true B, (=B3) is and try to find out if the sample value b; is sufficiently close
to (the hypothesized) B%.
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FIGURE 3-6  The tdistribution for 8 d.f.

Math S.A.T. Example Continued

1. ATwo-Tailed Test Assume that Hy:B, = 0 and H1:B, # 0. Using Eq. (3.29),
we find that
0.0013

= m = 5.4354 (3.30)

Now from the ¢ table given in Appendix E, Table E-2, we find that
for 8 d.f. we have the following critical t values (two-tailed) (see

Figure 3-6):

Level of significance Critical t
0.01 3.355
0.05 2.306
0.10 1.860

In Appendix D, Table D-2 we stated that, in the case of the two-tailed
t test, if the computed |#|, the absolute value of f, exceeds the critical ¢
value at the chosen level of significance, we can reject the null hypothe-
sis. Therefore, in the present case we can reject the null hypothesis that
the true B; (i.e., the income coefficient) is zero because the computed |¢|
of 5.4354 far exceeds the critical ¢ value even at the 1% level of signifi-
cance. We reached the same conclusion on the basis of the confidence
interval shown in Eq. (3.27), which should not be surprising because the
confidence interval and the test of significance approaches to hypothesis testing
are merely two sides of the same coin.

Incidentally, in the present example the p value (i.e., probability value)
of the t statistic of 5.4354 is about 0.0006. Thus, if we were to reject the
null hypothesis that the true slope coefficient is zero at this p value, we
would be wrong in six out of ten thousand occasions.

2. A One-Tailed Test Since the income coefficient in the math S.A.T. score
function is expected to be positive, a realistic set of hypotheses would
be Hy:B, = 0and Hy:B, > 0; here the alternative hypothesis is one-
sided.
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The t-testing procedure remains exactly the same as before, except, as
noted in Appendix D, Table D-2, the probability of committing a type I
error is not divided equally between the two tails of the t distribution but
is concentrated in only one tail, either left or right. In the present case it
will be the right tail. (Why?) For 8 d.f. we observe from the t table
(Appendix E, Table E-2) that the critical t value (right-tailed) is

Level of significance Critical t
0.01 2.896
0.05 1.860
0.10 1.397

For the math S.A.T. example, we first compute the ¢ value as if the null
hypothesis were that B, = 0. We have already seen that this t value is

t = 5.4354 (3.30)

Since this t value exceeds any of the critical values shown in the preced-
ing table, following the rules laid down in Appendix D, Table D-2, we
can reject the hypothesis that annual family income has no relationship
to math S.A.T. scores; actually it has a positive effect (i.e., B, > 0) (see
Figure 3-7).
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Ve \ 10%
/ \
/
/ \ 5%
/ \
/
/ \ 1%
// N =5.435.
P A Z t =5.4354
~ ~
t(8d.f.)
0 1.397 1.860 2.896
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- - S ~
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-2.896 -1.860 -1.397 0
(®)

FIGURE 3-7

One-tailed ttest: (a) Right-tailed; (b) left-tailed
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3.6 HOW GOOD ISTHE FITTED REGRESSION LINE:
THE COEFFICIENT OF DETERMINATION, r?

Our finding in the preceding section that on the basis of the t test both the esti-
mated intercept and slope coefficients are individually statistically significant
(i.e., significantly different from zero) suggests that the SRF, Eq. (3.16), shown in
Figure 2-6 seems to “fit” the data “reasonably” well. Of course, not each actual
Y value lies on the estimated PRF. That is, not all ¢; = (Y; — Y;) are zero; as
Table 2-4 shows, some e are positive and some are negative. Can we develop an
overall measure of “goodness of fit” that will tell us how well the estimated
regression line, Eq. (3.16), fits the actual Y values? Indeed, such a measure has
been developed and is known as the coefficient of determination, denoted by
the symbol #* (read as r squared). To see how 72 is computed, we proceed as
follows.
Recall that

Y, =Y + ¢ (Eq. 2.6)

Let us express this equation in a slightly different but equivalent form (see
Figure 3-8) as

Y,-Y) = Y- + (Y — Y)(ie, e) (3.31)
Variation in Y; Variation in Y; explained Unexplained or
from its mean value by X (=Y)) around residual variation
its mean value
(Note: Y = ¥)

Now, letting small letters indicate deviations from mean values, we can write
the preceding equation as

(Note: y; = (Y; — Y), etc.) Also, note that 2 = 0, as a result of which Y = ¥; that
is, the mean values of the actual Y and the estimated Y are the same. Or

Y = bzxi + ¢; (3.33)
since §; = byx;.

Now squaring Equation (3.33) on both sides and summing over the sample,
we obtain, after simple algebraic manipulation,

Svi= 297+ De (3.34)

Or, equivalently,

Syr = b%Ex% + Eelz (3.35)
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FIGURE 3-8

Y e; = (Y; — Y;) = Variation in Y; not explained

o / by regression
Total variation in Y;

;=7

SRF

= Variation in Y; explained
Y———————— = — — by regression

X X X

i

Breakdown of total variation in Y;

This is an important relationship, as we will see. For proof of Equation (3.35),
see Problem 3.25.
The various sums of squares appearing in Eq. (3.35) can be defined as follows:

E ylz = the total variation!? of the actual Y values about their sample mean Y,
which may be called the total sum of squares (TSS).
> 7 = the total variation of the estimated Y values about their mean value

(Y = Y), which may be called appropriately the sum of squares due to regression
(i.e., due to the explanatory variable [s]), or simply the explained sum of
squares (ESS).

Eelz = as before, the residual sum of squares (RSS) or residual or unex-
plained variation of the Y values about the regression line.

Put simply, then, Eq. (3.35) is
TSS = ESS + RSS (3.36)

and shows that the total variation in the observed Y values about their mean
value can be partitioned into two parts, one attributable to the regression line
and the other to random forces, because not all actual Y observations lie on the
fitted line. All this can be seen clearly from Figure 3-8 (see also Fig. 2-6).

Now if the chosen SREF fits the data quite well, ESS should be much larger
than RSS. If all actual Y lie on the fitted SRF, ESS will be equal to TSS, and RSS
will be zero. On the other hand, if the SRF fits the data poorly, RSS will be much
larger than ESS. In the extreme, if X explains no variation at all in Y, ESS will be
zero and RSS will equal TSS. These are, however, polar cases. Typically, neither

2The terms variation and variance are different. Variation means the sum of squares of deviations
of a variable from its mean value. Variance is this sum divided by the appropriate d.f. In short,
variance = variation/d.f.
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ESS nor RSS will be zero. If ESS is relatively larger than RSS, the SRF will
explain a substantial proportion of the variation in Y. If RSS is relatively larger
than ESS, the SRF will explain only some part of the variation of Y. All these
qualitative statements are intuitively easy to understand and can be readily
quantified. If we divide Equation (3.36) by TSS on both sides, we obtain

ESS RSS
Now let us define
ESS
2 = —
r TSS (3.38)

The quantity r? thus defined is known as the (sample) coefficient of determina-
tion and is the most commonly used measure of the goodness of fit of a
regression line. Verbally, r* measures the proportion or percentage of the total varia-
tion in Y explained by the regression model.

Two properties of 7> may be noted:

1. It is a non-negative quantity. (Why?)

2. Its limits are 0 = r~ = 1 since a part (ESS) cannot be greater than the
whole (TSS).1® An 7 of 1 means a “perfect fit,” for the entire variation in
Y is explained by the regression. An 1 of zero means no relationship
between Y and X whatsoever.

Formulas to Compute r?
Using Equation (3.38), Equation (3.37) can be written as

RSS
1=r"*1ss
(3.39)
=2+ et
>y
Therefore,
2
&
P=1- 2. (3.40)

>

There are several equivalent formulas to compute 12, which are given in
Question 3.5.

B3This statement assumes that an intercept term is included in the regression model. More on
this in Chapter 5.
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P for the Math S.A.T. Example

From the data given in Table 2-4, and using formula (3.40), we obtain the
following r? value for our math S.A.T. score example:

7801.0776
P = - 80L0776
36610 (3.41)
= 0.7869

Since > can at most be 1, the computed 72 is pretty high. In our math S.A.T. ex-

ample X, the income variable, explains about 79 percent of the variation in math
S.A.T. scores. In this case we can say that the sample regression (3.16) gives an
excellent fit.

It may be noted that (1 — %), the proportion of variation in Y not explained
by X, is called, perhaps appropriately, the coefficient of alienation.

The Coefficient of Correlation, r

In Appendix B, we introduce the sample coefficient of correlation, r, as a
measure of the strength of the linear relationship between two variables Y and
X and show that r can be computed from formula (B.46), which can also be
written as

L 2 - X - Y)
V(X = X2(Y; — Y)?

Exiyi

= (3.43)

\/ 2 2vF

But this coefficient of correlation can also be computed from the coefficient of
determination, 72, as follows:

(3.42)

r=+\V7? (3.44)

Since most regression computer packages routinely compute 7%, r can be com-
puted easily. The only question is about the sign of . However, that can be
determined easily from the nature of the problem. In our math S.A.T. example,
since math S.A.T. scores and annual family income are expected to be positively
related, the r value in this case will be positive. In general, though, r has the
same sign as the slope coefficient, which should be clear from formulas (2.17)
and (3.43).
Thus, for the math S.A.T. example,

r = V0.7869 = 0.8871 (3.45)

In our example, math S.A.T. scores and annual family income are highly posi-
tively correlated, a finding that is not surprising.
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Incidentally, if you use formula (3.43) to compute r between the actual Y val-
ues in the sample and the estimated Y; values (= Yj) from the given model, and
square this 7 value, the squared r is precisely equal to the r* value obtained from
Eq. (3.42). For proof, see Question 3.5. You can verify this from the data given in
Table 2-4. As you would expect, the closer the estimated Y values are to the
actual Y values in the sample, the higher the 12 value will be.

3.7 REPORTING THE RESULTS OF REGRESSION ANALYSIS

There are various ways of reporting the results of regression analysis. Until the
advent of statistical software, regression results were presented in the format
shown in Equation (3.46). Many journal articles still present regression results
in this format. For our math S.A.T. score example, we have:

¥, = 432.4138 + 0.0013X;
se = (16.9061)(0.000245)
t = (25.5774)(0.0006) 2 = 0.7849
p value = (5.85 X 107%)(0.0006)  d.f. =8

(3.46)

In Equation (3.46) the figures in the first set of parentheses are the estimated
standard errors (se) of the estimated regression coefficients. Those in the second
set of parentheses are the estimated ¢ values computed from Eq. (3.22) under the
null hypothesis that the true population value of each regression coefficient
individually is zero (i.e., the t values given are simply the ratios of the estimated
coefficients to their standard errors). And those in the third set of parentheses
are the p values of the computed t values.'* As a matter of convention, from now
on, if we do not specify a specific null hypothesis, then we will assume that it is
the zero null hypothesis (i.e., the population parameter assumes zero value). And
if we reject it (i.e., when the test statistic is significant), it means that the true
population value is different from zero.

One advantage of reporting the regression results in the preceding format is
that we can see at once whether each estimated coefficient is individually
statistically significant, that is, significantly different from zero. By quoting the p
values we can determine the exact level of significance of the estimated ¢ value.
Thus the t value of the estimated slope coefficient is 5.4354, whose p value is
practically zero. As we note in Appendix D, the lower the p value, the greater the ev-
idence against the null hypothesis.

A warning is in order here. When deciding whether to reject or not reject a
null hypothesis, determine beforehand what level of the p value (call it the criti-
cal p value) you are willing to accept and then compare the computed p value
with the critical p value. If the computed p value is smaller than the critical
p value, the null hypothesis can be rejected. But if it is greater than the critical

4The ¢ table in Appendix E of this book (Table E-2) can now be replaced by electronic tables
that will compute the p values to several digits. This is also true of the normal, chi-square, and the
F tables (Appendix E, Tables E-4 and E-3, respectively).
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p value the null hypothesis may not be rejected. If you feel comfortable with the
tradition of fixing the critical p value at the conventional 1, 5, or 10 percent level,
that is fine. In Eq. (3.46), the actual p value (i.e., the exact level of significance) of
the t coefficient of 5.4354 is 0.0006. If we had chosen the critical p value at 5 per-
cent, obviously we would reject the null hypothesis, for the computed p value
of 0.0006 is much smaller than 5 percent.

Of course, any null hypothesis (besides the zero null hypothesis) can be tested
easily by making use of the f test discussed earlier. Thus, if the null hypothesis is
that the true intercept term is 450 and if H1: By # 450, the ¢ value will be

4324138 — 450
16.9061

The p value of obtaining such a t value is about 0.3287, which is obtained from
electronic tables. If you had fixed the critical p value at the 10 percent level, you
would not reject the null hypothesis, for the computed p value is much greater
than the critical p value.

The zero null hypothesis, as mentioned before, is essentially a kind of straw
man. It is usually adopted for strategic reasons—to “dramatize” the statistical
significance (i.e., importance) of an estimated coefficient.

= —1.0402

3.8 COMPUTER OUTPUT OF THE MATH S.A.T. SCORE EXAMPLE

Since these days we rarely run regressions manually, it may be useful to pro-
duce the actual output of regression analysis obtained from a statistical software
package. Below we give the selected output of our math S.A.T. example obtained
from EViews.

Dependent Variable: Y
Method: Least Squares
Sample: 1 10
Included observations: 10
Coefficient Std. Error t-Statistic Prob.

C 432.4138 16.90607 25.57742 0.0000
X 0.001332 0.000245 5.435396 0.0006
R-squared 0.786914
S.E. of regression 31.22715
Sum squared resid 7801.078

In this output, C denotes the constant term (i.e., intercept); Prob. is the p value;
sum of squared resid is the RSS (= >e?); and S.E. of regression is the standard
error of the regression. The t values presented in this table are computed
under the (null) hypothesis that the corresponding population regression
coefficients are zero.
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We also show (in Figure 3-9) how EViews presents the actual and esti-
mated Y values as well as the residuals (i.e., ¢;) in graphic form:

Actual Fit}ed Residual Residual Plot
Y; Yi i () © )

410.000 439.073  —29.0733 °

420.000 452392 —32.3922 [ ]

440.000 465.711 —25.7112 (]

490.000 479.030 10.9698 °

530.000 492.349 37.6509 °

530.000 505.668 24.3319 [

550.000 518.987 31.0129 °

540.000 532.306 07.69397 [

570.000 552.284 17.7155 °

590.000 632.198  —42.1983 [}

FIGURE 3-9 Actual and fitted Y values and residuals for the math S.A.T. example

3.9 NORMALITY TESTS

Before we leave our math S.A.T. example, we need to look at the regression re-
sults given in Eq. (3.46). Remember that our statistical testing procedure is
based on the assumption that the error term u; is normally distributed. How do
we find out if this is the case in our example, since we do not directly observe
the true errors 1;? We have the residuals, e;, which are proxies for u;. Therefore,
we will have to use the ¢; to learn something about the normality of u;. There are
several tests of normality, but here we will consider only three comparatively
simple tests.'®

Histograms of Residuals

A histogram of residuals is a simple graphical device that is used to learn some-
thing about the shape of the probability density function (PDF) of a random
variable. On the horizontal axis, we divide the values of the variable of interest
(e.g., OLS residuals) into suitable intervals, and in each class interval, we erect
rectangles equal in height to the number of observations (i.e., frequency) in that
class interval.

If you mentally superimpose the bell-shaped normal distribution curve on
this histogram, you might get some idea about the nature of the probability
distribution of the variable of interest.

It is always a good practice to plot the histogram of residuals from any
regression to get some rough idea about the likely shape of the underlying
probability distribution.

5For a detailed discussion of various normality tests, see G. Barrie Wetherhill, Regression
Analysis with Applications, Chapman and Hall, London, 1986, Chap. 8.
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Normal Probability Plot

Jarque-Bera Test

Another comparatively simple graphical device to study the PDF of a random
variable is the normal probability plot (NPP) which makes use of normal prob-
ability paper, a specially ruled graph paper. On the horizontal axis, (X-axis) we
plot values of the variable of interest (say, OLS residuals ¢;), and on the vertical
axis (Y-axis), we show the expected values of this variable if its distribution
were normal. Therefore, if the variable is in fact from the normal population, the
NPP will approximate a straight line. MINITAB has the capability to plot the
NPP of any random variable. MINITAB also produces the Anderson-Darling
normality test known as the A? statistic. The underlying null hypothesis is that
a variable is normally distributed. This hypothesis can be sustained if the com-
puted A? is not statistically significant.

A test of normality that has now become very popular and is included in several
statistical packages is the Jarque-Bera (JB) test.'® This is an asymptotic, or large
sample, test and is based on OLS residuals. This test first computes the coeffi-
cients of skewness, S (a measure of asymmetry of a PDF), and kurtosis, K (a mea-
sure of how tall or flat a PDF is in relation to the normal distribution), of a ran-
dom variable (e.g., OLS residuals) (see Appendix B). For a normally distributed
variable, skewness is zero and kurtosis is 3 (see Figure B-4 in Appendix B).
Jarque and Bera have developed the following test statistic:

(K - 3)2]

1 (3.47)

n
B=—S+
B =1
where 7 is the sample size, S represents skewness, and K represents kurtosis.
They have shown that under the normality assumption the JB statistic given in
Equation (3.47) follows the chi-square distribution with 2 d.f. asymptotically (i.e., in
large samples). Symbolically,

JBasy ~ X(Zz) (3.48)

where asy means asymptotically.

As you can see from Eq. (3.47), if a variable is normally distributed, S is zero
and (K — 3) is also zero, and therefore the value of the ]JB statistic is zero ipso
facto. But if a variable is not normally distributed, the JB statistic will assume in-
creasingly larger values. What constitutes a large or small value of the JB statis-
tic can be learned easily from the chi-square table (Appendix E, Table E-4). If the
computed chi-square value from Eq. (3.47) exceeds the critical chi-square value
for 2 d.f. at the chosen level of significance, we reject the null hypothesis of
normal distribution; but if it does not exceed the critical chi-square value, we do

16See C. M. Jarque and A. K. Bera, “A Test for Normality of Observations and Regression
Residuals,” International Statistical Review, vol. 55, 1987, pp. 163-172.
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not reject the null hypothesis. Of course, if we have the p value of the computed
chi-square value, we will know the exact probability of obtaining that value.
We will illustrate these normality tests with the following example.

3.10 A CONCLUDING EXAMPLE: RELATIONSHIP BETWEEN
WAGES AND PRODUCTIVITY IN THE U.S. BUSINESS
SECTOR, 1959-2006

FIGURE 3-10

According to the marginal productivity theory of microeconomics, we would
expect a positive relationship between wages and worker productivity. To see if
this so, in Table 3-3 (on the textbook’s Web site) we provide data on labor pro-
ductivity, as measured by the index of output per hour of all persons, and
wages, as measured by the index of real compensation per hour, for the busi-
ness sector of the U.S. economy for the period 1959 to 2006. The base year of the
index is 1992 and hourly real compensation is hourly compensation divided by
the consumer price index (CPI).

Let Compensation (Y) = index of real compensation and Productivity (X) =index
of output per hour of all persons. Plotting these data, we obtain the scatter dia-
gram shown in Figure 3-10.

This figure shows a very close linear relationship between labor produc-
tivity and real wages. Therefore, we can use a (bivariate) linear regression to
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model the data given in Table 3-3. Using EViews, we obtain the following
results:

Dependent Variable: Compensation
Method: Least Squares

Sample: 1959 2006

Included observations: 48

Coefficient Std. Error  t-Statistic Prob.
C 33.63603 1.400085 24.02428 0.0000
Productivity 0.661444 0.015640 42.29178 0.0000
R-squared 0.974926
Adjusted R-squared ~ 0.974381
S.E. of regression 2.571761

Sum squared resid 304.2420
Durbin-Watson stat 0.146315

Let us interpret the results. The slope coefficient of about 0.66 suggests that if
the index of productivity goes up by a unit, the index of real wages will go up,
on average, by 0.66 units. This coefficient is highly significant, for the t value of
about 42.3 (obtained under the assumption that the true population coefficient
is zero) is highly significant for the p value is almost zero. The intercept coeffi-
cient, C, is also highly significant, for the p value of obtaining a ¢ value for this
coefficient of as much as about 24 is practically zero.

The R? value of about 0.97 means that the index of productivity explains
about 97 percent of the variation in the index of real compensation. This is a
very high value, since an R? can at most be 1. For now neglect some of the in-
formation given in the preceding table (e.g., the Durbin-Watson statistic), for we
will explain it at appropriate places.

Figure 3-11 gives the actual and estimated values of the index of real com-
pensation, the dependent variable in our model, as well the differences between
the two, which are nothing but the residuals e;. These residuals are also plotted
in this figure.

Figure 3-12 plots the histogram of the residuals shown in Figure 3-11 and
also shows the ]B statistics. The histogram and the JB statistic show that
there is no reason to reject the hypothesis that the true error terms in the
wages-productivity regression are normally distributed.

Figure 3-13 shows the normal probability plot of the residuals obtained from the
compensation-productivity regression; this figure was obtained from MINITAB.
As is clear from this figure, the estimated residuals lie approximately on a straight
line, suggesting that the error terms (i.e., u;) in this regression may be normally
distributed. The computed AD statistic of 0.813 has a p value of about 0.03 or
3 percent. If we fix the critical p value, say, at the 5 percent level, the observed AD
statistic is statistically significant, suggesting that the error terms are not normally
distributed. This is in contrast to the conclusion reached on the basis of the JB
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Actual Fitte Residual Residual plot
Y, Y, e; ) © ()
59.8710 65.4025 —5.53155
61.3180 65.9575 —4.63950
63.0540 67.0833 —4.02928
65.1920 68.6145 —3.42252
66.6330 69.9824 —3.34939
68.2570 71.2113 —2.95435
69.6760 72.5402 —2.86419
72.3000 74.1191 —1.81906 [
74.1210 75.0041 —0.88307 L]
76.8950 76.4163 0.47875 °
78.0080 76.6253 1.38273 °
79.4520 77.4799 1.97214 °
80.8860 79.2856 1.60040 []
83.3280 80.7593 2.56870 [
85.0620 82.1926 2.86936 [
83.9880 81.4300 2.55800 °
84.8430 83.1068 1.73624 °
87.1480 84.6631 2.48486 °
88.3350 85.5296 2.80537 °
89.7360 86.1018 3.63422 °
89.8630 86.0919 3.77114 ]
89.5920 85.9900 3.60200 °
89.6450 87.0662 2.57884 °
90.6370 86.6495 3.98755 [
90.5910 88.5366 2.05445 [ ]
90.7120 90.0003 0.71167 °
91.9100 91.2683 0.64168 ®
94.8690 92.9497 1.91929 °
95.2070 93.2540 1.95303 [
96.5270 94.1621 2.36486 °
95.0050 94.7588 0.24624 o
96.2190 96.0664 0.15257 [}
97.4650 97.0705 0.39449 [ ]
100.0000 99.7804 0.21956 [ ]
99.7120 100.0360 —0.32376 ]
99.0240 100.6730 —1.64873 [ ]
98.6900 100.7690 —2.07930
99.4780 102.7520 —3.27365
100.5120 104.0650 —3.55328
105.1730 106.0470 —0.87396 °
108.0440 108.2650 —0.22145 [ ]
111.9920 110.4410 1.55106 [
113.5360 112.4020 1.13388 [
115.6940 115.6210 0.07329 [
117.7090 118.7670 —1.05820 [
118.9490 121.2050 —2.25562
119.6920 122.9450 —3.25288
120.4470 123.8600 —3.41265

Actual Y, estimated Y, and residuals (regression of compensation

on productivity)

Note: Y= Actual index of compensation

Y = Estimated index of compensation

81
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7= Series: Residuals
Sample: 1959-2006
6 — — Observations: 48
5 - - Mean —1.50e-14
Median 0.320367
4+ Maximum 3.987545
Minimum —5.531548
3+ — Std. Dev. 2.544255
Skewness —0.343902
2= Kurtosis 2.008290
1+ —-— Jarque-Bera 2913122
|_| | | Probability ~ 0.233036
U |
—6 —4 -2 0 2 4

FIGURE 3-12  Histogram of residuals from the compensation-productivity regression

Probability Plot of RESI1
Normal - 95% CI

95 -
90 —

80 |-
70 |-
60 -
50 -
40
30 |-
20 -

Percent

Mean  3.330669E-14
Std. Dev. 2.544
N 48
AD 0.813
P-Value 0.033

RESI1

FIGURE 3-13  Normal probability plot of residuals obtained from the compensation-productivity
regression

statistic. The problem here is that our sample of 10 observations is too small for
using the JB and AD statistics, which are designed for large samples.

3.11 AWORD ABOUT FORECASTING

We noted in Chapter 2 that one of the purposes of regression analysis is to pre-
dict the mean value of the dependent variable, given the values of the explana-
tory variable(s). To be more specific, let us return to our math S.A.T. score
example. Regression (3.46) presented the results of the math section of
the S.A.T. based on the score data of Table 2-2. Suppose we want to find out the
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average math S.A.T. score by a person with a given level of annual family income.
What is the expected math S.A.T. score at this level of annual family income?

To fix these ideas, assume that X (income) takes the value X, where X is
some specified numerical value of X, say X, = $78,000. Now suppose we want to
estimate E(Y | Xy = 78000), that is, the true mean math S.A.T. score correspond-
ing to a family income of $78,000. Let

¥, = the estimator of E(Y | Xo) (3.49)

How do we obtain this estimate? Under the assumptions of the classical linear
regression model (CLRM), it can be shown that Equation (3.49) can be obtained
by simply putting the given X value in Eq. (3.46), which gives:
Yx—78000 = 432.4138 + 0.0013(78000)
= 533.8138

(3.50)

That is, the forecasted mean math S.A.T. score for a person with an annual
family income of $78,000 is about 534 points.

Although econometric theory shows that under CLRM YX 78000, O, More
generally, Y is an unbiased estimator of the true mean value (i.e., a point on the
population regression line), it is not likely to be equal to the latter in any given
sample. (Why?) The difference between them is called the forecasting, or
prediction, error. To assess this error, we need to find out the sampling distrib-
ution of ¥;.!” Given the assumptions of the CLRM, it can be shown that ¥; is
normally distributed with the following mean and variance:

Mean = E(YlXQ) = Bl + B2XQ

(X — X)? (3.51)
>

where X = the sample mean of X values in the historical regression (3.46)
> x? = their sum of squared deviations from X
o2 = the variance of u;
n = sample size

21
var = o°| — +
n

The positive square root of Equation (3.51) gives the standard error of ?0, se(lA/O)

Since in practice 62 is not known, if we replace it by its unbiased estimator 62,
YO follows the t distribution with (n — 2) d.f. (Why?) Therefore, we can use the ¢
distribution to establish a 100 (1 — @)% confidence interval for the true (i.e., pop-

ulation) mean value of Y corresponding to X, in the usual manner as follows:

P[bl + b2X0 - ta/z Se(Yo) = B] + 32X0 bl + bzXo + ta/Z SE(YQ)] (1 - a) (3.52)

17Note thatYis an estimator and therefore will have a sampling distribution.
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Let us continue with our math S.A.T. score example. First, we compute the
variance of Y x—7gpo0 from Equation (3.51).

1 (78,000 — 56,000)>

- el 1
Var(YX‘78°°0) 975 1347[10 16,240,000,000

(3.53)
= 126.5754

Therefore,

Se(?x_78000) = V126.5754

= 11.2506

(3.54)

Note: In this example, X = 56000, Ex,z = 16,240,000,000, and 6% = 975.1347
(see Table 2-4).

The preceding result suggests that given the estimated annual family
income = $78,000, the mean predicted math S.A.T. score, as shown in
Equation (3.50), is 533.8138 points and the standard error of this predicted
value is 11.2506 (points).

Now if we want to establish, say, a 95% confidence interval for the population
mean math S.A.T. score corresponding to an annual family income of $78,000,
we obtain it from expression (3.52) as

533.8138 — 2.306(11.2506) = E(Y'| X = 78000) = 533.8138 + 2.306 (11.2506)
That is,
507.8699 = E(Y | X = 78000) = 559.7577 (3.55)

Note: For 8 d.f., the 5 percent two-tailed t value is 2.306.

Given the annual family income of $78,000, Equation (3.55) states that al-
though the single best, or point, estimate of the mean math S.A.T. score is
533.8138, it is expected to lie in the interval 507.8699 to 559.7577 points, which is
between about 508 and 560, with 95% confidence. Therefore, with 95% confi-
dence, the forecast error will be between —25.9439 points (507.8699 — 533.8138)
and 25.9439 points (559.7577 - 533.8138).

If we obtain a 95% confidence interval like Eq. (3.55) for each value of X
shown in Table 2-2, we obtain what is known as a confidence interval or con-
fidence band for the true mean math S.A.T. score for each level of annual fam-
ily income, or for the entire population regression line (PRL). This can be seen
clearly from Figure 3-14, obtained from EViews.

Notice some interesting aspects of Figure 3-14. The width of the confi-
dence band is smallest when Xy = X, which should be apparent from the
variance formula given in Eq. (3.51). However, the width widens sharply (i.e.,
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600 — Va

Math S.A.T. Score

T | | | | | 1 | | | | X
10000 30000 50000 X 70000 90000

Annual Family Income

95% confidence band for the true math S.A.T. score function

the prediction error increases) as Xy moves away from X. This suggests that
the predictive ability of the historical regression, such as regression (3.46),
falls markedly as X (the X value for which the forecast is made) departs pro-
gressively from X. The message here is clear: We should exercise great caution in
“extrapolating” the historical regression line to predict the mean value of Y associ-
ated with any X that is far removed from the sample mean of X. In more practical
terms, we should not use the math S.A.T. score regression (3.46) to predict the aver-
age math score for income well beyond the sample range on which the historical re-
gression line is based.

In Chapter 2 we showed how to estimate the parameters of the two-variable
linear regression model. In this chapter we showed how the estimated model
can be used for the purpose of drawing inferences about the true population
regression model. Although the two-variable model is the simplest possible
linear regression model, the ideas introduced in these two chapters are the
foundation of the more involved multiple regression models that we will
discuss in ensuing chapters. As we will see, in many ways the multiple regres-
sion model is a straightforward extension of the two-variable model.
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KEY TERMS AND CONCEPTS

QUESTIONS

The key terms and concepts introduced in this chapter are

Classical linear regression model
(CLRM)

Homoscedasticity or equal variance

Heteroscedasticity or unequal
variance

Autocorrelation and no
autocorrelation

Variances of OLS estimators

Standard errors of OLS estimators

Residual sum of squares (RSS)

Standard error of the regression (SER)

Sampling, or probability,
distributions of OLS estimators

Gauss-Markov theorem

BLUE property

Central limit theorem (CLT)

3.1. Explain the meaning of

. Least squares.

. OLS estimators.

. The variance of an estimator.

. Standard error of an estimator.
Homoscedasticity.

. Heteroscedasticity.

. Autocorrelation.

. Total sum of squares (TSS).

R2esidua1 sum of squares (RSS).
e

Standard error of estimate.
BLUE.

. Test of significance.

t test.

. One-tailed test.

. Two-tailed test.

r. Statistically significant.

2T o BB mF TR R0 n T

. Explained sum of squares (ESS).

“Zero” null hypothesis; straw man
hypothesis
t test of significance
a) two-tailed ¢t test
b) one-tailed ¢ test
Coefficient of determination, r
Total sum of squares (TSS)
Explained sum of squares (ESS)
Coefficient of alienation
Coefficient of correlation, r
Normal probability plot (NPP)
Anderson-Darling normality test (A
statistic)
Jarque-Bera (JB) test of normality
Forecasting, or prediction, error
Confidence interval; confidence band

2

3.2. State with brief reasons whether the following statements are true, false,

or uncertain.

a. OLS is an estimating procedure that minimizes the sum of the errors

squared, Su?.

b. The assumptions made by the classical linear regression model (CLRM) are
not necessary to compute OLS estimators.



CHAPTER THREE: THE TWO-VARIABLE MODEL: HYPOTHESIS TESTING 87

c. The theoretical justification for OLS is provided by the Gauss-Markov
theorem.
d. In the two-variable PREF, b, is likely to be a more accurate estimate of B, if
the disturbances u; follow the normal distribution.
e. The OLS estimators b; and b, each follow the normal distribution only if u;
follows the normal distribution.
f. ¥ is the ratio of TSS/ESS.
g. For a given alpha and d f,, if the computed | t| exceeds the critical  value,
we should accept the null hypothesis.
h. The coefficient of correlation, 7, has the same sign as the slope coefficient
bs.
i. The p value and the level of significance, , mean the same thing.
3.3. Fill in the appropriate gaps in the following statements:
. IfB2 = 0, bz/Se(bz) = ...
.IfBZZO,t:bz/...
. r* lies between . . . and . . .
. rlies between . ..and ...
TSS=RSS+...
. d.f. (of TSS)=d.f. (of . ..) + d.f. (of RSS)
. 0 iscalled . ..
Syf =3 - ..
LSy =by(. L)
onsider the following regression:

Or R -0 &n T

3.4.

Y, = —66.1058 + 0.0650X; r* = 0.9460
se = (10.7509) () n =20
t=( ) (18.73)

Fill in the missing numbers. Would you reject the hypothesis that true B; is
zero at a = 5%? Tell whether you are using a one-tailed or two-tailed test and
why.

3.5. Show that all the following formulas to compute * are equivalent:

_ ( Eyiﬂi)z

(Zvi)(Z)

3.6. Show that Xe; = nY — nb; — nbyX =0
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PROBLEMS

3.7.

3.8.

3.9.

Based on the data for the years 1962 to 1977 for the United States, Dale Bails
and Larry Peppers'® obtained the following demand function for automobiles:

Y, = 5807 + 324X, =022
se = (1.634)

where Y =retail sales of passenger cars (thousands) and X = the real disposable

income (billions of 1972 dollars).

Note: The se for b; is not given.

a. Establish a 95% confidence interval for Bs.

b. Test the hypothesis that this interval includes B, = 0. If not, would you
accept this null hypothesis?

c. Compute the ¢ value under H(:B, = 0. Is it statistically significant at the
5 percent level? Which ¢ test do you use, one-tailed or two-tailed, and why?

The characteristic line of modern investment analysis involves running the

following regression:

r = Bl + BZrmt + Uy

where r = the rate of return on a stock or security
= the rate of return on the market portfolio represented by a broad
market index such as S&P 500, and
t=time

In investment analysis, B, is known as the beta coefficient of the security and
is used as a measure of market risk, that is, how developments in the market
affect the fortunes of a given company.

Based on 240 monthly rates of return for the period 1956 to 1976, Fogler and
Ganapathy obtained the following results for IBM stock. The market index
used by the authors is the market portfolio index developed at the University
of Chicago:"

r = 0.7264 + 1.0598r,,
se = (0.3001) (0.0728) 1* = 0.4710

a. Interpret the estimated intercept and slope.

b. How would you interpret r°?

c. A security whose beta coefficient is greater than 1 is called a volatile or
aggressive security. Set up the appropriate null and alternative hypotheses
and test them using the ¢ test. Note: Use o = 5%.

You are given the following data based on 10 pairs of observations on Y and X.

Syi=1110 3X, = 1680 SX,Y; = 204,200
S X? =315400 Y7 = 133,300

8See Dale G. Bails and Larry C. Peppers, Business Fluctuations: Forecasting Techniques and

Applications, Prentice-Hall, Englewood Cliffs, N.J., 1982, p. 147.

19H. Russell Fogler and Sundaram Ganapathy, Financial Econometrics, Prentice-Hall, Englewood-

Cliffs, N.J., 1982, p. 13.
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Assuming all the assumptions of CLRM are fulfilled, obtain

. bl and bz.

. sgandard errors of these estimators.

.

. Establish 95% confidence intervals for B; and B,.

. On the basis of the confidence intervals established in (d), can you accept
the hypothesis that B, = 0?

Based on data for the United States for the period 1965 to 2006 (found in Table

3-4 on the textbook’s Web site), the following regression results were obtained:

GNP, = —995.5183 + 8.7503M;; 1> = 0.9488
se = ( ) (0.3214)
t=(-3.8258) ( )

where GNP is the gross national product ($, in billions) and M is the money

supply ($, in billions).

Note: M; includes currency, demand deposits, traveler’s checks, and other

checkable deposits.

a. Fill in the blank parentheses.

b. The monetarists maintain that money supply has a significant positive
impact on GNP. How would you test this hypothesis?

c. What is the meaning of the negative intercept?

d. Suppose M; for 2007 is $750 billion. What is the mean forecast value of
GNP for that year?

Political business cycle: Do economic events affect presidential elections? To test

this so-called political business cycle theory, Gary Smith?” obtained the fol-

lowing regression results based on the U.S. presidential elections for the four

yearly periods from 1928 to 1980 (i.e., the data are for years 1928, 1932, etc.):

Y, = 53.10 — 1.70X;
t = (34.10) (—2.67) =037

o n T

where Y is the percentage of the vote received by the incumbent and X is the

unemployment rate change—unemployment rate in an election year minus

the unemployment rate in the preceding year.

a. A priori, what is the expected sign of X?

b. Do the results support the political business cycle theory? Support your
contention with appropriate calculations.

c. Do the results of the 1984 and 1988 presidential elections support the
preceding theory?

d. How would you compute the standard errors of b; and by?

To study the relationship between capacity utilization in manufacturing and

inflation in the United States, we obtained the data shown in Table 3-5 (found

on the textbook’s Web site). In this table, Y = inflation rate as measured by the

20Gary Smith, Statistical Reasoning, Allyn & Bacon, Boston, Mass., 1985, p. 488. Change in
notation was made to conform with our format. The original data were obtained by Ray C. Fair,
“The Effect of Economic Events on Votes for President,” The Review of Economics and Statistics, May
1978, pp. 159-173.
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TABLE 3-6

3.13.

3.14.

percentage change in GDP implicit price deflator and X = capacity utilization
rate in manufacturing as measured by output as a percent of capacity for the
years 1960-2007.

a.

o Un T

A priori, what would you expect to be the relationship between inflation
rate and capacity utilization rate? What is the economic rationale behind
your expectation?

. Regress Y on X and present your result in the format of Eq. (3.46 ).

. Is the estimated slope coefficient statistically significant?

. Is it statistically different from unity?

. The natural rate of capacity utilization is defined as the rate at which Y is

zero. What is this rate for the period under study?

Reverse regression®': Continue with Problem 3.12, but suppose we now regress
XonY.

a.
b.

C.

d.

Present the result of this regression and comment.

If you multiply the slope coefficients in the two regressions, what do you
obtain? Is this result surprising to you?

The regression in Problem 3.12 may be called the direct regression. When
would a reverse regression be appropriate?

Suppose the 7* value between X and Y is 1. Does it then make any differ-
ence if we regress Y on X or X on Y?

Table 3-6 gives data on X (net profits after tax in U.S. manufacturing industries
[$, in millions]) and Y (cash dividend paid quarterly in manufacturing indus-
tries [$, in millions]) for years 1974 to 1986.

a.

oman T

What relationship, if any, do you expect between cash dividend and after-tax
profits?

. Plot the scattergram between Y and X.

. Does the scattergram support your expectations in part (a)?

. If so, do an OLS regression of Y on X and obtain the usual statistics.

. Establish a 99% confidence interval for the true slope and test the hypothe-

sis that the true slope coefficient is zero; that is, there is no relationship
between dividend and the after-tax profit.

CASH DIVIDEND (Y) AND AFTER-TAX PROFITS (X) IN
U.S. MANUFACTURING INDUSTRIES, 1974-1986

Year Y X Year Y X

($, in millions) ($, in millions)
1974 19,467 58,747 1981 40,317 101,302
1975 19,968 49,135 1982 41,259 71,028
1976 22,763 64,519 1983 41,624 85,834
1977 26,585 70,366 1984 45,102 107,648
1978 28,932 81,148 1985 45,517 87,648
1979 32,491 98,698 1986 46,044 83,121
1980 36,495 92,579

Source: Business Statistics, 1986, U.S. Department of
Commerce, Bureau of Economic Analysis, December 1987, p. 72.

210n this see G. S. Maddala, Introduction to Econometrics, 3rd ed., Wiley, New York, 2001, pp. 71-75.
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Refer to the S.A.T. data given in Table 2-15 on the textbook’s Web site. Suppose
you want to predict the male math scores on the basis of the female math
scores by running the following regression:

Yt = Bl + Bth + Uy

where Y and X denote the male and female math scores, respectively.

a. Estimate the preceding regression, obtaining the usual summary statistics.

b. Test the hypothesis that there is no relationship between Y and X whatsoever.

¢. Suppose the female math score in 2008 is expected to be 490. What is the
predicted (average) male math score?

d. Establish a 95% confidence interval for the predicted value in part (c).

Repeat the exercise in Problem 3.15 but let Y and X denote the male and the

female critical reading scores, respectively. Assume a female critical reading

score for 2008 of 505.

Consider the following regression results:**

A

Yi
t

—0.17 + 5.26X; R? = 0.10, Durbin-Watson = 2.01
(—1.73)(2.71)

where Y = the real return on the stock price index from January of the current
year to January of the following year
X = the total dividends in the preceding year divided by the stock price
index for July of the preceding year
t=time

Note: On Durbin-Watson statistic, see Chapter 10.

The time period covered by the study was 1926 to 1982.

Note: R* stands for the adjusted coefficient of determination. The Durbin-

Watson value is a measure of autocorrelation. Both measures are explained in

subsequent chapters.

a. How would you interpret the preceding regression?

b. If the previous results are acceptable to you, does that mean the best in-
vestment strategy is to invest in the stock market when the dividend/price
ratio is high?

c. If you want to know the answer to part (b), read Shiller’s analysis.

Refer to Example 2.1 on years of schooling and average hourly earnings. The

data for this example are given in Table 2-5 and the regression results are pre-

sented in Eq. (2.21). For this regression

a. Obtain the standard errors of the intercept and slope coefficients and 7°.

b. Test the hypothesis that schooling has no effect on average hourly earnings.
Which test did you use and why?

c. If you reject the null hypothesis in (b), would you also reject the hypothesis
that the slope coefficient in Eq. (2.21) is not different from 1? Show the
necessary calculations.

225ee Robert J. Shiller, Market Volatility, MIT Press, Cambridge, Mass., 1989, pp. 32-36.
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3.19.

3.20.

3.21.

3.22.
3.23.

3.24.

3.25.

Example 2.2 discusses Okun’s law, as shown in Eq. (2.22). This equation can
also be written as X; = By + B,Y;, where X = percent growth in real output, as
measured by GDP and Y = change in the unemployment rate, measured
in percentage points. Using the data given in Table 2-13 on the textbook’s
Web site,

a. Estimate the preceding regression, obtaining the usual results as per

Eq. (3.46).

b. Is the change in the unemployment rate a significant determinant of per-
cent growth in real GDP? How do you know?
c. How would you interpret the intercept coefficient in this regression? Does
it have any economic meaning?
For Example 2.3, relating stock prices to interest rates, are the regression results
given in Eq. (2.24) statistically significant? Show the necessary calculations.
Refer to Example 2.5 about antique clocks and their prices. Based on Table 2-14,
we obtained the regression results shown in Egs. (2.27) and (2.28). For each
regression obtain the standard errors, the t ratios, and the 2 values. Test for the
statistical significance of the estimated coefficients in the two regressions.
Refer to Problem 3.22. Using OLS regressions, answer questions (a), (b), and (c).
Table 3-7 (found on the textbook’s Web site) gives data on U.S. expenditure on
imported goods (Y) and personal disposable income (X) for the period 1959
to 2006.

Based on the data given in this table, estimate an import expenditure func-
tion, obtaining the usual regression statistics, and test the hypothesis that
expenditure on imports is unrelated to personal disposable income.

Show that the OLS estimators, by and b,, are linear estimators. Also show that
these estimators are linear functions of the error term u; (Hint: Note that
by = 2/ Exi2 = Jwy;, where w; = x;/ Exiz and note that the X’s are
nonstochastic).

Prove Eq. (3.35). (Hint: Square Eq. [3.33] and use some of the properties of OLS).



