CHAPTER

New Text

MULTIPLE REGRESSION:
ESTIMATION AND
HYPOTHESIS TESTING

In the two-variable linear regression model that we have considered so far there
was a single independent, or explanatory, variable. In this chapter we extend
that model by considering the possibility that more than one explanatory vari-
able may influence the dependent variable. A regression model with more than
one explanatory variable is known as a multiple regression model, multiple
because multiple influences (i.e., variables) may affect the dependent variable.

For example, consider the 1980s savings and loan (S&L) crisis resulting from
the bankruptcies of some S&L institutions in several states. Similar events also
occurred in the fall of 2008 as several banks were forced into bankruptcy. What
factors should we focus on to understand these events? Is there a way to reduce
the possibility that they will happen again? Suppose we want to develop a regre-
ssion model to explain bankruptcy, the dependent variable. Now a phenomenon
such as bankruptcy is too complex to be explained by a single explanatory vari-
able; the explanation may entail several variables, such as the ratio of primary
capital to total assets, the ratio of loans that are more than 90 days past due to
total assets, the ratio of nonaccruing loans to total assets, the ratio of renegotiated
loans to total assets, the ratio of net income to total assets, etc.! To include all
these variables in a regression model to allow for the multiplicity of influences
affecting bankruptcies, we have to consider a multiple regression model.

Needless to say, we could cite hundreds of examples of multiple regression
models. In fact, most regression models are multiple regression models because
very few economic phenomena can be explained by only a single explanatory
variable, as in the case of the two-variable model.

1As a matter of fact, these were some of the variables that were considered by the Board of
Governors of the Federal Reserve System in their internal studies of bankrupt banks.
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94 PART ONE: THE LINEAR REGRESSION MODEL

In this chapter we discuss the multiple regression model seeking answers to
the following questions:

1. How do we estimate the multiple regression model? Is the estimating
procedure any different from that for the two-variable model?

2. Is the hypothesis-testing procedure any different from the two-variable
model?

3. Are there any unique features of multiple regressions that we did not
encounter in the two-variable case?

4. Since a multiple regression can have any number of explanatory varia-
bles, how do we decide how many variables to include in any given
situation?

To answer these and other related questions, we first consider the simplest of
the multiple regression models, namely, the three-variable model in which the
behavior of the dependent variable Y is examined in relation to two explanatory
variables, X, and X3. Once the three-variable model is clearly understood, the
extension to the four-, five-, or more variable case is quite straightforward,
although the arithmetic gets a bit tedious. (But in this age of high-speed com-
puters, that should not be a problem.) It is interesting that the three-variable
model itself is in many ways a clear-cut extension of the two-variable model, as
the following discussion reveals.

4.1 THE THREE-VARIABLE LINEAR REGRESSION MODEL

Generalizing the two-variable population regression function (PRF), we can
write the three-variable PRF in its nonstochastic form as

E(Yy = By + ByXy; + B3X3; (4.1)2

and in the stochastic form as
Yt = Bl + Bzth + B3X3t + u; 4.2)
= E(Yt) + Uy (4-3)

where Y = the dependent variable
X, and X3 = the explanatory variables
u = the stochastic disturbance term
t = the tth observation

2Equation (4.1) can be written as: E(Y;) = B1Xq; + ByXy: + B3X3 with the understanding that
Xy = 1 for each observation. The presentation in Eq. (4.1) is for notational convenience in that the
subscripts on the parameters or their estimators match the subscripts on the variables to which they
are attached.
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In case the data are cross-sectional, the subscript i will denote the ith observa-
tion. Note that we introduce u in the three-variable, or, more generally, in the
multivariable model for the same reason that it was introduced in the two-
variable case.

By is the intercept term. It represents the average value of Y when X, and X3
are set equal to zero. The coefficients B, and Bj are called partial regression
coefficients; their meaning will be explained shortly.

Following the discussion in Chapter 2, Equation (4.1) gives the conditional
mean value of Y, conditional upon the given or fixed values of the variables X,
and Xj. Therefore, as in the two-variable case, multiple regression analysis is
conditional regression analysis, conditional upon the given or fixed values of the
explanatory variables, and we obtain the average, or mean, value of Y for the fixed
values of the X variables. Recall that the PRF gives the (conditional) means of the
Y populations corresponding to the given levels of the explanatory variables, X,
and X33

The stochastic version, Equation (4.2), states that any individual Y value can
be expressed as the sum of two components:

1. A systematic, or deterministic, component (B + ByXy; + B3X3), which is
simply its mean value E(Y}) (i.e., the point on the population regression
line, PRL),* and

2. u;, which is the nonsystematic, or random, component, determined by
factors other than X; and X3.

All this is familiar territory from the two-variable case; the only point to note
is that we now have two explanatory variables instead of one explanatory
variable.

Notice that Eq. (4.1), or its stochastic counterpart Eq. (4.2), is a linear regression
model—a model that is linear in the parameters, the B’s. As noted in Chapter 2, our
concern in this book is with regression models that are linear in the parameters;
such models may or may not be linear in the variables (but more on this in
Chapter 5).

The Meaning of Partial Regression Coefficient

As mentioned earlier, the regression coefficients B, and B3 are known as partial
regression or partial slope coefficients. The meaning of the partial regression
coefficient is as follows: B, measures the change in the mean value of Y, E(Y), per
unit change in X,, holding the value of Xj constant. Likewise, B3 measures the

SUnlike the two-variable case, we cannot show this diagrammatically because to represent the
three variables Y, X, and X3, we have to use a three-dimensional diagram, which is difficult to
visualize in two-dimensional form. But by stretching the imagination, we can visualize a diagram
similar to Figure 2-6.

4Geometrically, the PRL in this case represents what is known as a plane.
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change in the mean value of Y per unit change in X3, holding the value of X,
constant. This is the unique feature of a multiple regression; in the two-variable
case, since there was only a single explanatory variable, we did not have to worry
about the presence of other explanatory variables in the model. In the multiple
regression model we want to find out what part of the change in the average
value of Y can be directly attributable to X, and what part to Xs. Since this point
is so crucial to understanding the logic of multiple regression, let us explain it
by a simple example. Suppose we have the following PRF:

Let X3 be held constant at the value 10. Putting this value in Equation (4.4), we
obtain

E(Y)) = 15 — 1.2X,; + 0.8(10)
= (15 + 8) — 1.2Xy
=23 — 12Xy 4.5)

Here the slope coefficient B, = —1.2 indicates that the mean value of Y decreases
by 1.2 per unit increase in X, when Xj is held constant—in this example it is
held constant at 10 although any other value will do.? This slope coefficient is
called the partial regression coeﬁ‘icient6 Likewise, if we hold X, constant, say, at
the value 5, we obtain

E(Y) = 15 — 1.2(5) + 0.8X3
=9 + 0.8Xy (4.6)

Here the slope coefficient B3 = 0.8 means that the mean value of Y increases by
0.8 per unit increase in X3 when Xj is held constant—here it is held constant at
5, but any other value will do just as well. This slope coefficient too is a partial
regression coefficient.

In short, then, a partial regression coefficient reflects the (partial) effect of one ex-
planatory variable on the mean value of the dependent variable when the values of other
explanatory variables included in the model are held constant. This unique feature of
multiple regression enables us not only to include more than one explanatory
variable in the model but also to “isolate” or “disentangle” the effect of each X
variable on Y from the other X variables included in the model.

We will consider a concrete example in Section 4.5.

5As the algebra of Eq. (4.5) shows, it does not matter at what value X3 is held constant, for that
constant value multiplied by its coefficient will be a constant number, which will simply be added
to the intercept.

*The mathematically inclined reader will notice at once that B, is the partial derivative of E(Y)
with respect to X, and that Bj is the partial derivative of E(Y) with respect to X3.
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4.2 ASSUMPTIONS OF THE MULTIPLE LINEAR REGRESSION MODEL

As in the two-variable case, our first order of business is to estimate the regres-
sion coefficients of the multiple regression model. Toward that end, we con-
tinue to operate within the framework of the classical linear regression model
(CLRM) first introduced in Chapter 3 and to use the method of ordinary least
squares (OLS) to estimate the coefficients.

Specifically, for model (4.2), we assume (cf. Section 3.1):

A4.1.

The regression model is linear in the parameters as in Eq. (4.1) and it is cor-
rectly specified.

A4.2.

X, and X3 are uncorrelated with the disturbance term u. If X, and X3 are
nonstochastic (i.e., fixed numbers in repeated sampling), this assumption is
automatically fulfilled.

However, if the X variables are random, or stochastic, they must be dis-
tributed independently of the error term u; otherwise, we will not be able to
obtain unbiased estimates of the regression coefficients. But more on this in
Chapter 11.

A4.3.

The error term u has a zero mean value; that is,

E(u) =0 4.7)

Ad4.

Homoscedasticity, that is, the variance of u, is constant:

var (1) = o? (4.8)

A4.5.

No autocorrelation exists between the error terms u; and u;:

cov (u;, u]-) i#j 4.9)

A4.6.

No exact collinearity exists between X, and Xj3; that is, there is no exact linear
relationship between the two explanatory variables. This is a new assump-
tion and is explained later.
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A4.7.

For hypothesis testing, the error term u follows the normal distribution with
mean zero and (homoscedastic) variance 2. That is,

u; ~ N(0, o) (4.10)

Except for Assumption (4.6), the rationale for the other assumptions is the
same as that discussed for the two-variable linear regression. As noted in
Chapter 3, we make these assumptions to facilitate the development of the sub-
ject. In Part II we will revisit these assumptions and see what happens if one or
more of them are not fulfilled in actual applications.

According to Assumption (4.6) there isno exactlinear relationship between the
explanatory variables X, and X3, technically known as the assumption of rno
collinearity, or no multicollinearity, if more than one exactlinear relationship is in-
volved. This concept is new and needs some explanation.

Informally, no perfect collinearity means that a variable, say, X,, cannot be
expressed as an exact linear function of another variable, say, X3. Thus, if we can
express

th = 3 + 2X3t

or

Xop = 4X3;

then the two variables are collinear, for there is an exact linear relationship
between X, and X3. Assumption (4.6) states that this should not be the case. The
logic here is quite simple. If, for example, X, = 4X3, then substituting this in
Eq. (4.1), we see that

E(Yy) = By + By(4X3) + B3X3
= Bl + (432 + B3)X3t
= Bl + AX3t (4.11)

where
A = 4B, + B; (4.12)

Equation (4.11) is a two-variable model, not a three-variable model. Now even
if we can estimate Eq. (4.11) and obtain an estimate of A, there is no way that we
can get individual estimates of B, or B; from the estimated A. Note that since
Equation (4.12) is one equation with two unknowns we need two (independent)
equations to obtain unique estimates of B, and Bj.

The upshot of this discussion is that in cases of perfect collinearity we cannot
estimate the individual partial regression coefficients B, and Bj; in other words,
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we cannot assess the individual effect of X, and X3 on Y. But this is hardly
surprising, for we really do not have two independent variables in the model.
Although, in practice, the case of perfect collinearity is rare, the cases of high
or near perfect collinearity abound. In a later chapter (see Chapter 8) we will
examine this case more fully. For now we merely require that two or more
explanatory variables do not have exact linear relationships among them.

4.3 ESTIMATION OF THE PARAMETERS OF MULTIPLE REGRESSION

To estimate the parameters of Eq. (4.2), we use the ordinary least squares (OLS)
method whose main features have already been discussed in Chapters 2 and 3.

Ordinary Least Squares Estimators

To find the OLS estimators, let us first write the sample regression function
(SRF) corresponding to the PRF Eq. (4.2), as follows:

Yt = bl + bZXZt + b3X3t + ¢ 4.13)

where, following the convention introduced in Chapter 2, e is the residual term,
or simply the residual—the sample counterpart of u—and where the b’s are the
estimators of the population coefficients, the B’s. More specifically,

by = the estimator of By
b, = the estimator of B,

lay
™
I

the estimator of Bj
The sample counterpart of Eq. (4.1) is
?t = b] + bZXZt + b3X3t (4.14)

which is the estimated population regression line (PRL) (actually a plane).

As explained in Chapter 2, the OLS principle chooses the values of the un-
known parameters in such a way that the residual sum of squares (RSS) 3¢7 is
as small as possible. To do this, we first write Equation (4.13) as

ey = Yt - bl - b2X2t - b3X3t (4.15)
Squaring this equation on both sides and summing over the sample observa-
tions, we obtain

RSS: Det = DY — by — boXy — b3X3)? (4.16)

And in OLS we minimize this RSS (which is simply the sum of the squared
difference between actual Y; and estimated Y}).
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The minimization of Equation (4.16) involves the calculus technique of dif-
ferentiation. Without going into detail, this process of differentiation gives us
the following equations, known as (least squares) normal equations, to help esti-
mate the unknowns’ (compare them with the corresponding equations given
for the two-variable case in Equations [2.14] and [2.15]):

? = bl + bz?z + b3§3 (4.17)
DY Xor = by > Xor + by > X5 + by >, X0y X (4.18)
DY Xar = by >, Xar + by > XXz + b3 >, X5 4.19)

where the summation is over the sample range 1 to n. Here we have three equa-
tions in three unknowns; the knowns are the variables Y and the X’s and the un-
knowns are the b’s. Ordinarily, we should be able to solve three equations with
three unknowns. By simple algebraic manipulations of the preceding equa-
tions, we obtain the three OLS estimators as follows:

by =Y — X, — b3 X5 (4.20)
_ (EthZt)(begt) = (2ypa)(Zags) @2
’ (Ex%t) (Ex%t) - (Exztx3t)2 .
Sy (xd) — (Syrar) (Sxoics)
5 = @.22)

(Ex%t)(Ex%t) = (Sxprs)’

where, as usual, lowercase letters denote deviations from sample mean values
(eg, 1y =Y —Y).

You will notice the similarity between these equations and the correspond-
ing ones for the two-variable case given in Egs. (2.16) and (2.17). Also, notice
the following features of the preceding equations: (1) Equations (4.21) and (4.22)
are symmetrical in that one can be obtained from the other by interchanging
the roles of x; and x3, and (2) the denominators of these two equations are
identical.

Variance and Standard Errors of OLS Estimators

Having obtained the OLS estimators of the intercept and partial regression
coefficients, we can derive the variances and standard errors of these estimators
in the manner of the two-variable model. These variances or standard errors
give us some idea about the variability of the estimators from sample to
sample. As in the two-variable case, we need the standard errors for two main

"The mathematical details can be found in Appendix 4A.1.
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purposes: (1) to establish confidence intervals for the true parameter values and
(2) to test statistical hypotheses. The relevant formulas, stated without proof, are
as follows:

1 X3 323 + X330d — 2XoX3 Sxopws 5
var (b)) = |— + Xy
n Ex%tzx%t - (Ethx3t)2

se(b;) = Vvar (by) 4.24)
Zx%t . 0_2
(Exgt)(zx%J = (XZxy x3t)2
se(by) = Vvar (by) (4.26)
Sk .2
(Ex%t)(zx%t) - (Zxy x3t)2
se(b3) = Vvar (bs) (4.28)

(4.23)

var (b)) = (4.25)

var (bs3) = 4.27)

In all these formulas o is the (homoscedastic) variance of the population error
term u;. The OLS estimator of this unknown variance is

2
2= 2T (4.29)
n—23
This formula is a straightforward extension of its two-variable companion
given in Equation (3.8) except that now the degrees of freedom (d.f.) are (1 — 3).
This is because in estimating RSS, Eef, we must first obtain by, by, and bz, which
consume 3 d.f. This argument is quite general. In the four-variable case the d.f.
will be (n — 4); in the five-variable case, (n — 5); etc.
Also, note that the (positive) square root of &2

G =V §2 (4.30)

is the standard error of the estimate, or the standard error of the regression, which, as
noted in Chapter 3, is the standard deviation of Y values around the estimated
regression line.

A word about computing Se?. Since Zef = 3(Y; — Y)? to compute this
expression, one has first to compute ¥;, which the computer does very easily.
But there is a shortcut to computing the RSS (see Appendix 4A.2), which is

Eet = ZV% — by Eytxzt - 532%95315 (4.31)

which can be readily computed once the partial slopes are estimated.
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Properties of OLS Estimators of Multiple Regression

In the two-variable case we saw that under assumed conditions the OLS esti-
mators are best linear unbiased estimators (BLUE). This property continues to
hold for the multiple regression. Thus, each regression coefficient estimated by
OLS is linear and unbiased—on the average it coincides with the true value.
Among all such linear unbiased estimators, the OLS estimators have the least
possible variance so that the true parameter can be estimated more accurately
than by competing linear unbiased estimators. In short, the OLS estimators are
efficient.

As the preceding development shows, in many ways the three-variable model
is an extension of its two-variable counterpart, although the estimating formulas
are a bit involved. These formulas get much more involved and cumbersome
once we go beyond the three-variable model. In that case, we have to use matrix
algebra, which expresses various estimating formulas more compactly. Of
course, in this text matrix algebra is not used. Besides, today you rarely compute
the estimates by hand; instead, you let the computer do the work.

4.4 GOODNESS OF FIT OF ESTIMATED MULTIPLE REGRESSION:
MULTIPLE COEFFICIENT OF DETERMINATION, R?

In the two-variable case we saw that r? as defined in Equation (3.38) measures
the goodness of fit of the fitted sample regression line (SRL); that is, it gives the
proportion or percentage of the total variation in the dependent variable Y explained by
the single explanatory variable X. This concept of r* can be extended to regression
models containing any number of explanatory variables. Thus, in the three-
variable case we would like to know the proportion of the total variation in
Y= yf) explained by X, and Xj jointly. The quantity that gives this informa-
tion is known as the multiple coefficient of determination and is denoted by
the symbol R%; conceptually, it is akin to 7%
As in the two-variable case, we have the identity (cf. Eq. 3.36):

TSS =ESS + RSS (4.32)

where TSS = the total sum of squares of the dependent variable Y (=3
ESS = the explained sum of squares (i.e., explained by all the X variables)
RSS = the residual sum of squares

Also, as in the two-variable case, R? is defined as

_ESS

R2 — =
TSS

(4.33)
That is, it is the ratio of the explained sum of squares to the total sum of squares;

the only change is that the ESS is now due to more than one explanatory
variable.
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Now it can be shown that®

ESS = by > ysxor + b3 D ysxa (4.34)

and, as shown before,

RSS = D y7 — by > yexor — by Xy x3 (4.35)

Therefore, R2 can be computed as
R — ba Xy + D32y
Syt
In passing, note that the positive square root of R?, R, is known as the coeffi-
cient of multiple correlation, the two-variable analogue of r. Just as r measures
the degree of linear association between Y and X, R can be interpreted as the de-
gree of linear association between Y and all the X variables jointly. Although r

can be positive or negative, R is always taken to be positive. In practice, how-
ever, R is of little importance.

@.36)°

4.5 ANTIQUE CLOCK AUCTION PRICES REVISITED

Let us take time out to illustrate all the preceding theory with the antique clock
auction prices example we considered in Chapter 2 (See Table 2-14). Let Y =auc-
tion price, X, = age of clock, and X3 = number of bidders. A priori, one would
expect a positive relationship between Y and the two explanatory variables. The
results of regressing Y on the two explanatory variables are as follows (the
EViews output of this regression is given in Appendix 4A.4).

Y; = —1336.049 + 12.7413X,; + 85.7640X3;

se=(175.2725)  (0.9123) (8.8019)
t=(-7.6226)  (13.9653) (9.7437) 4.37)
p=(0.0000)*  (0.0000)* (0.0000)*

R*=0.8906;  F=118.0585

Interpretation of the Regression Results

As expected, the auction price is positively related to both the age of the clock
and the number of bidders. The interpretation of the slope coefficient of about
12.74 means that holding other variables constant, if the age of the clock goes up

8See Appendix 4A.2. s
“R? can also be computed as 1 — % =1- ;Z.
yr

*Denotes an extremely small value.
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by a year, the average price of the clock will go up by about 12.74 marks.
Likewise, holding other variables constant, if the number of bidders increases
by one, the average price of the clock goes up by about 85.76 marks. The nega-
tive value of the intercept has no viable economic meaning. The R? value of
about 0.89 means that the two explanatory variables account for about 89 per-
cent of the variation in the auction bid price, a fairly high value. The F value
given in Eq. (4.37) will be explained shortly.

4.6 HYPOTHESIS TESTING IN A MULTIPLE REGRESSION:
GENERAL COMMENTS

Although R? gives us an overall measure of goodness of fit of the estimated re-
gression line, by itself R? does not tell us whether the estimated partial regres-
sion coefficients are statistically significant, that is, statistically different from
zero. Some of them may be and some may not be. How do we find out?

To be specific, let us suppose we want to entertain the hypothesis that age of
the antique clock has no effect on its price. In other words, we want to test the
null hypothesis: Hy: B, = 0. How do we go about it? From our discussion of
hypothesis testing for the two-variable model given in Chapter 3, in order to
answer this question we need to find out the sampling distribution of b, the
estimator of By. What is the sampling distribution of b,? And what is the sam-
pling distribution of b; and b3?

In the two-variable case we saw that the OLS estimators, b; and b,, are nor-
mally distributed if we are willing to assume that the error term u follows the
normal distribution. Now in Assumption (4.7) we have stated that even for
multiple regression we will continue to assume that u is normally distributed
with zero mean and constant variance o2. Given this and the other assumptions
listed in Section 4.2, we can prove that by, by, and b3 each follow the normal dis-
tribution with means equal to By, By, and B3, respectively, and the variances
given by Eqgs. (4.23), (4.25), and (4.27), respectively.

However, as in the two-variable case, if we replace the true but unobservable
o by its unbiased estimator 6> given in Eq. (4.29), the OLS estimators follow the
t distribution with (n — 3) d.f., not the normal distribution. That is,

b, — By
= ~t 4.
se(b) 3 (4.38)
b2 — B,
t = ~t, 4.
Se(bz) n—3 ( 39)
b — B
=3 3 (4.40)

~t,
se(b) ~ "?

Notice that the d.f. are now (n — 3) because in computing the RSS, Ee%, and
hence 62, we first need to estimate the intercept and the two partial slope coef-
ficients; so we lose 3 d.f.
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We know that by replacing o® with 62 the OLS estimators follow the ¢ distri-
bution. Now we can use this information to establish confidence intervals as
well as to test statistical hypotheses about the true partial regression coeffi-
cients. The actual mechanics in many ways resemble the two-variable case,
which we now illustrate with an example.

4.7 TESTING HYPOTHESES ABOUT INDIVIDUAL
PARTIAL REGRESSION COEFFICIENTS

Suppose in our illustrative example we hypothesize that
H()ZBZ =0 and HIZBZ #0

That is, under the null hypothesis, the age of the antique clock has no effect
whatsoever on its bid price, whereas under the alternative hypothesis, it is con-
tended that age has some effect, positive or negative, on price. The alternative
hypothesis is thus two-sided.

Given the preceding null hypothesis, we know that

b B
se(by)
by

= se(by) (Note: B, =0) 4.41)

follows the t distribution with (n — 3) = 29 d.f,, since n = 32 in our example.
From the regression results given in Eq. (4.37), we obtain

127413
09123

~ 13.9653 (4.42)

which has the t distribution with 29 d f.

On the basis of the computed t value, do we reject the null hypothesis that
the age of the antique clock has no effect on its bid price? To answer this ques-
tion, we can either use the test of significance approach or the confidence interval
approach, as we did for the two-variable regression.

The Test of Significance Approach

Recall that in the test of significance approach to hypothesis testing we develop
a test statistic, find out its sampling distribution, choose a level of significance
a, and determine the critical value(s) of the test statistic at the chosen level of
significance. Then we compare the value of the test statistic obtained from the
sample at hand with the critical value(s) and reject the null h}gpothesis if the
.y i’ 1 .
computed value of the test statistic exceeds the critical value(s).™ Alternatively,

101 the test statistic has a negative value, we consider its absolute value and say that if the
absolute value of the test statistic exceeds the critical value, we reject the null hypothesis.
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we can find the p value of the test statistic and reject the null hypothesis if the p
value is smaller than the chosen o value. The approach that we followed for the
two-variable case also carries over to the multiple regression.

Returning to our illustrative example, we know that the test statistic in ques-
tion is the t statistic, which follows the t distribution with (n — 3) d.f. Therefore,
we use the t test of significance. The actual mechanics are now straightforward.
Suppose we choose oo = 0.05 or 5%. Since the alternative hypothesis is two-
sided, we have to find the critical t value at a/2 = 2.5% (Why?) for (n — 3) d.f,,
which in the present example is 29. Then from the ¢ table we observe that for
29d.f,

(—2.045 = t = 2.045) = 0.95 (4.43)

That is, the probability that a ¢ value lies between the limits —2.045 and +2.045
(i.e., the critical t values) is 95 percent.

From Eq. (4.42), we see that the computed t value under Hy: B, =0 is approxi-
mately 14, which obviously exceeds the critical ¢ value of 2.045. We therefore re-
ject the null hypothesis and conclude that age of an antique clock definitely has
an influence on its bid price. This conclusion is also reinforced by the p value
given in Eq. (4.37), which is practically zero. That is, if the null hypothesis that
B, =0 were true, our chances of obtaining a ¢ value of about 14 or greater would
be practically nil. Therefore, we can reject the null hypothesis more resoundingly
on the basis of the p value than the conventionally chosen « value of 1% or 5%.

One-Tail or Two-Tail ¢ Test? Since, a priori, we expect the coefficient of the
age variable to be positive, we should in fact use the one-tail f test here. The 5%
critical t value for the one-tail test for 29 d.f. now becomes 1.699. Since the com-
puted t value of about 14 is still so much greater than 1.699, we reject the null
hypothesis and now conclude that the age of the antique clock positively
impacts its bid price; the two-tail test, on the other hand, simply told us that age
of the antique clock could have a positive or negative impact on its bid price.
Therefore, be careful about how you formulate your null and alternative
hypotheses. Let theory be the guide in choosing these hypotheses.

The Confidence Interval Approach to Hypothesis Testing

The basics of the confidence interval approach to hypothesis testing have already
been discussed in Chapter 3. Here we merely illustrate it with our numerical
example. We showed previously that

P(—2.045 = t = 2.045) = 0.95

We also know from Eq. (4.39) that
b - B
 se(by)




CHAPTER FOUR: MULTIPLE REGRESSION: ESTIMATION AND HYPOTHESIS TESTING 107

If we substitute this t value into Equation (4.43), we obtain

b, — By
se(by)

P (—2.045 = = 2.045> = 0.95

Which, after rearranging becomes
Plby, — 2.045se(by) = By = by + 2.045 se(by)] = 0.95 4.44)

which is a 95% confidence interval for B, (cf. Eq. [3.26]). Recall that under the
confidence interval approach, if the confidence interval, which we call the ac-
ceptance region, includes the null-hypothesized value, we do not reject the null
hypothesis. On the other hand, if the null-hypothesized value lies outside the
confidence interval, that is, in the region of rejection, we can reject the null hy-
pothesis. But always bear in mind that in making either decision we are taking
a chance of being wrong a% (say, 5%) of the time.

For our illustrative example, Eq. (4.44) becomes

12.7413 — 2.045(0.9123) = B, = 12.7413 + 2.045(0.9123)
that is,

10.8757 = B, = 14.6069 (4.45)

which is a 95% confidence interval for true B,. Since this interval does not include
the null-hypothesized value, we can reject the null hypothesis: If we construct
confidence intervals like expression (4.45), then 95 out of 100 such intervals will
include the true By, but, as noted in Chapter 3, we cannot say that the probability is
95% that the particular interval in Eq. (4.45) does or does not include the true B,.

Needless to say, we can use the two approaches to hypothesis testing to test
hypotheses about any other coefficient given in the regression results for our
illustrative example. As you can see from the regression results, the variable,
number of bidders, is also statistically significant (i.e., significantly different
from zero) because the estimated  value of about 8 has a p value of almost zero.
Remember that the lower the p value, the greater the evidence against the null
hypothesis.

4.8 TESTING THE JOINT HYPOTHESIS THAT B, = B; =00R R2 =0

For our illustrative example we saw that individually the partial slope coeffi-
cients b, and bj are statistically significant; that is, individually each partial slope
coefficient is significantly different from zero. But now consider the following
null hypothesis:

HO:BZ = B3 = 0 (4.46)
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This null hypothesis is a joint hypothesis that B, and Bj are jointly or simultane-
ously (and not individually or singly) equal to zero. This hypothesis states that
the two explanatory variables together have no influence on Y. This is the same
as saying that

Hy:R*=0 (4.47)

That is, the two explanatory variables explain zero percent of the variation in
the dependent variable (recall the definition of Rz). Therefore, the two sets of
hypotheses (4.46) and (4.47) are equivalent; one implies the other. A test of
either hypothesis is called a test of the overall significance of the estimated
multiple regression; that is, whether Y is linearly related to both X, and Xj.

How do we test, say, the hypothesis given in Equation (4.46)? The temptation
here is to state that since individually b, and b5 are statistically different from
zero in the present example, then jointly or collectively they also must be statis-
tically different from zero; that is, we reject Hy given in Eq. (4.46). In other
words, since age of the antique clock and the number of bidders at the auction
each has a significant effect on the auction price, fogether they also must have a
significant effect on the auction price. But we should be careful here for, as we
show more fully in Chapter 8 on multicollinearity, in practice, in a multiple re-
gression one or more variables individually have no effect on the dependent
variable but collectively they have a significant impact on it. This means that the
t-testing procedure discussed previously, although valid for testing the statistical
significance of an individual regression coefficient, is not valid for testing the joint
hypothesis.

How then do we test a hypothesis like Eq. (4.46)? This can be done by using
a technique known as analysis of variance (ANOVA). To see how this tech-
nique is employed, recall the following identity:

TSS = ESS + RSS 4.32)

That is,

SF = by >y + by >y + e @.48)"!

Equation (4.48) decomposes the TSS into two components, one explained by
the (chosen) regression model (ESS) and the other not explained by the model
(RSS). A study of these components of TSS is known as the analysis of variance
(ANOVA) from the regression viewpoint.

As noted in Appendix C every sum of squares has associated with it its
degrees of freedom (d.f.); that is, the number of independent observations on

UThis is Equation (4.35) written differently.
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ANOVA TABLE FOR THE THREE-VARIABLE REGRESSION

Source of variation Sum of squares (SS) df. MSS = %
Due to regression (ESS) by SyixXor+ bs Syt o bo Xyt xer‘zF b3 2yt Xat
Due to residual (RSS) Se? n_3 nEfi
Total (TSS) Sy? n_1

Note: MSS = mean, or average, sum of squares.

the basis of which the sum of squares is computed. Now each of the preceding
sums of squares has these d.f.:

Sum of squares d.f.

TSS n — 1 (always, Why?)

RSS n — 3 (three-variable model)
ESS 2 (three-variable model)*

*An easy way to find the d.f. for ESS is to subtract the d.f.
for RSS from the d.f. for TSS.

Let us arrange all these sums of squares and their associated d.f. in a tabular
form, known as the ANOVA table, as shown in Table 4-1.

Now given the assumptions of the CLRM (and Assumption 4.7) and the null
hypothesis: Hy: B, = B3 = 0, it can be shown that the variable

ESS/d.f.
RSS/d.f.

variance explained by X, and X3

B unexplained variance (4.49)

_ (by Zyxps + b3 2yx3p) /2
Set/(n — 3)

follows the F distribution with 2 and (n — 3) d.f. in the numerator and denomi-
nator, respectively. (See Appendix C for a general discussion of the F distribu-
tion and Appendix D for some applications). In general, if the regression model has
k explanatory variables including the intercept term, the F ratio has (k — 1) d.f. in the
numerator and (n — k) d.f. in the denominator.'?

How can we use the F ratio of Equation (4.49) to test the joint hypothesis that
both X; and X3 have no impact on Y? The answer is evident in Eq. (4.49). If the

P:

12A simple way to remember this is that the numerator d.f. of the F ratio is equal to the number
of partial slope coefficients in the model, and the denominator d.f. is equal to # minus the total num-
ber of parameters estimated (i.e., partial slopes plus the intercept).
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TABLE 4-2

ANOVA TABLE FOR THE CLOCK AUCTION PRICE EXAMPLE

Source of variation Sum of squares (SS) d.f. MSS = %
Due to regression (ESS) 4278295.3 2 4278295.3/2
Due to residual (RSS) 525462.2 29 525462.2/29
Total (TSS) 4803757.5 31

F=2139147.6/18119.386 = 118.0585*

*Figures have been rounded.

numerator of Eq. (4.49) is larger than its denominator—if the variance of Y
explained by the regression (i.e., by X, and X3) is larger than the variance not ex-
plained by the regression—the F value will be greater than 1. Therefore, as the
variance explained by the X variables becomes increasingly larger relative to
the unexplained variance, the F ratio will be increasingly larger, too. Thus, an
increasingly large F value will be evidence against the null hypothesis that the two (or
more) explanatory variables have no effect on Y.

Of course, this intuitive reasoning can be formalized in the usual framework
of hypothesis testing. As shown in Appendix C, Section C.4, we compute F as
given in Eq. (4.49) and compare it with the critical F value for 2 and (n — 3) d.f.
at the chosen level of «, the probability of committing a type I error. As usual, if
the computed F value exceeds the critical F value, we reject the null hypothesis that the
impact of all explanatory variables is simultaneously equal to zero. If it does not exceed
the critical F value, we do not reject the null hypothesis that the explanatory variables
have no impact whatsoever on the dependent variable.

To illustrate the actual mechanics, let us return to our illustrative example.
The numerical counterpart of Table 4-1 is given in Table 4-2.

The entries in this table are obtained from the EViews computer output given
in Appendix 4A 4.1 From this table and the computer output, we see that the
estimated F value is 118.0585, or about 119. Under the null hypothesis that B, =
B3 = 0, and given the assumptions of the classical linear regression model
(CLRM), we know that the computed F value follows the F distribution with 2
and 29 d.f. in the numerator and denominator, respectively. If the null hypothe-
sis were true, what would be the probability of our obtaining an F value of as
much as 118 or greater for 2 and 13 d.f.? The p value of obtaining an F value of
118 or greater is 0.000000, which is practically zero. Hence, we can reject the null
hypothesis that age and number of bidders together has no effect on the bid price
of antique clocks.™

In our illustrative example it so happens that not only do we reject the null
hypothesis that B, and Bj are individually statistically insignificant, but we also

3Unlike other software packages, EViews does not produce the ANOVA table, although it gives
the F value. But it is very easy to construct this table, for EViews gives TSS and RSS from which ESS
can be easily obtained.

141f you had chosen a = 1%, the critical F value for 2 and 30 (which is close to 29) d.f. would be
5.39. The F value of 118 is obviously much greater than this critical value.



CHAPTER FOUR: MULTIPLE REGRESSION: ESTIMATION AND HYPOTHESIS TESTING 111

reject the hypothesis that collectively they are insignificant. However, this need
not happen all the time. We will come across cases where not all explanatory
variables individually have much impact on the dependent variable (i.e., some
of the t values may be statistically insignificant) yet all of them collectively influ-
ence the dependent variable (i.e., the F test will reject the null hypothesis that all
partial slope coefficients are simultaneously equal to zero.) As we will see, this
happens if we have the problem of multicollinearity, which we will discuss
more in Chapter 8.

An Important Relationship between F and R?

TABLE 4-3

There is an important relationship between the coefficient of determination R>
and the F ratio used in ANOVA. This relationship is as follows:

Rk
(1~ R/~ K

(4.50)

where n = the number of observations and k = the number of explanatory vari-
ables including the intercept.

Equation (4.50) shows how F and R? are related. These two statistics vary
directly. When R%2=0 (i.e., no relationship between Y and the X variables), F is
zero ipso facto. The larger R is, the greater the F value will be. In the limit when
R%?=1, the F value is infinite.

Thus the F test discussed earlier, which is a measure of the overall signifi-
cance of the estimated regression line, is also a test of significance of R?; that is,
whether R? is different from zero. In other words, testing the null hypothesis
Eq. (4.46) is equivalent to testing the null hypothesis that (the population) R? is
zero, as noted in Eq. (4.47).

One advantage of the F test exgressed in terms of R? is the ease of computa-
tion. All we need to know is the R* value, which is routinely computed by most
regression programs. Therefore, the overall F test of significance given in
Eq. (4.49) can be recast in terms of R? as shown in Eq. (4.50), and the ANOVA
Table 4-1 can be equivalently expressed as Table 4-3.

ANOVA TABLE IN TERMS OF R?

Source of variation Sum of squares (SS) df. MSS = %
Due to regression (ESS) R2(Zy?) 2 Rz(fyf)

i 2 2 (1 - AA(=yf)
Due to residual (RSS) (1 - R?)(Zy?) n—3 s
Total (TSS) Sy? no1

Note: In computing the F value, we do not need to multiply R2 and (1 — R?) by S y? since it
drops out, as can be seen from Eq. (4.49).
In the k-variable model the d.f. will be (k — 1) and (n — k), respectively.
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For our illustrative example, R%=0.8906. Therefore, the F ratio of Equation (4.50)
becomes

0.8906/2
F=——"""—"/¥—/#/—~11812 4.51
(1 — 0.8906)/29 @51
which is about the same F as shown in Table 4-2, except for rounding errors.
It is left for you to set up the ANOVA table for our illustrative example in the
manner of Table 4-3.

4.9 TWO-VARIABLE REGRESSION IN THE CONTEXT OF MULTIPLE
REGRESSION: INTRODUCTION TO SPECIFICATION BIAS

Let us return to our example. In Example 2.5, we regressed auction price on the
age of the antique clock and the number of bidders separately, as shown in
Equations (2.27) and (2.28). These equations are reproduced here with the usual
regression output.

Y; = —191.6662 + 10.4856 Age;
se = (264.4393) + (1.7937) (4.52)
t=(—07248) (5.8457)  r? = 0.5325; F = 34.1723

Y; = 807.9501 + 54.5724 Bidders
se = (231.9501) (23.5724) (4.53)
t = (34962) (2.3455) 72 = 0.1549; F = 5.5017

If we compare these regressions with the results of the multiple regression
given in Eq. (4.37), we see several differences:

1. The slope values in Equations (4.52) and (4.53) are different from those
given in the multiple regression (4.37), especially that of the number of
bidders variable.

2. The intercept values in the three regressions are also different.

3. The R® value in the multiple regression is quite different from the >
values given in the two bivariate regressions. In a bivariate regression,
however, R? and 2 are basically indistinguishable.

As we will show, some of these differences are statistically significant and some
others may not be.

Why the differences in the results of the two regressions? Remember that in
Eq. (4.37), while deriving the impact of age of the antique clock on the auction
price, we held the number of bidders constant, whereas in Eq. (4.52) we simply
neglected the number of bidders. Put differently, in Eq. (4.37) the effect of a
clock’s age on auction price is net of the effect, or influence, of the number of
bidders, whereas in Eq. (4.52) the effect of the number of bidders has not been
netted out. Thus, the coefficient of the age variable in Eq. (4.52) reflects the gross
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effect—the direct effect of age as well as the indirect effect of the number of bidders.
This difference between the results of regressions (4.37) and (4.52) shows very
nicely the meaning of the “partial” regression coefficient.

We saw in our discussion of regression (4.37) that both the age of the clock
and the number of bidders variables were individually as well as collectively im-
portant influences on the auction price. Therefore, by omitting the number of
bidders variable from regression (4.52) we have committed what is known as a
(model) specification bias or specification error, more specifically, the specifi-
cation error of omitting a relevant variable from the model. Similarly, by omit-
ting the age of the clock from regression (4.53), we also have committed a spec-
ification error.

Although we will examine the topic of specification errors in Chapter 7, what
is important to note here is that you should be very careful in developing a
regression model for empirical purposes. Take whatever help you can from the
underlying theory and/or prior empirical work in developing the model. And
once you choose a model, do not drop variables from the model arbitrarily.

4.10 COMPARING TWO R2VALUES: THE ADJUSTED R?

By examining the R? values of our two-variable (Eq. [4.52] or Eq. [4.53]) and
three-variable (Eq. [4.37]) regressions for our illustrative example, you will no-
tice that the R? value of the former (0.5325 for Eq. [4.52] or 0.1549 for Eq. [4.53])
is smaller than that of the latter (0.8906). Is this always the case? Yes! An impor-
tant property of R? is that the larger the number of explanatory variables in a
model, the higher the R? will be. It would then seem that if we want to explain
a substantial amount of the variation in a dependent variable, we merely have
to go on adding more explanatory variables!

However, do not take this “advice” too seriously because the definition of
R?=ESS/TSS does not take into account the d.f. Note that in a k-variable model
including the intercept term the d.f. for ESS is (k — 1). Thus, if you have a model
with 5 explanatory variables including the intercept, the d.f. associated with
ESS will be 4, whereas if you had a model with 10 explanatory variables includ-
ing the intercept, the d.f. for the ESS would be 9. But the conventional R? for-
mula does not take into account the differing d.f. in the various models. Note
that the d.f. for TSS is always (n — 1). (Why?) Therefore, comparing the R? values of
two models with the same dependent variable but with differing numbers of explanatory
variables is essentially like comparing apples and oranges.

Thus, what we need is a measure of goodness of fit that is adjusted for (i.e.,
takes into account explicitly) the number of explanatory variables in the model.
Such a measure has been devised and is known as the adjusted R?, denoted by
the symbol, R% This R? can be derived from the conventional R? (see Appendix
4A.3) as follows:

_ —1
R2=1-(1 - Rz)h (4.54)
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Note that the R? we have considered previously is also known as the unadjusted
R for obvious reasons.
The features of the adjusted R? are:

1. If k> 1,R*<R% that is, as the number of explanatory variables
increases in a model, the adjusted R? becomes increasingly smaller than
the unadjusted R?. There seems to be a “penalty” involved in adding
more explanatory variables to a regression model.

2. Although the unadjusted R? is always positive, the adjusted R* can on
occasion turn out to be negative. For example, in a regression model
involving k=3 and n =30, if an RZ is found to be 0.06, R% can be negative
(—0.0096).

At present, most computer regression packages compute both the adjusted
and unadjusted R? values. This is a good practice, for the adjusted R will en-
able us to compare two regressions that have the same dependent variable but a
different number of explanatory variables.!> Even when we are not comparing
two regression models, it is a good practice to find the adjusted R? value
because it explicitly takes into account the number of variables included in a
model.

For our illustrative example, you should verify that the adjusted R? value is
0.8830, which, as expected, is smaller than the unadjusted R? value of 0.8906.
The adjusted R? values for regressions (4.52) and (4.53) are 0.5169 and 0.1268,
respectively, which are slightly lower than the corresponding unadjusted R
values.

4.11 WHENTO ADD AN ADDITIONAL EXPLANATORY
VARIABLE TO A MODEL

In practice, in order to explain a particular phenomenon, we are often faced
with the problem of deciding among several competing explanatory variables.
The common practice is to add variables as long as the adjusted R? increases
(even though its numerical value may be smaller than the unadjusted R?). But
when does adjusted R? increase? It can be shown that R* will increase if the |t |
(absolute t) value of the coefficient of the added variable is larger than 1, where the t
value is computed under the null hypothesis that the population value of the said coeffi-
cient is zero.'®

To see this all clearly, let us first regress auction price on a constant only, then
on a constant and the age of the clock, and then on a constant, the age of the
clock, and the number of bidders. The results are given in Table 4-4.

15As we will see in Chapter 5, if two regressions have different dependent variables, we cannot
compare their R? values directly, adjusted or unadjusted.

*Whether or not a particular t value is significant, the adjusted R* will increase so long as the |
of the coefficient of the added variable is greater than 1.
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TABLE 4-4 A COMPARISON OF FOUR MODELS OF ANTIQUE CLOCK AUCTION PRICES

Dependent variable  Intercept Age # of Bidders ~ R? R? F

Auction price 1328.094 — — 0.00 0.00 0 (1)
(19.0850)

Auction price —191.6662 10.4856 — 0.5325 0.5169 34.1723 (2)
(-0.7248)  (5.8457)

Auction price 807.9501 — 54.5724 0.1549 0.1268 5.5017 (3)

(3.4962) (2.3455)

Auction price —1336.049 12.7413 85.7640 0.8906 0.8830 118.0585 (4)

(-7.6226) (13.9653)  (9.7437)

Note: Figures in the parentheses are the estimated t values under the null hypothesis that the corresponding
population values are zero.

Some interesting facts stand out in this exercise:

1. When we regress auction price on the intercept only, the R?, R?, and F val-

ues are all zero, as we would expect. But what does the intercept value
represent here? It is nothing but the (sample) mean value of auction
price. One way to check on this is to look at Eq. (2.16). If there is no X
variable in this equation, the intercept is equal to the mean value of the
dependent variable.

. When we regress auction price on a constant and the age of the antique
clock, we see that the f value of the age variable is not only greater than
1, but it is also statistically significant. Unsurprisingly, both R? and R>
values increase (although the latter is somewhat smaller than the
former). But notice an interesting fact. If you square the ¢ value of 5.8457,
we get (5.8457)% = 34.1722, which is about the same as the F value of
34.1723 shown in Table 4-4. Is this surprising? No, because in Equation
(C.15) in Appendix C we state that

t} = Fiu (4.55) = (C.15)

That is, the square of the ¢ statistic with k d.f. is equal to the F statistic
with 1 d.f. in the numerator and k d.f. in the denominator. In our
example, k = 30 (32 observations — 2, the two coefficients estimated in
model [2]). The numerator d.f. is 1, because we have only one explana-
tory variable in this model.

. When we regress auction price on a constant and the number of bidders,
we see that the f value of the latter is 2.3455. If you square this value, you
will get (2.3455)? =5.5013, which is about the same as the F value shown
in Table 4-4, which again verifies Eq. (4.55). Since the ¢ value is greater
than 1, both R? and R? values have increased. The computed t value is
also statistically significant, suggesting that the number of bidders vari-
able should be added to model (1). A similar conclusion holds for
model (2).
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4. How do we decide if it is worth adding both age and number of bid-
ders together to model (1)? We have already answered this question
with the help of the ANOVA technique and the attendant F test. In
Table 4.2 we showed that one could reject the hypothesis that By = B3 =
0; that is, the two explanatory variables together have no impact on the
auction bid price.”

4.12 RESTRICTED LEAST SQUARES

Let us take another look at the regressions given in Table 4-4. There we saw the
consequences of omitting relevant variables from a regression model. Thus, in
regression (1) shown in this table we regressed antique clock auction price on the
intercept only, which gave an R? value of 0, which is not surprising. Then in
regression (4) we regressed auction price on the age of the antique clock as well
as on the number of bidders present at the auction, which gave an R? value of
0.8906. On the basis of the F test we concluded that there was a specification error
and that both the explanatory variables should be added to the model.

Let us call regression (1) the restricted model because it implicitly assumes that
the coefficients of the age of the clock and the number of bidders are zero; that
is, these variables do not belong in the model (i.e., B = B3 = 0). Let us call
regression (4) the unrestricted model because it includes all the relevant variables.
Since (1) is a restricted model, when we estimate it by OLS, we call it restricted
least squares (RLS). Since (4) is an unrestricted model, when we estimate it by
OLS, we call it unrestricted least squares (URLS). All the models we have esti-
mated thus far have been essentially URLS, for we have assumed that the
model being estimated has been correctly specified and that we have included
all the relevant variables in the model. In Chapter 7 we will see the conse-
quences of violating this assumption.

The question now is: How do we decide between RLS and URLS? That is,
how do we find out if the restrictions imposed by a model, such as (1) in the pre-
sent instance, are valid? This question can be answered by the F test. For this
purpose, let R? denote the R? value obtained from the restricted model and R2,
denote the R? value obtained from the unrestricted model. Now assuming that
the error term u; is normally distributed, it can be shown that

(R, — R?)/m
F= ~ Frn—k (4.56)
(1-RY) /-t "

follows the F distribution with m and (n — k) d.f. in the numerator and denom-
inator, respectively, where R? = R? obtained from the restricted regression,

7Suppose you have a model with four explanatory variables. Initially you only include two of
these variables but then you want to find out if it is worth adding two more explanatory variables.
This can be handled by an extension of the F test. For details, see Gujarati and Porter, Basic
Econometrics, 5th ed., McGraw-Hill, New York, 2009, pp. 243-246.
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R2, = R?obtained from the unrestricted regression, m = number of restrictions
imposed by the restricted regression (two in our example), n = number of
observations in the sample, and k = number of parameters estimated in the un-
restricted regression (including the intercept). The null hypothesis tested here is
that the restrictions imposed by the restricted model are valid. If the F value
estimated from Equation (4.56) exceeds the critical F value at the chosen level of
significance, we reject the restricted regression. That is, in this situation, the
restrictions imposed by the (restricted) model are not valid.

Returning to our antique clock auction price example, putting the appropri-
ate values in Eq. (4.56) from Table 4-4, we obtain:

p__ (0890 -0/2 0445
(1 — 0.890)/(32 — 3)  0.00379

The probability of such an F value is extremely small. Therefore, we reject the
restricted regression. More positively, age of the antique clock as well as thenum-
ber of bidders at auction both have a statistically significant impact on the
auction price.

The formula (4.56) is of general application. The only precaution to be taken
in its application is that in comparing the restricted and unrestricted regres-
sions, the dependent variables must be in the same form. If they are not, we
have to make them comparable using the method discussed in Chapter 5 (see
Problem 5.16) or use an alternative that is discussed in Exercise 4.20.

= 117414 4.57)

4.13 ILLUSTRATIVE EXAMPLES

To conclude this chapter, we consider several examples involving multiple
regressions. Our objective here is to show you how multiple regression models
are used in a variety of applications.

Example 4.1. Does Tax Policy Affect Corporate Capital Structure?

To find out the extent to which tax policy has been responsible for the recent
trend in U.S. manufacturing toward increasing use of debt capital in lieu of eg-
uity capital—that is, toward an increasing debt/equity ratio (called leverage in
the financial literature)—Pozdena estimated the following regression model:'®

Y; = By + By Xy + B3 Xa; + By Xys + BsBXs; + BgXes + 11;  (4.58)

where Y = the leverage (= debt/equity) in percent
X, = the corporate tax rate
X3 =the personal tax rate
X4 =the capital gains tax rate
X5 =nondebt-related tax shields
Xg = the inflation rate

!8Randall Johnston Pozdena, “Tax Policy and Corporate Capital Structure,” Economic Review,
Federal Reserve Bank of San Francisco, Fall 1987, pp. 37-51.



118 PART ONE: THE LINEAR REGRESSION MODEL

TABLE 4-5 LEVERAGE IN MANUFACTURING CORPORATIONS, 1935-1982

Coefficient
Explanatory variable (tvalue in parentheses)

Corporate tax rate 2.4

(10.5)

Personal tax rate —-1.2

(—4.8)

Capital gains tax rate 0.3

(1.3)

Non-debt-related tax shield —2.4

(—4.8)

Inflation rate 1.4

(3.0

n=48 (number of observations)

R?=0.87
R?=0.85

Notes: 1. The author does not present the estimated intercept.
2. The adjusted R? is calculated using Eq. (4.54).
3. The standard errors of the various coefficients can be obtained
by dividing the coefficient value by its t value (e.g., 2.4/10.5 =
0.2286 is the se of the corporate tax rate coefficient).
Source: Randall Johnston Pozdena, “Tax Policy and Corporate Capital
Structure,” Economic Review, Federal Reserve Bank of San Francisco, Fall
1987, Table 1, p. 45 (adapted).

Economic theory suggests that coefficients By, B4, and By will be positive and
coefficients B3 and Bs will be negative.!” Based on the data for U.S. manufactur-
ing corporations for the years 1935 to 1982, Pozdena obtained the OLS results
that are presented in tabular form (Table 4-5) rather than in the usual format (e.g.,
Eq. [4.37]). (Results are sometimes presented in this form for ease of reading.)

Discussion of Regression Results

The first fact to note about the preceding regression results is that all the coeffi-
cients have signs according to prior expectations. For instance, the corporate tax
rate has a positive effect on leverage. Holding other things the same, as the cor-
porate tax rate goes up by 1 percentage point, on the average, the leverage ratio
(i.e., the debt/equity ratio) goes up by 2.4 percentage points. Likewise, if the in-
flation rate goes up by 1 percentage point, on the average, leverage goes up by
1.4 percentage points, other things remaining the same. (Question: Why would
you expect a positive relation between leverage and inflation?) Other partial re-
gression coefficients should be interpreted similarly.

Since the t values are presented underneath each partial regression coefficient
under the null hypothesis that each population partial regression coefficient is

19See Pozdena’s article (footnote 18) for the theoretical discussion of expected signs of the various
coefficients. In the United States the interest paid on debt capital is tax deductible, whereas the in-
come paid as dividends is not. This is one reason that corporations may prefer debt to equity capital.
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individually equal to zero, we can easily test whether such a null hypothesis
stands up against the (two-sided) alternative hypothesis that each true popula-
tion coefficient is different from zero. Hence, we use the two-tail ¢ test. The d.f.
in this example are 42, which are obtained by subtracting from n (= 48) the
number of parameters estimated, which are 6 in the present instance. (Note: The
intercept value is not presented in Table 4-5, although it was estimated.) If
we choose a = 0.05 or 5%, the two-tail critical t value is about 2.021 for 40 d.f.
(Note: This is good enough for present purposes since the ¢ table does not give
the precise ¢ value for 42 d.f.) If a is fixed at 0.01 or a 1% level, the critical t value
for 40 d.f. is 2.704 (two-tail). Looking at the ¢ values presented in Table 4-5,
we see that each partial regression coefficient, except that of the capital gains
tax variable, is statistically significantly different from zero at the 1% level of
significance. The coefficient of the capital gains tax variable is not significant at
either the 1% or 5% level. Therefore, except for this variable, we can reject
the individual null hypothesis that each partial regression coefficient is zero. In
other words, all but one of the explanatory variables individually has an impact
on the debt/equity ratio. In passing, note that if an estimated coefficient is statisti-
cally significant at the 1% level, it is also significant at the 5% level, but the converse
is not true.

What about the overall significance of the estimated regression line? That is,
do we reject the null hypothesis that all partial slopes are simultaneously equal to
zero or, equivalently, is R? = 0? This hypothesis can be easily tested by using
Eq. (4.50), which in the present case gives

Rk 1)
A -R)/(m -k
0.87/5 4.59)
T 0.13/42
= 56.22

This F value has an F distribution with 5 and 42 d.f. If a is set at 0.05, the F table
(Appendix E, Table E-3) shows that for 5 and 40 d.f. (the table has no exact value
of 42 d.f. in the denominator), the critical F value is 2.45. The corresponding
value at a = 0.01 is 3.51. The computed F of ~ 56 far exceeds either of these
critical F values. Therefore, we reject the null hypothesis that all partial slopes
are simultaneously equal to zero or, alternatively, R? = 0. Collectively, all five
explanatory variables influence the dependent variable. Individually, however,
as we have seen, only four variables have an impact on the dependent variable,
the debt/equity ratio. Example 4.1 again underscores the point made earlier
that the (individual) ¢ test and the (joint) F test are quite different.’

20 the two-variable linear regression model, as noted before, t;% = Fy; that is, the square of a
value with k d f. is equal to an F value with 1 d.f. in the numerator and k d.f. in the denominator.
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Example 4.2. The Demand for Imports in Jamaica

To explain the demand for imports in Jamaica, J. Gafar?! obtained the fol-
lowing regression based on annual data for 19 years:

Y, = —589 + 0.20Xy — 0.10X5
se = (0.0092) (0.084) R =0.96 (4.60)
t= (21.74)  (—1.1904) R? = 0.955

where Y = quantity of imports
X, = personal consumption expenditure
X3 =import price/domestic price

Economic theory would suggest a positive relationship between Y and X,
and a negative relationship between Y and X3, which turns out to be the case.
Individually, the coefficient of X; is statistically significant but that of X3 isnotat,
say, the 5% level. But since the absolute t value of X3 is greater than 1, R*for this
example will drop if X3 is dropped from the model. (Why?) Together, X, and X3
explain about 96 percent of the variation in the quantity of imports into Jamaica.

Example 4.3. The Demand for Alcoholic Beverages in the United Kingdom

To explain the demand for alcoholic beverages in the United Kingdom, T.
McGuinness?? estimated the following regression based on annual data for
20 years:

Y; = — 0.014 — 0.354X5; + 0.0018X5; + 0.657Xy; + 0.0059Xs5;
se = (0.012) (0.2688) (0.0005) (0.266) (0.0034)

t=(-116) (1.32) (3.39) (2.47) (1.73)
R? = 0.689

4.61)

where Y = the annual change in pure alcohol consumption per adult
X, =the annual change in the real price index of alcoholic drinks
X3 = the annual change in the real disposable income per person

< the annual change in the number of licensed premises
=

the adult population
X5 =the annual change in real advertising expenditure on alcoholic
drinks per adult

Theory would suggest that all but the variable X, will be positively
related to Y. This is borne out by the results, although not all coefficients are

21J. Gafar, “Devaluation and the Balance of Payments Adjustment in a Developing Economy: An
Analysis Relating to Jamaica,” Applied Economics, vol. 13, 1981, pp. 151-165. Notations were
adapted. Adjusted R? computed.

22T, McGuinness, “An Econometric Analysis of Total Demand for Alcoholic Beverages in the
United Kingdom,” Journal of Industrial Economics, vol. 29, 1980, pp. 85-109. Notations were adapted.
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individually statistically significant. For 15 d.f. (Why?), the 5% critical t value
is 1.753 (one-tail) and 2.131 (two-tail). Consider the coefficient of Xs, the
change in advertising expenditure. Since the advertising expenditure and the
demand for alcoholic beverages are expected to be positive (otherwise, it is
bad news for the advertising industry), we can entertain the hypothesis that
Hy: Bs = 0vs. H: Bs > 0and therefore use the one-tail ¢ test. The computed
t value of 1.73 is very close to being significant at the 5% level.

It is left as an exercise for you to compute the F value for this example to test
the hypothesis that all partial slope coefficients are simultaneously equal to zero.

Example 4.4. Civilian Labor Force Participation Rate, Unemployment
Rate, and Average Hourly Earnings Revisited

In Chapter 1 we presented regression (1.5) without discussing the statistical
significance of the results. Now we have the necessary tools to do that. The
complete regression results are as follows:

CLEPR, = 81.2267 — 0.6384CUNR, — 1.4449AHES?,

se =(3.4040) (0.0715) (0.4148)
t=(23.88) (—8.94) (—3.50) (4.62)
p value = (0.000)*  (0.000)* (0.002)

R? = 0.767; R* = 0.748; F = 41.09

As these results show, each of the estimated regression coefficients is indi-
vidually statistically highly significant, because the p values are so small.
That is, each coefficient is significantly different from zero. Collectively, both
CUNR and AHES82? are also highly statistically significant, because the p
value of the computed F value (for 2 and 25 d.f.) of 41.09 is extremely low.

As expected, the civilian unemployment rate has a negative relationship
to the civilian labor force participation rate, suggesting that perhaps the
discouraged-worker effect dominates the added-worker hypothesis. The the-
oretical reasoning behind this has already been explained in Chapter 1. The
negative value of AHES2 suggests that perhaps the income effect dominates
the substitution effect.

Example 4.5. Expenditure on Education in 38 Countries:*

Based on data taken from a sample of 38 countries (see Table 4-6, found on
the textbook’s Web site), we obtained the following regression:

Educ; =414.4583 + 0.0523GDP; — 50.0476 Pop

2The data used in this exercise are from Gary Koop, Introduction to Econometrics, John Wiley &
Sons, England, 2008 and can be found on the following Web site: www.wileyeurope.com/
college/koop.

*Denotes extremely small value.
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4.14 SUMMARY

se=(266.4583) (0.0018)  (9.9581)
t =(1.5538)  (28.2742)  (—5.0257)
pvalue=(0.1292)  (0.0000)  (0.0000)

R? = 0.9616; R? = 0.9594; F = 439.22; p value of F = 0.000

where Educ = expenditure on education (millions of U.S. dollars), GDP =
gross domestic product (millions of U.S. dollars), and Pop = population (mil-
lions of people). As you can see from the data, the sample includes a variety
of countries in different stages of economic development.

It can be readily assessed that the GDP and Pop variables are individually
highly significant, although the sign of the population variable may be puz-
zling. Since the estimated F is so highly significant, collectively the two vari-
ables have a significant impact on expenditure on education. As noted, the
variables are also individually significant.

The R? and adjusted R? square values are quite high, which is unusual in
a cross-section sample of diverse countries.

We will explore these data further in later chapters.

In this chapter we considered the simplest of the multiple regression models,
namely, the three-variable linear regression model—one dependent variable and
two explanatory variables. Although in many ways a straightforward extension
of the two-variable linear regression model, the three-variable model introduced
several new concepts, such as partial regression coefficients, adjusted and unad-
justed multiple coefficient of determination, and multicollinearity.

Insofar as estimation of the parameters of the multiple regression coeffi-
cients is concerned, we still worked within the framework of the classical linear
regression model and used the method of ordinary least squares (OLS). The
OLS estimators of multiple regression, like the two-variable model, possess
several desirable statistical properties summed up in the Gauss-Markov prop-
erty of best linear unbiased estimators (BLUE).

With the assumption that the disturbance term follows the normal distri-
bution with zero mean and constant variance o2, we saw that, as in the two-
variable case, each estimated coefficient in the multiple regression follows the
normal distribution with a mean equal to the true population value and the
variances given by the formulas developed in the text. Unfortunately, in prac-
tice, 6% is not known and has to be estimated. The OLS estimator of this
unknown variance is 2. But if we replace a? by 62, then, as in the two-variable
case, each estimated coefficient of the multiple regression follows the t distribu-
tion, not the normal distribution.

The knowledge that each multiple regression coefficient follows the ¢
distribution with d.f. equal to (n — k), where k is the number of parameters esti-
mated (including the intercept), means we can use the ¢ distribution to test
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statistical hypotheses about each multiple regression coefficient individually.
This can be done on the basis of either the ¢ test of significance or the confidence
interval based on the t distribution. In this respect, the multiple regression
model does not differ much from the two-variable model, except that proper
allowance must be made for the d.f., which now depend on the number of para-
meters estimated.

However, when testing the hypothesis that all partial slope coefficients are
simultaneously equal to zero, the individual ¢ testing referred to earlier is of no
help. Here we should use the analysis of variance (ANOVA) technique and the
attendant F test. Incidentally, testing that all partial slope coefficients are simul-
taneously equal to zero is the same as testing that the multiple coefficient of
determination R? is equal to zero. Therefore, the F test can also be used to test
this latter but equivalent hypothesis.

We also discussed the question of when to add a variable or a group of
variables to a model, using either the t test or the F test. In this context we also
discussed the method of restricted least squares.

All the concepts introduced in this chapter have been illustrated by
numerical examples and by concrete economic applications.

KEY TERMS AND CONCEPTS

QUESTIONS

The key terms and concepts introduced in this chapter are

Multiple regression model Joint hypothesis testing or test of
Partial regression coefficients; overall significance of estimated
partial slope coefficients multiple regression
Multicollinearity a) analysis of variance (ANOVA)
Collinearity; exact linear b) F test
relationship Model specification bias (specification
a) high or near perfect collinearity error)
Multiple coefficient of Adjusted R* (R?)
determination, R? Restricted least squares (RLS)
Coefficient of multiple correlation, R~ Unrestricted least squares (URLS)
Individual hypothesis testing Relationship between t and F tests

4.1. Explain carefully the meaning of

. Partial regression coefficient

. Coefficient of multiple determination, R?
. Perfect collinearity

. Perfect multicollinearity

. Individual hypothesis testing

. Joint hypothesis testing

. Adjusted R?

QR -0 &n T



124 PART ONE: THE LINE

AR REGRESSION MODEL

4.2. Explain step by step the procedure involved in

4.3.

4.4.

4.5.

4.6.

a. Testing the statistical significance of a single multiple regression coeffi-
cient.

b. Testing the statistical significance of all partial slope coefficients.

State with brief reasons whether the following statements are true (T), false (F),

or uncertain (U).

a. The adjusted and unadjusted R%s are identical only when the unadjusted R?
is equal to 1.

b. The way to determine whether a group of explanatory variables exerts
significant influence on the dependent variable is to see if any of the
explanatory variables has a significant ¢ statistic; if not, they are statistically
insignificant as a group.

c. When R*=1, F =0, and when R*=0, F = infinite.

d. When the d.f. exceed 120, the 5% critical t value (two-tail) and the 5% criti-
cal Z (standard normal) value are identical, namely, 1.96.

*e. In the model Y; = By + ByXy; + B3X3; + u;, if X5 and X3 are negatively cor-
related in the sample and B3 > 0, omitting X3 from the model will bias b;,
downward [i.e., E(b1p) < By] where by, is the slope coefficient in the regres-
sion of Y on X, alone.

f. When we say that an estimated regression coefficient is statistically signifi-

cant, we mean that it is statistically different from 1.

. To compute a critical t value, we need to know only the d.f.

. By the overall significance of a multiple regression we mean the statistical

significance of any single variable included in the model.

i. Insofar as estimation and hypothesis testing are concerned, there is no dif-
ference between simple regression and multiple regression.

j- The d.f. of the total sum of squares (TSS) are always (n — 1) regardless of the
number of explanatory variables included in the model.

What is the value of 62 in each of the following cases?

a. De? = 880, n=25k=4 (including intercept)

b. 3¢ = 1220,n=14,k=3 (excluding intercept)

Find the critical t value(s) in the following situations:

= aQ

Degrees of freedom Level of significance
(df) (%) Ho

Two-tail
Right-tail
Left-tail
Two-tail

W
o
o= o,

Find the critical F values for the following combinations:

Numerator d.f. Denominator d.f. Level of significance (%)

5 5 5
4 19 1
20 200 5

* Optional.
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4.7. You are given the following data:

4.8.

4.9.

Y X X3
1 1 2
3 2 1
8 3 -3

Based on these data, estimate the following regressions (Note: Do not worry
about estimating the standard errors):

a. Yi=A1 + A Xpi +u;

b. Y,‘ = Cl + C3X3l‘ + u;

c. Y;=B1+ ByXp; + B3X3; + u;

d. Is A, = B,? Why or why not?

e. Is C3 = B3? Why or why not?
What general conclusion can you draw from this exercise?
You are given the following data based on 15 observations:

Y = 367.693; X,=402.760; X3 =80; >y? = 66,042.269
Sxd = 84,855.096; >k = 280.0;  Dyixy = 74,778.346
Dy = 4,250.9; D x5 = 4,796.0

where lowercase letters, as usual, denote deviations from sample mean values.

. Estimate the three multiple regression coefficients.

. Estimate their standard errors.

. Obtain R? and R

. Estimate 95% confidence intervals for B, and Bs.

. Test the statistical significance of each estimated regression coefficient using
a = 5% (two-tail).

f. Test at o = 5% that all partial slope coefficients are equal to zero. Show the

ANOVA table.
A three-variable regression gave the following results:

oD uan T

Sum of squares Mean sum of
Source of variation (SS) d.f. squares (MSS)
Due to regression (ESS) 65,965 — —
Due to residual (RSS) — — —
Total (TSS) 66,042 14
a. What is the sample size?
b. What is the value of the RSS?
c. What are the d.f. of the ESS and RSS?
d. What is R*? And R??
e. Test the hypothesis that X, and X3 have zero influence on Y. Which test do

you use and why?
f. From the preceding information, can you determine the individual contri-
bution of X, and X3 toward Y?

4.10. Recast the ANOVA table given in problem 4.9 in terms of R.
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4.11.

4.12.

To explain what determines the price of air conditioners, B. T. Ratchford?* ob-
tained the following regression results based on a sample of 19 air conditioners:

V.= —68.236 + 0.023Xy; + 19.729X5; + 7.653X;R? = 0.84
se= (0.005)  (8.992) (3.082)

where Y = the price, in dollars
X, = the BTU rating of air conditioner
X3 = the energy efficiency ratio
X4 = the number of settings
se = standard errors

a. Interpret the regression results.

b. Do the results make economic sense?

c. At a = 5%, test the hypothesis that the BTU rating has no effect on the
price of an air conditioner versus that it has a positive effect.

d. Would you accept the null hypothesis that the three explanatory variables
explain a substantial variation in the prices of air conditioners? Show
clearly all your calculations.

Based on the U.S. data for 1965-I1Q to 1983-IVQ (n = 76), James Doti and

Esmael Adibi?® obtained the following regression to explain personal con-

sumption expenditure (PCE) in the United States.

Y, = —10.96 + 0.93Xy; — 2.09X5;
t=(—3.33)(249.06) (—3.09) R%=0.999
F=83,753.7

where Y = the PCE ($, in billions)
X, = the disposable (i.e., after-tax) income ($, in billions)
X3 = the prime rate (%) charged by banks

a. What is the marginal propensity to consume (MPC)—the amount of
additional consumption expenditure from an additional dollar’s personal
disposable income?

b. Is the MPC statistically different from 1? Show the appropriate testing
procedure.

c. What is the rationale for the inclusion of the prime rate variable in the
model? A priori, would you expect a negative sign for this variable?

d. Is b3 significantly different from zero?

e. Test the hypothesis that R =0.

f. Compute the standard error of each coefficient.

2B. T. Ratchford, “The Value of Information for Selected Appliances,” Journal of Marketing
Research, vol. 17, 1980, pp. 14-25. Notations were adapted.

ZJames Doti and Esmael Adibi, Econometric Analysis: An Applications Approach, Prentice-Hall,
Englewood Cliffs, N.J., 1988, p. 188. Notations were adapted.
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In the illustrative Example 4.2 given in the text, test the hypothesis that X, and
X3 together have no influence on Y. Which test will you use? What are the
assumptions underlying that test?

Table 4-7 (found on the textbook’s Web site) gives data on child mortality (CM),

female literacy rate (FLR), per capita GNP (PGNP), and total fertility rate

(TER) for a group of 64 countries.

a. A priori, what is the expected relationship between CM and each of the
other variables?

b. Regress CM on FLR and obtain the usual regression results.

c. Regress CM on FLR and PGNP and obtain the usual results.

d. Regress CM on FLR, PGNP, and TFR and obtain the usual results. Also
show the ANOVA table.

e. Given the various regression results, which model would you choose and
why?

f. If the regression model in (d) is the correct model, but you estimate (a) or (b)
or (c), what are the consequences?

g. Suppose you have regressed CM on FLR as in (). How would you decide
if it is worth adding the variables PGNP and TFR to the model? Which test
would you use? Show the necessary calculations.

Use formula (4.54) to answer the following question:

Value of R? n k R?
0.83 50 6 —
0.55 18 9 —
0.33 16 12 —
0.12 1,200 32 —

What conclusion do you draw about the relationship between R* and R??

For Example 4.3, compute the F value. If that F value is significant, what does

that mean?

For Example 4.2, set up the ANOVA table and test that R = 0. Use « = 1%.

Refer to the data given in Table 2-12 (found on the textbook’s Web site) to

answer the following questions:

a. Develop a multiple regression model to explain the average starting pay of
MBA graduates, obtaining the usual regression output.

b. If you include both GPA and GMAT scores in the model, a priori, what
problem(s) may you encounter and why?

c. If the coefficient of the tuition variable is positive and statistically signifi-
cant, does that mean it pays to go to the most expensive business school?
What might the tuition variable be a proxy for?

d. Suppose you regress GMAT score on GPA and find a statistically significant
positive relationship between the two. What can you say about the prob-
lem of multicollinearity?

e. Set up the ANOVA table for the multiple regression in part (1) and test the
hypothesis that all partial slope coefficients are zero.

f. Do the ANOVA exercise in part (e), using the R? value.
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Normal Probability Plot
(response is CLFPR [%])
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FIGURE 4-1  Normal probability plot for Example 4.4
AD = Anderson-Darling statistic

4.19. Figure 4-1 gives you the normal probability plot for Example 4.4.
a. From this figure, can you tell if the error term in Eq. (4.62) follows the
normal distribution? Why or why not?
b. Is the observed Anderson-Darling A? value of 0.468 statistically significant?
If it is, what does that mean? If it is not, what conclusion do you draw?
c. From the given data, can you identify the mean and variance of the error
term?
4.20. Restricted least squares (RLS). If the dependent variables in the restricted and
unrestricted regressions are not the same, you can use the following vari-
ant of the F test given in Eq. (4.56)

_ (RSS, — RSS,,)/m
~ RSS,,/(n —k mn=k

F

where RSS, = residual sum of squares from the restricted regression, RSS,,, =

residual sum of squares from the unrestricted regression, m = number of

restrictions, and (n — k) = d.f. in the unrestricted regression.
Just to familiarize yourself with this formula, rework the model given in

Table 4-4.

4.21. Refer to Example 4.5.

a. Use the method of restricted least squares to find out if it is worth adding
the Pop (population) variable to the model.

b. Divide both Educ and GDP by Pop to obtain per capita Educ and per capita
GDP. Now regress per capita Educ on per capita GDP and compare your
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results with those given in Example 4.5. What conclusion can you draw
from this exercise?

4.22. Table 4-8 (found on the textbook’s Web site) contains variables from the Los
Angeles 2008 Zagat Restaurant Guide. The variables are score values out of 30,
with 30 being the best. For each restaurant listed, the table provides data for
four categories: food, décor, service, and average price for a single meal at the
establishment.

a. Create a least squares regression model to predict Price based on the
other three variables (Food, Décor, and Service). Are all the independent
variables statistically significant?

b. Does the normal probability plot indicate any problems?

c. Create a scattergram of the residual values from the model versus the
fitted values of the Price estimates. Does the plot indicate the resid-
ual values have constant variance? Retain this plot for use in future
chapters.

APPENDIX 4A.1: Derivations of OLS
Estimators Given in Equations (4.20) to (4.22)

Start with Eq. (4.16). Differentiate this equation partially with respect to by, by,
and b3, and set the resulting equations to zero to obtain:

aDe?
aEbll =23(Y; — by — baXp — b3X3)(-1) =0
a>e?
ob = ZE(YZ — bl - b2X2 - b3X3i)(_X2i) =0
2
82812
by 22(Y; = by — baXo — b3X3)(=X3) = 0

Simplifying these equations gives Eq. (4.17), (4.18), and (4.19). Using small
letters to denote deviations from the mean values (e.g., xp; = Xp; — X»), we can
solve the preceding equations to obtain the formulas given in Eqgs. (4.20), (4.21),
and (4.22).

APPENDIX 4A.2: Derivation of Equation (4.31)
Note that the three-variable sample regression model
Y,' = bl + bzXz[ + b3X3l' + ¢; (4A.2.1)

can be expressed in the deviation form (i.e., each variable expressed as a devia-
tion from the mean value and noting thate = 0) as

Y = bzXzi + b3X3,‘ + ¢ (4A.2.2)
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Therefore,
e; = Y; — byxp; — baxz;

Which we can write as

St = D (ee)
= > (y; — byxy — bsxz)

= Deyi — by D ey — b3 e

= Dey;  since the last two terms are zero (why?)

= D(yi — baxg — baxz)(y)
= >y — by D yixa — by Dy

= Dy — (ba X yixa: + by D yixs)
= TSS — ESS

APPENDIX 4A.3: Derivation of Equation (4.50)
Recall that (see footnote 9)
2_,_RSS
RE=1"T7sg
Now RZ?is defined as

72—1_w

TSS/(n — 1)
_ RSS (1 — 1)
TSS (n — k)

Note how the degrees of freedom are taken into account.

(4A.2.3)

(4A.3.1)

(4A.3.2)

Now substituting Equation (4A.3.1) into Equation (4A.3.2), and after

algebraic manipulations, we obtain

R2 _ _ R > VAN
RP=1-(1-R) —

n—1
n—

Notice that if we do not take into account the d.f. associated with RSS (=n — k)

and TSS (=n — 1), then, obviously R? = R2
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APPENDIX 4A.4: EViews Output of the Clock
Auction Price Example

Method: Least Squares

Sample: 132
Included observations: 32

Variable Coefficient Std. Error t-Statistic Prob.
C —1336.049 175.2725 —7.622698 0.0000
AGE 12.74138 0.912356 13.96537 0.0000
NOBID 85.76407 8.801995 9.743708 0.0000
R-squared 0.890614 Mean dependent var 1328.094
Adjusted R-squared 0.883070 S.D. dependent var 393.6495
S.E. of regression 134.6083 Akaike info criterion 12.73167
Sum squared resid 525462.2 Schwarz criterion 12.86909
Log likelihood —200.7068 F-statistic 118.0585
Durbin-Watson stat 1.864656 Prob (F-statistic) 0.000000
Actual Fitted Residual Residual Plot
Y ) e;
1235.00 1397.04 —162.039 e
1080.00 1158.38 —78.3786 °
845.000 882.455 —37.4549 : [}
1552.00 1347.03 204.965 5 [}
1047.00 1166.19 ~119.191 e
1979.00 1926.29 52.7127 : °
1822.00 1680.78 141.225 : °
1253.00 1203.45 49.5460 : °
1297.00 1181.40 115.603 °
946.000 875.604 70.3963 : °
1713.00 1695.98 17.0187 : °
1024.00 1098.10 —74.0973 : °
2131.00 2030.68 100.317 : °
1550.00 1669.00 —118.995 e
1884.00 1671.46 212.540 : ®
2041.00 1866.01 174.994 : °
854.000 1000.55 —146.553 )
1483.00 1461.71 21.2927 : °
1055.00 1240.72 —185.717 ‘e
1545.00 1579.81 —34.8054 g °
729.000 554.605 174.395 °
1792.00 1716.53 75.4650 : °
1175.00 1364.71 —189.705 )
1593.00 1732.70 ~139.702 )
1147.00 1095.63 51.3672 : °
1092.00 1127.97 —35.9668 : °
1152.00 1269.63 —117.625 e
1336.00 1127.01 208.994 : °
785.000 678.593 106.407 : [}
744.000 729.558 14.4417 : °
1356.00 1564.60 —208.599 °
1262.00 1404.85 —142.852 e




