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CHAPTER 

9 

HETEROSCEDASTICITY: WHAT HAPPENS IF 

THE ERROR VARIANCE IS NONCONSTANT? 

 

QUESTIONS 

 

9.1. Heteroscedasticity means that the variance of the error term in a regression 

model does not remain constant between observations. 

(a) The OLS estimators are still unbiased but they are no longer efficient. 

(b) and (c) Since the estimated standard errors of OLS estimators may be 

biased, the resulting t ratios are likely to be biased too. As a result, the usual 

confidence intervals, hypothesis testing procedure, etc. are likely to be of 

questionable value. 

9.2. (a) False.  The OLS estimators are still unbiased; only they are no longer 

efficient. 

(b) True.  Since the estimated standard errors are likely to be biased, the t 

ratios will be biased too. 

(c) False.  Sometimes OLS overestimates the variances of OLS estimators 

and sometimes it underestimates them. 

(d) Uncertain.  It may or may not.  Sometimes a systematic pattern in the 

residuals may reflect specification bias, such as omission of a relevant 

variable, or wrong functional form, etc.  

(e) True. Since the true heteroscedastic variances are not directly 

observable, one cannot test for heteroscedasticity directly without making 

some assumptions. 

9.3. (a) Yes, because of the diversity of firms included in the Fortune 500 list. 

  (b) Probably. 

(c) Probably not.  In time series data, it is often not easy to isolate the effects 

of autocorrelation and heteroscedasticity. 

(d) Yes, because of vast differences in per capita income data of developed 

and developing countries.  
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(e) Yes.  Although the U.S. and Canadian inflation rates are similar, the 

Latin American countries exhibit wide swings in the inflation rate.   

9.4. By giving unequal weights, WLS  discounts  extreme observations. The 

estimators thus obtained are BLUE.  Note that WLS is a specific application 

of GLS, the method of generalized least squares.  

9.5. (a) This is a visual method, which is often a good starting point to find out if 

one or more assumptions of the classical linear regression model (CLRM) 

are fulfilled.  

(b) and (c) These two tests formalize the graphical method by making 

suitable assumptions(s) about the explanatory variable(s) that might be the 

cause of heteroscedasticity.   

 

PROBLEMS 
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The error term 
 
v
i
 is homoscedastic.  Use the regression-through-the-origin 

procedure to estimate the parameters of the transformed model.  

9.7. (a) Perhaps heteroscedasticity is present in the data. 

(b) 
  
var(u

i
) = σ 2(GNP

i

2 ) .            

(c) The coefficients of the original  and  transformed models  are  about   the  

same, although the standard errors of the coefficients in the transformed 

model seem to be somewhat lower, perhaps suggesting that the authors have 

succeeded in reducing the severity of heteroscedasticity.  

(d) No.  In the transformed model, the intercept in fact represents the slope 

coefficient of GNP. 

(e) The two   R
2s  cannot be compared directly because the dependent 

variables in the two models are different.  
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9.8. (a) He is assuming that 
  
var(u

i
) = σ 2X

i
, that is, the error variance is 

proportional to the distance from the central business district.  

(b) Although the values of the slope coefficient in the original and 

transformed models are about equal, the standard error in the transformed 

model is lower (i.e., the t ratio is higher).  This might suggest that the author 

has probably succeeded in reducing heteroscedasticity.   

(c) The original model is a log-lin model.  The slope coefficient of about      

-0.24 suggests that as the distance traveled from the central business district 

increases by a mile, the average population density decreases by about 24%.  

The results make economic sense because the greater the distance one has to 

travel to get to work, the lesser will be the density of population of that 

place.  

9.9 (a) Based on the data in Table 9-2, using ONLY the log of education as the 

independent variable, the results are as follows: 

  
ln̂Y

i
 =  0.0716 + 0.787 

  
lnEduc

i
 

  se =  (0.2344)   (0.0918) 

                                        t = (0.31)   (8.57)    r
2  = 0.124         

  (b) The plots indicate the potential of some heteroscedasticity: 
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 (c) Park Test:  
  
ln̂e

i

2  = -3.080 + 0.1762 ln(
  
lnEduc

i
) 

                                                     t  =  (-2.91)   (0.43)     r
2 = 0.00 

Note:  The original regression is double-logarithmic. Therefore, in the Park 

test we are using the natural log of the squared residuals and the natural log 

of lnEduc.    

Since the slope coefficient in this regression is not statistically significant at 

the 5% level, the Park test does not suggest the presence of 

heteroscedasticity. 

Glejser Test:  |
 
e
i
|  =  0.3593 +  0.0151 

  
lnEduc

i
 

                             t  = (2.64)  (0.28)          r
2  

= 0.000    

This particular form of the Glejser test suggests that there is no 

heteroscedasticity. 

(d) In the present case, the question is academic. 

(e) Perhaps the log-linear model. 

(f) No, because the dependent variables in the two models are not the same.  

9.10. (a) �Wage
i
= 8.6406 + 0.0263 Exper

 i
 

                  t  = (21.44)     (1.43)      r
2 = 0.04 

     �ln Wage
i
= 1.8244 + 0.0951 ln Exper

 i
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                   t = (25.47)    (3.65)       r
2 = 0.025 

(b) In the linear model there seems to be some evidence of 

heteroscedasticity.  In the log-linear model such evidence is not clear. 

  (c) Linear Model: 

  (1) Park Test:   
  
ln̂e

i

2  = -7.8314 + 2.4958 ln Exper
 i  

                                                       t = (6.98)    (-0.96)     r
2  = 0.002 

Since the estimated t value is not significant, the Park test does suggest 

heteroscedasticity. 

(2) Glejser test:  |
 
e
i
| = 3.723 + 0.0059 Exper

 i
 

                                                       t =  (13.90)   (0.48)     r
2  = 0.000 

Again, there is no indication of heteroscedasticity, since the estimated t 

value of Experience is not statistically significant. If you repeat the Park and 

Glejser tests for the log-linear model, you will find that the regression 

results are not significant.  

(d) Since there was no evidence of heteroscedasticity, this is left to the 

reader. 

9.11. (a) Let Y = GDP growth rate (%), and X = 
 

Investment

GDP
 (%). 

You can regress Y on X.  You can also regress ln Y on ln X, provided the Y 

values are positive.  To make all the Y values positive, add a constant in 

such a way that the largest negative value becomes positive. 

(b) Yes, there is evidence of heteroscedasticity. This should not be 

surprising because the countries in the sample have positive as well as 

negative real interest rates.   

(c) If it is assumed that the error variance is proportional to the value of X, 

use the square root transformation.  If it is assumed that the error variance is 

proportional to the square of X, divide the equation by X on both sides. 

(d) Add two dummy variables to the model to distinguish the three 

categories of interest rate experiences.  If the original model (without the 

dummies) was mis-specified, and if the residuals in the new model (i.e., 
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with the dummies added) do not exhibit any systematic pattern, the 

“heteroscedasticity” observed in the original model can then be attributed to 

the mis-specification bias. 

9.12. Let Y = median salary and  X = age (Assume X = 72 for the last group). 

  (a)   Ŷ = 6,419.8182  +  127.8182 X 

         t =   (3.6408)         (3.5946)       r
2 = 0.5894 

(b) 

 

Y

X
 = 5,133.8548

  

1

X







  +  155.1791 X  

                        t   =   (3.6702)                     (4.8764)     r
2 = 0.9608 

Note: This is a regression without an intercept. The   r
2 shown is based on the 

raw   r
2  formula. The original   r

2  in EViews is negative, a common 

occurrence when the intercept is suppressed. 

  (c) 
 

Y

X
 =  4,216.9105

  

1

X







  +  177.4836 

                                t  =      (3.8596)                 (6.2138)     r
2 = 0.6234 

(d) It seems that transformations (b) and (c) have reduced the standard errors 

in relation to the coefficients, probably reducing the heteroscedasticity 

problem.  Plot the residuals from regressions (b) and (c) and see if they 

exhibit any systematic patterns.  If they do, use the Park or Glejser test to 

further confirm if there is evidence of heteroscedasticity in the data. 

9.13. The Spearman’s rank correlation coefficient is 0.4407. Substituting this 

value in the given formula, the t value is 1.9636.  For 16 d.f., the 5% one-

tailed critical t value is 1.746. Therefore, the observed t value is significant 

at this level, suggesting perhaps that there is evidence of heteroscedasticity 

in the data.   

9.14. (a) 
  
Ŷ
i
 = 1,993.7258  +  0.2328

 
X
i
 

         t  =  (2.1309)         (2.3340)      r
2 = 0.4376 

(b) 

 

Y
i

σ
i

  =  2,417.3347

  

1

σ
i









  + 0.1800

 

X
i

σ
i
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                                 t    =    (2.1131)                (1.4273)     r
2  = 0.6482 

Note: This   r
2  is the one generated by EViews. Since the regression does not 

have an intercept, you may wish to calculate the  raw   r
2 as an exercise. 

In this example, the unweighted regression may be more appropriate based 

on the statistical significance of the coefficients.  

9.15. 

  

var(v
i
) = var

u
i

X
i









 =

var(u
i
)

X
i

2
=

σ 2X
i

2

X
i

2
= σ 2

  

9.16. (a) In regression (1) the slope coefficient suggests that if the number of 

employees increases by 1, the average salary goes up by 0.009 dollars.  

After multiplying through by N, the slope coefficient in model (2) is about 

the same as in model (1). 

(b) The author is not only assuming heteroscedasticity, but specifically 

states that the error variance is proportional to the square of  N. 

  (c) As noted in (a), the two slopes and the two intercepts are about the same. 

(d) Because the two dependent variables are not the same, the two   R
2s  

cannot be compared directly. 

9.17.  The derived average and marginal cost functions are as follows: 

 

Average cost function [From Eq. (9.32)]:  

  

Y
i

X
i









 = 476,000

1

X
i









 + 31.348 − (1.083 × 10−6 )X

i
 

Marginal cost function [from Eq.(9.32)]: 

  

dY
i

dX
i









 = 31.348 − 2(1.083 × 10−6 )X

i
 

Average cost function [from Eq.(9.33)]: 

  

Y
i

X
i









 = 342,000

1

X
i









 + 25.57 + (4.34 × 10−6 )X

i
 

Marginal cost function [from Eq. (9.33]: 
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dY
i

dX
i









 = 25.57 + 2(4.34 × 10−6 )X

i
 

 

In Model (9.33) the quadratic term in X is not statistically significant, 

suggesting that the total cost function is linear. This means the average and 

marginal cost functions derived from (9.33) are in fact: 

 

Average cost    =  
  

342,000

X
 + 25.57 

Marginal cost   =  25.57 

    

Note: If you need to refresh your memory on the concepts of various cost 

functions, consult any introductory microeconomics textbook.  

9.18. (a) A priori, calorie intake should have a negative effect on  infant mortality 

and population growth should have a positive effect.   

  (b) The EViews regression results are as follows: 

 

(Regression output is shown on the following page) 

 

 

Dependent Variable: IMOR 
Sample: 1 20 
 

Variable Coefficient Std. Error t-Statistic Prob. 

C 172.6195 52.45598 3.290749 0.0050 
PCGNP -0.002502 0.001535 -1.629641 0.1240 
PEDU -1.279618 0.316722 -4.040198 0.0011 

POPGROWTH 6.379603 7.045706 0.905460 0.3795 
CSPC -0.001363 0.018708 -0.072873 0.9429 

R-squared 0.815002 F-statistic 16.52053 
Adjusted R-squared 0.765670 Prob(F-statistic) 0.000023 

 

  Note: We are showing the F statistic and its p value here. 

The  population growth and calorie intake variables have the expected signs. 

(c) Only one of the coefficients in the preceding regression is statistically 

significant, yet the F value is very significant. This seems to be a classic 
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case of multicollinearity. Dropping the population growth (POPGROWTH) 

and per capita GNP (PCGNP) variables, the results were as follows: 

 

Dependent Variable: IMOR 
Sample: 1 20 
 

Variable Coefficient Std. Error t-Statistic Prob. 

C 250.0996 28.19164 8.871411 0.0000 
PEDU -1.210991 0.329756 -3.672385 0.0019 
CSPC -0.030999 0.013099 -2.366448 0.0301 

R-squared 0.760462 F-statistic 26.98494 
Adjusted R-squared 0.732281 Prob(F-statistic) 0.000005 

 

Now both independent variables are statistically significant.  

9.19. (a) The regression results show that the none of the coefficients in the 

auxiliary regression are statistically significant.   

(b) Since not only the coefficients are insignificant but also the product of 

the   R
2  and the sample size will not exceed the critical  χ

2 value at 5 d.f., we 

can conclude there is no evidence of heteroscedasticity.  

(c) Examine the residuals from the transformed model visually. You can 

also apply the White procedure to the residuals from the transformed 

regressions to make sure that they are not heteroscedastic.    

 

9.20. (a) To explain the caloric intake, a  model using the variables per capita 

GNP (PCGNP, or 
  
X

2
), index of literacy (PEDU, or 

  
X

3
), and population 

growth (POPGROWTH, or 
  
X

4
) was developed. 

  
X

4
 was insignificant and 

was dropped from the model, and the final EViews model was as follows: 

 

Dependent Variable: CSPC 
Sample: 1 20 
 

Variable Coefficient Std. Error t-Statistic Prob. 

C 1497.320 313.2984 4.779214 0.0002 
PCGNP 0.060858 0.014767 4.121147 0.0007 
PEDU 10.61977 3.556400 2.986102 0.0083 

R-squared 0.716941   
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(b) When plotted against the independent variables, the residuals from the 

preceding regression model showed visible heteroscedastic patterns.  

(c) Using EViews, the following White’s heteroscedasticity-corrected 

regression was obtained: 

 

Dependent Variable: CSPC 
Sample: 1 20 
White Heteroskedasticity-Consistent Standard Errors & Covariance 
 

Variable Coefficient Std. Error t-Statistic Prob. 

C 1497.320 333.8182 4.485436 0.0003 
PCGNP 0.060858 0.009457 6.435356 0.0000 
PEDU 10.61977 3.855596 2.754379 0.0135 

R-squared 0.716941   

 

As you can see comparing this regression with the one given in (a), the 

standard errors using the White procedure are different, in one case much 

lower and in the other a bit higher.  That is, this procedure gives more 

efficient estimates of the parameters while allowing us to retain the original 

regression estimates. 

9.21. Consider Model 1 in Table 7-2.  Applying White's heteroscedasticity test 

(with no cross-product terms), we get the following results from EViews:  

   

(Regression output is shown on the following page) 

 

White Heteroskedasticity Test: 

F-statistic 3.214078 Probability 0.016850 
Obs*R-squared 11.76858 Probability 0.019158 

     
Test Equation: 
Dependent Variable: RESID^2 
Sample: 1 85 
 

Variable Coefficient Std. Error t-Statistic Prob. 

C -42.97513 32.53147 -1.321033 0.1903 
INCOME 0.002603 0.004075 0.638917 0.5247 

INCOME^2 -1.72E-07 2.13E-07 -0.804801 0.4233 
ACCESS 2.807384 1.124675 2.496174 0.0146 

ACCESS^2 -0.023232 0.009280 -2.503543 0.0143 

R-squared 0.138454   
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Note: RESID^2 means residuals squared, and so on.  The White   n
2  test 

statistic is also shown (Obs*R-squared), and  it is  significant (its  p value is 

0.0191).  Incidentally, even if we introduce the cross-product terms, there is 

evidence of heteroscedasticity. When running the initial regression, do not 

forget to save your residuals in a new series so that you can apply the White 

test or other tests: The RESID series in each EViews work file is used as a 

depository of the residuals from each regression you run, and each new 

regression overwrites the residuals of the previous one.  

These results suggest that we have a heteroscedasticity problem.  One can 

use a variety of transformations to resolve it.  You are urged to plot the 

squared residuals of the chosen model on each of the explanatory variables 

and / or on the estimated values of the dependent variable to see which 

variable might be used to transform the data to eliminate heteroscedasticity. 

We will give here the results of White's heteroscedasticity-corrected 

standard errors for Model 1 of Table 7.2, which are as follows:  

 

Dependent Variable: LE 
Sample: 1 85 
White Heteroskedasticity-Consistent Standard Errors & Covariance 
 

Variable Coefficient Std. Error t-Statistic Prob. 

C 39.43802 1.823039 21.63313 0.0000 
INCOME 0.000542 9.52E-05 5.695746 0.0000 
ACCESS 0.283303 0.026132 10.84117 0.0000 

R-squared 0.774146   

 

A comparison with the results given in Table 7-2 will show that apparently 

the original model overestimated the standard errors, for the estimated t 

values are lower in that table as compared with the t values shown in the 

preceding regression.   

You can proceed similarly with the remaining two models in Table 7-2. 

  

9.22. For the Experience variable: 

  

e
i

= 3.165 + 0.0108Exper

t = 12.77( ) 0.95( ) r 2 = 0.002
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e
i

= 3.0989 + 0.0655 Exper

t = 7.79( ) 0.70( ) r 2 = 0.001
 

  

  

e
i

= 3.2480 + 0.9528
1

Exper

t = 19.19( ) 1.15( ) r 2 = 0.003

 

For the Wage variable: 

  

e
i

= 0.3390 + 0.3314Wage

t = 1.43( ) 14.63( ) r 2 = 0.291
 

  

  

e
i

= −1.5942 + 1.6988 Wage

t = −3.29( ) 10.59( ) r 2 = 0.177
 

  

  

e
i

= 3.7773 − 2.894
1

Wage

t = 13.38( ) −1.69( ) r 2 = 0.005

 

 

9.23. The Breusch-Pagan test assesses whether the error variance is a function of 

one or more of the independent variables. The ratio of each squared residual 

over the ML estimator of the error variance is saved; this new column is 

now regressed against the (m – 1) chosen independent variables. The 

(1/2)ESS value is approximately a Chi-squared variable with (m – 1) 

degrees of freedom. Verification of heteroscedasticity in (9.33) is: 

 
The regression equation is 

p = 0.171 + 0.0692 Educ + 0.0106 Exper - 0.221 Sex - 0.209 Marstat 

    + 0.093 Region - 0.268 Union 

 

Predictor      Coef   SE Coef      T      P 

Constant     0.1706    0.5120   0.33  0.739 

Educ        0.06917   0.03289   2.10  0.036 

Exper      0.010558  0.007293   1.45  0.148 

Sex         -0.2209    0.1631  -1.35  0.176 

Marstat     -0.2091    0.1753  -1.19  0.233 

Region       0.0930    0.1783   0.52  0.602 

Union       -0.2684    0.2115  -1.27  0.205 

 

S = 1.82416   R-Sq = 1.7%   R-Sq(adj) = 0.5% 

 

Analysis of Variance 

 

Source           DF        SS     MS     F      P 

Regression        6    28.893  4.816  1.45  0.195 
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Residual Error  516  1717.021  3.328 

Total           522  1745.914 

 

The explained sum of squares is 28.893, so (1/2)(28.893) = 14.4465. With 6 

degrees of freedom, the 5% critical value for the Chi-square is 12.5916, and 

the 1% critical value is 16.8119. So, at the 5% level there is slight evidence 

of some heteroscedasticity, but at the 1% level we cannot reject the null 

hypothesis of homoscedasticity. 

 

9.24. The estimation is left to the reader. 

9.25. In model (9.33), there are 3 dummy variables. For the SEX variable, the 

coefficient suggests that women make, on average, about 24.4% less than 

men with similar characteristics. If a person is married, he or she is likely to 

make about 6.9% more than similar unmarried people, and if an employee 

belongs to a union, he or she makes about 18.36% more than similar non-

union workers. 

 

9.26 (a) The linear-in-variables results from Eviews are: 

Dependent Variable: DOMESTIC     
Method: Least Squares     
Sample: 1 14     
Included observations: 14     
     
  Coefficient Std. Error t-Statistic Prob.   
C  10785.52 25182.56 0.428293 0.6767 
R_D  3.257962 1.283377 2.538586 0.0275 
PROFITS 1.304895 0.222216 5.872188 0.0001 
     
R-squared  0.799630     Mean dependent var 157751.1 
Adjusted R-squared 0.763200     S.D. dependent var  91645.36 
S.E. of regression 44596.59     Akaike info criterion 24.43611 
Sum squared resid 2.19E+10     Schwarz criterion  24.57305 
Log likelihood  -168.0528     Hannan-Quinn criter. 24.42344 
F-statistic  21.94928     Durbin-Watson stat  2.029377 
Prob(F-statistic) 0.000145    
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(b)  Using White’s heteroscedasticity-corrected procedure, the new results 

are: 

 
Dependent Variable: DOMESTIC     
Method: Least Squares     
Sample: 1 14     
Included observations: 14     
White Heteroskedasticity-Consistent Standard Errors & Covariance   
  
  Coefficient Std. Error t-Statistic Prob.   
C  10785.52 26195.63 0.411730 0.6884 
R_D  3.257962 0.988018 3.297471 0.0071 
PROFITS 1.304895 0.252824 5.161281 0.0003 
     
R-squared  0.799630     Mean dependent var 157751.1 
Adjusted R-squared 0.763200     S.D. dependent var  91645.36 
S.E. of regression 44596.59     Akaike info criterion 24.43611 
Sum squared resid 2.19E+10     Schwarz criterion  24.57305 
Log likelihood  -168.0528     Hannan-Quinn criter. 24.42344 
F-statistic  21.94928     Durbin-Watson stat  2.029377 
Prob(F-statistic) 0.000145    
     

(c)  Note that the coefficients have remained unchanged between the two 

outputs. With respect to standard errors and statistical significance, 

however, there is a slight difference. The White’s corrected results indicate 

an even stronger level of significance for the R&D variable (its p-value 

went from 0.0275 to 0.0071). Oddly enough, the Profits p-value went from 

0.0001 to 0.0003, slightly decreasing in significance, although it remains 

extremely useful nonetheless. 

 

9.27.  (a) Regression results from EViews are as follows: 

 

Dependent Variable: SALARY     

Sample: 1 447     

Included observations: 447     

     

Variable Coefficient Std. Error t-Statistic Prob.   

     

C  998.7095 623.6954 1.601277 0.1100 

TENURE 31.67279 9.465097 3.346272 0.0009 

AGE  5.492393 11.46086 0.479230 0.6320 

SALES 0.014287 0.006614 2.160040 0.0313 

PROFITS 0.141302 0.068845 2.052471 0.0407 

ASSETS 0.007630 0.001326 5.754849 0.0000 

     

R-squared   0.248829     Mean dependent var 2027.517 

Adjusted R-squared 0.240312     S.D. dependent var  1722.566 

S.E. of regression  1501.390     Akaike info criterion 17.47950 
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Sum squared resid  9.94E+08     Schwarz criterion  17.53457 

Log likelihood  -3900.669     F-statistic   29.21660 

Durbin-Watson stat 2.014806     Prob(F-statistic)  0.000000 

     

The results for the White Heteroskedasticity test are: 

 

White Heteroskedasticity Test:     

     

F-statistic 2.089313     Probability  0.024109 

Obs*R-squared 20.44073     Probability  0.025349 

  

With a p value of 0.0253, there is apparent heteroscedasticity in the data. It 

is left as an exercise to the reader to construct the Breusch-Pagan statistic, 

which also indicates heteroscedasticity in this dataset.  

 

(b) Results for the log-lin model and White’s heteroscedasticity test are as 

follows: 

 

Dependent Variable: LN_SAL     

Sample: 1 447     

Included observations: 447     

     

Variable Coefficient Std. Error t-Statistic Prob.   

     

C  6.753659 0.236823 28.51778 0.0000 

TENURE 0.008251 0.003594 2.295836 0.0222 

AGE  0.007228 0.004352 1.661010 0.0974 

SALES 6.09E-06 2.51E-06 2.425693 0.0157 

PROFITS 5.72E-05 2.61E-05 2.186738 0.0293 

ASSETS 2.03E-06 5.03E-07 4.035537 0.0001 

     

R-squared  0.208984     Mean dependent var 7.391898 

Adjusted R-squared 0.200016     S.D. dependent var  0.637388 

S.E. of regression 0.570091     Akaike info criterion 1.727292 

Sum squared resid 143.3268     Schwarz criterion  1.782359 

Log likelihood  -380.0497     F-statistic   23.30217 

Durbin-Watson stat 1.920217     Prob(F-statistic)  0.000000 

     

White Heteroskedasticity Test:     

     

F-statistic 2.581930     Probability  0.004784 

Obs*R-squared 24.99078     Probability  0.005363 

     

Apparently there is still some heteroscedasticity in the data. 
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(c)  
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Based on these scattergrams, there are several variables that might be 

adding to the heteroscedasticity. It is left to the reader to try several models 

to see which helps decrease it sufficiently. 

 

9.28.   (a) The regression results are as follows: 
 

2

ˆ 189.9597 1.2716 0.3904 1.9032

(22.5287) (0.2331) (0.0762) (0.1855)

(8.4318) ( 5.4551) (5.1207) ( 10.2593)

0.8828

i i i iMPG SP HP WT

se

t

R

= − + −

=

= − −

=

 

As expected, MPG is positively related to HP and negatively related  

to speed and weight.   

 

(b) Since this is a cross-sectional data involving a diversity of cars, 

a priori one would expect heteroscedasticity.   

 

(c) Regressing the squared residuals obtained from the model shown in (a) on the 

three regressors, their squared terms, and their cross-product terms, we obtain an 

R
2
 value of 0.3094. Multiplying this value by the number of observations (=81), 
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we obtain 25.0646, which under the null hypothesis that there is no 

heteroscedasticity, has the Chi-square distribution with 9 d.f. (3 regressors, 3 

squared regressors, and 3 three cross-product terms).  The p value of obtaining a 

Chi-square value of as much as 25.0646 or greater (under the null hypothesis) is 

0.0029, which is very small.  Hence, we must reject the null hypothesis.  That is, 

there is heteroscedasticity.   

 

(d) The results based on White's procedure are as follows: 
 

Dependent Variable: MPG      
Method: Least Squares      
    
Sample: 1 81      
Included observations: 81      
White Heteroscedasticity-Consistent Standard Errors & Covariance   
   
      
Variable Coefficient Std. Error t-Statistic Prob.    
      
C  189.9597 33.90605 5.602531 0.0000  
SP  -1.271697 0.336039 -3.784375 0.0003  
HP  0.390433 0.108781 3.589180 0.0006  
WT  -1.903273 0.285077 -6.676352 0.0000  
      
R-squared 0.882864;   Durbin-Watson 1.0237 
 

When you compare this result with the OLS results, you will find that the values 

of the estimated coefficients are the same, but their variances and standard errors 

are different.  As you can see, the standard errors of all the estimated slope 

coefficients are higher under the White procedure, hence t  are lower, suggesting 

that OLS had underestimated the standard errors.  This could all be due to 

heteroscedasticity.  

 

(e) There is no simple formula to determine the exact nature of 

heteroscedasticity in the present case.  Perhaps one could make some simple 

assumptions and try various transformations.  For example, if it is believed 

that the "culprit" variable is HP, and if we believe that the error variance is 

proportional to the square of HP, we could divide through by HP and see 

what happens. Of course, any other regressor is a likely candidate for 

transformation.  
 

 

 

 


