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CHAPTER 

10 

AUTOCORRELATION: WHAT HAPPENS IF 

ERROR TERMS ARE CORRELATED? 

 

QUESTIONS 

 

10.1. (a) The correlation between the current value of the error with its own past 

value(s). 

(b) The correlation between the current value of the error with its immediate 

past value. 

(c) The correlation between observations over space rather than over time. 

Note: Some authors use the term serial correlation for correlation observed 

in time series data [i.e., in the sense defined in (a)] and autocorrelation for 

correlation observed in cross-section data [in the sense defined in (c)].  

10.2. Although in general an AR(m) scheme can be used, the AR(1) scheme has 

been found to be quite useful in many time series analysis. With the AR(1) 

scheme, many properties of the OLS estimators can be easily established. 

10.3. The consequences are: (1) The OLS estimators are unbiased, but are not 

efficient. (2) The conventionally estimated standard errors of OLS 

estimators are biased. (3)  As a result, the conventionally computed t and F 

tests are unreliable, the conventional estimator of 2σ  is biased, and the 

conventionally computed 2R  may not represent the true 2R . 

10.4. The method of generalized difference equation will produce BLUE 

estimators, provided the first-order autocorrelation parameter,ρ , is known 

or can be estimated.  Also, remember to transform the first observation on 

the dependent and explanatory variables a la Prais-Winsten if the sample 

size is small. 

10.5. These methods are: 

(1) The first difference method, where it is assumed that ρ = 1 

(2) ρ estimated from the Durbin-Watson d as: 21ρ /d−≈  
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(3) ρ  estimated from the regression ttt veˆe += −1 ρ       

(4) The Cochrane-Orcutt iterative procedure 

(5) The Cochrane-Orcutt two-step method 

(6) Durbin's two-step method 

(7) Hildreth-Lu search procedure  

(8) Maximum Likelihood method.  

10.6. (1) The graphical method: There are no particular assumptions made.  We 

simply plot the residuals from an OLS regression chronologically or plot the 

current residuals on the residuals in the previous time period, if the AR(1) 

scheme is assumed.  

(2) The Durbin-Watson test: This test is based on  several assumptions, such 

as (i) an intercept  term is included in the model; (ii) X variables are non-

stochastic (fixed in repeated sampling); (iii) AR(1) autoregressive scheme; 

(iv) no lagged values of the dependent variable are included as explanatory 

variables.   

(3) The runs test: This is a non-parametric test. 

10.7. On the Durbin-Watson d test’s assumptions, see part (2) of Question 10.6.  

One drawback of the method is that if the computed d value lies in the 

uncertain zone, no definite decision can be made about the presence of 

(first-order) autocorrelation.  

10.8. (a) False.  The OLS estimators, although inefficient, are unbiased. 

(b) True. Use the Durbin h test here. 

(c) True. Except for autocorrelation, we are still retaining the other 

assumptions of the CLRM. 

(d) False.  It assumes that ρ =  +1.  If ρ  is -1, we regress the two-period 

moving average of Y on the two-period moving averages of the X variables. 

(e) True.  Because the dependent variables in the two models are not the 

same, the two models cannot be directly compared. 

10.9. In small samples, if the first observation is omitted from the transformed 

regression, the resulting estimators can be inefficient. 
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PROBLEMS 

 

10.10. The answers are in the last column of the following table:  

 

Sample 

size 

Number of 

explanatory 

variables 

Durbin- 

Watson 

d 

Evidence of  

autocorrelation 

25 2 0.83 Yes (positive autocorrelation) 

30 5 1.24 Uncertain 

50 8 1.98 No autocorrelation  

60 6 3.72 Negative autocorrelation 

200 20 1.61 Uncertain 

 

10.11. The Swed-Eisenhart results are in the last column of the following table: 

 

Sample 

size 

Number 

of  + 

Number 

of  – 

Number 

of runs 

Autocorrelation (?) 

18 11 7 2 Evidence of autocorrelation 

30 15 15 24 Evidence of autocorrelation 

38 20 18 6 Evidence of autocorrelation 

15 8 7 4 Evidence of autocorrelation 

10 5 5 1 Evidence of autocorrelation 

 

10.12. (a) The estimated d value is 0.6394.  The 5% critical d values are 0.971 and 

1.331.  Since 0.6394 < 0.971, there is evidence of positive (first-order) 

autocorrelation.  

(b) 
2

1ρ
d

ˆ −≈  = 0.6803 

(c) Dropping the first observation, we get: 

 (1) tŶ
*
 = -1.1230  +  23.3274 (1 / tX

*
 )  

           t = (-0.6210)   (3.2700)    2r = 0.5430 

The residuals from this regression, when subjected to the runs test, gave the 

number of runs as 4, 5 positive and 6 negative residuals. 
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Retaining the first observation, we obtain: 

 (2) tŶ
*
 = -1.8148  +  27.0485 (1 / tX

*
) 

                      t = (-0.9793)   (3.8169)    2r = 0.5930 

In the residuals from this regression there were 5 runs, 6 positive and 6 

negative residuals.  

(d) Based on the runs test, neither regression (1) nor regression (2) seem to 

have autocorrelation. 

Note 1: For X, the transformation is 
*X t

1
=

1

1
6803.0

1

−









−

tt XX
, given the 

original format of the independent variable. The intercept in the transformed 

regressions was entered as (1-ρ ). 

Note 2: The Prais-Winsten transformation is sensitive to  the sample size.   

10.13. (a) For n = 16 and k'  = 1, the 5% critical d values are 1.106 and 1.371.  

Since the computed d of 0.8252 is less than Ld , there is evidence of positive 

autocorrelation in the data for Model A. For n = 16 and k' = 2, the 5% 

critical d values are 0.982 and  1.539.  Since the computed  d  of 1.82 falls 

between 1.539 ( Ud )  and 2.461 (4 – Ud ), we can conclude that there is no 

evidence of (first-order) positive autocorrelation in Model B. 

(b) As this example shows, the Durbin-Watson d can be an indication of a 

specification error rather than pure auto-correlation.   

(c) Although popularly used as a test of first-order autocorrelation, the d 

statistic can also be used to test for specification errors. 

10.14. tŶ  = -117.8014 + 0.2608 tX  – 0.629 1−tX  + 0.6562 1−tY  

   t =  (-1.8796)    (2.6219)      (-1.4210)      (2.8096)     2R = 0.9547                                                          

The estimated ρ  is therefore 0.6562.  

The results of the second stage regression with transformed X and Y are: 

tŶ
*
 = -120.3288 + 0.1790 tX

*
  

    t =   (-1.2383)   (4.2936)     2r = 0.5060 
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Note:  The first observation is included in the analysis a la Prais-Winsten.  

The intercept in the transformed regression has been entered as (1-ρ ). 

10.15. (a) For n = 25 and k' = 2, the 5% critical d values are 1.206 and 1.550.  

Since the computed d value of 0.8755 is below 1.206, there is evidence of 

positive (first-order) autocorrelation. 

(b) Since the Durbin-Watson d test is inappropriate in this case, we cannot 

trust the computed d value.  Perhaps a runs test could be done if the original 

data were available. 

(c) Since in the presence of autocorrelation the conventionally estimated 

standard errors are biased, it is quite possible that in the original regression 

these standard errors were underestimated.  As a result, the t ratios could be 

over-estimated.  The transformed regression shows this clearly. 

(d) See the answer given in (b).   

Note: The Durbin-Watson d test assumes an AR(1) scheme. The Durbin 

two-step procedure implicitly assumes an AR(2) scheme (Why?). 

10.16. (a) Using the d value given in the problem, we obtain an estimate of ρ as 









−

2

8624.1
1 = 0.0688.  Using this value in the h statistic, we obtain:  

)0403.0(171

17
)0688.0(

−
≈h = 0.5055. 

Obviously, this h value is not statistically significant, suggesting that 

perhaps there is no autocorrelation in the data.  But keep in mind that our 

sample size is rather small. Therefore, the preceding conclusion must be 

accepted cautiously.    

(b) In autoregressive models like the one in the present example, the d value 

is generally around 2, which is the d value expected if there is no 

autocorrelation in the data.  Therefore, there is a built-in bias against finding 

autocorrelation in such models on the basis of the d test. 

10.17. (a) tŶ = -2015.2 + 0.7723 tX  

          t = (-6.58)  (19.52)    2r = 0.9380;  d = 0.4285 
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(b) For n = 27 and k' = 1, the 5% critical d values are 1.089 and 1.233.  

Since the computed d value of 0.4285 is less than 1.089, there is evidence of 

positive autocorrelation.  

(c) ρ̂  = (1 – d / 2)  = (1 – 0.4285 / 2) = 0.7858 

(d) Dropping the first observation: 

    tŶ
*
 = --617.9 + 0.8624 tX

*
 

        t = (-3.01)    (8.47)   2r = 0.749;  d = 0.9118 

Retaining the first observation: 

    tŶ
*
 = -642.1 + 0.867 tX

*
  

        t = (-3.13)   (8.48)   2r = 0.742;  d = 0.9248 

 (e) tê  =  0.7689 1−te  

         t = (6.26)     

Note: There is no intercept in this model (Why?). Therefore, ρ̂  = 0.6156. 

Dropping the first observation: 

   tŶ
* 

= -927.8 + 0.8166 tX
*
 

                                       t = (-4.42) (12.76)  2r = 0.872;  d = 0.7931 

Keeping the first observation: 

   tŶ
* 

= -958.5 + 0.823 tX
*
 

      t = (-4.70) (13.10)  2r = 0.873;  d = 0.8209 

(f) First difference transformation (i.e., ρ̂ = 1): 

 

  

∆Ŷ
t

= 0.8684∆X
t

t = 4.75( ) d = 0.9315
  

Note: In the transformed regressions, the intercept was entered as (1-ρ ). 

(g) The striking result is that in all the transformations given above, whether 

one includes the first observation or not, there is a difference compared to 

the original regression.  It is left to the reader to assess the results using the 

Runs Test discussed in Appendix 10A. 

10.18. ttttttt vXXBXXBBYY +−++−+−=− −−− )ρ(...)ρ(ρ)1()ρ( 1444122211  
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10.19. Expanding (10.5), we obtain:  

)ρ1(2
2

2

1

2

1

2

ˆ
e

eeee
d

t

tttt
−=

−+
=

∑
∑ ∑ ∑ −−

, 

using the fact that: 

∑∑ −≈ 2

1

2

tt ee  and ∑ ∑−= 2

1ρ ttt e/eeˆ . 

 

10.20. Dividing both numerator and denominator by 2
n , we get: 

  

ρ̂ =
[(1− d / 2)+ k2 / n2 ]

1−
k
2

n
2

 

As n tends to infinity, the preceding expression reduces to (1- d / 2). 

10.21.   At the 5% level, if you routinely apply the Durbin-Watson  d test, Model 1 

exhibits positive autocorrelation, for the estimated d value lies below the 

lower critical d value of 1.288 ( Ld  = 1.288).  If you consider model 2, the 

observed d value of 0.3411 lies below 
 
d
L
 = 1.245, suggesting that there is 

positive correlation in the error term.  For Model 3, the estimated d of 1.611 

lies above Ud  = 1.474, indicating that this model does not suffer from (first-

order) autocorrelation.   

The conclusion that we draw from this exercise is that if you estimate a mis-

specified model, the observed d value may be more an indication of model 

specification errors than pure autocorrelation.   

10.22. Assign this as a classroom exercise.   

10.23.    Assign this also as a classroom exercise.     

  

 

 

 

 

      


