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Sales of the first two editions of this book surpassed expectations (at least those
of the author). Almost all of those who have contacted the author seem to like
the book, and while other textbooks have been published since in the broad area
of financial econometrics, none are really at the introductory level. All of the
motivations for the first edition, described below, seem just as important today.
Given that the book seems to have gone down well with readers, I have left the
style largely unaltered but changed the structure slightly and added new material.

The main motivations for writing the first edition of the book were:

e To write a book that focused on using and applying the techniques rather than
deriving proofs and learning formulae.

e To write an accessible textbook that required no prior knowledge of econo-
metrics, but which also covered more recently developed approaches usually
only found in more advanced texts.

e To use examples and terminology from finance rather than economics since
there are many introductory texts in econometrics aimed at students of eco-
nomics but none for students of finance.

e To litter the book with case studies of the use of econometrics in practice
taken from the academic finance literature.

e To include sample instructions, screen dumps and computer output from a
popular econometrics package. This enabled readers to see how the techniques
can be implemented in practice.

e To develop a companion web site containing answers to end of chapter ques-
tions, PowerPoint slides and other supporting materials.

What is new in the third edition

The third edition includes a number of important new features:

(1) Students of finance have enormously varying backgrounds, and in particular
varying levels of training in elementary mathematics and statistics. In order to
make the book more self-contained, the material that was previously buried
in an appendix at the end of the book has now been considerably expanded
and enhanced, and is now placed in a new chapter 2. As a result, all of the
previous chapters 2 to 13 have been shunted forward by a chapter (so the
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previous chapter 2 becomes chapter 3, 3 becomes 4, and so on). What was the
concluding chapter in the second edition, chapter 14, has now been removed
(with some of the content worked into other chapters) so that there are also
fourteen chapters in the third edition.

(2) An extensive glossary has been added at the end of the book to succinctly
explain all of the technical terms used in the text.

(3) As a result of the length of time it took to write the book, to produce the
final product and the time that has elapsed since then, the data and examples
used in the second edition are already several years old. The data, EViews
instructions and screenshots have been fully updated. EViews version 8.0, the
latest available at the time of writing, has been used throughout. The data
continue to be drawn from the same freely available sources as in the previous
edition.

(4) Two of the most important uses of statistical models by students in their
courses tend to be the methodology developed in a series of papers by Fama
and French, and the event study approach. Both of these are now described in
detail with examples in chapter 14.

(5) New material has been added in the appropriate places in the book covering
panel unit root and cointegration tests; measurement error in variables; unit
root testing with structural breaks; and conditional correlation models.

Motivations for the first edition

This book had its genesis in two sets of lectures given annually by the author at
the ICMA Centre (formerly ISMA Centre), Henley Business School, University
of Reading and arose partly from several years of frustration at the lack of an
appropriate textbook. In the past, finance was but a small sub-discipline drawn
from economics and accounting, and therefore it was generally safe to assume
that students of finance were well grounded in economic principles; econometrics
would be taught using economic motivations and examples.

However, finance as a subject has taken on a life of its own in recent years.
Drawn in by perceptions of exciting careers in the financial markets, the number
of students of finance grew phenomenally all around the world. At the same time,
the diversity of educational backgrounds of students taking finance courses has
also expanded. It is not uncommon to find undergraduate students of finance
even without advanced high-school qualifications in mathematics or economics.
Conversely, many with PhDs in physics or engineering are also attracted to study
finance at the Masters level. Unfortunately, authors of textbooks failed to keep pace
with the change in the nature of students. In my opinion, the currently available
textbooks fall short of the requirements of this market in three main regards, which
this book seeks to address:

(1) Books fall into two distinct and non-overlapping categories: the introductory
and the advanced. Introductory textbooks are at the appropriate level for
students with limited backgrounds in mathematics or statistics, but their focus
is too narrow. They often spend too long deriving the most basic results, and
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treatment of important, interesting and relevant topics (such as simulations
methods, VAR modelling, etc.) is covered in only the last few pages, if at all.
The more advanced textbooks, meanwhile, usually require a quantum leap in
the level of mathematical ability assumed of readers, so that such books cannot
be used on courses lasting only one or two semesters, or where students have
differing backgrounds. In this book, I have tried to sweep a broad brush over
a large number of different econometric techniques that are relevant to the
analysis of financial and other data.

Many of the currently available textbooks with broad coverage are too theo-
retical in nature and students can often, after reading such a book, still have
no idea of how to tackle real-world problems themselves, even if they have
mastered the techniques in theory. To this end, in this book, I have tried to
present examples of the use of the techniques in finance, together with anno-
tated computer instructions and sample outputs for an econometrics package
(EViews). This should assist students who wish to learn how to estimate mod-
els for themselves — for example, if they are required to complete a project
or dissertation. Some examples have been developed especially for this book,
while many others are drawn from the academic finance literature. In my opin-
1on, this is an essential but rare feature of a textbook that should help to show
students how econometrics is really applied. It is also hoped that this approach
will encourage some students to delve deeper into the literature, and will give
useful pointers and stimulate ideas for research projects. It should, however, be
stated at the outset that the purpose of including examples from the academic
finance print is not to provide a comprehensive overview of the literature or
to discuss all of the relevant work in those areas, but rather to illustrate the
techniques. Therefore, the literature reviews may be considered deliberately
deficient, with interested readers directed to the suggested readings and the
references therein.

With few exceptions, almost all textbooks that are aimed at the introductory
level draw their motivations and examples from economics, which may be of
limited interest to students of finance or business. To see this, try motivat-
ing regression relationships using an example such as the effect of changes in
income on consumption and watch your audience, who are primarily inter-
ested in business and finance applications, slip away and lose interest in the first
ten minutes of your course.

Who should read this book?

The intended audience is undergraduates or Masters/ MBA students who require a

broad knowledge of modern econometric techniques commonly employed in the

finance literature. It is hoped that the book will also be useful for researchers (both
academics and practitioners), who require an introduction to the statistical tools
commonly employed in the area of finance. The book can be used for courses
covering financial time-series analysis or financial econometrics in undergradu-
ate or postgraduate programmes in finance, financial economics, securities and
investments.



XXiv

Preface to the third edition

Although the applications and motivations for model-building given in the
book are drawn from finance, the empirical testing of theories in many other
disciplines, such as management studies, business studies, real estate, economics
and so on, may usefully employ econometric analysis. For this group, the book
may also prove useful.

Finally, while the present text is designed mainly for students at the under-
graduate or Masters level, it could also provide introductory reading in financial
time series modelling for finance doctoral programmes where students have back-
grounds which do not include courses in modern econometric techniques.

Pre-requisites for good understanding of this material

In order to make the book as accessible as possible, no prior knowledge of statistics,
econometrics or algebra is required, although those with a prior exposure to
calculus, algebra (including matrices) and basic statistics will be able to progress
more quickly. The emphasis throughout the book is on a valid application of the
techniques to real data and problems in finance.

In the finance and investment area, it is assumed that the reader has knowledge
of the fundamentals of corporate finance, financial markets and investment. There-
fore, subjects such as portfolio theory, the capital asset pricing model (CAPM) and
Arbitrage Pricing Theory (APT), the efficient markets hypothesis, the pricing of
derivative securities and the term structure of interest rates, which are frequently
referred to throughout the book, are not explained from first principles in this text.
There are very many good books available in corporate finance, in investments
and in futures and options, including those by Brealey and Myers (2013), Bodie,
Kane and Marcus (2011) and Hull (2011) respectively.
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Introduction

Learning econometrics is in many ways like learning a new language. To begin with,
nothing makes sense and it is as if it is impossible to see through the fog created by all the
unfamiliar terminology. While the way of writing the models — the notation — may make
the situation appear more complex, in fact it is supposed to achieve the exact opposite.
The ideas themselves are mostly not so complicated, it is just a matter of learning enough
of the language that everything fits into place. So if you have never studied the subject
before, then persevere through this preliminary chapter and you will hopefully be on your
way to being fully fluent in econometrics!

Learning outcomes ™

In this chapter, you will learn how to

e Compare nominal and real series and convert one to the other

e Distinguish between different types of data

e Describe the key steps involved in building an econometric model

e Calculate asset price returns
e Deflate series to allow for inflation
e Construct a workfile, import data and accomplish simple tasks in EViews

N J

The chapter sets the scene for the book by discussing in broad terms the
questions of what econometrics is, and what are the ‘stylised facts’ describing
financial data that researchers in this area typically try to capture in their models?
Some discussion is presented on the kinds of data we encounter in finance and how
to work with them. Finally, the chapter collects together a number of preliminary
issues relating to the construction of econometric models in finance and introduces
the software that will be used in the remainder of the book for estimating the
models.
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Box 1.1 Examples of the uses of econometrics ™

(1) Testing whether financial markets are weak-form informationally
efficient

(2) Testing whether the capital asset pricing model (CAPM) or arbitrage
pricing theory (APT) represent superior models for the determination
of returns on risky assets

(3) Measuring and forecasting the volatility of bond returns

(4) Explaining the determinants of bond credit ratings used by the ratings
agencies

(5) Modelling long-term relationships between prices and exchange rates

(6) Determining the optimal hedge ratio for a spot position in oil

(7) Testing technical trading rules to determine which makes the most
money

(8) Testing the hypothesis that earnings or dividend announcements have
no effect on stock prices

(9) Testing whether spot or futures markets react more rapidly to news

(10) Forecasting the correlation between the stock indices of two countries.

N J

What is econometrics?

The literal meaning of the word econometrics is ‘measurement in economics’.
The first four letters of the word suggest correctly that the origins of econometrics
are rooted in economics. However, the main techniques employed for studying
economic problems are of equal importance in financial applications. As the term
is used in this book, financial econometrics will be defined as the application of
statistical techniques to problems in finance. Financial econometrics can be useful for
testing theories in finance, determining asset prices or returns, testing hypotheses
concerning the relationships between variables, examining the effect on financial
markets of changes in economic conditions, forecasting future values of financial
variables and for financial decision-making. A list of possible examples of where
econometrics may be useful is given in box 1.1.

The list in box 1.1 is of course by no means exhaustive, but it hopefully gives
some flavour of the usefulness of econometric tools in terms of their financial

applicability.
Is financial econometrics different from ‘economic econometrics?
As previously stated, the tools commonly used in financial applications are funda-

mentally the same as those used in economic applications, although the emphasis
and the sets of problems that are likely to be encountered when analysing the two
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sets of data are somewhat difterent. Financial data often difter from macroeconomic
data in terms of their frequency, accuracy, seasonality and other properties.

In economics, a serious problem is often a lack of data at hand for testing the
theory or hypothesis of interest — this is often called a ‘small samples problem’. It
might be, for example, that data are required on government budget deficits, or
population figures, which are measured only on an annual basis. If the methods
used to measure these quantities changed a quarter of a century ago, then only at
most twenty-five of these annual observations are usefully available.

Two other problems that are often encountered in conducting applied econo-
metric work in the arena of economics are those of measurement error and data
revisions. These difficulties are simply that the data may be estimated, or measured
with error, and will often be subject to several vintages of subsequent revisions. For
example, a researcher may estimate an economic model of the effect on national
output of investment in computer technology using a set of published data, only
to find that the data for the last two years have been revised substantially in the
next, updated publication.

These issues are usually of less concern in finance. Financial data come in many
shapes and forms, but in general the prices and other entities that are recorded
are those at which trades actually took place, or which were quoted on the screens
of information providers. There exists, of course, the possibility for typos or for
the data measurement method to change (for example, owing to stock index
re-balancing or re-basing). But in general the measurement error and revisions
problems are far less serious in the financial context.

Similarly, some sets of financial data are observed at much higher frequencies
than macroeconomic data. Asset prices or yields are often available at daily, hourly
or minute-by-minute frequencies. Thus the number of observations available for
analysis can potentially be very large — perhaps thousands or even millions, making
financial data the envy of macro-econometricians! The implication is that more
powerful techniques can often be applied to financial than economic data, and that
researchers may also have more confidence in the results.

Furthermore, the analysis of financial data also brings with it a number of new
problems. While the difficulties associated with handling and processing such a
large amount of data are not usually an issue given recent and continuing advances
in computer power, financial data often have a number of additional characteristics.
For example, financial data are often considered very ‘noisy’, which means that it is
more difticult to separate underlying trends or patterns from random and uninteresting
features. Financial data are also almost always not normally distributed in spite of
the fact that most techniques in econometrics assume that they are. High frequency
data often contain additional ‘patterns’ which are the result of the way that the
market works, or the way that prices are recorded. These features need to be
considered in the model-building process, even if they are not directly of interest
to the researcher.

One of the most rapidly evolving areas of financial application of statistical tools
is in the modelling of market microstructure problems. ‘Market microstructure’
may broadly be defined as the process whereby investors’ preferences and desires are
translated into financial market transactions. It is evident that microstructure effects
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Box 1.2 Time series data A\

Series Frequency

Industrial production Monthly or quarterly
Government budget deficit Annually

Money supply Weekly

The value of a stock As transactions occur

J

are important and represent a key difference between financial and other types
of data. These effects can potentially impact on many other areas of finance. For
example, market rigidities or frictions can imply that current asset prices do not
fully reflect future expected cashflows (see the discussion in chapter 10 of this
book). Also, investors are likely to require compensation for holding securities that
are illiquid, and therefore embody a risk that they will be difficult to sell owing to
the relatively high probability of a lack of willing purchasers at the time of desired
sale. Measures such as volume or the time between trades are sometimes used as
proxies for market liquidity.

A comprehensive survey of the literature on market microstructure is given
by Madhavan (2000). He identifies several aspects of the market microstructure
literature, including price formation and price discovery, issues relating to market
structure and design, information and disclosure. There are also relevant books
by O’Hara (1995), Harris (2002) and Hasbrouck (2007). At the same time, there
has been considerable advancement in the sophistication of econometric models
applied to microstructure problems. For example, an important innovation was the
autoregressive conditional duration (ACD) model attributed to Engle and Russell
(1998). An interesting application can be found in Dufour and Engle (2000), who
examine the effect of the time between trades on the price-impact of the trade
and the speed of price adjustment.

Types of data

There are broadly three types of data that can be employed in quantitative analysis
of financial problems: time series data, cross-sectional data and panel data.

Time series data

Time series data, as the name suggests, are data that have been collected over a
period of time on one or more variables. Time series data have associated with
them a particular frequency of observation or frequency of collection of data
points. The frequency is simply a measure of the interval over, or the regularity with
which, the data are collected or recorded. Box 1.2 shows some examples of time
series data.
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1.3 Types of data

A word on ‘As transactions occur’ is necessary. Much financial data does not
start its life as being regularly spaced. For example, the price of common stock for
a given company might be recorded to have changed whenever there is a new
trade or quotation placed by the financial information recorder. Such recordings
are very unlikely to be evenly distributed over time — for example, there may be
no activity between, say, 5 p.m. when the market closes and 8.30 a.m. the next
day when it reopens; there is also typically less activity around the opening and
closing of the market, and around lunch time. Although there are a number of
ways to deal with this issue, a common and simple approach is simply to select
an appropriate frequency, and use as the observation for that time period the last
prevailing price during the interval.

It 1s also generally a requirement that all data used in a model be of the same
frequency of observation. So, for example, regressions that seek to estimate an arbitrage
pricing model using monthly observations on macroeconomic factors must also
use monthly observations on stock returns, even if daily or weekly observations
on the latter are available.

The data may be quantitative (e.g. exchange rates, prices, number of shares
outstanding), or gualitative (e.g. the day of the week, a survey of the financial
products purchased by private individuals over a period of time, a credit rating,
etc.).

Problems that could be tackled using time series data:

e How the value of a country’s stock index has varied with that country’s
macroeconomic fundamentals

e How the value of a company’s stock price has varied when it announced the
value of its dividend payment

e The effect on a country’s exchange rate of an increase in its trade deficit.

In all of the above cases, it is clearly the time dimension which is the most
important, and the analysis will be conducted using the values of the variables over
time.

Cross-sectional data

Cross-sectional data are data on one or more variables collected at a single point
in time. For example, the data might be on:

e A poll of usage of internet stockbroking services
e A cross-section of stock returns on the New York Stock Exchange (NYSE)
e A sample of bond credit ratings for UK banks.

Problems that could be tackled using cross-sectional data:

e The relationship between company size and the return to investing in its shares
e The relationship between a country’s GDP level and the probability that the
government will default on its sovereign debt.
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Introduction

Panel data

Panel data have the dimensions of both time series and cross-sections, e.g. the daily
prices of a number of blue chip stocks over two years. The estimation of panel
regressions is an interesting and developing area, and will be examined in detail in
chapter 11.

Fortunately, virtually all of the standard techniques and analysis in econo-
metrics are equally valid for time series and cross-sectional data. For time series
data, it is usual to denote the individual observation numbers using the index
t, and the total number of observations available for analysis by T. For cross-
sectional data, the individual observation numbers are indicated using the index
i, and the total number of observations available for analysis by N. Note that
there is, in contrast to the time series case, no natural ordering of the observa-
tions in a cross-sectional sample. For example, the observations i might be on the
price of bonds of difterent firms at a particular point in time, ordered alphabet-
ically by company name. So, in the case of cross-sectional data, there is unlikely
to be any useful information contained in the fact that Barclays follows Banco
Santander in a sample of bank credit ratings, since it is purely by chance that
their names both begin with the letter ‘B’. On the other hand, in a time series
context, the ordering of the data is relevant since the data are usually ordered
chronologically.

In this book, the total number of observations in the sample will be given by T
even in the context of regression equations that could apply either to cross-sectional
or to time series data.

Continuous and discrete data

As well as classifying data as being of the time series or cross-sectional type, we
could also distinguish them as being either continuous or discrete, exactly as their
labels would suggest. Continuous data can take on any value and are not confined
to take specific numbers; their values are limited only by precision. For example,
the rental yield on a property could be 6.2%, 6.24% or 6.238%, and so on. On the
other hand, discrete data can only take on certain values, which are usually integers
(whole numbers), and are often defined to be count numbers.! For instance, the
number of people in a particular underground carriage or the number of shares
traded during a day. In these cases, having 86.3 passengers in the carriage or 5857/
shares traded would not make sense. The simplest example of a discrete variable is
a Bernoulli or binary random variable, which can only take the values 0 or 1 — for

example, if we repeatedly tossed a coin, we could denote a head by 0 and a tail
by 1.

! Discretely measured data do not necessarily have to be integers. For example, until they became
‘decimalised’, many financial asset prices were quoted to the nearest 1/16 or 1/32 of a dollar.
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1.4 Returns in financial modelling

Cardinal, ordinal and nominal numbers

Another way in which we could classify numbers is according to whether they
are cardinal, ordinal or nominal. Cardinal numbers are those where the actual
numerical values that a particular variable takes have meaning, and where there
is an equal distance between the numerical values. On the other hand, ordinal
numbers can only be interpreted as providing a position or an ordering. Thus,
for cardinal numbers, a figure of 12 implies a measure that is ‘twice as good’ as a
figure of 6. Examples of cardinal numbers would be the price of a share or of a
building, and the number of houses in a street. On the other hand, for an ordinal
scale, a figure of 12 may be viewed as ‘better’ than a figure of 6, but could not be
considered twice as good. Examples of ordinal numbers would be the position of
a runner in a race (e.g. second place is better than fourth place, but it would make
little sense to say it is ‘twice as good’) or the level reached in a computer game.

The final type of data that could be encountered would be where there is no
natural ordering of the values at all, so a figure of 12 is simply difterent to that of a
figure of 6, but could not be considered to be better or worse in any sense. Such
data often arise when numerical values are arbitrarily assigned, such as telephone
numbers or when codings are assigned to qualitative data (e.g. when describing the
exchange that a US stock is traded on, ‘1" might be used to denote the NYSE, 2’
to denote the NASDAQ and ‘3’ to denote the AMEX). Sometimes, such variables
are called nominal variables. Cardinal, ordinal and nominal variables may require
difterent modelling approaches or at least different treatments, as should become
evident in the subsequent chapters.

Returns in financial modelling

In many of the problems of interest in finance, the starting point is a time series
of prices — for example, the prices of shares in Ford, taken at 4 p.m. each day for
200 days. For a number of statistical reasons, it is preferable not to work directly
with the price series, so that raw price series are usually converted into series of
returns. Additionally, returns have the added benefit that they are unit-free. So, for
example, if an annualised return were 10%, then investors know that they would
have got back £110 for a £100 investment, or £ 1,100 for a £1,000 investment,
and so on.

There are two methods used to calculate returns from a series of prices, and
these involve the formation of simple returns, and continuously compounded
returns, which are achieved as follows:

Simple returns Continuously compounded returns
R =L q00% ) rt=100%xln( P ) 12)
Pr—1 pi—1
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Box 1.3 Log returns ™

(1) Log-returns have the nice property that they can be interpreted as
continuously compounded returns — so that the frequency of compounding
of the return does not matter and thus returns across assets can more
easily be compared.

(2) Continuously compounded returns are time-additive. For example,
suppose that a weekly returns series is required and daily log returns
have been calculated for five days, numbered 1 to 5, representing the
returns on Monday through Friday. It is valid to simply add up the five
daily returns to obtain the return for the whole week:

Monday return ri =1In(p1/po) =lnp; —1n py
Tiesday return r2 =1In(pa/p1) =Inp, —Inpy
Wednesday return r3 =1In(p3/p2) =1lnps — In p,
Thursday return ry =In(ps/p3) =lnpy — In ps
Friday return rs =1In(ps/ps) =1n ps — In p4
N Return over the week In ps — In pg = In (ps/ po) )

where: R; denotes the simple return at time ¢, r, denotes the continuously com-
pounded return at time ¢, p, denotes the asset price at time ¢ and In denotes the
natural logarithm.

If the asset under consideration is a stock or portfolio of stocks, the total return
to holding it is the sum of the capital gain and any dividends paid during the
holding period. However, researchers often ignore any dividend payments. This is
unfortunate, and will lead to an underestimation of the total returns that accrue
to investors. This is likely to be negligible for very short holding periods, but will
have a severe impact on cumulative returns over investment horizons of several
years. Ignoring dividends will also have a distortionary effect on the cross-section
of stock returns. For example, ignoring dividends will imply that ‘growth’ stocks
with large capital gains will be inappropriately favoured over income stocks (e.g.
utilities and mature industries) that pay high dividends.

Alternatively, it is possible to adjust a stock price time series so that the divi-
dends are added back to generate a fotal return index. If p, were a total return index,
returns generated using either of the two formulae presented above thus provide
a measure of the total return that would accrue to a holder of the asset during
time .

The academic finance literature generally employs the log-return formulation
(also known as log-price relatives since they are the log of the ratio of this period’s
price to the previous period’s price). Box 1.3 shows two key reasons for this.

There is, however, also a disadvantage of using the log-returns. The simple
return on a portfolio of assets is a weighted average of the simple returns on the
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individual assets:

N
R, = Z w; R, (1.3)
i=1
But this does not work for the continuously compounded returns, so that they
are not additive across a portfolio. The fundamental reason why this is the case is
that the log of a sum is not the same as the sum of a log, since the operation of
taking a log constitutes a non-linear transformation. Calculating portfolio returns in
this context must be conducted by first estimating the value of the portfolio at each
time period and then determining the returns from the aggregate portfolio values.
Or alternatively, if we assume that the asset is purchased at time t+ — K for price
pi—xk and then sold K periods later at price p,, then if we calculate simple returns
for each period, R;, Ri4+1, ..., Rk, the aggregate return over all K periods is

Pt — Pi—K P P Pr—1 Pr—K+1
Ry, = = — 1= X — X ...Xx —|—1
Pi—K Pi—K Pi—1 Pi—2 Pi—K

=[1+R)I+Ry)...(1+ R-g+1)] — 1
(1.4)

In the limit, as the frequency of the sampling of the data is increased so that they
are measured over a smaller and smaller time interval, the simple and continuously
compounded returns will be identical.

Real versus nominal series and deflating nominal series

If a newspaper headline suggests that ‘house prices are growing at their fastest rate
for more than a decade. A typical 3-bedroom house is now selling for £180,000,
whereas in 1990 the figure was £120,000’, it is important to appreciate that this
figure is almost certainly in nominal terms. That is, the article is referring to the
actual prices of houses that existed at those points in time. The general level of
prices in most economies around the world has a general tendency to rise almost
all of the time, so we need to ensure that we compare prices on a like-for-like
basis. We could think of part of the rise in house prices being attributable to an
increase in demand for housing, and part simply arising because the prices of all
goods and services are rising together. It would be useful to be able to separate the
two effects, and to be able to answer the question, ‘how much have house prices
risen when we remove the effects of general inflation?” or equivalently, ‘how much
are houses worth now if we measure their values in 1990-terms?” We can do this
by deflating the nominal house price series to create a series of real house prices,
which is then said to be in inflation-adjusted terms or at constant prices.

Deflating a series is very easy indeed to achieve: all that is required (apart from
the series to deflate) is a price deflator series, which is a series measuring general price
levels in the economy. Series like the consumer price index (CPI), producer price
index (PPI) or the GDP Implicit Price Deflator, are often used. A more detailed
discussion of which is the most relevant general price index to use is beyond the
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Table 1.1 How to construct a series in real terms from a nominal

one

Nominal CPI House prices House prices
Year house prices (2004 levels) (2004 levels) (2013) levels
2001 83,450 97.6 85,502 105,681
2002 93,231 98.0 95,134 117,585
2003 117,905 98.7 119,458 147,650
2004 134,806 100.0 134,806 166,620
2005 151,757 101.3 149,810 185,165
2006 158,478 102.1 155,218 191,850
2007 173,225 106.6 162,500 200,850
2008 180,473 109.4 164,966 165,645
2009 150,501 112.3 134,017 173,147
2010 163,481 116.7 140,086 167,162
2011 161,211 119.2 135,244 155,472
2012 162,228 121.1 133,962 165,577

\2013 162,245 123.6 131,266 162,245 j

Notes: All prices in British pounds; house price figures taken in January of each year from Nation-
wide (see appendix 1 for the source). CPI figures are for illustration only.

scope of this book, but suftice to say that if the researcher is only interested in
viewing a broad picture of the real prices rather than a highly accurate one, the
choice of deflator will be of little importance.

The real price series is obtained by taking the nominal series, dividing it by
the price deflator index, and multiplying by 100 (under the assumption that the
deflator has a base value of 100)

nominal series,

real series, = T x 100 (1.5)
eflator,

It is worth noting that deflation is only a relevant process for series that are
measured in money terms, so it would make no sense to deflate a quantity-based
series such as the number of shares traded or a series expressed as a proportion or
percentage, such as the rate of return on a stock.

Example: Deflating house prices

Let us use for illustration a series of average UK house prices, measured annually
for 2001-13 and taken from Nationwide (see appendix 1 for the full source) given
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Figure 1.1

Steps involved in forming an econometric model

in column 2 of table 1.1. Some figures for the general level of prices as measured
by the CPI are given in the third column. So first, suppose that we want to convert
the figures into constant (real) prices. Given that 2004 is the ‘base’ year (i.e. it has a
value of 100 for the CPI), the easiest way to do this is simply to divide each house
price at time ¢ by the corresponding CPI figure for time ¢ and then multiply it by
100, as per equation (1.5). This will give the figures in column 4 of the table.

If we wish to convert house prices into a particular year’s figures, we would
apply equation (1.5), but instead of 100 we would have the CPI value that year.
Consider that we wished to express nominal house prices in 2013 terms (which
is of particular interest as this is the last observation in the table). We would thus
base the calculation on a variant of (1.5)

nominal series,
CPI,

real series; = reference year (1.6)

So, for example, to get the 2001 figure (i.e. ¢ 1s 2001) of 105,681 for the
average house price in 2013 terms, we would take the nominal figure of 83,450,
multiply it by the CPI figure for the year that we wish to make the price for (the
reference year, 123.6) and then divide it by the CPI figure for the year 2001 (97.6).

Thus 105,681 = 2250 x 123.6, etc.

Steps involved in formulating an econometric model

Although there are of course many different ways to go about the process of model
building, a logical and valid approach would be to follow the steps described in
figure 1.1.
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The steps involved in the model construction process are now listed and
described. Further details on each stage are given in subsequent chapters of this

book.

o Step la and 1b: general statement of the problem This will usually involve the
formulation of a theoretical model, or intuition from financial theory that
two or more variables should be related to one another in a certain way. The
model is unlikely to be able to completely capture every relevant real-world
phenomenon, but it should present a sufticiently good approximation that it is
useful for the purpose at hand.

o Step 2: collection of data relevant to the model The data required may be available
electronically through a financial information provider, such as Reuters or
from published government figures. Alternatively, the required data may be
available only via a survey after distributing a set of questionnaires, i.e. primary
data.

o Step 3: choice of estimation method relevant to the model proposed in step 1  For
example, is a single equation or multiple equation technique to be used?

o Step 4: statistical evaluation of the model What assumptions were required to
estimate the parameters of the model optimally? Were these assumptions sat-
isfied by the data or the model? Also, does the model adequately describe the
data? If the answer is ‘yes’, proceed to step 5; if not, go back to steps 1-3 and
either reformulate the model, collect more data, or select a different estimation
technique that has less stringent requirements.

o Step 5: evaluation of the model from a theoretical perspective Are the parameter
estimates of the sizes and signs that the theory or intuition from step 1 sug-
gested? If the answer is ‘yes’, proceed to step 6; if not, again return to stages
1-3.

o Step 6: use of model When a researcher is finally satisfied with the model, it
can then be used for testing the theory specified in step 1, or for formulating
forecasts or suggested courses of action. This suggested course of action might
be for an individual (e.g. ‘if inflation and GDP rise, buy stocks in sector X’),
or as an input to government policy (e.g. ‘when equity markets fall, program
trading causes excessive volatility and so should be banned’).

It is important to note that the process of building a robust empirical model is an
iterative one, and it is certainly not an exact science. Often, the final preferred
model could be very difterent from the one originally proposed, and need not be
unique in the sense that another researcher with the same data and the same initial
theory could arrive at a different final specification.

Points to consider when reading articles in empirical finance

As stated above, one of the defining features of this book relative to others in
the area is in its use of published academic research as examples of the use of
the various techniques. The papers examined have been chosen for a number of
reasons. Above all, they represent (in this author’s opinion) a clear and specific
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Box 1.4 Points to consider when reading a published paper

(1) Does the paper involve the development of a theoretical model or is it
merely a technique looking for an application so that the motivation for
the whole exercise is poor?

(2) Are the data of ‘good quality’? Are they from a reliable source? Is the
size of the sample sufficiently large for the model estimation task at
hand?

(3) Have the techniques been validly applied? Have tests been conducted
for possible violations of any assumptions made in the estimation of the
model?

(4) Have the results been interpreted sensibly? Is the strength of the results
exaggerated? Do the results actually obtained relate to the questions
posed by the author(s)? Can the results be replicated by other
researchers?

(5) Are the conclusions drawn appropriate given the results, or has the
importance of the results of the paper been overstated?

- J

application in finance of the techniques covered in this book. They were also
required to be published in a peer-reviewed journal, and hence to be widely
available.

When I was a student, I used to think that research was a very pure science.
Now, having had first-hand experience of research that academics and practitioners
do, I know that this is not the case. Researchers often cut corners. They have a
tendency to exaggerate the strength of their results, and the importance of their
conclusions. They also have a tendency not to bother with tests of the adequacy of
their models, and to gloss over or omit altogether any results that do not conform
to the point that they wish to make. Therefore, when examining papers from
the academic finance literature, it is important to cast a very critical eye over the
research — rather like a referee who has been asked to comment on the suitability of
a study for a scholarly journal. The questions that are always worth asking oneself
when reading a paper are outlined in box 1.4.

Bear these questions in mind when reading my summaries of the articles used
as examples in this book and, if at all possible, seek out and read the entire articles
for yourself.

A note on Bayesian versus classical statistics

The philosophical approach to model-building adopted in this entire book, as with
the majority of others, is that of “classical statistics’. Under the classical approach, the
researcher postulates a theory and estimates a model to test that theory. Tests of the
theory are conducted using the estimated model within the ‘classical” hypothesis
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testing framework developed in chapters 2 to 4. Based on the empirical results, the
theory is either refuted or upheld by the data.

There is, however, an entirely different approach available for model construc-
tion, estimation and inference, known as Bayesian statistics. Under a Bayesian
approach, the theory and empirical model work more closely together. The
researcher would start with an assessment of the existing state of knowledge or
beliefs, formulated into a set of probabilities. These prior inputs, or priors, would
then be combined with the observed data via a likelihood function. The beliefs
and the probabilities would then be updated as a result of the model estimation,
resulting in a set of posterior probabilities. Probabilities are thus updated sequentially,
as more data become available. The central mechanism, at the most basic level, for
combining the priors with the likelihood function, is known as Bayes’ theorem.

The Bayesian approach to estimation and inference has found a number of
important recent applications in financial econometrics, in particular in the context
of volatility modelling (see Bauwens and Lubrano, 1998, or Vrontos et al., 2000
and the references therein for some examples), asset allocation (see, for example,
Handa and Tiwari, 2006), portfolio performance evaluation (Baks ef al., 2001).

The Bayesian setup is an intuitively appealing one, although the resulting
mathematics is somewhat complex. Many classical statisticians are unhappy with the
Bayesian notion of prior probabilities that are set partially according to judgement.
Thus, if the researcher set very strong priors, an awful lot of evidence against them
would be required for the notion to be refuted. Contrast this with the classical
case, where the data are usually permitted to freely determine whether a theory is
upheld or refuted, irrespective of the researcher’s judgement.

An introduction to EViews

The number of packages available for econometric modelling is large, and over
time, all packages have improved in breadth of available techniques, and have also
converged in terms of what is available in each package. The programs can usefully
be categorised according to whether they are fully interactive (menu-driven),
command-driven (so that the user has to write mini-programs) or somewhere in
between. Menu-driven packages, which are usually based on a standard Microsoft
Windows graphical user interface, are almost certainly the easiest for novices to
get started with, for they require little knowledge of the structure of the package,
and the menus can usually be negotiated simply. EViews is a package that falls into
this category.

On the other hand, some such packages are often the least flexible, since the
menus of available options are fixed by the developers, and hence if one wishes
to build something slightly more complex or just different, then one is forced
to consider alternatives. EViews, however, has a command-based programming
language as well as a click-and-point interface so that it offers flexibility as well
as user-friendliness. Three reviews that this author has been involved with, that
are relevant for chapter 9 of this text in particular, are Brooks (1997) and Brooks,
Burke and Persand (2001, 2003). As for previous editions of this book, sample
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instructions and output for the EViews package will be given. This software
is employed because it is simple to use, menu-driven and will be suftficient to
estimate most of the models required for this book. The following section gives
an introduction to this software and outlines the key features and how basic tasks
are executed.

Accomplishing simple tasks using EViews

EViews is a simple to use, interactive econometrics software package providing
the tools most frequently used in practical econometrics. EViews is built around
the concept of objects with each object having its own window, its own menu, its
own procedure and its own view of the data. Using menus, it is easy to change
between displays of a spreadsheet, line and bar graphs, regression results, etc. One
of the most important features of EViews that makes it useful for model-building is
the wealth of diagnostic (misspecification) tests, that are automatically computed,
making it possible to test whether the model is econometrically valid or not. You
work your way through EViews using a combination of windows, buttons, menus
and sub-menus. A good way of familiarising yourself with EViews is to learn
about its main menus and their relationships through the examples given in this
and subsequent chapters.

This section assumes that readers have obtained a licensed copy of EViews 8
(the latest version available at the time of writing), and have successfully loaded
it onto an available computer. There now follows a description of the EViews
package, together with instructions to achieve standard tasks and sample output.
Any instructions that must be entered or icons to be clicked are illustrated through-
out this book by bold-faced type. The objective of the treatment in this and
subsequent chapters is not to demonstrate the full functionality of the package,
but rather to get readers started quickly and to explain how the techniques are
implemented and how the results may be interpreted. For further details, readers
should consult the software manuals in the first instance, which are now available
electronically with the software as well as in hard copy.” Note that EViews is
not case-sensitive, so that it does not matter whether commands are entered as
lower-case or CAPITAL letters.

Opening the software

To load EViews from Windows, click the Start button, then All Programs,
EViews8 and finally, EViews8 again.

Reading in data

EViews provides support to read from or write to various file types, including
‘ASCII" (text) files, Microsoft Excel *.XLS’ and . XLSX’ files (reading from any
named sheet in the Excel workbook), Lotus . WKS1” and *. WKS3’ files. It is usually

2 A student edition of EViews 7 is available at a much lower cost than the full version, but with
restrictions on the number of observations and objects that can be included in each saved workfile.
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Screenshot 1.1  Creating a workfile

easiest to work directly with Excel files, and this will be the case throughout this
book.

Creating a workfile and importing data

The first step when the EViews software is opened is to create a workfile that will
hold the data. To do this, select New from the File menu. Then choose Workfile.
The “Workfile Create” window in screenshot 1.1 will be displayed.

We are going to use as an example a time series of UK average house price
data obtained from Nationwide, which comprises 269 monthly observations from
January 1991 to May 2013.° The frequency of the data (Monthly) should be set
and the start (1991:01) and end (2013:05) dates should be inputted. Click OK.
An untitled workfile will be created.

Under “Workfile structure type’, keep the default option, Dated — regular
frequency. Then, under ‘Date specification’, choose Monthly. Note the format
of date entry for monthly and quarterly data: YYYY:M and YYYY:Q, respectively.
For daily data, a US date format must usually be used depending on how EViews
has been set up: MM/DD/YYYY (e.g. 03/01/1999 would be 1st March 1999,
not 3rd January). Caution therefore needs to be exercised here to ensure that the
date format used is the correct one. Type the start and end dates for the sample

3 Full descriptions of the sources of data used will be given in appendix 1 and on the web site
accompanying this book.
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Screenshot 1.2 Importing Excel data into the workfile — screens 1 to 3

into the boxes: 1991:01 and 2007:05 respectively. Then click OK. The workfile
will now have been created. Note that two pairs of dates are displayed, ‘Range’” and
‘Sample’: the first one is the range of dates contained in the workfile and the second
one (which is the same as above in this case) is for the current workfile sample.
Two objects are also displayed: C (which is a vector that will eventually contain
the parameters of any estimated models) and RESID (a residuals series, which will
currently be empty). See chapter 3 for a discussion of these concepts. All EViews
workfiles will contain these two objects, which are created automatically.

Now that the workfile has been set up, we can import the data from the Excel
file UKHP.XLS. So from the File menu, select Import and Import from File.
You will then be prompted to select the directory and file name. Once you have
found the directory where the file is stored, enter UKHP.XLS in the ‘file name’
box and click Open. You are then faced with a series of three screens where it
is possible to modify the way that the data are imported. Most of the time it is
not necessary to change any of the default options as EViews peeks inside the
data file and identifies the structure of the data, whether there is a header row
containing the names of the series etc. The three screens are shown in panels a to
¢ of screenshot 1.2. In the third screen, click Rename Series and in the box that
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Screenshot 1.3 The workfile containing loaded data

appears, type AVERAGE _HOUSE_PRICE HP and this will change the name
of the series to ‘HP’, which is a bit easier to deal with!

Click Finish and the series will be imported. The series will appear as a new
icon in the workfile window, as in screenshot 1.3. Note that EViews has sensibly
not imported the column of dates as if it were an additional variable.

Verifying the data

Double click on the new hp icon that has appeared, and this will open up a
spreadsheet window within EViews containing the monthly house price values.
Make sure that the data file has been correctly imported by checking a few
observations at random.

The next step is to save the workfile: click on the Save As button from the
File menu and select Save Active Workfile and click OK. A save dialog box
will open, prompting you for a workfile name and location. You should enter XX
(where XX 1s your chosen name for the file), then click OK. EViews will save
the workfile in the specified directory with the name XX.wfl. I have called my
file ‘ukhp.wfl’ You will also be prompted to select whether the data in the file
should be saved in ‘single precision’ or ‘double precision’. The latter is preferable
for obvious reasons unless the file is likely to be very large because of the quantity
of variables and observations it contains (single precision will require less space) so
just click OK.

The saved workfile can be opened later by selecting File/Open/EViews Work-
file. .. from the menu bar.
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Transformations

Variables of interest can be created in EViews by selecting the Genr button from
the workfile toolbar and typing in the relevant formulae. Suppose, for example,
we have a time series called Z. The latter can be modified in the following ways
so as to create variables A, B, C, etc. The mathematical background and simple
explanations of these transformations, including powers, logarithms and exponents,
will be discussed in detail in the following chapter. Some common transformations
are:

A=17Z/2 Dividing

B=27*2 Multiplication
C=27272 Squaring

D =LOG(2Z) Taking the logarithm
E = EXP(Z) Taking the exponential
F=7Z(-1) Lagging the data

G =LOG((Z/Z(-1)) Creating the log-returns

Other functions that can be used in the formulae include: abs, sin, cos, etc. Notice
that no special instruction is necessary; simply type ‘new variable = function of
old variable(s)’. The variables will be displayed in the same workfile window as
the original (imported) series.

In this case, it is of interest to calculate simple percentage changes in the series.
Click Genr and type DHP = 100*(HP-HP(-1))/HP(-1). It is important to
note that this new series, DHP, will be a series of monthly percentage changes and
will not be annualised.

Computing summary statistics

Descriptive summary statistics of a series can be obtained by selecting
Quick/Series Statistics/Histogram and Stats and typing in the name of the
variable (DHP). The view in screenshot 1.4 will be displayed in the window.

As can be seen, the histogram suggests that the series has a slightly longer
upper tail than lower tail (note the x-axis scale) and is centred slightly above
zero. Summary statistics including the mean, maximum and minimum, standard
deviation, higher moments and a test for whether the series is normally distributed
are all presented. Interpreting these will be discussed in subsequent chapters. Other
useful statistics and transformations can be obtained by selecting the command
Quick/ Series Statistics, but these are also covered later in this book.

Plots

EViews supports a wide range of graph types including line graphs, bar graphs,
pie charts, mixed line—bar graphs, high—low graphs and scatterplots. A variety of
options permits the user to select the line types, colour, border characteristics,
headings, shading and scaling, including logarithmic scale and dual scale graphs.
Legends are automatically created (although they can be removed if desired), and
customised graphs can be incorporated into other Windows applications using
copy-and-paste, or by exporting as Windows metafiles.
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Screenshot 1.4 Summary statistics for a series

From the main menu, select Quick/Graph and type in the name of the series
that you want to plot (HP to plot the level of house prices) and click OK. You
will be prompted with the ‘Graph Options’ window where you choose the type
of graph that you want (line, bar, scatter or pie charts, etc.) and also control the
layout and style of the graph (e.g. whether you want a legend, axis labels, etc.).
Choosing a line and symbol graph would produce screenshot 1.5.

It is always useful to plot any series you are working with to get a feel for
the basic features of the data. It is clear that in this case house prices appreciated
quickly to reach a peak in October 2007 before falling sharply until early 2009,
after which a partial recovery began. It is possible to identify any value on the
chart and its timing by simply hovering the mouse over it. Double-clicking on the
graph will revert back to the Graph Options menu.

As an exercise, try plotting the DHP series — you will see that the volatility
of percentage change series makes their graphs much harder to interpret, even
though they are usually the form of the data that we work with in econometrics.

Printing results

Results can be printed at any point by selecting the Print button on the object
window toolbar. The whole current window contents will be printed. Graphs can
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Screenshot 1.5 A line graph

be copied into the clipboard if desired by right clicking on the graph and choosing
Copy to clipboard.

Saving data results and workfile

Data generated in EViews can be exported to other Windows applications, e.g.
Microsoft Excel. From the main menu, select File/ Export/ Write Text-Lotus-Excel.
You will then be asked to provide a name for the exported file and to select the
appropriate directory. The next window will ask you to select all the series that
you want to export, together with the sample period.

Assuming that the workfile has been saved after the importation of the data
set (as mentioned above), additional work can be saved by just selecting Save from
the File menu. The workfile will be saved including all objects in it — data, graphs,
equations, etc. so long as they have been given a title. Any untitled objects will be lost
upon exiting the program.

Econometric tools available in EViews

Box 1.5 describes the features available in EViews, following the format of the
user guides for version 8, with material discussed in this book indicated by ifalics.
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The EViews User Guide is split into two volumes. Volume I contains four
parts as described below, while Volume II contains six parts.

PART I INTRODUCTION)

e Chapters 1-4 contain introductory material describing the basics of Win-
dows and EViews, how workfiles are constructed and how to deal with objects.

e Chapters 5 and 6 document the basics of working with data. Importing data
into EViews, using EViews to manipulate and manage data and exporting from
EViews into spreadsheets, text files and other Windows applications are
discussed.

e Chapters 7-10 describe the EViews database and other advanced data and
workfile handling features.

PART II (BASIC DATA ANALYSIS)

e Chapter 11 describes the series object. Series are the basic unit of data in
EViews and are the basis for all univariate analysis. This chapter documents
the basic graphing and data analysis features associated with series.

e Chapter 12 documents the group object. Groups are collections of series
that form the basis for a variety of multivariate graphing and data analyses.

e Chapters 13 and 14 provide detailed documentation for the production of
various types of graphs.

PART III (CUSTOMISING OUTPUT)

e Chapters 15 to 17 continue to describe the creation and customisation of
more advanced tables and graphs.

PART IV (EXTENDING EVIEWY)

e Chapter 18 describes in detail how to write programs using the EViews program-
ming language.

PART V  (BASIC SINGLE EQUATION ANALYSIS)

e Chapter 19 outlines the basics of ordinary least squares (OLS) estimation in
EViews.

e Chapter 20 discusses the weighted least squares, two-stage least squares and
non-linear least squares estimation techniques.

e Chapter 21 covers approaches to dealing with simultaneous equations
including two-stage least squares.

o Chapter 22 describes single equation regression techniques for the analysis of
time series data: festing for serial correlation, estimation of ARMA models, using
polynomial distributed lags and unit root tests for non-stationary time series.
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e Chapter 23 describes the fundamentals of using EViews to forecast from
estimated equations.
e Chapter 24 describes the specification testing procedures available in EViews.

PART VI (ADVANCED SINGLE EQUATION ANALYSIS)

e Chapter 25 discusses ARCH and GARCH estimation and outlines the

EViews tools for modelling the conditional variance of a variable.

Chapter 26 covers singe-equation models for cointegrated variables.

Chapter 27 documents EViews functions for estimating qualitative and limited
dependent variable models. EViews provides estimation routines for binary or
ordered (e.g. probit and logit), censored or truncated (tobit, etc.) and integer valued
(count) data.

e Chapters 28 to 31 discuss more sophisticated modelling approaches for
single equations, including robust estimation, allowing for structural breaks and
switching regressions.

Chapter 32 discusses the topic of the estimation of quantile regressions.
Chapter 33 shows how to deal with the log-likelihood object, and how to
solve problems with non-linear estimation.

PART VII (ADVANCED UNIVARIATE ANALYSIS)

e Chapter 34 discusses various univariate analysis that can be undertaken,
including unit root testing, panel unit root testing and use of the BDS ftest.

PART VIII (MULTIPLE EQUATION ANALYSIS)

e Chapters 35-6 describe estimation techniques for systems of equations including
VAR and VEC models.

e Chapter 37 presents state space models and their estimation via the Kalman
filter.

e Chapter 38 offers a more general discussion of how to set up and estimate
various types of models in EViews.

PART IX (PANEL AND POOLED DATA)

e Chapter 39 outlines tools for working with pooled time series, cross-section data
and estimating standard equation specifications that account for the pooled
structure of the data.

o Chapter 40 describes how to structure a panel of data and how to analyse
it, while chapter 41 extends the analysis to look at panel regression model
estimation; panel cointegration is considered in Chapter 42 and other panel
issues in Chapter 43.

PART X (ADVANCED MULTIVARIATE ANALYSIS)

e Chapters 44 and 45, the final chapters of the manual, explain how to
conduct cointegration and factor analysis in EViews.

23
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Further reading

EViews 8 User’s Guides I and II — THS Global (2013), Irvine, CA.
EViews 8 Command Reference — IHS Global (2013), Irvine, CA.
Startz, R. EViews Illustrated for Version 8 IHS Global (2013), Irvine, CA.

Outline of the remainder of this book

Chapter 2

This covers the key mathematical and statistical techniques that readers will need
some familiarity with to be able to get the most out of the remainder of this
book. It starts with a simple discussion of functions, and powers, exponents and
logarithms of numbers. It then proceeds to explain the basics of differentiation
and matrix algebra, which is illustrated via the construction of optimal portfolio
weights. The chapter then moves on to present an introduction to descriptive
statistics and probability distributions.

Chapter 3

This introduces the classical linear regression model (CLRM). The ordinary least
squares (OLS) estimator is derived and its interpretation discussed. The conditions
for OLS optimality are stated and explained. A hypothesis testing framework is
developed and examined in the context of the linear model. Examples employed
include Jensen’s classic study of mutual fund performance measurement and tests
of the ‘overreaction hypothesis’ in the context of the UK stock market.

Chapter 4

This continues and develops the material of chapter 3 by generalising the bivariate
model to multiple regression — i.e. models with many variables. The framework
for testing multiple hypotheses is outlined, and measures of how well the model
fits the data are described. Case studies include modelling rental values and an
application of principal components analysis to interest rate modelling.

Chapter 5

Chapter 5 examines the important but often neglected topic of diagnostic testing.
The consequences of violations of the CLRM assumptions are described, along
with plausible remedial steps. Model-building philosophies are discussed, with
particular reference to the general-to-specific approach. Applications covered in
this chapter include the determination of sovereign credit ratings.

Chapter 6

This presents an introduction to time series models, including their motivation
and a description of the characteristics of financial data that they can and cannot
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capture. The chapter commences with a presentation of the features of some
standard models of stochastic (white noise, moving average, autoregressive and
mixed ARMA) processes. The chapter continues by showing how the appropriate
model can be chosen for a set of actual data, how the model is estimated and
how model adequacy checks are performed. The generation of forecasts from such
models is discussed, as are the criteria by which these forecasts can be evaluated.
Examples include model-building for UK house prices, and tests of the exchange
rate covered and uncovered interest parity hypotheses.

Chapter 7

This extends the analysis from univariate to multivariate models. Multivariate mod-
els are motivated by way of explanation of the possible existence of bi-directional
causality in financial relationships, and the simultaneous equations bias that results
if this is ignored. Estimation techniques for simultaneous equations models are
outlined. Vector auto-regressive (VAR) models, which have become extremely
popular in the empirical finance literature, are also covered. The interpretation
of VARSs is explained by way of joint tests of restrictions, causality tests, impulse
responses and variance decompositions. Relevant examples discussed in this chap-
ter are the simultaneous relationship between bid—ask spreads and trading volume
in the context of options pricing, and the relationship between property returns
and macroeconomic variables.

Chapter 8

The first section of the chapter discusses unit root processes and presents tests
for non-stationarity in time series. The concept of and tests for cointegration,
and the formulation of error correction models, are then discussed in the context
of both the single equation framework of Engle—Granger, and the multivariate
framework of Johansen. Applications studied in chapter 8 include spot and futures
markets, tests for cointegration between international bond markets and tests of
the purchasing power parity hypothesis and of the expectations hypothesis of the
term structure of interest rates.

Chapter 9

This covers the important topic of volatility and correlation modelling and fore-
casting. This chapter starts by discussing in general terms the issue of non-linearity
in financial time series. The class of ARCH (autoregressive conditionally het-
eroscedasticity) models and the motivation for this formulation are then discussed.
Other models are also presented, including extensions of the basic model such as
GARCH, GARCH-M, EGARCH and GJR formulations. Examples of the huge
number of applications are discussed, with particular reference to stock returns.
Multivariate GAR CH and conditional correlation models are described, and appli-
cations to the estimation of conditional betas and time-varying hedge ratios, and
to financial risk measurement, are given.
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Chapter 10

This discusses testing for and modelling regime shifts or switches of behaviour in
financial series that can arise from changes in government policy, market trading
conditions or microstructure, among other causes. This chapter introduces the
Markov switching approach to dealing with regime shifts. Threshold autoregression
is also discussed, along with issues relating to the estimation of such models.
Examples include the modelling of exchange rates within a managed floating
environment, modelling and forecasting the gilt—equity yield ratio and models of
movements of the difference between spot and futures prices.

Chapter 11

This chapter focuses on how to deal appropriately with longitudinal data — that
is, data having both time series and cross-sectional dimensions. Fixed eftect and
random eftect models are explained and illustrated by way of examples on banking
competition in the UK and on credit stability in Central and Eastern Europe.
Entity fixed and time-fixed effects models are elucidated and distinguished.

Chapter 12

This chapter describes various models that are appropriate for situations where
the dependent variable is not continuous. Readers will learn how to construct,
estimate and interpret such models, and to distinguish and select between alterna-
tive specifications. Examples used include a test of the pecking order hypothesis in
corporate finance and the modelling of unsolicited credit ratings.

Chapter 13

This presents an introduction to the use of simulations in econometrics and finance.
Motivations are given for the use of repeated sampling, and a distinction is drawn
between Monte Carlo simulation and bootstrapping. The reader is shown how to
set up a simulation, and examples are given in options pricing and financial risk
management to demonstrate the usefulness of these techniques.

Chapter 14

This oftfers suggestions related to conducting a project or dissertation in empirical
finance. It introduces the sources of financial and economic data available on the
internet and elsewhere, and recommends relevant online information and literature
on research in financial markets and financial time series. The chapter also suggests
ideas for what might constitute a good structure for a dissertation on this subject,
how to generate ideas for a suitable topic, what format the report could take, and
some common pitfalls. Detailed illustrations of how to conduct an event study and
how to use the Fama-French approach are presented.
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The key terms to be able to define and explain from this chapter are
e cardinal, ordinal and nominal numbers e covariance and correlation
o skewness and kurtosis e continuously compounded
¢ financial econometrics returns
e time series e cross-sectional data
e paneldata e pooled data
e continuous data e discrete data
e real o deflator
e geometric mean
\_ 4

Self-study questions

1. Explain the difference between the following terms:

(a) Continuous and discrete data

(b) Ordinal and nominal data

(c) Time series and panel data

(d) Noisy and clean data

(e) Simple and continuously compounded returns

(f) Nominal and real series
(g) Bayesian and classical statistics

2. Present and explain a problem that can be approached using a time series
regression, another one using cross-sectional regression, and another using
panel data.

3. What are the key features of asset return time series?

4. The following table gives annual, end of year prices of a bond and of the
consumer prices index

Year Bond value CPI value

2006 36.9 108.0

2007 39.8 110.3

2008 42.4 113.6

2009 38.1 116.1

2010 36.4 118.4

2011 39.2 120.9

2012 44.6 123.2

2013 451 125.4
(a) Calculate the simple returns
(b) Calculate the continuously compounded returns
(c) Calculate the prices of the bond each year in 2013 terms
(d) Calculate the real returns
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Learning outcomes N

In this chapter, you will learn how to

e Work with powers, exponents and logarithms

e Use sigma(x) and pi(IT) notation

e Apply simple rules to differentiate functions

e  Work with matrices

e Calculate the trace, inverse and eigenvalues of a matrix

e  Construct minimum variance and mean-variance efficient portfolios

e Compute summary statistics for a data series

e Manipulate expressions using the expectations, variance and covariance
operators

- J

This chapter covers the mathematical and statistical building blocks that are
essential for a good understanding of the rest of the book. Those with some prior
background in algebra and introductory statistics may skip this chapter without
loss of continuity, but hopefully the material will also constitute a useful refresher
for those who have studied mathematics but a long time ago!

aaoooooo---a@ Functlons

2.1.1 Straight lines

The ultimate objective of econometrics is usually to build a model, which may be
thought of as a simplified version of the true relationship between two or more
variables that can be described by a function. A function is simply a mapping or
relationship between an input or set of inputs, and an output. We usually write
that y, the output, is a function f of x, the input: y = f(x). y could be a linear
function of x, where the relationship can be expressed as a straight line on a graph,
or y could be a non-linear function of x, in which case the relationship between
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Table 2.1 Sample data on hours of study and grades Y

Hours of study (x) Grade-point average in % (y)
0 25
100 30
400 45
800 65
1000 75
1200 85

J

the two variables would be represented graphically as a curve. If the relationship is
linear, we could write the equation for this straight line as

y=a+bx 2.1)

y and x are called variables, while a and b are parameters; a is termed the intercept
and b is the slope or gradient of the line. The intercept is the point at which the line
crosses the y-axis, while the slope measures the steepness of the line.

To illustrate, suppose we were trying to model the relationship between a
student’s grade point average y (expressed as a percentage), and the number of hours
that they studied throughout the year, x. Suppose further that the relationship can
be written as a linear function with y = 25 + 0.05x. Clearly it is unrealistic to
assume that the link between grades and hours of study follows a straight line, but
let us keep this assumption for now. So the intercept of the line, a, is 25, and the
slope, b, is 0.05. What does this equation mean? It means that a student spending
no time studying at all (x = 0) could expect to earn a 25% average grade, and
for every hour of study time, their average grade should improve by 0.05% — in
other words, an extra 100 hours of study through the year would lead to a 5%
increase in the grade. We could construct a table with several values of x and
the corresponding value of y as in table 2.1 and then plot them onto a graph
(figure 2.1).

We can see that the gradient of this line is positive (i.e. it slopes upwards from
left to right). But more generally, in other situations it is also possible for the
gradient to be zero or negative. Note that for a straight line, the slope is the same
along the whole line; this slope can be calculated from a graph by taking any two
points on the line and dividing the change in the value of y by the change in the
value of x between the two points. In general, a capital delta, A, is used to denote
a change in a variable. For example, suppose that we want to take the two points
x = 100, y = 30 and x = 1000, y = 75. We could write these two points using
a coordinate notation (x,y) and so (100,30) and (1000,75) in this example. We
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Figure 2.1 A plot of hours studied (x) against grade-point average (y)
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Figure 2.2 Examples of different straight line graphs

would calculate the slope of the line as

Ay 75-30

= —=10.05 (2.2)
Ax 1000 — 100

So indeed, we have confirmed that the slope is 0.05 (although in this case we
knew that from the start). Two other examples of straight line graphs are given in
figure 2.2. The gradient of the line can be zero or negative instead of positive. If
the gradient is zero, the resulting plot will be a flat (horizontal) straight line. If there
is a specific change in x, Ax, and we want to calculate the corresponding change
in y, we would simply multiply the change in x by the slope, so Ay = bAx.
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y=x>+6x+9

y:—x2+9

Figure 2.3  Examples of quadratic functions

As a final point, note that we stated above that the point at which a function
crosses the y-axis is termed the intercept. The point at which the function crosses
the x-axis is called its roof. In the example above, if we take the function y =
25 4 0.05x, set y to zero and rearrange the equation, we would find that the root
would be x = —500. The equation for a straight line has one root (except for a
horizontal straight line such as y = 4).

Quaderatic functions

A linear function is often not sufficiently flexible to be able to accurately describe
the relationship between two variables, and so a quadratic function may be used
instead. We could write the general expression for a quadratic function as

y=a+bx+cx’ 2.3)

where x and y are the variables again and a, b, ¢ are the parameters that describe
the shape of the function. Note that a linear function only has two parameters
(the intercept, a and the slope, b), but a quadratic has three and hence it is able
to adapt to a broader range of relationships between y and x. The linear function
is a special case of the quadratic where ¢ is zero. As before, a is the intercept and
defines where the function crosses the y-axis; the parameters b and ¢ determine
the shape. Quadratic equations can be either U-shaped or N-shaped. As x becomes
very large and positive or very large and negative, the x> term will dominate the
behaviour of y and it is thus ¢ that determines which of these shapes will apply.
Figure 2.3 shows two examples of quadratic functions — in the first case ¢ is positive
and so the curve is U-shaped, while in the second ¢ is negative so the curve is
N-shaped. Box 2.1 discusses the features of the roots of a quadratic equation and
shows how to calculate them.
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Box 2.1 The roots of a quadratic equation ™

o

A quadratic equation has two roots.

The roots may be distinct (i.e. different from one another), or they may
be the same (repeated roots); they may be real numbers (e.g. 1.7,
—2.357, 4, etc.) or what are known as complex numbers.

The roots can be obtained either by factorising the equation — i.e.
contracting it into parentheses, by ‘completing the square’ or by using
the formula

b + /b2 — 4ac
a 2¢

If b > 4ac, the function will have two unique roots and it will cross
the x-axis in two separate places; if b> = 4ac, the function will have
two equal roots and it will only cross the x-axis in one place; if
b < 4ac, the function will have no real roots (only complex roots), it
will not cross the x-axis at all and thus the function will always be
above the x-axis.

J

(2.4)

X

Determine the roots of the following quadratic equations

rwobd--

y=x+x—06

y = 6x% 4 5x + 2
y=ux>—=3x+1
y=x2—4

Solution

We would solve these equations by setting them in turn to zero. We could then
use the quadratic formula from equation (2.4) in each case, although it is usually
quicker to determine first whether they factorise.

1.

x? 4+ x — 6 = 0 factorises to (x — 2)(x + 3) = 0 and thus the roots are 2 and
—3, which are the values of x that set the function to zero. In other words,
the function will cross the x-axis at x = 2 and x = —3.

9x2 + 6x + 1 = 0 factorises to (3x + 1)(3x + 1) = 0 and thus the roots are
—% and —%. This is known as repeated roots — since this is a quadratic equation
there will always be two roots but in this case they are both the same.

x> —3x 4+ 1 =0 does not factorise and so the formula must be used with
a=1,b =—-3,c =1 and the roots are 0.38 and 2.62 to two decimal places.

x> — 4 = 0 factorises to x(x — 4) = 0 and so the roots are 0 and 4.
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Box 2.2 Manipulating powers and their indices N

e Any number or variable raised to the power one is simply that number
or variable, e.g. 3' =3, x!' = x, and so on.

e Any number or variable raised to the power zero is one, e.g. 5" = 1,

x" =1, etc., except that 0° is not defined (i.e. it does not exist).

e If the index is a negative number, this means that we divide one by that

_ 3 _ 1 _ _1
number — for example, x™7 = — = oo

e If we want to multiply together a given number raised to more than
one power, we would add the corresponding indices together — for
example, x% x x° = x%x® = x> = &5,

e If we want to calculate the power of a variable raised to a power (i.e.
the power of a power), we would multiply the indices together — for

3
example, x*° = 2% = x°.

e If we want to divide a variable raised to a power by the same variable

raised to another power, we subtract the second index from the first —
— 32

)

for example, <5

e If we want to divide a variable raised to a power by a different variable
raised to the same power, the following result applies

(x)n - xn
4 y"

e The power of a product is equal to each component raised to that
power — for example, (x X y)® = x° x y°.
e It is important to note that the indices for powers do not have to be

= X.

. 1. . .
integers. For example, x2 is the notation we would use for taking the
square root of x, sometimes written /x. Other, non-integer powers

are also possible, but are harder to calculate by hand (e.g. x%7¢, x=%-%7,

etc.) In general, x'/" = /x.
- J

Note that all of these equations have two real roots. If we had an equation such as
y = 3x? — 2x + 4, this would not factorise and would have complex roots since
b? — 4ac < 0 in the quadratic formula.

Powers of numbers or of variables

A number or variable raised to a power is simply a way of writing repeated
multiplication. So for example, raising x to the power 2 means squaring it (i.e.
x? = x X x); raising it to the power 3 means cubing it (x* = x X x X x), and so
on. The number that we are raising the number or variable to is called the index,
so for x°, 3 would be the index. There are a few rules for manipulating powers

and their indices given in box 2.2.
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y=¢

Figure 2.4 A plot of an exponential function

The exponential function

It is sometimes the case that the relationship between two variables is best described
by an exponential function — for example, when a variable grows (or reduces) at a
rate in proportion to its current value, in which case we would write y = e*. ¢ isa
simply number: 2.71828. ... This function has several useful properties, including
that it is its own derivative (see section 2.2.1 below) and thus the gradient of the
function e* at any point is also e”; it is also useful for capturing the increase in
value of an amount of money that is subject to compound interest. The exponential
function can never be negative, so when x is negative, y is close to zero but positive.
It crosses the y-axis at one and the slope increases at an increasing rate from left to
right, as shown in figure 2.4.

Logarithms

Logarithms were invented to simplify cumbersome calculations, since exponents
can then be added or subtracted, which is easier than multiplying or dividing the
original numbers. While making logarithmic transformations for computational
ease 1s no longer necessary, they still have important uses in algebra and in data
analysis. For the latter, there are at least three reasons why log transforms may be
useful. First, taking a logarithm can often help to rescale the data so that their
variance is more constant, which overcomes a common statistical problem known
as heteroscedasticity, discussed in detail in chapter 5. Second, logarithmic transforms
can help to make a positively skewed distribution closer to a normal distribution.
Third, taking logarithms can also be a way to make a non-linear, multiplicative
relationship between variables into a linear, additive one. These issues will also be
discussed in some detail in chapter 5.
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y=In(x)
1 X

Figure 25 A plot of a logarithmic function

Box 2.3 The laws of logs ™

For variables x and y:

In(xy) =In (EC) +In(y)

o )

To motivate how logs work, consider the power relationship 2° = 8. Using
logarithms, we would write this as [0g,8 = 3, or ‘the log to the base 2 of 8 is 3.
Hence we could say that a logarithm is defined as the power to which the base
must be raised to obtain the given number. More generally, if a® = ¢, then we
can also write log,c = b. If we plot a log function, y = log (x), it would cross the
x-axis at one, as in figure 2.5. It can be seen that as x increases, y increases at a
slower rate, which is the opposite to an exponential function where y increases at
a faster rate as x increases.

Natural logarithms, also known as logs to base e, are more commonly used
and more useful mathematically than logs to any other base. A log to base ¢ is
known as a natural or Naperian logarithm, denoted interchangeably by In(y) or
log(y). Taking a natural logarithm is the inverse of a taking an exponential, so
sometimes the exponential function is called the antilog. The log of a number
less than one will be negative, e.g. [1n(0.5) & —0.69. We cannot take the log of
a negative number (so [n(—0.6), for example, does not exist). The properties of
logarithmic functions or ‘laws of logs” describe the way that we can work with
logs or manipulate expressions using them. These are presented in box 2.3.
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Sigma notation

If we wish to add together several numbers (or observations from variables), the
sigma or summation operator can be very useful. £ means ‘add up all of the
following elements’. For example, 2(1 + 2 + 3) = 6. In the context of adding the
observations on a variable, it is helpful to add ‘limits’ to the summation (although
note that the limits are not always written out if the meaning is obvious without
them). So, for instance, we might write 2?21 x;, where the i subscript is again
called an index, 1 is the lower limit and 4 is the upper limit of the sum. This
would mean adding all of the values of x from x to x4. It might be the case that
one or both of the limits is not a specific number — for instance, 221:1 x;, which
would mean x; + x, + ... 4 x,, or sometimes we simply write Zi x; to denote
a sum over all the values of the index i. It is also possible to construct a sum of a
more complex combination of variables, such as ) ", x;2;, where x; and z; are
two separate random variables.

It is important to be aware of a few properties of the sigma operator. For exam-
ple, the sum of the observations on a variable x plus the sum of the observations
on another variable z is equivalent to the sum of the observations on x and z first
added together individually

n

Yowi+d a=) (xi+2) (2.5)
i=1 i=1

i=1
The sum of the observations on a variable x each multiplied by a constant ¢ is
equivalent to the constant multiplied by the sum

n

Zcxi =c ix,-. (2.6)

i=1 i=1

But the sum of the products of two variables is not the same as the product of
the sums

i XiZj ;é i Xi i P (27)

i=1 i=1 i=1

We can write the left hand side of equation (2.7) as

Z Xz =x121+x2m+ ...+ x,2, (2.8
i=1
whereas the right hand side of equation (2.7) is
inZzi:(x1+x2+...+xn)(z1—|—2’2+...—|-2,1) 2.9
i=1 i=1

1=

We can see that (2.8) and (2.9) are different since the latter contains many ‘cross-
product’ terms such as x12, 32, X922, etc., whereas the former does not.
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If we sum n identical elements (i.e. we add a given number to itself # times),
we obtain n times that number

n

Zx=x+x+...+x=nx (2.10)
i=1

Suppose that we sum all of the n observations on a series, x; — for example,
the x; could be the daily returns on a stock (which are not all the same), we would
obtain

in:x1+x2+...+xn:n§. 2.11)

i=1

So the sum of all of the observations is, from the definition of the mean, equal
to the number of observations multiplied by the mean of the series, x. Notice that
the difference between this situation in (2.11) and the previous one in (2.10) is
that now the x; are different from one another whereas before they were all the
same (and hence no i subscript was necessary).

Finally, note that it is possible to have multiple summations, which can be
conducted in any order, so for example

n

i=1 j=1

would mean sum over all of the i and j subscripts, but we could either sum over
the j’s first for each i or sum over the i’s first for each j. Usually, the inner sum
(in this case the one that runs over j from one to m would be conducted first —
1.e. separately for each value of 7).

Pi notation

Similar to the use of sigma to denote sums, the pi operator (IT) is an operator that
is used to denote repeated multiplications. For example

fo = X1X2...X, (2.12)
i=1

means ‘multiply together all of the x; for each value of i between the lower and

upper limits.” It also follows that [['_;(cx;) = ¢" [/, xi-

Differential calculus
The eftect of the rate of change of one variable on the rate of change of another is measured

by a mathematical derivative. If the relationship between the two variables can be
represented by a curve, the gradient of the curve will be this rate of change.
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Consider a variable y that is some function f of another variable x, i.e. y = f(x).
The derivative of y with respect to x is written

dy  df@
dx  dx

or sometimes f'(x). This term measures the instantaneous rate of change of y with

respect to x, or in other words, the impact of an infinitesimally small change in x.

Notice the difference between the notations Ay and dy — the former refers to a

change in y of any size, whereas the latter refers specifically to an infinitesimally

small change.

Differentiation: the fundamentals

The basic rules of differentiation are as follows:

1. The derivative of a constant is zero
. dy
e.g.if y =10, — = 0.
dx
This is because y = 10 would be represented as a horizontal straight line on a
graph of y against x, and therefore the gradient of this function is zero.
2. The derivative of a linear function is simply its slope
. dy
eg.if y=3x+2, — =3.
dx
But non-linear functions will have different gradients at each point along the
curve. In effect, the gradient at each point is equal to the gradient of the
tangent at that point — see figure 2.6. Notice that the gradient will be zero at
the point where the curve changes direction from positive to negative or from
negative to positive — this is known as a turning point.
3. The derivative of a power function n of x

. n - . Y n—1
ie.y=rcx 1sg1venbyE:cnx .

For example
3 dy 2 2
dx

3 d
y=- =3x_],—y =0@Bx —x?=-3x"=—
X dx X
4. The derivative of a sum is equal to the sum of the derivatives of the individual
parts. Similarly, the derivative of a difference is equal to the difference of the

derivatives of the individual parts

d
e if y = f() +g() 7 = /() 4/
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/

Figure 2.6 The tangent to a curve

while

d
wyzﬂ@—amgﬁzﬂm—ywy

5. The derivative of the log of x is given by 1/x
d(log(x)) 1
Le. ———— = —

dx X

6. The derivative of the log of a function of x is the derivative of the function
divided by the function

L dog(F) _ ()

dx  f(x)
For example, the derivative of log(x® + 2x — 1) is given by
3x% 42
W 4+2x—1°

7. The derivative of e* is e*. The derivative of e/ is given by f’(x)e/®). For
R A A

example, if y = ™, 7=

2.2.2 Higher order derivatives

It is possible to differentiate a function more than once to calculate the second
order, third order, ..., nth order derivatives. The notation for the second order
derivative (which is usually just termed the second derivative, and which is the
highest order derivative that we will need in this book) is

dzy d(ﬂ)

D S — dx
d x2 S dx
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To calculate second order derivatives, we simply differentiate the function with
respect to x and then we differentiate it again. For example, suppose that we have
the function

y =4x" +3x° +2x+6
The first order derivative 1s

dy  d(4x’ 4 3x° 4 2x + 6)

dx dx

The second order derivative is

= f(x) = 20x* + 9x* + 2.

2y d(EEERE) oo o2 4oy

— = f(x) = = = 80x~ + 18x.

dx? dx dx
The second order derivative can be interpreted as the gradient of the gradient of
a function — i.e. the rate of change of the gradient.

We said above that at the turning point of a function its gradient will be zero.
How can we tell, then, whether a particular turning point is a maximum or a
minimum? The answer is that to do this we would look at the second derivative.
When a function reaches a maximum, its second derivative is negative, while it is
positive for a minimum.

For example, consider the quadratic function y = 5x% + 3x — 6. We already
know that since the squared term in the equation has a positive sign (i.e. it is 5
rather than, say, —5), the function will have a U-shape rather than an N-shape, and
thus it will have a minimum rather than a maximum. But let us also demonstrate
this using differentiation

dy d?y

i 10x + 3, ek 10.
Since the second derivative is positive, the function indeed has a minimum.
To find where this minimum is located, take the first derivative, set it to zero
and solve it for x. So we have 10x +3 =0, and thus x = —% =—-0.3. If
x = —0.3, the corresponding value of y is found by substituting —0.3 into the
original function y = 5x% 4+ 3x — 6 =5 x (—0.3)> + (3 x —0.3) — 6 = —6.45.

Therefore, the minimum of this function is found at (—0.3, —6.45).
Partial differentiation

In the case where y is a function of more than one variable (e.g. y =
f(x1,%0,...,x,)), it may be of interest to determine the effect that changes in
each of the individual x variables would have on y. The differentiation of y with
respect to only one of the variables, holding the others constant, is known as partial
differentiation. The partial derivative of y with respect to a variable x is usually
denoted

dy
8X1 ’
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All of the rules for differentiation explained above still apply and there will be
one (first order) partial derivative for each variable on the right hand side of the
equation. We calculate these partial derivatives one at a time, treating all of the
other variables as if they were constants. To give an illustration, suppose y = 3x7
+ 4x1 — 2x3 + 2x3. The partial derivative of y with respect to x; would be

dy

— =9x7 +4
8x1 .

while the partial derivative of y with respect to x, would be

dy

= —8x§’ + 4x
8:)(?2

As we will see in chapter 3, the ordinary least squares (OLS) estimator gives
formulae for the values of the parameters that minimise the residual sum of
squares, given by L =) (y, — & — ,éxt)z. The minimum of L (the residual sum
of squares) is found by partially differentiating this function with respect to & and
B and setting these partial derivatives to zero. Therefore, partial differentiation has
a key role in deriving the main approach to parameter estimation that we use in
econometrics — see appendix 3.1 for a demonstration of this application.

Integration

Integration is the opposite of differentiation, so that if we integrate a function
and then differentiate the result, we get back the original function. Recall that
derivatives give functions for calculating the slope of a curve; integration, on the
other hand, is used to calculate the area under a curve (between two specific
points). Further details on the rules for integration are beyond the scope of this
book since the mathematical technique is not needed for any of the approaches
we will employ, but it will be useful to be familiar with the general concept.

Matrices

Before we can work with matrices, we need to define some terminology

e A scalar 1s simply a single number (although it need not be a whole number —
e.g. 3, =5, 0.5 are all scalars)
A wvector is a one-dimensional array of numbers (see below for examples)
A matrix is a two-dimensional collection or array of numbers. The size of a matrix
is given by its numbers of rows and columns.

Matrices are very useful and important ways for organising sets of data together,
which make manipulating and transforming them much easier than it would be
to work with each constituent of the matrix separately. Matrices are widely used
in econometrics and finance for solving systems of linear equations, for deriving
key results and for expressing formulae in a succinct way. Sometimes bold-faced
type is used to denote a vector or matrix (e.g. A), although in this book we will
not do so — hopefully it should be obvious whether an object is a scalar, vector
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or matrix from the context or this will be clearly stated. Some useful features of
matrices and explanations of how to work with them are described below.

The dimensions of a matrix are quoted as R X C, which is the number of rows
by the number of columns.

Each element in a matrix is referred to using subscripts. For example, suppose a
matrix M has two rows and four columns. The element in the second row and
the third column of this matrix would be denoted i3, so that more generally
m;; refers to the element in the ith row and the jth column. Thusa 2 x 4
matrix would have elements

miyp miz  Miq3 M4

ma1 My M23 M4
If a matrix has only one row, it is known as a row vector, which will be of
dimension 1 x C, where C is the number of columns

eg. (27 30 —15 0.3)

A matrix having only one column is known as a column vector, which will be
of dimension Rx 1, where R is the number of rows

1.3
e.g. —0.1
0.0

When the number of rows and columns is equal (i.e. R = C), it would be said
that the matrix is square as is the following 2 x 2 matrix

0.3 0.6
—-0.1 0.7

A matrix in which all the elements are zero is known as a zero matrix

0 0 0
eg |lg o o

A symmetric matrix is a special type of square matrix that is symmetric about
the leading diagonal (the diagonal line running through the matrix from the
top left to the bottom right), so that m;; = m;; V i, j

12 4 7
2 -3 6 9
“& 14 6 2 -8
7 9 -8 0

A diagonal matrix is a square matrix which has non-zero terms on the leading
diagonal and zeros everywhere else

30 0 0
01 0 0
-8 00 2 0
00 0 —1
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e A diagonal matrix with 1 in all places on the leading diagonal and zero every-
where else is known as the identity matrix, denoted by I. By definition, an
identity matrix must be symmetric (and therefore also square)

e.g.

oNeNeNS
S O = O
SO = OO
- o O O

e The identity matrix is essentially the matrix equivalent of the number
one. Multiplying any matrix by the identity matrix of the appropriate size
results in the original matrix being left unchanged. So for any matrix
M

MI=IM=M

Operations with matrices

In order to perform operations with matrices (e.g. addition, subtraction or multi-

plication), the matrices concerned must be conformable. The dimensions of matrices

required for them to be conformable depend on the operation.

e Addition and subtraction of matrices requires the matrices concerned to be of
the same order (i.e. to have the same number of rows and the same number

of columns as one another). The operations are then performed element by
element

. 03 0.6 02 —0.1
& lfA_<—0.1 0.7) and B‘(o 0.3)

03+02 0.6—-0.1Y\ _ 0.5 0.5
—0.140 07+03) \—-0.1 1.0

4 (03-02 06——01)_( 01 07
“\-01-0 07-03 )T\ -01 04

e Multiplying or dividing a matrix by a scalar (that is, a single number), implies
that every element of the matrix is multiplied by that number

03 0.6 0.6 1.2
-8 2A_2<—O.1 o.7>_<—o.2 1.4)

avn=(
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e More generally, for two matrices A and B of the same order and for ¢ a scalar,
the following results hold

A+ B=B+ A
A+0=0+A4A=A4
cA= Ac

c((A+ B)=cA+¢B
AO=0A=0

e Multiplying two matrices together requires the number of columns of the first
matrix to be equal to the number of rows of the second matrix. Note also that
the ordering of the matrices 1s important when multiplying them, so that in
general, AB # BA. When the matrices are multiplied together, the resulting
matrix will be of size (number of rows of first matrix X number of columns of
second matrix), e.g. (3 X 2) X (2 x 4) = (3 x 4). In terms of determining the
dimensions of the matrix, it is as if the number of columns of the first matrix
and the number of rows of the second cancel out.! This rule also follows more
generally, so that (a X b) X (b X ¢) X (¢ xd) x (d xe)=(a X e), etc.

e The actual multiplication of the elements of the two matrices is done by
multiplying along the rows of the first matrix and down the columns of the
second

12
02 49
e.g. (Z g)(esoz)

Bx2) 2x4

(X0 4+2x6) (1x2+2x%x3) (1x44+2x0) ((1x9)+(2x2)
= (((7x0)+(3x6)) (7%x2)+ (3 x3) (7x4)+(3x0) ((7><9)+(3x2)))
(I x0)+(©Ox06) (1x2)46x3) (1x4)+6x0) ((1x9) 4+ (6 x2)
(3 x4)
(12 8 4 13)
= 18 2328 69
36 20 4 21
B x4

In general, matrices cannot be divided by one another. Instead, we multiply
by the inverse — see below.

e The transpose of a matrix, written A or A’ is the matrix obtained by trans-
posing (switching) the rows and columns of a matrix

1 2
e.g. ifA:(Z g) then 4/ = (3§ {)

If Ais of dimensions R x C, A will be C x R.

! Of course, the actual elements of the matrix themselves do not cancel out — this is just a simple
rule of thumb for calculating the dimensions of the matrix resulting from a multiplication.
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The rank of a matrix

The rank of a matrix A is given by the maximum number of linearly independent
rows (or columns) contained in the matrix. For example,

3 4
rank<7 9>=2

since both rows and columns are (linearly) independent of one another, but

3 6
rank(2 4>=1

as the second column is not independent of the first (the second column is simply
twice the first). A matrix with a rank equal to its dimension, as in the first of these
two cases, is known as a matrix of full rank. A matrix that is less than of full rank
is known as a short rank matrix, and such a matrix is also termed singular. Three
important results concerning the rank of a matrix are:

e Rank(A) = Rank(A))
e Rank(AB) < min(Rank(A), Rank(B))
e Rank(A A) = Rank(AA) = Rank(A)

The inverse of a matrix

The inverse of a matrix A, where defined, is denoted A~". It is that matrix which,
when pre-multiplied or post-multiplied by A, will result in the identity matrix

ie. AA'=A'A=1

The inverse of a matrix exists only when the matrix is square and non-singular —
that is, when it is of full rank. The inverse of a 2 x 2 non-singular matrix whose
elements are

(£ 9)

will be given by

1 d —=b
ad —bc\—¢ a

The expression in the denominator above to the left of the matrix (ad — bc) is
the determinant of the matrix, and will be a scalar. If this determinant is zero, the
matrix is singular, and thus not of full rank so that its inverse does not exist.

If the matrix is

(5 ¢)
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the inverse will be

s(23)= (L

As a check, multiply the two matrices together and it should give the identity matrix —
the matrix equivalent of one (analogous to % x3=1)

(5 o) s(S 2)=509)-=01)

= I, as required.
The calculation of the inverse of an N x N matrix for N > 2 is more complex and
beyond the scope of this text. Properties of the inverse of a matrix include:
o =1
o (ANH =4
o (AT =(aTY
e (AB)'=B14"!

(S L S ]
|— |

o=
S—

The trace of a matrix

The trace of a square matrix is the sum of the terms on its leading diagonal. For
example, the trace of the matrix

(3 0)

written Tr(A), is 3 + 9 = 12. Some important properties of the trace of a matrix
are:

o Tr(c A) = cTr(A

o Tr(A)=Tr(A

e Tr(A+ B) =Tr(A) + Tr(B)
L] TI'(IN) =N

The eigenvalues of a matrix

The concept of the eigenvalues of a matrix is necessary for testing for long-run
relationships between series using what is known as the Johansen cointegration
test used in chapter 8. Let IT denote a p X p square matrix, ¢ denote a p X 1
non-zero vector, and A denote a set of scalars. A is called a characteristic root or set
of roots of the matrix IT if it is possible to write

ITe = Ac
pxp px1l px1
This equation can also be written as

Ile = klpc
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where I, is an identity matrix, and hence
(IT=Al,)c =0

Since ¢ # 0 by definition, then for this system to have a non-zero solution, the
matrix (IT — A1,) is required to be singular (i.e. to have a zero determinant)

T —AI,|=0
For example, let IT be the 2 X 2 matrix
5 1
=[]

Then the characteristic equation is

ITT— A1,
5 1 10
o BRI IR
:‘SEA 4i)\‘:(5—A)(4—k)—2:k2—9)»+18

This gives the solutions A = 6 and A = 3. The characteristic roots are also known
as eigenvalues. The eigenvectors would be the values of ¢ corresponding to the
eigenvalues. Some properties of the eigenvalues of any square matrix A are:

e the sum of the eigenvalues is the trace of the matrix
e the product of the eigenvalues is the determinant
e the number of non-zero eigenvalues is the rank.

For a further illustration of the last of these properties, consider the matrix

0.5 0.25
= [0.7 0.35]

Its characteristic equation is
0.5 0.25 1 0
‘[0.7 0.35] - )‘[0 1]' =0
which implies that

0.5—=x 0.25
0.7 0.35 — A

=0

This determinant can also be written (0.5 — A)(0.35 — A) — (0.7 x 0.25) = 0 or

0.175 — 0.85A + 1> — 0.175 =0
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or
A*—0.850 =0
which can be factorised to A (A — 0.85) = 0.

The characteristic roots are therefore 0 and 0.85. Since one of these eigenvalues
is zero, it is obvious that the matrix I1 cannot be of full rank. In fact, this is also
obvious from just looking at I, since the second column is exactly half the first.

Portfolio theory and matrix algebra

Probably the most important application of matrix algebra in finance is to solving
portfolio allocation problems. Although these can be solved in a perfectly satisfac-
tory fashion with sigma notation rather than matrix algebra, use of the latter does
considerably simplify the expressions and makes it easier to solve them when the
portfolio includes more than two assets. This book is not the place to learn about
portfolio theory per se — interested readers are referred to Bodie, Kane and Marcus
(2011) or the many other investment textbooks that exist — rather, the purpose of
this section is to demonstrate how matrix algebra is used in practice.

So to start, suppose that we have a set of N stocks that are included in a
portfolio P with weights wy, wo, ..., wy and suppose that their expected returns
are written as E(rq), E(ra), ..., E(rn). We could write the N x 1 vectors of
weights, w, and of expected returns, E(r), as

w E(ry)
w=| E(r) = E(r2)
WN E'(VN)

So, for instance, w3 and E(r3) are the weight attached to stock three and its
expected return respectively. The expected return on the portfolio, E(rp) can be
calculated as E(r)'w — that is, we multiply the transpose of the expected return
vector by the weights vector.

We then need to set up what is called the variance-covariance matrix of the
returns, denoted 1. This matrix includes all of the variances of the components of
the portfolio returns on the leading diagonal and the covariances between them as
the oft-diagonal elements. We will also discuss such a matrix extensively in chapter
4 in the context of the parameters from regression models. The variance-covariance
matrix of the returns may be written

011 O12 013 ... OIN

021 O 023 ... O2N
V=

ONT ON2 ON3 ... ONN

The elements on the leading diagonal of 17 are the variances of each of the
component stocks’ returns - so, for example, oq; is the variance of the returns
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on stock one, 0y, 1s the variance of returns on stock two and so on. The off-
diagonal elements are the corresponding covariances — so, for example, o7, is the
covariance between the returns on stock one and those on stock two, osg is the
covariance between the returns on stock five and those on stock eight, and so
on. Note that this matrix will be symmetrical about the leading diagonal since
Cov(a, b) = Cov(b, a) where a and b are random variables and hence it is possible
to write 05 = 0% and so forth.

In order to construct a variance-covariance matrix, we would need to first
set up a matrix containing observations on the actual returns (not the expected
returns) for each stock where the mean, 7; (i = 1,..., N), has been subtracted
away from each series i. If we call this matrix R, we would write

r1 —nm 21 — 12 rz1 — 13 N1 —I'N
2 — 1 2o — 12 rzp — I3 N2 —I'N
rnr —rnr ror —7r2 ¥3arT — 713 v« I'NT—TFN

So each column in this matrix represents the deviations of the returns on
individual stocks from their means and each row represents the mean-adjusted
return observations on all stocks at a particular point in time. The general entry,
rij, is the jth time series observation on the ith stock. The variance-covariance
matrix would then simply be calculated as V' = (R'R)/(T — 1) where T is the
total number of time series observations available for each series.

Suppose that we wanted to calculate the variance of returns on the portfolio
P (a scalar which we might call Ip). We would do this by calculating

p =w' Vw 2.13)

Checking the dimension of Ip, w’ is (1 x N), VVis (N x N) and w is (N x 1) so
Ipis (1 x NX Nx Nx N x 1), which is (1 x 1) as required.
We could also define a correlation matrix of returns, C, which would be

1 Cor Cjs ... CnN
CZl 1 C23 e C2N
C =
C N1 CNZ C N3 - 1

This matrix would have ones everywhere on the leading diagonal (since the
correlation of something with itself is always one) and the off-diagonal elements
would give the correlations between each pair of returns — for example, Cs5 would
be the correlation between the returns on stock three and those on stock five.
Note again that, as for the variance-covariance matrix, the correlation matrix will
always be symmetrical about the leading diagonal so that C3; = Cj3 etc. Using the
correlation instead of the variance-covariance matrix, the portfolio variance given
in equation (2.13) would be:

’p» = w' SCSw (2.14)
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where C is the correlation matrix, w is again the vector of portfolio weights, and
S is a diagonal matrix with each element containing the standard deviations of the
portfolio returns.

Selecting weights for the minimum variance portfolio

Although in theory investors can do better by selecting the optimal portfolio on
the efficient frontier, in practice a variance minimising portfolio often performs
well when used out-of-sample. Thus we might want to select the portfolio weights
w that minimised the portfolio variance, I’p. In matrix notation, we would write

min w’ Vw
w

We also need to be slightly careful to impose at least the restriction that all of the
wealth has to be invested (Zl]\zl w; = 1), otherwise this minimisation problem can
be trivially solved by setting all of the weights to zero to yield a zero portfolio
variance. This restriction that the weights must sum to one is written using matrix
algebra as w'- 1y = 1, where 1 is a column vector of ones of length N.’
The minimisation problem can be solved to
(N

w; = 2.15
MV P 7= T (2.15)

where M I/P stands for minimum variance portfolio.

Selecting optimal portfolio weights

In order to trace out the mean-variance efficient frontier, we would repeatedly
solve this minimisation problem but in each case set the portfolio’s expected return
equal to a difterent target value, R. So, for example, we set R to 0.1 and find
the portfolio weights that minimise Ip, then set R to 0.2 and find the portfolio
weights that minimise Vp, and so on. We would write this as

mu%n w' Vw subjectto w'-1x=1,wE(r)= R

This problem is sometimes called the Markowitz portfolio allocation problem, and
can be solved analytically as expressed above. That is, we can derive an exact
solution using matrix algebra. However, it is often the case that we want to place
additional constraints on the optimisation — for instance we might want to restrict
the portfolio weights so that none are greater than 10% of the overall wealth
invested in the portfolio, or we might want to restrict them to all be positive (i.e.
long positions only with no short selling allowed). In such cases the Markowitz
portfolio allocation problem cannot be solved analytically and thus a numerical
procedure must be used such as the Solver function in Microsoft Excel.

2 Note that w’- 1x will be 1 x 1 —1i.e. a scalar.
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Note that it is also possible to write the Markowitz problem the other way
around — that is, where we select the portfolio weights that maximise the expected
portfolio return subject to a target maximum variance level.

If the procedure above is followed repeatedly for different return targets, it
will trace out the efficient frontier. In order to find the tangency point where the
efficient frontier touches the capital market line, we need to solve the following
problem

wE{r)—ry _ ,
max ————  subjectto w-1y=1
w (w' Vw)

=

If no additional constraints are required on the stock weights, this can be solved
fairly simply as

_ VTE@E) —rs14]
YT LVEG) — 1A

(2.16)

The mean-variance efficient frontier in Excel

This section will now describe how to construct an efficient frontier and draw the
capital market line using a three stock portfolio with Microsoft Excel. Although
EViews is used for conducting the empirical work throughout the rest of the book,
it is more natural to tackle these sorts of problems within a standard spreadsheet
environment. It is assumed that the reader knows the standard functions of Excel —
for those who need a refresher, see the excellent book by Benninga (2011).

The spreadsheet ‘efficient.xls’ contains the finished product — the plots of the
efficient frontier and capital market line. However, I suggest starting with a blank
spreadsheet, copying across the raw data and starting to reconstruct the
formulae again to get a better of idea of how it is done.

The first step is to construct the returns. The raw prices and T-bill yields are
in columns two to six of the sheet. These series are identical to those used in the
example in the following chapter on estimating the CAPM. We will not need to
use the S&P index or Oracle share prices since we are going to assume a three
asset portfolio. However, all of the principles outlined below could be very easily
and intuitively extended to situations where there were more assets employed.

Since we are dealing with portfolios, it is probably preferable to employ simple
rather than continuously compounded returns. So start by constructing three
sets of returns for the Ford, General Electric and Microsoft share prices in
columns H to J, and head these columns ‘FORDRET’, ‘GERET’ and ‘MSOFT-
RET’ respectively. Column K will comprise the weights on a portfolio containing
all three stocks but with varying weights. The way we achieve this is to set up
three cells that will contain the weights. To start with, we fix these arbitrarily but
later will allow the Solver to choose them optimally. So write 0.33, 0.33 and
0.34 in cells N12 to N14 respectively. In cell N15, calculate the sum of
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Covariance

Input
Input Range: | $H$3:61$137

Grouped By: (@) Columns
Ot

[ ] Labels in first row

Output options
(@) output Range: $M$3:$P$6 Bz
O New Worksheet Ply: ‘ ‘

O New Workbook

Screenshot 2.1  Setting up a variance-covariance matrix in Excel

the weights as a check that this is always one so that the all wealth is invested
among the three stocks. We are now in a position to construct the (equally
weighted) portfolio returns (call them ‘PORTRET?) in column K. In cell K2,
write =H3*$N$12+I13*$N$13+J3*$N$14 and then copy this formula down
the whole of column K until row 137.

The next stage is to construct the variance-covariance matrix, which we
termed V in the description above. So first, click on Data and Data Analysis
and then select Covariance from the menu. Complete the Window so that it
appears as in screenshot 2.1 with input range $H$3:$J$137 and output range
$M$3:$P$6 and click OK.

The next stage is to copy the covariances so that they are also in the upper
right triangle of the matrix, and also replace ‘Column 1’ etc. with the names
of the three stocks in the column and row headers.

We now want to calculate the average returns for each of the individual stocks
(we already have their variances on the leading diagonal of the variance-covariance
matrix). To do this, in cells M9 to O9, write =AVERAGE(H3:H137),
=AVERAGE(I3:1137) and =AVERAGE(3:1137).

Next, we can construct summary statistics for the portfolio returns. There are
several ways to do this. One way would be to calculate the mean, variance and
standard deviation of the returns directly from the monthly portfolio returns in
column K. However, to see how we would do this using matrix algebra in Excel,
for calculating the average portfolio return in cell N18, enter the formula
=MMULT (M9:09,N12:N14) which will multiply the returns vector (what we
called E(r)") in M9 to O9 by the weights vector w in N12 to N14.

In cell N19, we want the formula for the portfolio variance, which
is given by w'lVVw and in Excel this is calculated using the formula
~MMULT(MMULT(Q13:513, N4:P6),N12:N14).
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M N 0] P Q R S T

Variance-Covariance matrix, V

FORD GE MSOFT
FORD 293.02 61.55 42.90
GE 61.55 66.90 25.79
MSOFT 42.90 25.79 50.05

Stock Returns

1.31 0.24 0.39
Portfolio Weights, w Portfolio weights transposed, w'
FORD 0.33 FORD GE MSOFT
GE 0.33 0.33 0.33 0.34
MSOFT 0.34

1.00 <<< sum of weights

Portfolio Statistics
Mean 0.64

Variance I 73.80!

Std Dev. 8.59

Screenshot 2.2 The spreadsheet for constructing the efficient frontier

Eftectively, we are conducting the multiplication in two stages. First, the inter-
nal MMUL is multiplying the transposed weights vector, w" in Q13 to S13 by the
variance-covariance matrix I”in N4 to P6. We then multiply the resulting product
by the weights vector w in N12 to N14. Finally, calculate the standard devia-
tion of the portfolio returns in N19 as the square root of the variance in
N18.

Take a couple of minutes to examine the summary statistics and the variance-
covariance matrix. It is clear that Ford is by far the most volatile stock with an
annual variance of 239, while Microsoft is the least at 50. The equally weighted
portfolio has a variance of 73.8. Ford also has the highest average return. We
now have all of the components needed to construct the mean-variance effi-
cient frontier and the right-hand side of your spreadsheet should appear as in
screenshot 2.2.

First, let us calculate the minimum variance portfolio. To do this, click on
cell N19, which is the one containing the portfolio variance formula. Then click
on the Data tab and then on Solver. A window will appear which should
be completed as in screenshot 2.3. So we want to minimise cell $N$19 by
changing the weights $N$12:$N$14 subject to the constraint that the weights sum
to one (§N$15 = 1). Then click Solve. Solver will tell you it has found a solution,
so click OK again.

Note that strictly it is not necessary to use Solver to evaluate this problem when
no additional constraints are placed, but if we want to incorporate non-negativity
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Solver Parameters g‘
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Subject to the Constraints:
$NS1S =1 Add

Change

Delete

Reset All

Load/Save

Make Unconstrained Variables Non-Negative

Wil

Select a Solving Method: GRG Nonlinear v ‘ Options

Solving Method

Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine
for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth.

—— —

Screenshot 2.3 Completing the Solver window

or other constraints on the weights, we could not calculate the weights analytically
and Solver would have to be used. The weights in cells N12 to N14 automatically
update, as do the portfolio summary statistics in N18 to N20. So the weights that
minimise the portfolio variance are with no allocation to Ford, 37% in General
Electric and 63% in Microsoft. This achieves a variance of 41 (standard deviation
of 6.41%) per month and an average return of 0.33% per month.

So we now have one point on the efficient frontier (the one on the far left),
and we repeat this procedure to obtain other points on the frontier. We set a target
variance and find the weights that maximise the return subject to this variance.
In cells N25 to N40, we specify the target standard deviations from 6.5
to 17, increasing in units of 0.5. These figures are somewhat arbitrary, but
as a rule of thumb, to get a nice looking frontier, we should have the maximum
standard deviation (17) about three times the minimum (6.5). We know not to set
any number less than 6.41 since this was the minimum possible standard deviation
with these three stocks.

We click on the cell N18 and then select Solver again from the Data tab.
Then we use all of the entries as before, except that we want to choose Max
(to maximise the return subject to a standard deviation constraint) and then add
an additional constraint that $N$20 = $N$25, so that the portfolio standard
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Screenshot 2.4 A plot of the completed efficient frontier

deviation will be equal to the value we want, which is 6.5 in cell N25. Click
Solve and the new solution will be found. The weights are now 4% in Ford, 30%
in GE, 66% in Microsoft, giving a mean return of 0.38% and a standard deviation
of 6.5(%). Repeat this again for the other standard deviation values from
6.5 through to 17, each time noting the corresponding mean value (and if you
wish, also noting the weights). You will see that if you try to find a portfolio with a
standard deviation of 17.5, Solver will not be able to find a solution because there
are no combinations of the three stocks that will give such a high value. In fact,
the upper left point on the efficient frontier will be the maximum return portfolio
which will always be 100% invested in the stock with the highest return (in this
case Ford).

We can now plot the efficient frontier — i.e. the mean return on the y-axis
against the standard deviation on the x-axis. If we also want the lower part of
the mean-variance opportunity set (the part where the curve folds back on itself
at the bottom), we repeat the procedure above — i.c. targeting the standard
deviation of 6.5, 7.,..., but this time we minimise the return rather than
maximising it. The minimum return is 0.24 when the portfolio is 100% invested
in GE. The plot will appear as in screenshot 2.4. The line is somewhat wiggly,
but this arises because the points are insufficiently close together. If we had used
standard deviations from 6.5 to 17 in increments of 0.2, say, rather than 0.5 then
the plot would have been much smoother.

The final step in the process is to superimpose the capital market line (CML)
onto the plot. To do this, we need to find the tangency point, which will be the
point at which the Sharpe ratio of the portfolio is maximised. So first we need
to calculate the average of the T-bill series (dividing it by twelve to get the
monthly rate for comparability with the stock returns, which are monthly), putting
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Screenshot 2.5 The capital market line and efficient frontier

this in cell N55. We then calculate the risk premium in N56, which is the
risky portfolio return from N18 less the risk-free rate in N56. Finally, the Sharpe
ratio in N57 is the risk premium from N56 divided by the portfolio standard
deviation (N20). We then get Solver to maximise the value of N57 subject to
the weights adding to one (no other constraints are needed).

The tangency point is with mean return of exactly 1% per month (by coinci-
dence), standard deviation 12.41% and weights of 66%, 0% and 34% in Ford, GE
and MSoft respectively. We then need a set of points on the CML to plot —
one will be the point on the y-axis where the risk is zero and the return is the
average risk-free rate (0.14% per month). Another will be the tangency point we
just derived. To get the others, recall that the CML is a straight line with equation
return = Ry + Sharpe ratio X std dev. So all we need to do is to use a run of stan-
dard deviations and then calculate the corresponding returns — we know
that Ry = 0.14 and Sharpe ratio = 0.0694. The minimum variance opportunity
set and the CML on the same graph will appear as in screenshot 2.5.

Probability and probability distributions

This section discusses and presents the theoretical expressions for the mean and
variance of a random variable. A random variable is one that can take on any value
from a given set and where this value is determined at least in part by chance.
By their very nature, random variables are not perfectly predictable. Most data
series in economics and finance are best considered random variables, although
there might be some measurable structure underlying them as well so they are not
purely random. It is often helpful to think of such series as being made up of a
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fixed part (which we can model and forecast) and a purely random part, which we
cannot forecast.

The mean of a random variable y is also known as its expected value, written
E(y). The properties of expected values are used widely in econometrics, and are
listed below, referring to a random variable y

e The expected value of a constant (or a variable that is non-stochastic) is the
constant, e.g. E(c) = c.

e The expected value of a constant multiplied by a random variable is equal to
the constant multiplied by the expected value of the variable: E(c y) = ¢ E(y).
It can also be stated that E(c y + d) = (c E(y)) + d, where d is also a constant.

e For two independent random variables, y; and y,, E(y1y2) = E(y1) E(y2).

The variance of a random variable y is usually written var(y). The properties of
the ‘variance operator’, var(-), are

The variance of a random variable y is given by var(y) = E[y — E(y)]?

The variance of a constant is zero: var(c) = 0

For ¢ and d constants, var(c y + d) = ¢? var(y)

For two independent random wvariables, y; and 1y, var(c y1 +dy) =
c2var(y1) + d>var(y,).

The covariance between two random variables, y; and y, may be expressed as
cov(y1, y2). The properties of the covariance operator are

cov(y1, y2) = E[(y1 — E(y1))(y2 — E(12))]
For two independent random variables, y; and y,, cov(yy, y2) =0

For four constants, ¢, d, e, and f, cov(c +dyi, e + fyo) =d fcov(yr, y2).

The data that we use in building econometric models either come from
experiments or, more commonly, are observed in the ‘real world’. The outcomes
from an experiment can often only take on certain specific values — 1.e. they are
discrete random variables. For example, the sum of the scores from following two
dice could only be a number between two (if we throw two ones) and twelve
(if we throw two sixes). We could calculate the probability of each possible sum
occurring and plot it on a diagram, such as figure 2.7. This would be known as a
probability distribution function. A probability is defined to lie between zero and one,
with a probability of zero indicating an impossibility and one indicating a certainty.
Notice that the sum of the probabilities in the figure is, as always, one.

Most of the time in finance we work with continuous rather than discrete
variables, in which case the plot above would be probability density function (pdf).
The most commonly used distribution to characterise a random variable is a normal
or Gaussian (these terms are equivalent) distribution. The normal distribution is
easy to work with since it is symmetric, and the only pieces of information required
to completely specify the distribution are its mean and variance, as discussed in
chapter 5. The normal distribution is particularly useful because many naturally
occurring series follow it — for example, the heights, weights and 1Q-levels of
people in a given sample.
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Figure 2.7 The probability distribution function for the sum of two dice

The normal distribution also has several useful mathematical properties. For
example, any linear transformation of a normally distributed random variable will
still be normally distributed. So, if y ~ N(u, 0?), that is, y is normally distributed
with mean p and variance 02, thena + by ~ N(bj + a, b*0%) where a and b are
scalars. Furthermore, any linear combination of independent normally distributed
random variables is itself normally distributed.

Suppose that we have a normally distributed random variable with mean p
and variance o2, Its probability density function is given by f(y) in the following
expression

) = —me W2 2.17)
2mo
Entering values of y into this expression would trace out the familiar ‘bell-shape’
of the normal distribution described in figure 2.8.

A standard normally distributed random variable can be obtained from this by
subtracting the mean and dividing by the standard deviation (the square root of
the variance). The standard normally distributed random variable would then be
written
Yy — M

o

Z= ~ N(O, 1)

It 1s usually easier to work with the normal distribution in its standardised form.
We can use the pdf to calculate the probability that the random variable lies

within a certain range — e.g. what is the probability that y lies between 0.2 and

0.3? To obtain this, we would plug y = 0.2 and then y = 0.3 into the equation

(2.17) above and calculate the corresponding value of f(y) in each case. Then the

difference between these two values of f(y) would give us the answer.
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Figure 2.8  The pdf for a normal distribution

Note that for a continuous random variable, the probability that it is exactly
equal to a particular number is always zero by definition. This is because the
variable could take on any value — for example it could be exactly 1 or 0.99999 or
1.01 or 1.0000001, etc.

More often, rather than wanting to determine the probability that a random
variable lies within a range, we instead want to know the probability that the
variable is below a certain value (or above a certain value). So, for example, what is
the probability that y is less than 0.4? Eftectively, we want to know the probability
that y lies between —o0 and 0.4. This information is given by the cumulative density
function (cdf), which is written F(y). Thus the probability that y is less than (or
equal to) some specific value of y, yo, is equal to the cdf of y evaluated where

Y = Yo
P(y < yo) = F(yo)

The cdf for a normally distributed random variable has a sigmoid shape as in
figure 2.9. Table A2.1 in appendix 2 at the back of this book presents what are
known as the critical values for the normal distribution. Effectively, if we plotted
the values on the first row, o against the values in the second row, Z,, then we
would trace out the cdf. Looking at the table, it & = 0.1, 4, = 1.2816. So 10%
(0.1 in proportion terms) of the normal distribution lies to the right of 1.2816. In
other words, the probability that a standard normal random variable takes a value
greater than 1.2816 is 10%. Similarly, the probability that it takes a value greater
than 3.0902 is 0.1% (i.e. 0.001). We know that the standard normal distribution
is symmetric about zero so if P(Z > 1.2816) = 0.1, P(Z < —1.2816) = 0.1 as
well. Note that there are also alternative versions of the normal distribution table
that present the information the other way around, so that they show many values
of 7, and the corresponding values of @ — i.e. for a given value of Z, say 1.5,
they show the probability of a standard normally distributed random variable being
bigger than this.
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Figure 2.9 The cdf for a normal distribution

The central limit theorem

If'a random sample of size N: y1, y2, ¥3,- .., yn 1s drawn from a population that
is normally distributed with mean p and variance o2, the sample mean, y is also
normally distributed with mean p and variance o2/ N. In fact, an important rule
in statistics known as the central limit theorem states that the sampling distribution
of the mean of any random sample of observations will tend towards the normal
distribution with mean equal to the population mean, w, as the sample size tends
to infinity. This theorem is a very powerful result because it states that the sam-
ple mean, y, will follow a normal distribution even if the original observations
(y1» ¥2, - - -, yN) did not. This means that we can use the normal distribution as a
kind of benchmark when testing hypotheses, as discussed more fully in the next
chapter.

Other statistical distributions

There are many statistical distributions, including the binomial, Poisson, log nor-
mal, normal, exponential, f, chi-squared and F, and each has its own characteristic
pdf. Different kinds of random variables will be best modelled with different dis-
tributions. Many of the statistical distributions are also related to one another,
and most (except the normal) have one or more degrees of freedom parameters that
determine the location and shape of the distribution. For example, the chi-squared
(denoted x?) distribution can be obtained by taking the sum of the squares of inde-
pendent normally distributed random variables. If we sum » independent squared
normals, the result will be a x? with n degrees of freedom. Since it comprises the
sum of squares, the chi-squared distribution can only take positive values. Unlike
the normal distribution, the chi-squared is not symmetric about its mean value.
The F-distribution, which has two degrees of freedom parameters, is the
ratio of independent chi-squared distributions, each divided by their degrees of
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freedom. Suppose that y; ~ x2(n;) and y, ~ x?(n») are two independent chi-
squared distributions with n; and n, degrees of freedom respectively. Then the
ratio will follow an F distribution with (ny, ny) degrees of freedom

y1/m

y2/n2

The final, and arguably most important, distribution used in econometrics
is the r-distribution. The normal distribution is a special case of the ¢. The -
distribution can also be obtained by taking a standard normally distributed random
variable, Z, and dividing it by the square root of an independent chi-squared
distributed random variable (suppose that the latter is called yy), itself divided by
its degrees of freedom,

Z

v/ mi

The t-distribution is symmetric about zero and looks similar to the normal distri-
bution except that it is flatter and wider. It will be discussed in considerable detail
in chapter 3 onwards.

~ F(n1, na)

~ t(n)

Descriptive statistics

When analysing a series containing many observations, it is useful to be able to
describe the most important characteristics of the series using a small number of
summary measures. This section discusses the quantities that are most commonly
used to describe financial and economic series, which are known as summary
statistics or descriptive statistics. Descriptive statistics are calculated from a sample of
data rather than assigned based on theory. Before describing the most important
summary statistics used in work with finance data, we define the terms population
and sample, which have precise meanings in statistics in box 2.4.

Measures of central tendency

The average value of a series is sometimes known as its measure of location or measure
of central tendency. The average value is usually thought to measure the ‘typical’
value of a series. There are a number of methods that can be used for calculating
averages. The most well-known of these is the arithmetic mean (usually just termed
‘the mean’), denoted 7 4 for a series r; of length N, which is simply calculated as
the sum of all values in the series divided by the number of values

1 &
Fq= N;ri (2.18)

The two other methods for calculating the average of a series are the mode and
the median. The mode measures the most frequently occurring value in a series,
which is sometimes regarded as a more representative measure of the average than
the mean. Finally, the median is the middle value in a series when the elements
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Box 2.4 The population and the sample ™

e The population is the total collection of all objects to be studied. For
example, in the context of determining the relationship between risk
and return for UK stocks, the population of interest would be all time
series observations on all stocks traded on the London Stock Exchange
(LSE).

e The population may be either finite or infinite, while a sample is a
selection of just some items from the population. A population is finite
if it contains a fixed number of elements. In general, either all of the
observations for the entire population will not be available, or they may
be so many in number that it is infeasible to work with them, in which
case a sample of data is taken for analysis.

e The sample is usually random, and it should be representative of the
population of interest. A random sample is one in which each
individual item in the population is equally likely to be drawn.

e A stratified sample is obtained when the population is split into layers or
strata and the number of observations in each layer of the sample is set
to try to match the corresponding number of elements in those layers
of the population.

e The size of the sample is the number of observations that are available, or
that the researcher decides to use, in estimating the parameters of the
model.

N /

are arranged in an ascending order.” If there is an even number of values in a
series, then strictly there are two medians. For example, consider a variable that
has taken the values listed in order: {3, 7, 11, 15, 22, 24}, the medians are 11 and
15. Sometimes we take the mean of the two medians, so that the median would
be (11 + 15)/2 = 13.

Each of these measures of average has its relative merits and demerits. The
mean is the most familiar method to most researchers, but can be unduly affected
by extreme values, and in such cases, it may not be representative of most of the
data. The mode is arguably the easiest to obtain, but is not suitable for continuous,
non-integer data (e.g. returns or yields) or for distributions that incorporate two
or more peaks (known as bimodal and multi-modal distributions respectively).
The median is often considered to be a useful representation of the ‘typical’ value
of a series, but has the drawback that its calculation is based essentially on one
observation. Thus if, for example, we had a series containing ten observations and
we were to double the values of the top three data points, the median would be
unchanged.

3 A more precise and complete definition of the median is surprisingly complex but is not necessary
for our purposes.
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The geometric mean

There also exists another method that can be used to estimate the average of a
series, known as the geometric mean. It involves calculating the Nth root of the
product of N numbers. In other words, if we want to find the geometric mean
of six numbers, we multiply them together and take the sixth root (i.e. raise the
product to the power of %)

In finance, we usually deal with returns or percentage changes rather than
prices or actual values, and the method for calculating the geometric mean just
described cannot handle negative numbers. Therefore, we use a slightly different
approach in such cases. To calculate the geometric mean of a set of N returns, we
express them as proportions (i.e. on a (—1, 1) scale) rather than percentages (on a
(—100, 100) scale), and we would use the formula

Ro=[1+r)(+r)...(1+r)Y =1 2.19)

whererq, ra, ..., rnare the returns and I_QG is the calculated value of the geometric
mean. Hence what we would do would be to add one to each return, then multiply
the resulting expressions together, raise this product to the power 1/N and then
subtract one right at the end.

So which method for calculating the mean should we use? The answer is, as
usual, that ‘it depends’. Geometric returns give the fixed return on the asset or
portfolio that would have been required to match the actual performance, which
is not the case for the arithmetic mean. Thus, if you assumed that the arithmetic
mean return had been earned on the asset every year, you would not reach the
correct value of the asset or portfolio at the end.

But it could be shown that the geometric return is always less than or equal
to the arithmetic return, and so the geometric return is a downward-biased pre-
dictor of future performance. Hence, if the objective is to summarise historical
performance, the geometric mean is more appropriate, but if we want to forecast
future returns, the arithmetic mean is the one to use. Finally, it is worth noting that
the geometric mean is evidently less intuitive and less commonly used than the
arithmetic mean, but it is less affected by extreme outliers than the latter. There
is an approximate relationship which holds between the arithmetic and geometric
mean, calculated using the same set of returns

Re~Ta——o2
XNrgq— =0
G A >

(2.20
where R and 7 4 are the geometric and arithmetic means respectively and o is
the variance of the returns.

Measures of spread

Usually, the average value of a series will be insufficient to adequately characterise
a data series, since two series may have the same mean but very difterent profiles
because the observations on one of the series may be much more widely spread
about the mean than the other. Hence, another important feature of a series is how
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dispersed its values are. In finance theory, for example, the more widely spread are
returns around their mean value, the more risky the asset is usually considered to
be.

The simplest measure of spread is arguably the range, which is calculated by
subtracting the smallest observation from the largest. While the range has some
uses, it is fatally flawed as a measure of dispersion by its extreme sensitivity to an
outlying observation since it is effectively based only on the very lowest and very
highest values in a series.

A more reliable measure of spread, although it is not widely employed by
quantitative analysts, is the semi-interquartile range, sometimes known as the quartile
deviation. Calculating this measure involves first ordering the data and then splitting
the sample into four parts (quartiles) with equal numbers of observations.* The
second quartile will be exactly at the half way point, and is the median, as described
above. But the semi-interquartile range focuses on the first and third quartiles,
which will be at the quarter and three-quarter points in the ordered series, and
which can be calculated respectively by the following

th
N+ 1
Q= < :_ ) value (2.21)
and
3 th
Q; = 1 (N 4+ 1) value (2.22)

The semi-interquartile range is then given by the difference between the two

ITQR= Q3 — Q (2.23)

This measure of spread is usually considered superior to the range since it is
not so heavily influenced by one or two extreme outliers that by definition would
be right at the end of an ordered series and so would affect the range. However,
the semi-interquartile range still only incorporates two of the observations in the
entire sample, and thus another more familiar measure of spread, the variance, is very
widely used. It is interpreted as the average squared deviation of each data point
about its mean value, and is calculated using the usual formula for the variance of
a sample from a variable y

o2 = Z(Yi—y)z
- N-—-1

Another measure of spread, the standard deviation, is calculated by taking the
square root of the variance formula given in the previous equation

Z(Yi _7)2
N—1

(2.24)

(2.25)

* Note that there are several slightly different formulae that can be used for calculating quartiles,
each of which may provide slightly different answers.



2.5 Descriptive statistics 65

The squares of the deviations from the mean are taken rather than the deviations
themselves to ensure that positive and negative deviations (for points above and
below the average respectively) do not cancel each other out.

While there is little to choose between the variance and the standard deviation
in terms of which is the best measure, the latter is sometimes preferred since it
will have the same units as the variable whose spread is being measured, whereas
the variance will have units of the square of the variable. Both measures share
the advantage that they encapsulate information from all the available data points,
unlike the range and quartile deviation, although they can also be heavily influ-
enced by outliers (but to a lesser degree than the range). The quartile deviation is
an appropriate measure of spread if the median is used to define the average value
of the series, while the variance or standard deviation will be appropriate if the
arithmetic mean constitutes the measure of central tendency adopted.

Before moving on, it is worth discussing why the denominator in the formulae
for the variance and standard deviation includes N — 1 rather than N, the sample
size. Subtracting one from the number of available data points is known as a degrees
of freedom correction, and this is necessary since the spread is being calculated about
the mean of the series, and this mean has had to be estimated as well. Thus the
spread measures described above are known as the sample variance and the sample
standard deviation. Had we been observing the entire population of data rather
than a mere sample from it, then the formulae would not need a degrees of freedom
correction and we would divide by N rather than N — 1.

A further measure of dispersion is the negative semi-variance, which also gives
rise to the negative semi-standard deviation. These measures use identical formulae to
those described above for the variance and standard deviation, but when calculating
their values, only those observations for which y; < 7y are used in the sum, and N
now denotes the number of such observations. This measure is sometimes useful if
the observations are not symmetric about their mean value (i.e. if the distribution
is skewed — see the next section).’

A final statistic that has some uses for measuring dispersion is the coefficient of
variation, C'IV. This is obtained by dividing the standard deviation by the arithmetic
mean of the series:

o
Y

CV is useful where we want to make comparisons across series. Since the standard
deviation has units of the series under investigation, it will scale with that series.
Thus, if we wanted to compare the spread of monthly apartment rental values
in London with those in Reading, say, using the standard deviation would be
misleading as the average rental value in London will be much bigger. By normalising
the standard deviation, the coefficient of variation is a unit-free (dimensionless)
measure of spread and so could be used more appropriately to compare the series.

5> Of course, we could also define the positive semi-variance where only observations such that
y: > 7y are included in the sum.
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Higher moments

If the observations for a given set of data follow a normal distribution, then the
mean and variance are sufficient to entirely describe the series. In other words, it
is impossible to have two different normal distributions with the same mean and
variance. However, most samples of data do not follow a normal distribution, and
therefore we also need what are known as the higher moments of a series to fully
characterise it. The mean and the variance are the first and second moments of
a distribution respectively, and the (standardised) third and fourth moments are
known as the skewness and kurtosis respectively. Skewness defines the shape of the
distribution, and measures the extent to which it is not symmetric about its mean
value. When the distribution of data is symmetric and unimodal (i.e. it only has one
peak rather than many), the three methods for calculating the average (mean, mode
and median) of the sample will be equal. If the distribution is positively skewed
(where there is a long right hand tail and most of the data are bunched over to
the left), the ordering will be mean > median > mode, whereas if the distribution
is negatively skewed (a long left hand tail and most of the data bunched on the
right), the ordering will be the opposite. A normally distributed series has zero
skewness (i.e. it is symmetric).

Kurtosis measures the fatness of the tails of the distribution and how peaked
at the mean the series is. A normal distribution is defined to have a coefficient
of kurtosis equal to 3. It is possible to define a coefficient of excess kurtosis,
equal to the coefficient of kurtosis minus 3; a normal distribution will thus have a
coefticient of excess kurtosis of zero. A normal distribution is said to be mesokurtic.
Denoting the observations on a series by y; and their variance by o2, it can be
shown that the coefficients of skewness and kurtosis can be calculated respectively
as

L L —7)?
shew = N1 Z(); 7) (2.27)
CRNE
and
1 oy
kurt = 2= Z(Y’Z V (2.28)
(02)

The kurtosis of the normal distribution is 3 so its excess kurtosis (kurt — 3) is

zero.(’

To give some illustrations of what a series having specific departures from
normality may look like, consider figures 2.10 and 2.11. A normal distribution

© There are a number of ways to calculate skewness (and kurtosis); the one given in the formula is
sometimes known as the moment coefficient of skewness, but it could also be measured using the
standardised difference between the mean and the median, or by using the quartiles of the data.
Unfortunately, this implies that different software packages will give slightly different values for the
skewness and kurtosis coefficients. Also, some packages make a ‘degrees of freedom correction’
as we do in the equations here, while others do not, so that the divisor in such cases would be N
rather than N — 1 in the equations.
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Figure 2.10 A normal versus a skewed distribution
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Figure 2.11 A normal versus a leptokurtic distribution

is symmetric about its mean, while a skewed distribution will not be, but will
have one tail longer than the other. A leptokurtic distribution is one which has
fatter tails and is more peaked at the mean than a normally distributed random
variable with the same mean and variance, while a platykurtic distribution will be
less peaked in the mean, will have thinner tails, and more of the distribution in the
shoulders than a normal. In practice, a leptokurtic distribution is more likely to
characterise real estate (and economic) time series, and to characterise the residuals
from a time series model. In figure 2.10, the leptokurtic distribution is shown by
the bold line, with the normal by the faint line. There is a formal test for normality,
and this will be described and discussed in chapter 5.
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£ Series: DHP  Workfile: UKHP::Untitlech, - mx
[View]PlocIObjectIPmpertiesl [PrintINameIFreeze] [SampleIGeanSheetIGraph StatsIIdent]
DHP | I I

| oHP | ! . . -
Mean 0.437995 3]
Median 0.494162
Maximum | 3.802188
Minimum -3.404716
Std. Dev. 1.200502 =
Skewness -0.108307
Kurtosis 3.275901
Jarque-Bera | 1373983 | , , ,
Probability 0.503087 | | | e
Sum 117.3827
Sum Sq. Dev. 384.8018
Observations 268

] [ 1 | »

Screenshot 2.6 Sample summary statistics in EViews

Calculating summary statistics in EViews

We will now re-use the house price data from chapter 1 to examine the summary
statistics of the returns (the percentage changes in the logs of the house prices).
So re-open the house price EViews workfile and click on the DHP series
to bring up the spreadsheet view. Then click View/Descriptive Statistics &
Tests/Stats Table to see screenshot 2.6 containing some simple summary statis-
tics. We can see that the mean house price is around 0.44% per month while the
median is slightly larger at 0.49%. The highest monthly price increase was 3.8%,
while the biggest fall was 3.4%. The standard deviation is 1.2%, which is quite
small compared with stocks (see the next chapter) and reflects the smoothness of
house prices over time. The series has a negative skew so it has a slightly longer
lower tail than the upper tail. The series is also leptokurtic and so has fatter tails
than a normal distribution with the same mean and variance; there are a total of
268 return observations. EViews also tells us whether the series shows significant
departures from normality which in this case it does not (more on this in chapter 5).

If we wanted to calculate less well known statistics including the interquartile
range, coefficient of variation and so on, it would be easier to do this using
the functions built into Excel. For example, to get the interquartile range of the
percentage returns we would first need to construct a column of returns
and then use the QUARTILE function twice to get the third and first quartiles.
We would write =QUARTILE(C3:C270,3)-QUARTILE(C3:C270,1) if the
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returns data were in column C. Similarly, we could easily calculate the coefficient
of variation using the standard deviation of returns divided by their mean using the
formula =STDEV(C3:C270)/AVERAGE(C3:C270). If we calculated these for
the house price returns we would get I QR = 0.685 and C1V = 2.78.

Measures of association

The summary measures we have examined so far have looked at each series in
isolation. However, it is also very often of interest to consider the links between
variables. There are two key descriptive statistics that are used for measuring the
relationships between series: the covariance and the correlation.

Covariance

The covariance is a measure of linear association between two variables and repre-
sents the simplest and most common way to enumerate the relationship between
them. It measures whether they on average move in the same direction (positive
covariance), in opposite directions (negative covariance), or have no association
(zero covariance). The formula for calculating the covariance, o, ,, between two
series, x and y is given by

O, = = ' (2.29)

Correlation

A fundamental weakness of the covariance as a measure of association is that it scales
with the standard deviations of the two series, so it has units of x x y. Thus, for
example, multiplying all of the values of series y by ten will increase the covariance
tenfold, but it will not really increase the true association between the series since
they will be no more strongly related than they were before the rescaling. The
implication is that the particular numerical value that the covariance takes has no
useful interpretation on its own and hence is not particularly useful. Therefore,
the correlation takes the covariance and standardises or normalises it so that it is unit
free. The result of this standardisation is that the correlation is bounded to lie on
the (—1,1) interval. A correlation of 1 (—1) indicates a perfect positive (negative)
association between the series. The correlation measure, usually known as the
correlation coefficient, is often denoted py ,, and is calculated as

Z(x,' —x)(yi —7) _ Ox,y

2.30
(N—1o.o 0.0 230

Px,y =

Y Y

where o, and o, are the standard deviations of x and y respectively. This measure
is more strictly known as Pearson’s product moment correlation.
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Copulas

Covariance and correlation provide simple measures of association between series.
However, as is well known, they are very limited measures in the sense that
they are linear and are not sufficiently flexible to provide full descriptions of the
relationship between financial series in reality. In particular, new types of assets and
structures in finance have led to increasingly complex dependencies that cannot
be satisfactorily modelled in this simple framework. Copulas provide an alternative
way to link together the individual (marginal) distributions of series to model their
joint distribution. One attractive feature of copulas is that they can be applied to
link together any marginal distributions that are proposed for the individual series.
The most commonly used copulas are the Gaussian and Clayton copulas. They
are particularly useful for modelling the relationships between the tails of series,
and find applications in stress testing and simulation analysis. For introductions to
this area and applications in finance and risk management, see Nelsen (2006) and
Embrechts et al. (2003).

The key terms to be able to define and explain from this chapter are

e functions e roots
e turning points e derivatives
e sigma notation o logarithm

e qQuadratic equation e conformable matrix
e inverse of a matrix rank of a matrix

e eigenvalues e eigenvectors
e mean e variance

e skewness e kurtosis

e covariance e correlation

e population e sample

- J

Self-study questions

1. (@) If f(x) = 3x> — 4x + 2, find £(0), f(2), f(—1)
(b) If f(x —4x2—|—2x—3, find f(0), f(3), f(a), f(3+a)
(c) Considering your answers to the previous question part, in general does
f(a)+ f(b) = f(a + b)? Explain.
2. Simplify the following as much as possible
(a) 4x° x 6x°
(b) 3x° x4y x 8x* x —2y*
(©) @p*g*)
(d) 6x + 32
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() 7y*+2y°

X 3 Xz, 4
() Pt

) )3 : 3,3
(h) (xy)® = x>y
olve the following
) 125173
) 64!/
) 641/4
) 93/2
) 92/3
) 81172 + 641/ 4 641/
. Write each of the following as a prime number raised to a power
(@ 9
(b) 625
(c) 12571
. Solve the following equations
(@) 3x —6=06x—12
(b) 2x —304x +8 =x+9—-3x+ 4
o) x43 _ 2x—6
2 3

. Write out all of the terms in the following and evaluate them

(a Z?le with j =4
(

—~

(b) Yo _,(i%+ j +3) with j = —2
(

)
)
¢ Y.'_,withn=4and x =3
d) Hj’.=1 x with x = 2

)T

() [[i—;i withi =—0.5
. Write the equations for each of the following lines
(a) Gradient = 3, intercept = —1
(b) Gradient = —2, intercept = 4
(c) Gradient = %, crosses y-axis at 3
(d) Gradient = %, crosses x-axis at 3
(e) Intercept 2 and passing through (3,1)
(f) Gradient 4 and passing through (—2,—2)
(

@) Passes through x =4,y =2 andx = -2,y =6
. Differentiate the following functions twice with respect to x

(@) y=6x

(b) y=3x>+2

() y= 4x3 +10
d y=1

) y=x

&) y=7

@ y=6x"+%
(h) y=3Inx

() y=In(Gx?

(]) y = 3x4—6x§—x—4
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Differentiate the following functions partially with respect to x and
(separately) partially with respect to y

(@) z=10x+6y> -7y

(b) z=10xy>—6

(c) z=6x

(d) z=4

Factorise the following expressions

(@) x*>—7x—8

(b) 5x — 2x2

(©) 2x> —x—3

(d) 6+ 5x — 4x7

(e) 54 — 15x — 25x>

Express the following in logarithmic form

(a) 5° =125

(b) 112 =121

(c) 6% =1296

Evaluate the following (without using a calculator)
(a) log,, 10000

Write the following as simply as possible as sums of logs of prime numbers
(a) log60

(b) log300

Simplify the following as far as possible

(a) log27 —log9 + log81

(b) log8 —log4 4+ log 32

Solve the following

(a) logx* —logx® = log5x — log2x

(b) log(x — 1) +log(x + 1) = 2log(x + 2)

(c) log,yx =4

Use the result that In(8) is approximately 2.1 to estimate the following
(without using a calculator):

(a) In(16)

(b) In(64)

(©) In(4)

Solve the following using logs and a calculator

(@) 4°=6

(b) 4 =3

(C) 32x71 =8



19.

20.

21.

22.

23.

24,

2.5 Descriptive statistics 73

Find the minima of the following functions. In each case, state the value of x
that makes the function a minimum

(a)
(b)

y = 6x>—10x — 8
y = (6x> — 10x — 8)?

Construct an example not used elsewhere in this book to demonstrate that
for two conformable matrices A and B, (AB)™' = B~'A~".
Suppose that we have the following four matrices

6 -2
16 -3 -8 123
A:[—z 4]’32[ 6 4}’C:[4 5 6]’D:[§ _(1)}

Which pairs of matrices can be validly multiplied together? For these
pairs, perform the multiplications.

Calculate 24, 3B, %D

Calculate Tr(A), Tr(B), Tr(A + B) and verify that Tr(A) + Tr(B)
Tr(A+ B)

(d) What is the rank of the matrix A?
(e) Find the eigenvalues of the matrix B
(t) What will be the trace of the identity matrix of order 12?
(a) Add
2 -1 ) -3 0
-7 4| ° 7 —4
(b) Subtract
(-3 0] . 2 -1
A e A

Calculate the inverse of

3
—4

-1

2

(d) Does the inverse of the following matrix exist? Explain your answer

5]

Expand the parentheses as far as possible for the following expressions

a)

(@)

—~ N7 S N
o o
= O 2=

E(ax + by) for x,y variables and a,b scalars

E(axy) for x,y independent variables and a a scalar

E(axy) for x,y correlated variables and a a scalar

Explain the difference between a pdf and a cdf

What shapes are the pdf and cdf for a normally distributed random

variable?

What is the central limit theorem and why is it important in statistics?
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25. Explain the differences between the mean, mode and median. Which is the
most useful measure of an average and why?

26. Which is a more useful measure of central tendency for stock returns — the
arithmetic mean or the geometric mean? Explain your answer.

27. The covariance between two variables is 0.99. Are they strongly related?
Explain your answer.
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Learning outcomes ™\

In this chapter, you will learn how to

e Derive the OLS formulae for estimating parameters and their standard errors

e Explain the desirable properties that a good estimator should have

e Discuss the factors that affect the sizes of standard errors

e Test hypotheses using the test of significance and confidence interval
approaches

e |Interpret pvalues

e Estimate regression models and test single hypotheses in EViews

(. J

cecssccsccas @ What is a regression model?

Regression analysis is almost certainly the most important tool at the econome-
trician’s disposal. But what is regression analysis? In very general terms, regression
is concerned with describing and evaluating the relationship between a given vari-
able and one or more other variables. More specifically, regression is an attempt to
explain movements in a variable by reference to movements in one or more other
variables.

To make this more concrete, denote the variable whose movements the regres-
sion seeks to explain by y and the variables which are used to explain those vari-
ations by x1, x2,..., x,. Hence, in this relatively simple setup, it would be said
that variations in k variables (the xs) cause changes in some other variable, y. This
chapter will be limited to the case where the model seeks to explain changes in
only one variable y (although this restriction will be removed in chapter 7).

There are various completely interchangeable names for y and the xs, and all
of these terms will be used synonymously in this book (see box 3.1).
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Box 3.1 Names for y and xs in regression models DY
Names for y Names for the xs

Dependent variable Independent variables

Regressand Regressors

Eftect variable Causal variables

Explained variable Explanatory variables

Regression versus correlation

As discussed in chapter 2, the correlation between two variables measures the
degree of linear association between them. If it is stated that y and x are correlated,
it means that y and x are being treated in a completely symmetrical way. Thus,
it is not implied that changes in x cause changes in y, or indeed that changes in
y cause changes in x. Rather, it is simply stated that there is evidence for a linear
relationship between the two variables, and that movements in the two are on
average related to an extent given by the correlation coefficient.

In regression, the dependent variable (y) and the independent variable(s) (xs)
are treated very differently. The y variable is assumed to be random or ‘stochastic’
in some way, i.e. to have a probability distribution. The x variables are, however,
assumed to have fixed (‘non-stochastic’) values in repeated samples.! Regression
as a tool is more flexible and more powerful than correlation.

Simple regression

For simplicity, suppose for now that it is believed that y depends on only one x
variable. Again, this is of course a severely restricted case, but the case of more
explanatory variables will be considered in the next chapter. Three examples of
the kind of relationship that may be of interest include:

e How asset returns vary with their level of market risk
e Measuring the long-term relationship between stock prices and dividends
e Constructing an optimal hedge ratio.

Suppose that a researcher has some idea that there should be a relationship between
two variables y and x, and that financial theory suggests that an increase in x will
lead to an increase in y. A sensible first stage to testing whether there is indeed an
association between the variables would be to form a scatter plot of them. Suppose
that the outcome of this plot is figure 3.1.

In this case, it appears that there is an approximate positive linear relationship
between x and y which means that increases in x are usually accompanied by

! Strictly, the assumption that the xs are non-stochastic is stronger than required, an issue that will
be discussed in more detail in chapter 5.
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Figure 3.1  Scatter plot of two variables, y and x

increases in y, and that the relationship between them can be described approxi-
mately by a straight line. It would be possible to draw by hand onto the graph a
line that appears to fit the data. The intercept and slope of the line fitted by eye
could then be measured from the graph. However, in practice such a method is
likely to be laborious and inaccurate.

It would therefore be of interest to determine to what extent this relationship
can be described by an equation that can be estimated using a defined procedure.
It 1s possible to use the general equation for a straight line

y=o+ Bx 3.1

to get the line that best ‘fits’ the data. The researcher would then be seeking to
find the values of the parameters or coefficients, & and B, which would place the
line as close as possible to all of the data points taken together.

However, this equation (y =« + Bx) is an exact one. Assuming that this
equation is appropriate, if the values of @ and B had been calculated, then given a
value of x, it would be possible to determine with certainty what the value of y
would be. Imagine — a model which says with complete certainty what the value
of one variable will be given any value of the other!

Clearly this model is not realistic. Statistically, it would correspond to the case
where the model fitted the data perfectly — that is, all of the data points lay exactly
on a straight line. To make the model more realistic, a random disturbance term,
denoted by u, is added to the equation, thus

Vi =o+ Bx; + uy (3.2)

where the subscript ¢ (=1, 2, 3, ...) denotes the observation number. The distur-
bance term can capture a number of features (see box 3.2).
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Box 3.2 Reasons for the inclusion of the disturbance term

e Even in the general case where there is more than one explanatory
variable, some determinants of y, will always in practice be omitted
from the model. This might, for example, arise because the number of
influences on y is too large to place in a single model, or because some
determinants of y may be unobservable or not measurable.

e There may be errors in the way that y is measured which cannot be
modelled.

e There are bound to be random outside influences on y that again
cannot be modelled. For example, a terrorist attack, a hurricane or a
computer failure could all affect financial asset returns in a way that
cannot be captured in a model and cannot be forecast reliably. Similarly,
many researchers would argue that human behaviour has an inherent
randomness and unpredictability!

N J

So how are the appropriate values of @ and B determined? @ and f are chosen
so that the (vertical) distances from the data points to the fitted lines are minimised
(so that the line fits the data as closely as possible). The parameters are thus chosen
to minimise collectively the (vertical) distances from the data points to the fitted
line. This could be done by ‘eye-balling’ the data and, for each set of variables y
and x, one could form a scatter plot and draw on a line that looks as if it fits the
data well by hand, as in figure 3.2.

Note that the vertical distances are usually minimised rather than the horizontal
distances or those taken perpendicular to the line. This arises as a result of the
assumption that x is fixed in repeated samples, so that the problem becomes one of
determining the appropriate model for y given (or conditional upon) the observed
values of x.

This ‘eye-balling’ procedure may be acceptable if only indicative results are
required, but of course this method, as well as being tedious, is likely to be
imprecise. The most common method used to fit a line to the data is known as
ordinary least squares (OLS). This approach forms the workhorse of econometric
model estimation, and will be discussed in detail in this and subsequent chapters.

Two alternative estimation methods (for determining the appropriate values
of the coefficients & and B) are the method of moments and the method of
maximum likelihood. A generalised version of the method of moments, due to
Hansen (1982), 1s popular, but beyond the scope of this book. The method of
maximum likelihood is also widely employed, and will be discussed in detail in
chapter 9.

Suppose now, for ease of exposition, that the sample of data contains only
five observations. The method of OLS entails taking each vertical distance from
the point to the line, squaring it and then minimising the total sum of the areas
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X

Figure 3.2 Scatter plot of two variables with a line of best fit chosen by eye

Figure 3.3 Method of OLS fitting a line to the data by minimising the sum of squared
residuals

of squares (hence ‘least squares’), as shown in figure 3.3. This can be viewed as
equivalent to minimising the sum of the areas of the squares drawn from the points
to the line.

Tightening up the notation, let y, denote the actual data point for observation
t and let y; denote the fitted value from the regression line — in other words, for
the given value of x of this observation t, y; is the value for y which the model
would have predicted. Note that a hat (") over a variable or parameter is used to
denote a value estimated by a model. Finally, let 1, denote the residual, which is
the difference between the actual value of y and the value fitted by the model
for this data point — i.e. (y, — y;). This is shown for just one observation ¢ in
figure 3.4.
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xt X

Figure 3.4 Plot of a single observation, together with the line of best fit, the residual and
the fitted value

What is done is to minimise the sum of the 7i?. The reason that the sum of the
squared distances is minimised rather than, for example, finding the sum of #, that
is as close to zero as possible, is that in the latter case some points will lie above the
line while others lie below it. Then, when the sum to be made as close to zero as
possible is formed, the points above the line would count as positive values, while
those below would count as negatives. So these distances will in large part cancel
each other out, which would mean that one could fit virtually any line to the data,
so long as the sum of the distances of the points above the line and the sum of the
distances of the points below the line were the same. In that case, there would not
be a unique solution for the estimated coefticients. In fact, any fitted line that goes
through the mean of the observations (i.e. X, y) would set the sum of the #, to
zero. However, taking the squared distances ensures that all deviations that enter
the calculation are positive and therefore do not cancel out.

So minimising the sum of squared distances is given by minimising (117 + i3 +
i3 + 05 + i2), or minimising

t=1

This sum is known as the residual sum of squares (RSS) or the sum of squared
residuals. But what is #,? Again, it is the difference between the actual point and
the line, y, — y,. So minimising Y, #? is equivalent to minimising Y_, (y; — 7:)*.

Letting & and ,3 denote the values of o and B selected by minimising the RSS,
respectively, the equation for the fitted line is given by y, = & + Bx,. Now let
L denote the RSS, which is also known as a loss function. Take the summation
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over all of the observations, i.e. from t = 1 to T, where T is the number of
observations

L=

t

T T
(i =37 = Dy — & — B’ (3.3)
=1 t=1

L is minimised with respect to (w.r.t.) & and B, to find the values of & and 8
which minimise the residual sum of squares to give the line that is closest to the

data. So L is differentiated w.r.t. @ and B, setting the first derivatives to zero.
A derivation of the OLS estimator is given in the appendix to this chapter. The
coefticient estimators for the slope and the intercept are given by

th)’t — Txy

> - TR

Equations (3.4) and (3.5) state that, given only the sets of observations x, and

(3.5

Q>
Il
=1
|
=>
=1

B = (3.4)

¥, it is always possible to calculate the values of the two parameters, & and B, that
best fit the set of data. Equation (3.4) is the easiest formula to use to calculate the
slope estimate, but the formula can also be written, more intuitively, as

y_ 2 — ¥ —y)
p = S0 — 3 (3.6)

which is equivalent to the sample covariance between x and y divided by the
sample variance of x.

To reiterate, this method of finding the optimum is known as OLS. It is also
worth noting that it is obvious from the equation for & that the regression line
will go through the mean of the observations — i.e. that the point (x, y) lies on the
regression line.

Example3.1 ©0000000000000000000000000000000000000000000000000000000000000000000000

Suppose that some data have been collected on the excess returns on a fund
manager’s portfolio (‘fund XXX’) together with the excess returns on a market index as
shown in table 3.1.

The fund manager has some intuition that the beta (in the CAPM framework) on
this fund is positive, and she therefore wants to find whether there appears to be a
relationship between x and y given the data. Again, the first stage could be to form a
scatter plot of the two variables (figure 3.5).

Clearly, there appears to be a positive, approximately linear relationship between
x and y, although there is not much data on which to base this conclusion! Plugging the
five observations in to make up the formulae given in (3.4) and (3.5) would lead to the
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Table 3.1 Sample data on fund XXX to motivate OLS estimation

Excess return on Excess return on
Year, t fund XXX = ryxxx.: — rf; market index =rm; — rf;
1 17.8 13.7
2 39.0 23.2
3 12.8 6.9
4 242 16.8
\5 17.2 12.3 )

45
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Excess return on fund XXX
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Excess return on market portfolio

Figure 3.5  Scatter plot of excess returns on fund XXX versus excess returns on the market

portfolio
estimates @ = —1.74 and ﬁ = 1.64. The fitted line would be written as
j}t = _1.74 + 1.64xt (37)

where x; is the excess return of the market portfolio over the risk free rate (i.e. rm — 1f),
also known as the market risk premium.

What are ¢ and g used for?

This question is probably best answered by posing another question. If an analyst
tells you that she expects the market to yield a return 20% higher than the risk-free
rate next year, what would you expect the return on fund XXX to be?
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The expected value of y = —~1.74 4+ 1.64 X value of x’, so plug x = 20
into (3.7)

y, = —1.74 4+ 1.64 x 20 = 31.06 (3.8

Thus, for a given expected market risk premium of 20%, and given its riskiness,
fund XXX would be expected to earn an excess over the risk-free rate of approx-
imately 31%. In this setup, the regression beta is also the CAPM beta, so that fund
XXX has an estimated beta of 1.64, suggesting that the fund is rather risky. In this
case, the residual sum of squares reaches its minimum value of 30.33 with these
OLS coefficient values.

Although it may be obvious, it is worth stating that it is not advisable to conduct
a regression analysis using only five observations! Thus the results presented here
can be considered indicative and for illustration of the technique only. Some
further discussions on appropriate sample sizes for regression analysis are given in
chapter 5.

The coefficient estimate of 1.64 for B is interpreted as saying that, ‘if x increases
by 1 unit, y will be expected, everything else being equal, to increase by 1.64 units’.
Of course, if B had been negative, a rise in x would on average cause a fall in
y. &, the intercept coefficient estimate, is interpreted as the value that would be
taken by the dependent variable y if the independent variable x took a value of
zero. ‘Units’ here refer to the units of measurement of x; and y,. So, for example,
suppose that ,3 = 1.64, x 1s measured in per cent and y is measured in thousands
of US dollars. Then it would be said that if x rises by 1%, y will be expected to
rise on average by $1.64 thousand (or $1,640). Note that changing the scale of y
or x will make no difference to the overall results since the coefficient estimates
will change by an off-setting factor to leave the overall relationship between y and
x unchanged (see Gujarati, 2003, pp. 16973 for a proof). Thus, if the units of
measurement of y were hundreds of dollars instead of thousands, and everything
else remains unchanged, the slope coefticient estimate would be 16.4, so that a
1% increase in x would lead to an increase in y of $16.4 hundreds (or $1,640) as
before. All other properties of the OLS estimator discussed below are also invariant
to changes in the scaling of the data.

A word of caution is, however, in order concerning the reliability of estimates
of the constant term. Although the strict interpretation of the intercept is indeed
as stated above, in practice, it is often the case that there are no values of x close
to zero in the sample. In such instances, estimates of the value of the intercept will
be unreliable. For example, consider figure 3.6, which demonstrates a situation
where no points are close to the y-axis.

In such cases, one could not expect to obtain robust estimates of the value of
y when x is zero as all of the information in the sample pertains to the case where
x 1s considerably larger than zero.

A similar caution should be exercised when producing predictions for y using
values of x that are a long way outside the range of values in the sample. In example
3.1, x takes values between 7% and 23% in the available data. So, it would not be
advisable to use this model to determine the expected excess return on the fund if
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0 X

Figure 3.6 No observations close to the y-axis

the expected excess return on the market were, say 1% or 30%, or —5% (i.e. the
market was expected to fall).

secescccccce @ Some further terminology

3.4.1 The data generating process, the population regression function and
the sample regression function

The population regression function (PRF) is a description of the model that is
thought to be generating the actual data and it represents the true relationship
between the variables. The population regression function is also known as the data
generating process (DGP). The PRF embodies the true values of @ and f, and is
expressed as

yi = o+ Bx; + uy 3.9)

Note that there is a disturbance term in this equation, so that even if one had at one’s
disposal the entire population of observations on x and y, it would still in general
not be possible to obtain a perfect fit of the line to the data. In some textbooks, a
distinction is drawn between the PRF (the underlying true relationship between y
and x) and the DGP (the process describing the way that the actual observations on
y come about), although in this book, the two terms will be used synonymously.

The sample regression function (SRF) is the relationship that has been esti-
mated using the sample observations, and is often written as

ye=d& + Bx, (3.10)
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Notice that there is no error or residual term in (3.10); all this equation states is
that given a particular value of x, multiplying it by B and adding & will give the
model fitted or expected value for y, denoted y. It is also possible to write

Yo =&+ B, + i, 3.11)

Equation (3.11) splits the observed value of y into two components: the fitted
value from the model, and a residual term.

The SREF is used to infer likely values of the PRE That is, the estimates & and
B are constructed, for the sample of data at hand, but what is really of interest
is the true relationship between x and y — in other words, the PRF is what is
really wanted, but all that is ever available is the SRE However, what can be said
is how likely it is, given the figures calculated for & and ,3, that the corresponding
population parameters take on certain values.

Linearity and possible forms for the regression function

In order to use OLS, a model that is linear is required. This means that, in the
simple bivariate case, the relationship between x and y must be capable of being
expressed diagramatically using a straight line. More specifically, the model must be
linear in the parameters (o and B), but it does not necessarily have to be linear in
the variables (y and x). By ‘linear in the parameters’, it is meant that the parameters
are not multiplied together, divided, squared or cubed, etc.

Models that are not linear in the variables can often be made to take a linear
form by applying a suitable transformation or manipulation. For example, consider
the following exponential regression model

Y, = AXPen (3.12)

Taking logarithms of both sides, applying the laws of logs and rearranging the
right-hand side (RHYS)

InY, =In(A) + Bln X, + u, (3.13)

where Aand B are parameters to be estimated. Now let « = In(A), y; =In Y, and
Xy = ln Xt

Vi =a+ Bx, +u, (3.14)

This is known as an exponential regression model since Y varies according to some
exponent (power) function of X. In fact, when a regression equation is expressed
in ‘double logarithmic form’, which means that both the dependent and the inde-
pendent variables are natural logarithms, the coefticient estimates are interpreted as
elasticities (strictly, they are unit changes on a logarithmic scale). Thus a coefficient
estimate of 1.2 for ;é in (3.13) or (3.14) is interpreted as stating that ‘a rise in X of
1% will lead on average, everything else being equal, to a rise in Y of 1.2%’. Con-
versely, for y and x in levels (e.g. (3.9)) rather than logarithmic form, the coeffi-
cients denote unit changes as described above.
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Similarly, if theory suggests that x should be inversely related to y according
to a model of the form

Yt=0l+£+ut (3.15)

Xt
the regression can be estimated using OLS by setting

1
z=—
Xt
and regressing y on a constant and z. Clearly, then, a surprisingly varied array
of models can be estimated using OLS by making suitable transformations to the
variables. On the other hand, some models are intrinsically non-linear, e.g.

Y=o+ Bxl +u, (3.16)

Such models cannot be estimated using OLS, but might be estimable using a
non-linear estimation method (see chapter 9).

Estimator or estimate?

Estimators are the formulae used to calculate the coefficients — for example, the
expressions given in (3.4) and (3.5) above, while the estimates, on the other hand,
are the actual numerical values for the coefficients that are obtained from the sample.

Simple linear regression in EViews — estimation of an optimal hedge ratio

This section shows how to run a bivariate regression using EViews. The example
considers the situation where an investor wishes to hedge a long position in the
S&P500 (or its constituent stocks) using a short position in futures contracts. Many
academic studies assume that the objective of hedging is to minimise the variance
of the hedged portfolio returns. If this is the case, then the appropriate hedge ratio
(the number of units of the futures asset to sell per unit of the spot asset held)
will be the slope estimate (i.e. ,é) in a regression where the dependent variable is a
time series of spot returns and the independent variable is a time series of futures
returns.”

This regression will be run using the file ‘SandPhedge.xls’, which contains
monthly returns for the S&P500 index (in column 2) and S&P500 futures (in
column 3). As described in chapter 1, the first step is to open an appropriately
dimensioned workfile. Open EViews and click on File/New/Workfile; choose
Dated — regular frequency and Monthly frequency data. The start date is
2002:02 and the end date is 2013:04. Then import the Excel file by clicking
File/Import and Import from file. As for the previous example in chapter 1,
the first column contains only dates which we do not need to read in so click Next
twice. You will then be prompted with another screen as shown in screenshot 3.1

2 See chapter 9 for a detailed discussion of why this is the appropriate hedge ratio.
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‘Excel 97-2003 Read - Step 3 of 3 x
~Import method Structure of the Data to be Imported
[Dahed T 2 ~Basic structure -
lDated - specified by date series '] Frequency; |Monthly bil
~Import options 1
~Identifier series———————————————
S —
Date series: | date
Frequency Conversion
DATE SPCT FUTURES
2002M02 2002M02| 1106.73 110&.9 .
2002M03 2002M03| 1147.33| 1149.2 K
2002M04 2002M04 1076.92 1077.2
2002M05 Z002M05| 1067 .14 1067.5
2002M06 Z2002M0g| 989.82 990.1
2002M07 2002M07) 911 _62 311 5|
2002M08 Z2002M08 916_07 9161
2002M035 Z002M03| B815.28 815_0|
2002M10 2002M10| 885 _746| 885_4 -
2ANTMT Y
’ Cancel } ’ <Back ]] Next:> ‘ l Finish

Screenshot 3.1 How to deal with dated observations in EViews

that invites you to decide how to deal with the dates — it is possible either to read
the dates from the file or to use the date range specified when the workfile was
set up. Since there are no missing data points in this case the two would give the
same outcome so just click on Finish. The two imported series will now appear
as objects in the workfile (the column of dates has not been imported) and can
be verified by checking a couple of entries at random against the original Excel
file.

The first step in the analysis is to transform the levels of the two series into
percentage returns. It is common in academic research to use continuously com-
pounded returns rather than simple returns. To achieve this (i.e. to produce con-
tinuously compounded returns), click on Genr and in the ‘Enter Equation’ dialog
box, enter rfutures=100*dlog(futures). Then click Genr again and do the same
for the spot series: rspot=100*dlog(spot). Do not forget to Save the workfile —
call it ‘hedge’ and EViews will add the suftix “.wf1’ to denote that it is an EViews
workfile. Continue to re-save it at regular intervals to ensure that no work is
lost.

Before proceeding to estimate the regression, now that we have imported
more than one series, we can examine a number of descriptive statistics together
and measures of association between the series. For example, click Quick and
Group Statistics. From there you will see that it is possible to calculate the
covariances or correlations between series and a number of other measures that
will be discussed later in the book. For now, click on Descriptive Statistics and
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r— e e —— —

(€] Group: UNTITLED Workfile: SANDPHEDGE::Untitled\ e
[Viewl Procl ObjectI [ Pr'mtl Namel Freeze ]—[ Samplel Shee‘tIStatsISpecl
RSPOT | RFUTURES | | |

Mean | 0273926 | 0.271309 | _ _ -
Median | 1101731 | 1.024841

Maximum 10.06554 | 10.29119

Minimum -18.38397 | -18.80256

Std. Dev. 4591529 | 4548128

Skewness | -0.911104 | -0.927525

Kurtosis | 4740733 | 4878594

Jarque-Bera | 3545749 | 3891766

Probability 0.000000 | 0.000000

Sum | 3670615 | 36.35534

Sum Sq. Dev. 2803825 | 2751.167

Observations 134 | 134 £

] | m r

Screenshot 3.2  Summary statistics for spot and futures

Common Sample.’ In the dialog box that appears, type rspot rfutures and click
OK. Some summary statistics for the spot and futures are presented, as displayed
in screenshot 3.2, and these are quite similar across the two series, as one would
expect.

Note that the number of observations has reduced from 135 for the levels of
the series to 134 when we computed the returns (as one observation is ‘lost’ in
constructing the t — 1 value of the prices in the returns formula). If you want
to save the summary statistics, you must name them by clicking Name and then
choose a name, e.g. Descstats. The default name is ‘group01’, which could have
also been used. Click OK.

We can now proceed to estimate the regression. There are several ways to do
this, but the easiest is to select Quick and then Estimate Equation. You will be
presented with a dialog box, which, when it has been completed, will look like
screenshot 3.3.

In the ‘Equation Specification” window, you insert the list of variables to be
used, with the dependent variable (y) first, and including a constant (c), so type

3 “‘Common sample’ will use only the part of the sample that is available for all the series selected,
whereas ‘Individual sample’ will use all available observations for each individual series. In this
case, the number of observations is the same for both series and so identical results would be
observed for both options.
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Equation Estimation x

Spedfication | Options

- Equation spedfication

Dependent variable followed by list of regressors induding ARMA
and POL terms, OR an explicit equation like ¥ =c(1)+c(2)*X.

rspot crfutures

~Estimation settings
Method: [LS - Least Squares (NLS and ARMA) 3.
Sample:

2002M02 2013M04

Screenshot 3.3  Equation estimation window

rspot ¢ rfutures. Note that it would have been possible to write this in an
equation format as rspot = c(1) 4+ ¢(2)*rfutures, but this is more cumbersome.

In the ‘Estimation settings’ box, the default estimation method is OLS and the
default sample is the whole sample, and these need not be modified. Click OK
and the regression results will appear, as in screenshot 3.4.

The parameter estimates for the intercept (&) and slope (B) are 0.00064 and
1.007 respectively. Name the regression results returnreg, and it will now appear
as a new object in the list. A large number of other statistics are also presented in
the regression output — the purpose and interpretation of these will be discussed
later in this and subsequent chapters.

Now estimate a regression for the levels of the series rather than the
returns (i.e. run a regression of spot on a constant and futures) and examine
the parameter estimates. The return regression slope parameter estimated above
measures the optimal hedge ratio and also measures the short run relationship
between the two series. By contrast, the slope parameter in a regression using the
raw spot and futures indices (or the log of the spot series and the log of the futures
series) can be interpreted as measuring the long run relationship between them.
This issue of the long and short runs will be discussed in detail in chapter 5. For
now, click Quick/Estimate Equation and enter the variables spot ¢ futures
in the Equation Specification dialog box, click OK, then name the regression
results ‘levelreg’. The intercept estimate (&) in this regression is 5.4943 and
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[Viewl ProcIObjecEl [ Pr'mtl Namel Freeze] [ Estimat:l Forer.astl Stats I Resids ]

Dependent Variable: RSPOT

Method: Least Squares

Date: 07/0113 Time: 17:58

Sample (adjusted): 2002M03 2013M04
Included observations: 134 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 0.000640 0.026625 0.024032 0.9809
RFUTURES 1.007291 0.005865 171.7341 0.0000
R-squared 0.995544 Mean dependentvar 0.273926
Adjusted R-squared 0.995510 S.D. dependentvar 4591529
S.E. of regression 0.307650 Akaike info criterion 0.495105
Sum squared resid 12.49360 Schwarz criterion 0.538356
Log likelihood -31.17202 Hannan-Quinn criter. 0512681
F-statistic 29492 60 Durbin-Watson stat 2947218
Prob(F-statistic) 0.000000

Screenshot 3.4 Estimation results

A

the slope estimate (B) is 0.9956. The intercept can be considered to approximate
the cost of carry, while as expected, the long-term relationship between spot and
futures prices is almost 1:1 — see chapter 9 for further discussion of the estimation
and interpretation of this equilibrium. Finally, click the Save button to save the
whole workfile.

The assumptions underlying the classical linear regression model

The model y, = a + Bx; + u, that has been derived above, together with the
assumptions listed below, is known as the classical linear regression model (CLRM).
Data for x; is observable, but since y, also depends on u,, it is necessary to be
specific about how the u, are generated. The set of assumptions shown in box 3.3
are usually made concerning the u,s, the unobservable error or disturbance terms.
Note that no assumptions are made concerning their observable counterparts, the
estimated model’s residuals.

As long as assumption 1 holds, assumption 4 can be equivalently written
E(x;u,) = 0. Both formulations imply that the regressor is orthogonal to (i.e. unre-
lated to) the error term. An alternative assumption to 4, which is slightly stronger,
is that the x; are non-stochastic or fixed in repeated samples. This means that there
1s no sampling variation in x;, and that its value is determined outside the model.
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Box 3.3 Assumptions concerning disturbance terms and
their interpretation
Technical notation Interpretation
(1) E(u,) =0 The errors have zero mean
(2) var(u;) = 02> < 00 The variance of the errors is constant and
finite over all values of x;
(3) cov(u;, u;) =0 The errors are linearly independent of
one another
4) cov(u, x;) =0 There is no relationship between the error
and corresponding x variate
\(5) u, ~ N(0, 0?) — i.e. that u, is normally distributed. )

A fifth assumption is required to make valid inferences about the population

parameters (the actual « and B) from the sample parameters (@ and ) estimated
using a finite amount of data

Properties of the OLS estimator

If assumptions 1—4 hold, then the estimators & and B determined by OLS will have
a number of desirable properties, and are known as best linear unbiased estimators
(BLUE). What does this acronym stand for?

e ‘Estimator’ — & and ,é are estimators of the true value of @ and

e ‘Linear’ — &and ,é are linear estimators — that means that the formulae
for & and B are linear combinations of the random variables (in this case,
y) X

e ‘Unbiased’ — on average, the actual values of & and f will be equal to their
true values X

e ‘Best’ — means that the OLS estimator 8 has minimum variance among the
class of linear unbiased estimators; the Gauss—Markov theorem proves that the
OLS estimator is best by examining an arbitrary alternative linear unbiased
estimator and showing in all cases that it must have a variance no smaller than
the OLS estimator.

Under assumptions 1—4 listed above, the OLS estimator can be shown to
have the desirable properties that it is consistent, unbiased and efticient. Unbi-
asedness and efficiency have already been discussed above, and consistency is an
additional desirable property. These three characteristics will now be discussed in
turn.
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Consistency

The least squares estimators & and B are consistent. One way to state this alge-

A

braically for B (with the obvious modifications made for &) is

lim Pr[|B—B|>68=0 V8§>0 (3.17)
T—o00

This is a technical way of stating that the probability (Pr) that ,é is more than some
arbitrary fixed distance § away from its true value tends to zero as the sample size
tends to infinity, for all positive values of §. Thus B is the probability limit of B.
In the limit (i.e. for an infinite number of observations), the probability of the
estimator being different from the true value is zero. That is, the estimates will
converge to their true values as the sample size increases to infinity. Consistency
is thus a large sample, or asymptotic property. If an estimator is inconsistent, then
even if we had an infinite amount of data, we could not be sure that the estimated
value of a parameter will be close to its true value. So consistency is sometimes
argued to be the most important property of an estimator. The assumptions that
E(x;u;) =0 and E(u,) = 0 are sufficient to derive the consistency of the OLS
estimator.

Unbiasedness

The least squares estimates of & and B are unbiased. That is
E@ =« (3.18)
and

Ep) =8 (3.19)

Thus, on average, the estimated values for the coefticients will be equal to their
true values. That is, there is no systematic overestimation or underestimation of the
true coefticients. To prove this also requires the assumption that cov(u,, x;) = 0.
Clearly, unbiasedness is a stronger condition than consistency, since it holds for
small as well as large samples (i.e. for all sample sizes). Clearly, an estimator that is
consistent may still be biased for small samples, but are all unbiased estimators also
consistent? The answer is in fact no. An unbiased estimator will also be consistent
if its variance falls as the sample size increases.

Efficiency

An estimator 8 of a parameter f is said to be efficient if no other estimator has a
smaller variance. Broadly speaking, if the estimator is efficient, it will be minimising
the probability that it is a long way off from the true value of B. In other words, if
the estimator is ‘best’, the uncertainty associated with estimation will be minimised
for the class of linear unbiased estimators. A technical way to state this would be to
say that an efficient estimator would have a probability distribution that is narrowly
dispersed around the true value.
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Precision and standard errors

Any set of regression estimates & and ,é are specific to the sample used in their
estimation. In other words, if a different sample of data was selected from within
the population, the data points (the x; and y,) will be different, leading to difterent
values of the OLS estimates. .

Recall that the OLS estimators (& and ) are given by (3.4) and (3.5). It would
be desirable to have an idea of how ‘good’ these estimates of o and B are in the
sense of having some measure of the reliability or precision of the estimators (& and

A

B). It is thus useful to know whether one can have confidence in the estimates,
and whether they are likely to vary much from one sample to another sample
within the given population. An idea of the sampling variability and hence of the
precision of the estimates can be calculated using only the sample of data available.
This estimate is given by its standard error. Given assumptions 1—-4 above, valid
estimators of the standard errors can be shown to be given by

2 2
2% 2%

=3 (3.20)

N T((fo) - 7&2)

1

1
\ 3 (o — % - Y w1

(3.21)

where s is the estimated standard deviation of the residuals (see below). These
formulae are derived in the appendix to this chapter.

It is worth noting that the standard errors give only a general indication of the
likely accuracy of the regression parameters. They do not show how accurate a
particular set of coefticient estimates is. If the standard errors are small, it shows that
the coefficients are likely to be precise on average, not how precise they are for this
particular sample. Thus standard errors give a measure of the degree of uncertainty
in the estimated values for the coefficients. It can be seen that they are a function
of the actual observations on the explanatory variable, x, the sample size, T, and
another term, s. The last of these is an estimate of the variance of the disturbance
term. The actual variance of the disturbance term is usually denoted by o2. How
can an estimate of o2 be obtained?

Estimating the variance of the error term (0%

From elementary statistics, the variance of a random variable u, is given by

var(u;) = E[(u;) — E(u,)]? (3.22)
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Assumption 1 of the CLRM was that the expected or average value of the errors
is zero. Under this assumption, (3.22) above reduces to

var(u;) = E[u}] (3.23)

t

So what is required is an estimate of the average value of u?, which could be
calculated as

1
2 § : 2
s = ? “t (324)

Unfortunately (3.24) is not workable since u, is a series of population disturbances,
which is not observable. Thus the sample counterpart to u,, which is u,, is used

1 .
= > i (3.25)
But this estimator is a biased estimator of 2. An unbiased estimator, s 2, would
be given by the following equation instead of the previous one
A2
i
2 = 2 (3.26)

T—-2

where Y 17 is the residual sum of squares, so that the quantity of relevance for the
standard error formulae is the square root of (3.26)

(3.27)

s 1s also known as the standard error of the regression or the standard error of the
estimate. It is sometimes used as a broad measure of the fit of the regression
equation. Everything else being equal, the smaller this quantity is, the closer is the
fit of the line to the actual data.

Some comments on the standard error estimators

It is possible, of course, to derive the formulae for the standard errors of the
coefticient estimates from first principles using some algebra, and this is left to
the appendix to this chapter. Some general intuition is now given as to why the
formulae for the standard errors given by (3.20) and (3.21) contain the terms that
they do and in the form that they do. The presentation offered in box 3.4 loosely
follows that of Hill, Griffiths and Judge (1997), which is the clearest that this author
has seen.
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The larger the sample size, T, the smaller will be the coefficient standard
errors. Tappears explicitly in SE(&) and implicitly in SE (B) T appears
implicitly since the sum Y (x; — X)? is from ¢t = 1 to T. The reason for
this is simply that, at least for now, it is assumed that every observation on
a series represents a piece of useful information which can be used to help
determine the coefficient estimates. So the larger the size of the sample, the
more information will have been used in estimation of the parameters, and
hence the more confidence will be placed in those estimates.

Both SE(&) and SE(,@) depend on 52 (or s). Recall from above that s>
is the estimate of the error variance. The larger this quantity is, the more
dispersed are the residuals, and so the greater is the uncertainty in the model.
If 52 is large, the data points are collectively a long way away from the line.
The sum of the squares of the x; about their mean appears in both formulae —
since Y (x; — X)? appears in the denominators. The larger the sum of
squares, the smaller the coefticient variances. Consider what happens if
3" (s, — %) is small or large, as shown in figures 3.7 and 3.8, respectively.

y

Figure 3.7 Effect on the standard errors of the coefficient estimates when (x;, — X)
are narrowly dispersed

In figure 3.7, the data are close together so that Y (x, — ¥)* is small. In

this first case, it is more difticult to determine with any degree of certainty
exactly where the line should be. On the other hand, in figure 3.8, the
points are widely dispersed across a long section of the line, so that one
could hold more confidence in the estimates in this case.
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0 X X

Figure 3.8  Effect on the standard errors of the coefficient estimates when (x;, — )
are widely dispersed

The term Y x? affects only the intercept standard error and not the slope
standard error. The reason is that Y x? measures how far the points are
away from the y-axis. Consider figures 3.9 and 3.10.

In figure 3.9, all of the points are bunched a long way from the y-axis,
which makes it more difficult to accurately estimate the point at which
the estimated line crosses the y-axis (the intercept). In figure 3.10, the points

Figure 3.9  Effect on the standard errors of x7 large
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0 x
Figure 3.10  Effect on the standard errors of x? small

collectively are closer to the y-axis and hence it will be easier to determine
where the line actually crosses the axis. Note that this intuition will work
only in the case where all of the x; are positive!

- )

Exampl632 ©0000000000000000000000000000000000000000000000000000000000000000000000

Assume that the following data have been calculated from a regression of y on a
single variable x and a constant over twenty-two observations

D xy =830102, T=22, ¥=4165, j=86.65,

D a7 = 3919654, RSS =130.6

Determine the appropriate values of the coefficient estimates and their standard errors.
This question can simply be answered by plugging the appropriate numbers into
the formulae given above. The calculations are

830102 — (22 x 416.5 x 86.65)

= 0.35
3919654 — 22 x (416.5)?

B =
a = 86.65 — 0.35 x 416.5 = —59.12

The sample regression function would be written as
Ji =&+ B
P = —59.12 4 0.35x;
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Now, turning to the standard error calculations, it is necessary to obtain an estimate, s,
of the error variance

. > n? 130.6
SE(regression), s = = =2.55
T—-2 20

A 3919654
SE(@&) = 2.55 x =3.35
22 x (3919654 — 22 x 416.52)

\ 1
SE(B) = 2.55 x \/ = 0.0079
3919654 — 22 x 416.52

With the standard errors calculated, the results are written as

5= —59.12 + 0.35x,

(3.28)
(3.35)  (0.0079)

The standard error estimates are usually placed in parentheses under the relevant
coefficient estimates.

ceccccccccce @ An introduction to statistical inference

Often, financial theory will suggest that certain coefficients should take on par-
ticular values, or values within a given range. It is thus of interest to determine
whether the relationships expected from financial theory are upheld by the data to
hand or not. Estimates of o and 8 have been obtained from the sample, but these
values are not of any particular interest; the population values that describe the
true relationship between the variables would be of more interest, but are never
available. Instead, inferences are made concerning the likely population values
from the regression parameters that have been estimated from the sample of data
to hand. In doing this, the aim is to determine whether the differences between
the coefticient estimates that are actually obtained, and expectations arising from
financial theory, are a long way from one another in a statistical sense.

Examples_s 0000000 00000000000000000000000000000000000000000000000000000000000000O0CO0

Suppose the following regression results have been calculated:

§e = 20.3 4 0.5091x,

(3.29)
(14.38) (0.2561)

A

B = 0.5091 is a single (point) estimate of the unknown population parameter, . As
stated above, the reliability of the point estimate is measured by the coefficient’s
standard error. The information from one or more of the sample coefficients and their
standard errors can be used to make inferences about the population parameters. So
the estimate of the slope coefficient is ,3 = 0.5091, but it is obvious that this number is
likely to vary to some degree from one sample to the next. It might be of interest to
answer the question, ‘Is it plausible, given this estimate, that the true population
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parameter, B, could be 0.5? Is it plausible that 8 could be 1?’, etc. Answers to these
questions can be obtained through hypothesis testing.

3.9.1 Hypothesis testing: some concepts

In the hypothesis testing framework, there are always two hypotheses that go
together, known as the null hypothesis (denoted Hy or occasionally Hy) and the
alternative hypothesis (denoted Hy or occasionally Ha). The null hypothesis is the
statement or the statistical hypothesis that is actually being tested. The alternative
hypothesis represents the remaining outcomes of interest.

For example, suppose that given the regression results above, it is of interest to
test the hypothesis that the true value of B is in fact 0.5. The following notation
would be used.

H(),BZOS
H1,3;é05

This states that the hypothesis that the true but unknown value of 8 could be 0.5
is being tested against an alternative hypothesis where B is not 0.5. This would be
known as a two-sided test, since the outcomes of both f < 0.5 and B > 0.5 are
subsumed under the alternative hypothesis.

Sometimes, some prior information may be available, suggesting for example
that B > 0.5 would be expected rather than B < 0.5. In this case, § < 0.5 is no
longer of interest to us, and hence a one-sided test would be conducted:

H()I,B:O.S
H1I,3>O.5

Here the null hypothesis that the true value of B is 0.5 is being tested against a
one-sided alternative that 8 is more than 0.5.

On the other hand, one could envisage a situation where there is prior infor-
mation that 8 < 0.5 is expected. For example, suppose that an investment bank
bought a piece of new risk management software that is intended to better track
the riskiness inherent in its traders’ books and that 8 is some measure of the risk
that previously took the value 0.5. Clearly, it would not make sense to expect the
risk to have risen, and so B > 0.5, corresponding to an increase in risk, is not of
interest. In this case, the null and alternative hypotheses would be specified as

H(),BZOS
H1,3<05

This prior information should come from the financial theory of the problem
under consideration, and not from an examination of the estimated value of the
coefficient. Note that there is always an equality under the null hypothesis. So, for
example, 8 < 0.5 would not be specified under the null hypothesis.
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There are two ways to conduct a hypothesis test: via the test of significance
approach or via the confidence interval approach. Both methods centre on a statistical
comparison of the estimated value of the coefficient, and its value under the null
hypothesis. In very general terms, if the estimated value is a long way away from
the hypothesised value, the null hypothesis is likely to be rejected; if the value
under the null hypothesis and the estimated value are close to one another, the
null hypothesis is less likely to be rejected. For example, consider ,é = 0.5091 as
above. A hypothesis that the true value of B is 5 is more likely to be rejected than
a null hypothesis that the true value of B is 0.5. What is required now is a statistical
decision rule that will permit the formal testing of such hypotheses.

The probability distribution of the least squares estimators

In order to test hypotheses, assumption 5 of the CLRM must be used, namely
that u, ~ N(0, 02) — i.e. that the error term is normally distributed. The normal
distribution is a convenient one to use for it involves only two parameters (its mean
and variance). This makes the algebra involved in statistical inference considerably
simpler than it otherwise would have been. Since y; depends partially on u,, it can
be stated that if u, is normally distributed, y, will also be normally distributed.

Further, since the least squares estimators are linear combinations of the random
variables, 1.e. ,é = > w,y;, where w; are effectively weights, and since the weighted
sum of normal random variables is also normally distributed, it can be said that the
coefticient estimates will also be normally distributed. Thus

& ~ N(o, var(@)) and B ~ N(B, var(B))
Will the coefticient estimates still follow a normal distribution if the errors do not
follow a normal distribution? Well, briefly, the answer is usually ‘yes’, provided
that the other assumptions of the CLRM hold, and the sample size is sufficiently
large. The issue of non-normality, how to test for it, and its consequences, will be
turther discussed in chapter 4.

Standard normal variables can be constructed from & and by subtracting the
mean and dividing by the square root of the variance

N I, LA APN T

var(Q) var(A)

The square roots of the coefticient variances are the standard errors. Unfortunately,
the standard errors of the true coefticient values under the PRF are never known —
all that is available are their sample counterparts, the calculated standard errors of
the coefficient estimates, SE(&) and SE(,é).J'

* Strictly, these are the estimated standard errors conditional on the parameter estimates, and so
should be denoted SE(¢) and SE(B), but the additional layer of hats will be omitted here since
the meaning should be obvious from the context.
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J)

normal distribution

/

t-distribution

u x

Figure 3.11  The t-distribution versus the normal

Replacing the true values of the standard errors with the sample estimated
versions induces another source of uncertainty, and also means that the standardised
statistics follow a f-distribution with T — 2 degrees of freedom (defined below)
rather than a normal distribution, so

a— o ,3 —B
- tr—» and — ~ 1)
SE() SE(B)

This result is not formally proved here. For a formal proof, see Hill, Griffiths
and Judge (1997, pp. 88-90).

A note on the ¢ and the normal distributions

The normal distribution pdf was shown in shown in figure 2.7 with its characteristic
‘bell’ shape and its symmetry around the mean (of zero for a standard normal
distribution). Any normal variate can be scaled to have zero mean and unit variance
by subtracting its mean and dividing by its standard deviation. There is a specific
relationship between the ¢- and the standard normal distribution, and the ¢-
distribution has another parameter, its degrees of freedom.

What does the t-distribution look like? It looks similar to a normal distribution,
but with fatter tails, and a smaller peak at the mean, as shown in figure 3.11.

Some examples of the percentiles from the normal and ¢-distributions taken
from the statistical tables are given in table 3.2. When used in the context of a
hypothesis test, these percentiles become critical values. The values presented in
table 3.2 would be those critical values appropriate for a one-sided test of the given
significance level.
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Table 3.2 Critical values from the standard normal versus

t-distribution

Significance level (%) N(0.1) tuo t
50 0 0 0
5 1.64 1.68 2.13
2.5 1.96 2.02 2.78
K 0.5 2.57 2.70 4.60)

It can be seen that as the number of degrees of freedom for the ¢-distribution
increases from 4 to 40, the critical values fall substantially. In figure 3.11, this is
represented by a gradual increase in the height of the distribution at the centre and
areduction in the fatness of the tails as the number of degrees of freedom increases.
In the limit, a ¢-distribution with an infinite number of degrees of freedom is a
standard normal, i.e. foo = N(0, 1), so the normal distribution can be viewed as a
special case of the .

Putting the limit case, fo, aside, the critical values for the f-distribution are
larger in absolute value than those from the standard normal. This arises from
the increased uncertainty associated with the situation where the error variance
must be estimated. So now the f-distribution is used, and for a given statistic to
constitute the same amount of reliable evidence against the null, it has to be bigger
in absolute value than in circumstances where the normal is applicable.

There are broadly two approaches to testing hypotheses under regression anal-
ysis: the test of significance approach and the confidence interval approach. Each
of these will now be considered in turn.

The test of significance approach

Assume the regression equation is given by y, = o + Bx, +u,, t = 1,2, ..., T.
The steps involved in doing a test of significance are shown in box 3.5.

Steps 2—7 require further comment. In step 2, the estimated value of B is
compared with the value that is subject to test under the null hypothesis, but
this difference is ‘normalised’ or scaled by the standard error of the coefticient
estimate. The standard error is a measure of how confident one is in the coefficient
estimate obtained in the first stage. If a standard error is small, the value of the test
statistic will be large relative to the case where the standard error is large. For a
small standard error, it would not require the estimated and hypothesised values to
be far away from one another for the null hypothesis to be rejected. Dividing by
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(1
@)

Estimate &, 8 and SE(&), SE(B) in the usual way.
Calculate the test statistic. This 1s given by the formula

p— B
SE(B)

where B* is the value of B under the null hypothesis. The null hypothesis is
Hy : B = B* and the alternative hypothesis is Hy : B # B* (for a two-sided
test).

A tabulated distribution with which to compare the estimated test statistics
is required. Test statistics derived in this way can be shown to follow a
t-distribution with T"— 2 degrees of freedom.

Choose a ‘significance level’, often denoted « (not the same as the regression
intercept coefficient). It is conventional to use a significance level of 5%.
Given a significance level, a rejection region and non-rejection region can be
determined. If a 5% significance level is employed, this means that 5% of
the total distribution (5% of the area under the curve) will be in the rejection
region. That rejection region can either be split in half (for a two-sided test)
or it can all fall on one side of the y-axis, as is the case for a one-sided test.

For a two-sided test, the 5% rejection region is split equally between
the two tails, as shown in figure 3.12.

For a one-sided test, the 5% rejection region is located solely in one
tail of the distribution, as shown in figures 3.13 and 3.14, for a test where
the alternative 1s of the ‘less than’ form, and where the alternative is of the
‘greater than’ form, respectively.

test statistic = (3.30)

J)

2.5%
rejection region

\

Figure 3.12  Rejection regions for a two-sided 5% hypothesis test

2.5%
rejection region

/

95% non-rejection region
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(6)

7)

J&)

5%
rejection region

\

Figure 3.13  Rejection region for a one-sided hypothesis test of the form

Hy:p=p" H :p<p"

95% non-rejection region

S

5%
rejection region

/

Figure 3.14  Rejection region for a one-sided hypothesis test of the form

Hy:p=p" H :p>p"

95% non-rejection region

Use the t-tables to obtain a critical value or values with which to compare
the test statistic. The critical value will be that value of x that puts 5% into
the rejection region.

Finally perform the test. If the test statistic lies in the rejection region then
reject the null hypothesis (Hy), else do not reject Hy.
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the standard error also ensures that, under the five CLRM assumptions, the test
statistic follows a tabulated distribution.

In this context, the number of degrees of freedom can be interpreted as the
number of pieces of additional information beyond the minimum requirement. If
two parameters are estimated (¢ and B — the intercept and the slope of the line,
respectively), a minimum of two observations is required to fit this line to the data.
As the number of degrees of freedom increases, the critical values in the tables
decrease in absolute terms, since less caution is required and one can be more
confident that the results are appropriate.

The significance level is also sometimes called the size of the test (note that this
is completely different from the size of the sample) and it determines the region
where the null hypothesis under test will be rejected or not rejected. Remember
that the distributions in figures 3.13-3.15 are for a random variable. Purely by
chance, a random variable will take on extreme values (either large and positive
values or large and negative values) occasionally. More specifically, a significance
level of 5% means that a result as extreme as this or more extreme would be
expected only 5% of the time as a consequence of chance alone. To give one
illustration, if the 5% critical value for a one-sided test is 1.68, this implies that
the test statistic would be expected to be greater than this only 5% of the time
by chance alone. There is nothing magical about the test — all that is done is to
specify an arbitrary cutoff value for the test statistic that determines whether the
null hypothesis would be rejected or not. It is conventional to use a 5% size of test,
but 10% and 1% are also commonly used.

However, one potential problem with the use of a fixed (e.g. 5%) size of
test 1s that if the sample size is sufficiently large, any null hypothesis can be
rejected. This is particularly worrisome in finance, where tens of thousands of
observations or more are often available. What happens is that the standard errors
reduce as the sample size increases, thus leading to an increase in the value of
all ¢-test statistics. This problem is frequently overlooked in empirical work, but
some econometricians have suggested that a lower size of test (e.g. 1%) should be
used for large samples (see, for example, Leamer, 1978, for a discussion of these
issues).

Note also the use of terminology in connection with hypothesis tests: it is said
that the null hypothesis is either rejected or not rejected. It is incorrect to state that if
the null hypothesis is not rejected, it is ‘accepted’ (although this error is frequently
made in practice), and it is never said that the alternative hypothesis is accepted
or rejected. One reason why it is not sensible to say that the null hypothesis is
‘accepted’ 1s that it is impossible to know whether the null is actually true or not!
In any given situation, many null hypotheses will not be rejected. For example,
suppose that Hy : B = 0.5 and Hy : B = 1 are separately tested against the relevant
two-sided alternatives and neither null is rejected. Clearly then it would not make
sense to say that ‘Hy : B = 0.5 is accepted’ and ‘Hy : B = 1 is accepted’, since
the true (but unknown) value of 8 cannot be both 0.5 and 1. So, to summarise,
the null hypothesis is either rejected or not rejected on the basis of the available
evidence.
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Box 3.6 Carrying out a hypothesis test using confidence

intervals

(1) Calculate &, B and SE(&@), SE(B) as before.
(2) Choose a significance level, @ (again the convention is 5%). This is
equivalent to choosing a (1 — «)*100% confidence interval

1.e. 5% significance level = 95% confidence interval.

(3) Use the t-tables to find the appropriate critical value, which will again
have T—2 degrees of freedom.
(4) The confidence interval for B is given by

(B — tuir - SE(B), B + tii - SE(B))

Note that a centre dot (-) is sometimes used instead of a cross (X) to
denote when two quantities are multiplied together.

(5) Perform the test: if the hypothesised value of B (i.e. B*) lies outside
the confidence interval, then reject the null hypothesis that 8 = %,
otherwise do not reject the null.

N J

3.9.5 The confidence interval approach to hypothesis testing (box 3.6)

To give an example of its usage, one might estimate a parameter, say B, to be
0.93, and a ‘95% confidence interval’ to be (0.77, 1.09). This means that in many
repeated samples, 95% of the time, the true value of B will be contained within
this interval. Confidence intervals are almost invariably estimated in a two-sided
form, although in theory a one-sided interval can be constructed. Constructing a
95% confidence interval is equivalent to using the 5% level in a test of significance.

3.9.6 The test of significance and confidence interval approaches always
give the same conclusion

Under the test of significance approach, the null hypothesis that § = B* will not be
rejected if the test statistic lies within the non-rejection region, i.e. if the following
condition holds

_tm't S IB _l? S + Terit
SE(B)

Rearranging, the null hypothesis would not be rejected if

— it * SE(B) = ,é - IB* <+ Lerit * SE(:é)
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Box 3.7 The test of significance and confidence interval
approaches compared
Test of significance approach Confidence interval approach
A _ *
fest stat = P '1?
SE(B) Find f,, = ta.5y = £2.086
0.5091 —1
= ——=—1.917
0.2561 . .
:8 + Leri - SE(IB)
Find t,; = tz0,5%, = £2.086 = 0.5091 £ 2.086 - 0.2561
= (—0.0251, 1.0433)
Do not reject Hy since test statistic Do not reject Hy since 1 lies
lies within non-rejection region within the confidence interval

\_ /

i.e. one would not reject if

B — tyir- SE(B) < B* < B + toir - SE(B)

But this is just the rule for non-rejection under the confidence interval
approach. So it will always be the case that, for a given significance level, the
test of significance and confidence interval approaches will provide the same con-
clusion by construction. One testing approach is simply an algebraic rearrangement
of the other.

Given the regression results above

yr = 20.3 4+ 0.5091x,

. T=2 (3.31)
(14.38) (0.2561)

Using both the test of significance and confidence interval approaches, test the
hypothesis that 8 = 1 against a two-sided alternative. This hypothesis might be of
interest, for a unit coefficient on the explanatory variable implies a 1:1 relationship
between movements in x and movements in y.

The null and alternative hypotheses are respectively:

Hy:8=1
H1Z,B7él

The results of the test according to each approach are shown in box 3.7.
A couple of comments are in order. First, the critical value from the -
distribution that is required is for twenty degrees of freedom and at the 5% level.
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S

2.5%
rejection region

/

—2.086 +2.086 X

2.5%
rejection region

\

Figure 3.15  Critical values and rejection regions for a t50.50,

95% non-rejection region

This means that 5% of the total distribution will be in the rejection region, and
since this is a two-sided test, 2.5% of the distribution is required to be contained in
each tail. From the symmetry of the f-distribution around zero, the critical values
in the upper and lower tail will be equal in magnitude, but opposite in sign, as
shown in figure 3.15.

What if instead the researcher wanted to test Hy: 8 = 0 or Hy : B = 2? In
order to test these hypotheses using the test of significance approach, the test
statistic would have to be reconstructed in each case, although the critical value
would be the same. On the other hand, no additional work would be required
if the confidence interval approach had been adopted, since it effectively permits
the testing of an infinite number of hypotheses. So for example, suppose that the
researcher wanted to test

Hy:8=0
versus

H:8#0
and

Hoy:8=2
versus

Hi :B#2

In the first case, the null hypothesis (that 8 = 0) would not be rejected since
0 lies within the 95% confidence interval. By the same argument, the second
null hypothesis (that § =2) would be rejected since 2 lies outside the estimated
confidence interval.



3.9 An introduction to statistical inference 109

On the other hand, note that this book has so far considered only the results
under a 5% size of test. In marginal cases (e.g. Hy : B = 1, where the test statistic
and critical value are close together), a completely different answer may arise if a
different size of test was used. This is where the test of significance approach is
preferable to the construction of a confidence interval.

For example, suppose that now a 10% size of test is used for the null hypothesis
given in example 3.4. Using the test of significance approach,

P
E(B)
0.5091 — 1

T 02561

fest statistic =

= —1.917

as above. The only thing that changes is the critical t-value. At the 10% level (so
that 5% of the total distribution is placed in each of the tails for this two-sided
test), the required critical value is 5010, = £1.725. So now; as the test statistic lies
in the rejection region, Hy would be rejected. In order to use a 10% test under
the confidence interval approach, the interval itself would have to have been re-
estimated since the critical value is embedded in the calculation of the confidence
interval.

So the test of significance and confidence interval approaches both have their
relative merits. The testing of a number of different hypotheses is easier under the
confidence interval approach, while a consideration of the effect of the size of the
test on the conclusion is easier to address under the test of significance approach.

Caution should therefore be used when placing emphasis on or making deci-
sions in the context of marginal cases (i.e. in cases where the null is only just
rejected or not rejected). In this situation, the appropriate conclusion to draw is
that the results are marginal and that no strong inference can be made one way or
the other. A thorough empirical analysis should involve conducting a sensitivity
analysis on the results to determine whether using a difterent size of test alters the
conclusions. It is worth stating again that it is conventional to consider sizes of test
of 10%, 5% and 1%. If the conclusion (i.e. ‘reject’ or ‘do not reject’) is robust to
changes in the size of the test, then one can be more confident that the conclusions
are appropriate. If the outcome of the test is qualitatively altered when the size of
the test is modified, the conclusion must be that there is no conclusion one way
or the other!

It 1s also worth noting that if a given null hypothesis is rejected using a 1%
significance level, it will also automatically be rejected at the 5% level, so that
there is no need to actually state the latter. Dougherty (1992, p. 100), gives the
analogy of a high jumper. If the high jumper can clear 2 metres, it is obvious
that the jumper could also clear 1.5 metres. The 1% significance level is a higher
hurdle than the 5% significance level. Similarly, if the null is not rejected at the 5%
level of significance, it will automatically not be rejected at any stronger level of
significance (e.g. 1%). In this case, if the jumper cannot clear 1.5 metres, there is
no way s/he will be able to clear 2 metres.
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Table 3.3 Classifying hypothesis testing errors and correct

conclusions
Reality
Hp is true Hy is false
Significant Type | error = o Vi
Result of test (reject Ho)
Insignificant o Type Il error = g
K (do not reject Hg) )

Some more terminology

If the null hypothesis is rejected at the 5% level, it would be said that the result of
the test is ‘statistically significant’. If the null hypothesis is not rejected, it would
be said that the result of the test is ‘not significant’, or that it is ‘insignificant’.
Finally, if the null hypothesis is rejected at the 1% level, the result is termed ‘highly
statistically significant’.

Note that a statistically significant result may be of no practical significance. For
example, if the estimated beta for a stock under a CAPM regression 1s 1.05, and
a null hypothesis that 8 = 1 is rejected, the result will be statistically significant.
But it may be the case that a slightly higher beta will make no difference to an
investor’s choice as to whether to buy the stock or not. In that case, one would say
that the result of the test was statistically significant but financially or practically
insignificant.

Classifying the errors that can be made using hypothesis tests

Hy is usually rejected if the test statistic is statistically significant at a chosen
significance level. There are two possible errors that could be made:

(1) Rejecting Hy when it was really true; this is called a type I error.
(2) Not rejecting Hy when it was in fact false; this is called a type II error.

The possible scenarios can be summarised in table 3.3. The probability of a type I
error is just o, the significance level or size of test chosen. To see this, recall what is
meant by ‘significance’ at the 5% level: it is only 5% likely that a result as or more
extreme as this could have occurred purely by chance. Or, to put this another way,
it is only 5% likely that this null would be rejected when it was in fact true.

Note that there is no chance for a free lunch (i.e. a cost-less gain) here! What
happens if the size of the test is reduced (e.g. from a 5% test to a 1% test)? The
chances of making a type I error would be reduced. . . but so would the probability
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Box 3.8 Type | and type Il errors ~

Less likely Lower
to falsely — chance of

Reduce size — More strict — Reject null 7 reject type I error

of test (e.g. criterion for  hypothesis \(

5% to 1%) rejection less often More likely to  Higher
incorrectly ~ — chance of
not reject type II error

.

that the null hypothesis would be rejected at all, so increasing the probability of
a type II error. The two competing effects of reducing the size of the test can be
shown in box 3.8.

So there always exists, therefore, a direct trade-off between type I and type 11
errors when choosing a significance level. The only way to reduce the chances of
both is to increase the sample size or to select a sample with more variation, thus
increasing the amount of information upon which the results of the hypothesis
test are based. In practice, up to a certain level, type I errors are usually considered
more serious and hence a small size of test is usually chosen (5% or 1% are the
most common).

The probability of a type I error is the probability of incorrectly rejecting a
correct null hypothesis, which is also the size of the test. Another important piece
of terminology in this area is the power of a test. The power of a test is defined as the
probability of (appropriately) rejecting an incorrect null hypothesis. The power of
the test is also equal to one minus the probability of a type II error.

An optimal test would be one with an actual test size that matched the nominal
size and which had as high a power as possible. Such a test would imply, for example,
that using a 5% significance level would result in the null being rejected exactly
5% of the time by chance alone, and that an incorrect null hypothesis would be
rejected close to 100% of the time.

A special type of hypothesis test: the ¢-ratio

Recall that the formula under a test of significance approach to hypothesis testing
using a t-test for the slope parameter was

5 _ *
test statistic = u (3.32)
se(B)
with the obvious adjustments to test a hypothesis about the intercept. If the test is
H() . ,3 =0

H1Zﬁ7é0
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i.e. a test that the population parameter is zero against a two-sided alternative, this
is known as a f-ratio test. Since f* = 0, the expression in (3.32) collapses to

B
SE(B)

Thus the ratio of the coefticient to its standard error, given by this expression,
is known as the t-ratio or t-statistic.

test statistic = (3.33)

Examplea_5 00 0000000000000 000000000000000000000000000000000000000000000000000000O0CO0

Suppose that we have calculated the estimates for the intercept and the slope (1.10
and —19.88 respectively) and their corresponding standard errors (1.35 and 1.98
respectively). The ¢-ratios associated with each of the intercept and slope coefficients
would be given by

A

a B
Coefficient 1.10 —19.88
SE 1.35 1.98
t-ratio 0.81 —10.04

Note that if a coefficient is negative, its ¢-ratio will also be negative. In order to test
(separately) the null hypotheses that « = 0 and 8 = 0, the test statistics would be
compared with the appropriate critical value from a ¢-distribution. In this case, the
number of degrees of freedom, given by T — k, is equalto 15 — 2 = 13. The 5%
critical value for this two-sided test (remember, 2.5% in each tail for a 5% test) is 2.160,
while the 1% two-sided critical value (0.5% in each tail) is 3.01. Given these t-ratios and
critical values, would the following null hypotheses be rejected?

Hy: o =0? (NO)
Hy: g =0? (Yes)

If Hy is rejected, it would be said that the test statistic is significant. If the variable is not
‘significant’, it means that while the estimated value of the coefficient is not exactly zero
(e.g. 1.10 in the example above), the coefficient is indistinguishable statistically from
zero. If a zero were placed in the fitted equation instead of the estimated value, this
would mean that whatever happened to the value of that explanatory variable, the
dependent variable would be unaffected. This would then be taken to mean that the
variable is not helping to explain variations in y, and that it could therefore be
removed from the regression equation. For example, if the ¢-ratio associated with x
had been —1.04 rather than —10.04 (assuming that the standard error stayed the
same), the variable would be classed as insignificant (i.e. not statistically different from
zero). The only insignificant term in the above regression is the intercept. There are
good statistical reasons for always retaining the constant, even if it is not significant; see
chapter 5.

It is worth noting that, for degrees of freedom greater than around 25, the 5%
two-sided critical value is approximately +2. So, as a rule of thumb (i.e. a rough guide),
the null hypothesis would be rejected if the ¢-statistic exceeds 2 in absolute value.
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3.11 An example of a simple t-test of a theory

Table 3.4 Summary statistics for the estimated regression

results for (3.34)
Extremal values
ltem Mean value Median value Minimum Maximum
a —0.011 —0.009 —0.080 0.058
B 0.840 0.848 0.219 1.405
Sample size 17 19 10 20
\_ J

Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers.

Some authors place the ¢-ratios in parentheses below the corresponding
coefficient estimates rather than the standard errors. One thus needs to check which
convention is being used in each particular application, and also to state this clearly
when presenting estimation results.

There will now follow two finance case studies that involve only the estimation of
bivariate linear regression models and the construction and interpretation of ¢-ratios.

sesccccceces @ An example of a simple t-test of a theory in finance: can US mutual funds
beat the market?

Jensen (1968) was the first to systematically test the performance of mutual funds,
and in particular examine whether any ‘beat the market’. He used a sample of
annual returns on the portfolios of 115 mutual funds from 1945-64. Each of the
115 funds was subjected to a separate OLS time series regression of the form

Ry — Ry = a; + Bj(Ru — Rp) + uj (3.34)

where R; is the return on portfolio j at time ¢, Ry is the return on a risk-free
proxy (a one-year government bond), R, is the return on a market portfolio
proxy, uj, is an error term, and &, B, are parameters to be estimated. The quantity
of interest is the significance of &}, since this parameter defines whether the fund
outperforms or underperforms the market index. Thus the null hypothesis is given
by: Hy :a@; = 0. A positive and significant «; for a given fund would suggest
that the fund is able to earn significant abnormal returns in excess of the market-
required return for a fund of this given riskiness. This coefficient has become
known as ‘Jensen’s alpha’. Some summary statistics across the 115 funds for the
estimated regression results for (3.34) are given in table 3.4.

As table 3.4 shows, the average (defined as either the mean or the median)
fund was unable to ‘beat the market’, recording a negative alpha in both cases.
There were, however, some funds that did manage to perform significantly better
than expected given their level of risk, with the best fund of all yielding an alpha of
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Figure 3.17  Frequency distribution of t-ratios of mutual fund alphas (net of transactions
costs)

0.058. Interestingly, the average fund had a beta estimate of around 0.85, indicating
that, in the CAPM context, most funds were less risky than the market index. This
result may be attributable to the funds investing predominantly in (mature) blue
chip stocks rather than small caps.

The most visual method of presenting the results was obtained by plotting the
number of mutual funds in each ¢-ratio category for the alpha coefficient, first gross
and then net of transactions costs, as in figure 3.16 and figure 3.17, respectively.

The appropriate critical value for a two-sided test of o; = 0 is approxi-
mately 3.10 (assuming twenty years of annual data leading to eighteen degrees of
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3.12 Can UK unit trust managers beat the market?

Table 3.5 Summary statistics for unit trust returns, January

1979-May 2000
Mean Minimum Maximum Median
(%) (%) (%) (%)
Average monthly
return, 1979-2000 1.0 0.6 1.4 1.0
Standard deviation of
returns over time 5.1 4.3 6.9 5.0
- j

freedom). As can be seen, only five funds have estimated f-ratios greater than 2
and are therefore implied to have been able to outperform the market before trans-
actions costs are taken into account. Interestingly, five firms have also significantly
underperformed the market, with f-ratios of =2 or less.

When transactions costs are taken into account (figure 3.17), only one fund
out of 115 is able to significantly outperform the market, while 14 significantly
underperform it. Given that a nominal 5% two-sided size of test is being used,
one would expect two or three funds to ‘significantly beat the market’ by chance
alone. It would thus be concluded that, during the sample period studied, US fund
managers appeared unable to systematically generate positive abnormal returns.

Can UK unit trust managers beat the market?

Jensen’s study has proved pivotal in suggesting a method for conducting empirical
tests of the performance of fund managers. However, it has been criticised on sev-
eral grounds. One of the most important of these in the context of this book is that
only between ten and twenty annual observations were used for each regression.
Such a small number of observations is really insufticient for the asymptotic theory
underlying the testing procedure to be validly invoked.

A variant on Jensen’s test is now estimated in the context of the UK market, by
considering monthly returns on seventy-six equity unit trusts. The data cover the
period January 1979-May 2000 (257 observations for each fund). Some summary
statistics for the funds are presented in table 3.5.

From these summary statistics, the average continuously compounded return
is 1% per month, although the most interesting feature is the wide variation in the
performances of the funds. The worst-performing fund yields an average return of
0.6% per month over the twenty-year period, while the best would give 1.4% per
month. This variability is further demonstrated in figure 3.18, which plots over
time the value of £100 invested in each of the funds in January 1979.

A regression of the form (3.34) is applied to the UK data, and the summary
results presented in table 3.6. A number of features of the regression results are
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Table 3.6 CAPM regression results for unit trust returns, January

1979-May 2000

Estimates of Mean Minimum Maximum Median
a(%) —0.02 —0.54 0.33 —0.03
B 0.91 0.56 1.09 0.91
t-ratio on « —0.07 —2.44 3.11 —0.25 p
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Figure 3.18  Performance of UK unit trusts, 1979-2000

worthy of further comment. First, most of the funds have estimated betas less than
one again, perhaps suggesting that the fund managers have historically been risk-
averse or investing disproportionately in blue chip companies in mature sectors.
Second, gross of transactions costs, nine funds of the sample of seventy-six were able
to significantly outperform the market by providing a significant positive alpha,
while seven funds yielded significant negative alphas. The average fund (where
‘average’ 1s measured using either the mean or the median) is not able to earn any
excess return over the required rate given its level of risk.

The overreaction hypothesis and the UK stock market
Motivation

Two studies by DeBondt and Thaler (1985, 1987) showed that stocks experiencing
a poor performance over a three—five-year period subsequently tend to outperform
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Box 3.9 Reasons for stock market overreactions Y

(1) That the ‘overreaction effect’ is just another manifestation of the ‘size effect’.
The size effect is the tendency of small firms to generate on average,
superior returns to large firms. The argument would follow that the
losers were small firms and that these small firms would subsequently
outperform the large firms. DeBondt and Thaler did not believe this a
sufficient explanation, but Zarowin (1990) found that allowing for firm
size did reduce the subsequent return on the losers.

(2)  That the reversals of fortune reflect changes in equilibrium required returns. The
losers are argued to be likely to have considerably higher CAPM betas,
reflecting investors’” perceptions that they are more risky. Of course,
betas can change over time, and a substantial fall in the firms’ share
prices (for the losers) would lead to a rise in their leverage ratios,
leading in all likelihood to an increase in their perceived riskiness.
Therefore, the required rate of return on the losers will be larger, and
their ex post performance better. Ball and Kothari (1989) find the
CAPM betas of losers to be considerably higher than those of winners.

- J

stocks that had previously performed relatively well. This implies that, on average,
stocks which are ‘losers’ in terms of their returns subsequently become ‘winners’,
and vice versa. This chapter now examines a paper by Clare and Thomas (1995)
that conducts a similar study using monthly UK stock returns from January 1955
to 1990 (thirty-six years) on all firms traded on the London Stock exchange.

This phenomenon seems at first blush to be inconsistent with the effi-
cient markets hypothesis, and Clare and Thomas propose two explanations (see
box 3.9). Zarowin (1990) also finds that 80% of the extra return available from
holding the losers accrues to investors in January, so that almost all of the ‘overre-
action effect’ seems to occur at the start of the calendar year.

Methodology

Clare and Thomas take a random sample of 1,000 firms and, for each, they calculate
the monthly excess return of the stock for the market over a twelve-, twenty-four-
or thirty-six-month period for each stock i

L],'t:R,'t—Rmt:L...,n; 1.21,...,1000;

n=12,24 or 36 (3.35)
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Box 3.10 Ranking stocks and forming portfolios ™

Portfolio Ranking

Portfolio 1 Best performing 20% of firms
Portfolio 2 Next 20%

Portfolio 3 Next 20%

Portfolio 4 Next 20%

Portfolio 5 Worst performing 20% of firms

Box3.11 Portfolio monitoring B

Estimate R; for year 1
Monitor portfolios for year 2
Estimate R; for year 3

Monitor portfolios for year 36

N J

Then the average monthly return over each stock i for the first twelve-, twenty-
four-, or thirty-six-month period is calculated:

I
R = > Uy (3.36)
t=1

The stocks are then ranked from highest average return to lowest and from these
five portfolios are formed and returns are calculated assuming an equal weighting
of stocks in each portfolio (box 3.10).

The same sample length # is used to monitor the performance of each portfolio.
Thus, for example, if the portfolio formation period is one, two or three years,
the subsequent portfolio tracking period will also be one, two or three years,
respectively. Then another portfolio formation period follows and so on until the
sample period has been exhausted. How many samples of length n will there be?
n =1, 2 or 3 years. First, suppose n = 1 year. The procedure adopted would be
as shown in box 3.11.

So if n = 1, there are eighteen independent (non-overlapping) observation
periods and eighteen independent tracking periods. By similar arguments, n =
2 gives nine independent periods and n = 3 gives six independent periods. The
mean return for each month over the 18, 9, or 6 periods for the winner and
loser portfolios (the top 20% and bottom 20% of firms in the portfolio formation
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Table 3.7 Is there an overreaction effect in the UK stock market?

Panel A: all months
n=12 n=24 n =36
Return on loser 0.0033 0.0011 0.0129
Return on winner 0.0036 —0.0003 0.0115
Implied annualised return difference —0.37% 1.68% 1.56%
Coefficient for (3.37): &4 —0.00031 0.0014* 0.0013
(0.29) (2.01) (1.55)
Coefficients for (3.38): a2 —0.00034 0.00147** 0.0013*
(—0.30) (2.01) (1.41)
Coefficients for (3.38): 8 —0.022 0.010 —0.0025
(—0.25) (0.21) (—0.06)
Panel B: all months except January
Coefficient for (3.37): a1 —0.0007 0.0012* 0.0009
(-0.72) (1.63) (1.05)
- J

Notes: t-ratios in parentheses; * and ** denote significance at the 10% and 5% levels, respectively.
Source: Clare and Thomas (1995). Reprinted with the permission of Blackwell Publishers.

period) are denoted by I_Q;ft/ and Rﬁt, respectively. Define the difference between
5 pL _ pW
these as Rp, = R, - Ry .
The first regression to be performed is of the excess return of the losers over
the winners on a constant only

Ry = oy + 1, (3.37)

where 7, is an error term. The test is of whether «; is significant and positive.
However, a significant and positive o is not a sufficient condition for the overre-
action effect to be confirmed because it could be owing to higher returns being
required on loser stocks owing to loser stocks being more risky. The solution, Clare
and Thomas (1995) argue, is to allow for risk difterences by regressing against the
market risk premium

Rp = 0oz + B(Ru — Rpy) + 1, (3.38)

where R, is the return on the FTA All-share, and Ry, is the return on a UK gov-
ernment three-month Treasury Bill. The results for each of these two regressions
are presented in table 3.7.
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As can be seen by comparing the returns on the winners and losers in the
first two rows of table 3.7, twelve months is not a sufficiently long time for losers
to become winners. By the two-year tracking horizon, however, the losers have
become winners, and similarly for the three-year samples. This translates into an
average 1.68% higher return on the losers than the winners at the two-year horizon,
and 1.56% higher return at the three-year horizon. Recall that the estimated value
of the coefticient in a regression of a variable on a constant only is equal to the
average value of that variable. It can also be seen that the estimated coefficients on
the constant terms for each horizon are exactly equal to the difterences between
the returns of the losers and the winners. This coefficient is statistically significant
at the two-year horizon, and marginally significant at the three-year horizon.

In the second test regression, B represents the difference between the market
betas of the winner and loser portfolios. None of the beta coefficient estimates are
even close to being significant, and the inclusion of the risk term makes virtually
no difference to the coefficient values or significances of the intercept terms.

Removal of the January returns from the samples reduces the subsequent
degree of overperformance of the loser portfolios, and the significances of the
@1 terms is somewhat reduced. It is concluded, therefore, that only a part of the
overreaction phenomenon occurs in January. Clare and Thomas then proceed to
examine whether the overreaction effect is related to firm size, although the results
are not presented here.

Conclusions
The main conclusions from Clare and Thomas’ study are:

(1) There appears to be evidence of overreactions in UK stock returns, as found
in previous US studies.

(2) These overreactions are unrelated to the CAPM beta.

(3) Losers that subsequently become winners tend to be small, so that most of the
overreaction in the UK can be attributed to the size effect.

The exact significance level

The exact significance level is also commonly known as the p-value. It gives the
marginal significance level where one would be indifferent between rejecting and not
rejecting the null hypothesis. If the test statistic is ‘large’ in absolute value, the
p-value will be small, and vice versa. For example, consider a test statistic that is
distributed as a t; and takes a value of 1.47. Would the null hypothesis be rejected?
It would depend on the size of the test. Now, suppose that the p-value for this test
is calculated to be 0.12:

o Is the null rejected at the 5% level? No
e Is the null rejected at the 10% level?  No
e Is the null rejected at the 20% level?  Yes
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Coefficient Std. error t-Statistic Prob.
C 0.000640 0.026625 0.024032 0.9809
RFUTURES 1.007291 0.005865 171.7341 0.0000

In fact, the null would have been rejected at the 12% level or higher. To see this,
consider conducting a series of tests with size 0.1%, 0.2%, 0.3%, 0.4%, ... 1%, .. .,
5%, ... 10%, ... Eventually, the critical value and test statistic will meet and this
will be the p-value. p-values are almost always provided automatically by software
packages. Note how useful they are! They provide all of the information required to
conduct a hypothesis test without requiring of the researcher the need to calculate
a test statistic or to find a critical value from a table — both of these steps have
already been taken by the package in producing the p-value. The p-value is also
useful since it avoids the requirement of specifying an arbitrary significance level
(o). Sensitivity analysis of the effect of the significance level on the conclusion
occurs automatically.

Informally, the p-value is also often referred to as the probability of being
wrong when the null hypothesis is rejected. Thus, for example, if a p-value of
0.05 or less leads the researcher to reject the null (equivalent to a 5% significance
level), this is equivalent to saying that if the probability of incorrectly rejecting
the null is more than 5%, do not reject it. The p-value has also been termed the
‘plausibility’ of the null hypothesis; so, the smaller is the p-value, the less plausible
is the null hypothesis.

Hypothesis testing in EViews — example 1: hedging revisited

Reload the ‘hedge.wfl’ EViews work file that was created above. If we
re-examine the results table from the returns regression (screenshot 3.4), it can be
seen that as well as the parameter estimates, EViews automatically calculates the
standard errors, the f-ratios and the p-values associated with a two-sided test of
the null hypothesis that the true value of a parameter is zero. Part of the results
table for the returns regression is replicated again here (table 3.8) for ease of
interpretation.

The third column presents the t-ratios, which are the test statistics for testing
the null hypothesis that the true values of these parameters are zero against a two
sided alternative — i.e. these statistics test Hyp : @ = 0 versus Hy : @ # 0 in the first
row of numbers and Hy : B = 0 versus Hy : 8 #% 0 in the second. The fact that
the first of these test statistics is very small is indicative that the corresponding
null hypotheses is likely not to be rejected but it probably will be rejected for the
slope. This suggestion is confirmed by the p-values given in the final column. The
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~

Wald test:
Equation: RETURNREG

Test statistic Value df Probability
t-statistic 1.243066 132 0.2160
F-statistic 1.545212 (1, 132) 0.2160
Chi-square 1.545212 1 0.2138

Null hypothesis: C(2) = 1

Null hypothesis summary:

Normalised restriction (= 0) Value Std. err.

-1+ C(2) 0.007291 0.005865

Restrictions are linear in coefficients.

J

intercept p-value is considerably larger than 0.1, indicating that the corresponding
test statistic is not even significant at the 10% level; for the slope coefficient,
however, it is zero to four decimal places so the null hypothesis is decisively
rejected.

Suppose now that we wanted to test the null hypothesis that Hj : B = 1 rather
than Hy : B = 0. We could test this, or any other hypothesis about the coef-
ficients, by hand, using the information we already have. But it is easier to let
EViews do the work by typing View and then Coefficient Diagnostics/Wald
Test — Coefficient Restrictions. ... EViews defines all of the parameters in
a vector C, so that C(1) will be the intercept and C(2) will be the slope. Type
C(2)=1 and click OK. Note that using this software, it is possible to test multiple
hypotheses, which will be discussed in chapter 4, and also non-linear restric-
tions, which cannot be tested using the standard procedure for inference described
above.

The test is performed in three different ways, but results suggest that the null
hypothesis should clearly not be rejected as the p-value for the test is considerably
greater than 0.05 in each case. Note that, since we are testing a single restriction,
the t and F and Chi-squared versions of the test will give the same conclusions —
more on this in the next chapter. EViews also reports the ‘normalised restriction’,
although this can be ignored for the time being since it merely reports the regression
slope parameter (in a difterent form) and its standard error.

Now go back to the regression in levels (i.e. with the raw prices rather than
the returns) and test the null hypothesis that 8 = 1 in this regression. You should
find in this case that the null hypothesis is strongly rejected (table below).
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Wald test:
Equation: LEVELREG

Test statistic Value df Probability
t-statistic —2.329050 133 0.0214
F-statistic 5.424474 (1, 133) 0.0214
Chi-square 5.424474 1 0.0199

Null hypothesis: C(2)=1

Null hypothesis summary:

Normalised restriction (= 0) Value Std. err.

-1+ C(@2) —0.004368 0.001876

Restrictions are linear in coefficients.

Hypothesis testing in EViews — example 2: the CAPM

This exercise will estimate and test some hypotheses about the CAPM beta for
several US stocks. First, Open a new workfile to accommodate monthly data
commencing in January 2002 and ending in April 2013. Note that it is standard
to employ five years of monthly data for estimating betas but let us use all of the
observations (over ten years) for now. Then import the Excel file ‘capm.xlIs’.
The file is organised by observation and contains six columns of numbers plus
the dates in the first column — you should be able to just click through with
the default options. The monthly stock prices of four companies (Ford, General
Electric, Microsoft and Oracle) will appear as objects, along with index values for
the S&P500 (‘sandp’) and three-month US-Treasury bills (‘ustb3m’). Save the
EViews workfile as ‘capm.wk1’.

In order to estimate a CAPM equation for the Ford stock, for example, we
need to first transform the price series into returns and then the excess returns over
the risk free rate. To transform the series, click on the Generate button (Genr) in
the workfile window. In the new window, type

RSANDP=100*LOG(SANDP/SANDP(—1))

This will create a new series named RSANDP that will contain the returns of
the S&P500. The operator (—1) is used to instruct EViews to use the one-period
lagged observation of the series. To estimate percentage returns on the Ford stock,
press the Genr button again and type



124

A brief overview of classical linear regression

RFORD=100*LOG(FORD/FORD(—1))

This will yield a new series named RFORD that will contain the returns of
the Ford stock. EViews allows various kinds of transformations to the series. For
example

X2=X/2 creates a new variable called X2 that is half
of X
XSQ=X"2 creates a new variable XSQ that is X squared
LX=LOG(X) creates a new variable LX that is the
log of X
LAGX=X(—-1) creates a new variable LAGX containing X

lagged by one period
LAGX2=X(-2) creates a new variable LAGX2 containing X
lagged by two periods

Other functions include:

d(X) first difference of X

d(X,n) nth order difference of X

dlog(X) first difference of the logarithm of X
dlog(X,n) nth order difterence of the logarithm of X
abs(X) absolute value of X

If, in the transformation, the new series is given the same name as the old series,
then the old series will be overwritten. Note that the returns for the S&P index
could have been constructed using a simpler command in the ‘Genr’ window such
as

RSANDP=100*DLOG(SANDP)

as we used previously but it is instructive to see how the ‘dlog’ formula is working.
Before we can transform the returns into excess returns, we need to be slightly
careful because the stock returns are monthly, but the Treasury bill yields are
annualised. We could run the whole analysis using monthly data or using annualised
data and it should not matter which we use, but the two series must be measured
consistently. So, to turn the T-bill yields into monthly figures and to write over
the original series, press the Genr button again and type

USTB3M=USTB3M/12
Now, to compute the excess returns, click Genr again and type
ERSANDP=RSANDP-USTB3M

where ‘ERSANDP’ will be used to denote the excess returns, so that the original
raw returns series will remain in the workfile. The Ford returns can similarly be
transformed into a set of excess returns.

Now that the excess returns have been obtained for the two series, before
running the regression, plot the data to examine visually whether the series appear
to move together. To do this, create a new object by clicking on the Object/New
Object menu on the menu bar. Select Graph, provide a name (call the graph
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Screenshot 3.5 Plot of two series

Graph1) and then in the new window provide the names of the series to plot. In
this new window, type

ERSANDP ERFORD

Then press OK and screenshot 3.5 will appear. It is evident that the Ford series is
far more volatile than the index as a whole, especially during the 2008-9 period,
although on average the two series seem to move in the same direction at most
points in time.

This is a time series plot of the two variables, but a scatter plot may be more
informative. To examine a scatter plot, Click Options, choose the Graph Type
tab, then select Scatter from the list and click OK. There appears to be a weak
positive association between ERFTAS and ERFORD. Close the window of the
graph and return to the workfile window.

To estimate the CAPM equation, click on Object/New Object .... In
the new window, select Equation (the first option in the list) and name the
object CAPM. Click on OK. In the window, specify the regression equation.
The regression equation takes the form

(RFora' - Vf)t =+ IB(RM - Vf)t + uy
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Since the data have already been transformed to obtain the excess returns, in order
to specify this regression equation, in the equation window type

ERFORD C ERSANDP

To use all the observations in the sample and to estimate the regression using LS —
Least Squares (NLS and ARMA), click on OK. The results screen appears as in
the following table. Make sure that you save the Workfile again to include the
transformed series and regression results.

4 )

Dependent Variable: ERFORD
Method: Least Squares
Date: 07/02/13 Time: 10:55
Sample (adjusted): 2002M02 2013M04
Included observations: 135 after adjustments

Coefficient Std. error t-Statistic Prob.
C —0.319863 1.086409 —0.294423 0.7689
ERSANDP 2.026213 0.237743 8.522711 0.0000
R-squared 0.353228 Mean dependent var —0.078204
Adjusted R-squared 0.348365 S.D. dependent var 15.63184
S.E. of regression 12.61863 Akaike info criterion 7.922930
Sum squared resid 21177.56 Schwarz criterion 7.965971
Log likelihood —532.7977 Hannan-Quinn criter. 7.940420
F-statistic 72.63660 Durbin-Watson stat 2.588482
Prob(F-statistic) 0.000000

- J

Take a couple of minutes to examine the results of the regression. What is the
slope coefticient estimate and what does it signify? Is this coefficient statistically
significant? The beta coefficient (the slope coefficient) estimate is 2.026. The p-
value of the f-ratio is 0.0000, signifying that the excess return on the market proxy
has highly significant explanatory power for the variability of the excess returns of
Ford stock. What is the interpretation of the intercept estimate? Is it statistically
significant?

In fact, there is a considerably quicker method for using transformed variables
in regression equations, and that is to write the transformation directly into the
equation window. In the CAPM example above, this could be done by typing

(100*DLOG(FORD))-(USTB3M/12) C (100*DLOG(SANDP))-(USTB3M/12)

into the equation window. As well as being quicker, an advantage of this approach
is that the output will show more clearly the regression that has actually been
conducted, so that any errors in making the transformations can be seen more
clearly.

How could the hypothesis that the value of the population coefficient is equal
to 1 be tested? The answer 1s to click on View/Coefficient Diagnostics/Wald
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Test — Coefficient Restrictions. .. and then in the box that appears, Type
C(2)=1. The conclusion here is that the null hypothesis that the CAPM beta of
Ford stock is 1 is convincingly rejected and hence the estimated beta of 2.026 is
significantly different from 1.°

\

The key terms to be able to define and explain from this chapter are
e regression model e disturbance term
e population e sample
e linear model e consistency
e unbiasedness o efficiency
e standard error e statistical inference
e null hypothesis e alternative hypothesis
e t-distribution e confidence interval
e test statistic e rejectionregion
e typelerror o typellerror
e size of atest e power of a test
e pvalue e data mining
e asymptotic
T J

Appendix Mathematical derivations of CLRM results

3A.1 Derivation of the OLS coefficient estimator in the bivariate case

T
L= (y—3) =Y (r—a&—px) (3A.1)

t=1 t=1

[t is necessary to minimise L w.r.t. & and B, to find the values of @ and f that give

the line that is closest to the data. So L is differentiated w.r.t. & and 8, and the first
derivatives are set to zero. The first derivatives are given by

aL .

w5 = 2 Z (e —& — Bx)) =0 (3A.2)

L .

= Y iy —é — Px) =0 (3A3)
t

5 This is hardly surprising given the distance between 1 and 2.026. However, it is sometimes the
case, especially if the sample size is quite small and this leads to large standard errors, that many
different hypotheses will all result in non-rejection — for example, bothHy : B = 0andH, : g =1
not rejected.
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The next step is to rearrange (3A.2) and (3A.3) in order to obtain expressions for
& and B. From (3A.2)

Y —a—px)=0 (3A4)
t

Expanding the parentheses and recalling that the sum runs from 1 to T so that
there will be T terms in &

dn—Ta—-BY x=0 (3A.5)

But )"y, = Ty and ) _ x, = TX, so it is possible to write (3A.5) as

Ty — T — TBx = 0 (3A.6)
or

y—é—pBx=0 (3A.7)
From (3A.3)

D wy—a@—Bx) =0 (3A.8)

:

From (3A.7)

&=jy-—px (3A.9)

Substituting into (3A.8) for & from (3A.9)

ZM(% —j+BE—Px)=0 (3A.10)
t
Doxy—iy mABEY x—BY =0 (BA.11)
t
Y xy = TRy +BTF = p) x7 =0 (3A.12)
t

Rearranging for B,
B(Ta‘cz -y xf) =Txy— Y sy (3A.13)

Dividing both sides of (3A.13) by (Tx* — )" x7) gives

(3A.14)

Q
S
SN
>
Il
=
|
=>
=1
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3A.2 Derivation of the OLS standard error estimators for the intercept and

slope in the bivariate case
Recall that the variance of the random variable & can be written as

var(@) = E(@ — E(&))* (3A.15)
and since the OLS estimator is unbiased

var(@) = E(@ — a)? (3A.16)
By similar arguments, the variance of the slope estimator can be written as

var(8) = E(B — B)° (3A.17)
Working first with (3A.17), replacing B with the formula for it given by the OLS
estimator

2
. > = ® -7
var(B) = E —B (3A.18)

Z (x — @2

Replacing y, with o 4+ Bx; + u,, and replacing y with o + Bx in (3A.18)
. D (= B+ B+ u, — o — BR)
var(B) = E —B (3A.19)

Z (x, — 9_5)2

Cancelling o and multiplying the last B term in (3A.19) by =¥———

2

Z(M‘@Z
> (x — X)?
Y Ga = R)Bx A — R =B Y (5 — &

var(f) = E (3A.20)

D n — &)

Rearranging

Do = DB =R+ Y s —R) =B (v — &

vl ( D (o — &)
var (

(3A.21)

BY i — P+ Y e —X) =B Y (v — X
Z(xt_&)z

Now the B terms in (3A.22) will cancel to give

2
Mf - x
var(f) = (3A.23)

(3A.22)
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Now let x denote the mean-adjusted observation for x;, i.e. (x;, — x). Equation
(3A.23) can be written

Z ux;
El &=

2
The denominator of (3A.24) can be taken through the expectations operator under
the assumption that x is fixed or non-stochastic

A 1 2
var() = ————E (Z utxt*> (3A.25)

()

Writing the terms out in the last summation of (3A.25)

1
—25(”le +oupxs + -+ uTx”})z (3A.26)
()
Now expanding the brackets of the squared term in the expectations operator of
(3A.26)

2

var(B) = (3A.24)

var(B) =

A 1
var(B) = —ZE(D@XTZ +usxy? e ugal + cross-products)
(22)
BA.27)

where ‘cross-products’ in (3A.27) denotes all of the terms u;xu ; x;" (i # j). These
cross-products can be written as u;u ]xl*x;" (i # j) and their expectation will be
zero under the assumption that the error terms are uncorrelated with one another.
Thus, the ‘cross-products’ term in (3A.27) will drop out. Recall also from the chapter
text that E(u?) is the error variance, which is estimated using s>

A 1
var(B) = ———— (22 + 5257 + -+ 570) (3A.28)

(2+7)

which can also be written

2 52 X*Z
s '
—z(xi“2+x;2+..._|_x;2) — Lz
*2 *2
(2+7) (2+7)
Atermin ) x** can be cancelled from the numerator and denominator of (3A.29),
and recalling that x7 = (x; — x), this gives the variance of the slope coefticient as

var(B) = (3A.29)

32

var(f) = ———— (3A.30)

Z (x — 9_6)2
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so that the standard error can be obtained by taking the square root of (3A.30)

(3A31)

Turning now to the derivation of the intercept standard error, this is in fact much
more difficult than that of the slope standard error. In fact, both are very much
easier using matrix algebra as shown below. Therefore, this derivation will be
offered in summary form. It is possible to express & as a function of the true o and
of the disturbances, u,

Y[ s Y]
2

T ()]

Denoting all of the elements in square brackets as ¢g,, (3A.32) can be written

G—a=Y ug (3A.33)

From (3A.15), the intercept variance would be written

var(@) = E (Z u,gt)z = thzE (u7) =s? thz (3A.34)

Writing (3A.34) out in full for ¢? and expanding the brackets

(T 0) —2 5 (S D+ (S (£ 0]
e ()]

This looks rather complex, but fortunately, if we take Y x? outside the square
brackets in the numerator, the remaining numerator cancels with a term in the
denominator to leave the required result

D
TY (% — &7

Self-study questions

a=o-+

(3A32)

var(@) =

(3A.35)

SE(@) = s (3A.36)

1. (a) Why does OLS estimation involve taking vertical deviations of the points
to the line rather than horizontal distances?
(b) Why are the vertical distances squared before being added together?
(c) Why are the squares of the vertical distances taken rather than the
absolute values?
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. Explain, with the use of equations, the difference between the sample

regression function and the population regression function.

. What 1s an estimator? Is the OLS estimator superior to all other estimators?

Why or why not?

. What five assumptions are usually made about the unobservable error terms

in the classical linear regression model (CLRM)? Briefly explain the meaning
of each. Why are these assumptions made?

. Which of the following models can be estimated (following a suitable

rearrangement if necessary) using ordinary least squares (OLS), where X, y,
Z are variables and «, B, y are parameters to be estimated? (Hint: the models
need to be linear in the parameters.)

yr =0+ Bx, + u, (3.39)
yr = exlet (3.40)
=0+ Byx +u, (3.41)
In(y,) = a + Bln(x) + u, (3.42)
yr =0+ Bxiz +u (3.43)

. The capital asset pricing model (CAPM) can be written as

E(R) = Ry + BE(R,) — Ry] (3.44)

using the standard notation.
The first step in using the CAPM is to estimate the stock’s beta using the
market model. The market model can be written as

Ry = a; + Bi Ry + uy (3.45)

where R; is the excess return for security i at time f, R, is the excess return
on a proxy for the market portfolio at time ¢, and u, is an iid random
disturbance term. The cofficient beta in this case is also the CAPM beta for
security i.

Suppose that you had estimated (3.45) and found that the estimated value
of beta for a stock, B was 1.147. The standard error associated with this

coefficient SE(,BA) is estimated to be 0.0548.

A city analyst has told you that this security closely follows the market,
but that it is no more risky, on average, than the market. This can be tested
by the null hypotheses that the value of beta is one. The model is estimated
over sixty-two daily observations. Test this hypothesis against a one-sided
alternative that the security is more risky than the market, at the 5% level.
Write down the null and alternative hypothesis. What do you conclude? Are

the analyst’s claims empirically verified?

. The analyst also tells you that shares in Chris Mining plc have no systematic

risk, in other words that the returns on its shares are completely unrelated to
movements in the market. The value of beta and its standard error are
calculated to be 0.214 and 0.186, respectively. The model is estimated over
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thirty-eight quarterly observations. Write down the null and alternative
hypotheses. Test this null hypothesis against a two-sided alternative.

Form and interpret a 95% and a 99% confidence interval for beta using the
figures given in question 7.

Are hypotheses tested concerning the actual values of the coefficients (i.e. B)
or their estimated values (i.e. /é) and why?

Using EViews, select one of the other stock series from the ‘capm.wk1’ file
and estimate a CAPM beta for that stock. Test the null hypothesis that the
true beta is one and also test the null hypothesis that the true alpha (intercept)
is zero. What are your conclusions?
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Learning outcomes ™\

In this chapter, you will learn how to

e Construct models with more than one explanatory variable

e Test multiple hypotheses using an F-test

e Determine how well a model fits the data

e Form arestricted regression

e Derive the ordinary least squares (OLS) parameter and standard error
estimators using matrix algebra

e Estimate multiple regression models and test multiple hypotheses in EViews

e Construct and interpret quantile regression models

- )

secccccecces @ Generalising the simple model to multiple linear regression

Previously, a model of the following form has been used
yp=o4+Bx;4+u, t=12,...,T (4.1)

Equation (4.1) is a simple bivariate regression model. That is, changes in the
dependent variable are explained by reference to changes in one single explanatory
variable x. But what if the financial theory or idea that is sought to be tested
suggests that the dependent variable is influenced by more than one independent
variable? For example, simple estimation and tests of the capital asset pricing model
(CAPM) can be conducted using an equation of the form of (4.1), but arbitrage
pricing theory does not pre-suppose that there is only a single factor affecting stock
returns. So, to give one illustration, stock returns might be purported to depend
on their sensitivity to unexpected changes in:

(1) inflation
(2) the differences in returns on short- and long-dated bonds
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(3) industrial production
(4) default risks.

Having just one independent variable would be no good in this case. It would
of course be possible to use each of the four proposed explanatory factors in
separate regressions. But it is of greater interest and it is more valid to have more
than one explanatory variable in the regression equation at the same time, and
therefore to examine the effect of all of the explanatory variables together on the
explained variable.

It is very easy to generalise the simple model to one with k regressors (inde-
pendent variables). Equation (4.1) becomes

yi = Bi+ Boxar + Baxs + oo+ Brxe 1y, t=1,2,..., T (4.2)
So the variables x;, x3,,..., xy, are a set of k — 1 explanatory variables which
are thought to influence y, and the coefficient estimates B, B, ..., B are the

parameters which quantify the eftect of each of these explanatory variables on y.
The coefficient interpretations are slightly altered in the multiple regression con-
text. Each coefficient is now known as a partial regression coefticient, interpreted
as representing the partial effect of the given explanatory variable on the explained
variable, after holding constant, or eliminating the eftect of, all other explanatory
variables. For example, B> measures the effect of x> on y after eliminating the
effects of x3, x4,..., xp. Stating this in other words, each coefficient measures
the average change in the dependent variable per unit change in a given inde-
pendent variable, holding all other independent variables constant at their average
values.

The constant term

In (4.2) above, astute readers will have noticed that the explanatory variables
are numbered X, x3,... i.e. the list starts with x, and not x;. So, where is
x1? In fact, it is the constant term, usually represented by a column of ones of

length T:

= (4.3)

1

Thus there is a variable implicitly hiding next to B;, which is a column vector
of ones, the length of which is the number of observations in the sample. The
xp in the regression equation is not usually written, in the same way that one
unit of p and two units of g would be written as ‘p + 2¢° and not ‘1p + 2¢g°.
B is the coefficient attached to the constant term (which was called o in the
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previous chapter). This coefficient can still be referred to as the intercept, which can
be interpreted as the average value which y would take if all of the explanatory
variables took a value of zero.

A tighter definition of k, the number of explanatory variables, is probably
now necessary. Throughout this book, k is defined as the number of ‘explanatory
variables’ or ‘regressors’ including the constant term. This is equivalent to the
number of parameters that are estimated in the regression equation. Strictly speak-
ing, it is not sensible to call the constant an explanatory variable, since it does not
explain anything and it always takes the same values. However, this definition of k
will be employed for notational convenience.

Equation (4.2) can be expressed even more compactly by writing it in matrix
form

y=XB+u (6.4)
where: y is of dimension T x 1
Xis of dimension T X k
B is of dimension k x 1

u 1s of dimension T x 1

The difference between (4.2) and (4.4) is that all of the time observations have
been stacked up in a vector, and also that all of the different explanatory variables
have been squashed together so that there is a column for each in the X matrix.
Such a notation may seem unnecessarily complex, but in fact, the matrix notation
is usually more compact and convenient. So, for example, if k is 2, i.e. there are
two regressors, one of which is the constant term (equivalent to a simple bivariate
regression y; = o 4+ Bx, + u,), it is possible to write

4! T xo1 uq
Y2 1 x» U
ol T e I A P @5)
: S B> :
YT 1 xor ur
Tx1 Tx2 2x1 Tx1

so that the x;; element of the matrix X represents the jth time observation on the
ith variable. Notice that the matrices written in this way are conformable — in other
words, there is a valid matrix multiplication and addition on the right hand side
(RHS).

The above presentation is the standard way to express matrices in the time
series econometrics literature, although the ordering of the indices is different to
that used in the mathematics of matrix algebra (as presented in chapter 2 of this
book). In the latter case, x;; would represent the element in row i and column
j, although in the notation used in the body of this book it is the other way
around.



4.3 How are the parameters calculated? 137

How are the parameters (the elements of the 8 vector) calculated in the
generalised case?

Previously, the residual sum of squares, > 47 was minimised with respect to o
and B. In the multiple regression context, in order to obtain estimates of the
parameters, B1, B2, ..., B, the RSS would be minimised with respect to all the
elements of 8. Now, the residuals can be stacked in a vector:

(4.6)

=>
Il

L=ih =iy iq] | | | =@ +ad+ +id=) a2 )

Using a similar procedure to that employed in the bivariate regression case, i.e.

substituting into (4.7), and denoting the vector of estimated parameters as B, it
can be shown (see the appendix to this chapter) that the coefticient estimates will
be given by the elements of the expression

S =Xx0TXYy (4.8)
By

If one were to check the dimensions of the RHS of (4.8), it would be observed
to be k x 1. This is as required since there are k parameters to be estimated by the

formula for 8.
But how are the standard errors of the coefficient estimates calculated? Previ-

ously, to estimate the variance of the errors, 02, an estimator denoted by s2 was
used
Z A2
2 i
s (4.9

T2

The denominator of (4.9) is given by T — 2, which is the number of degrees
of freedom for the bivariate regression model (i.e. the number of observations
minus two). This essentially applies since two observations are effectively ‘lost’ in
estimating the two model parameters (i.e. in deriving estimates for o and B). In
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the case where there is more than one explanatory variable plus a constant, and
using the matrix notation, (4.9) would be modified to

AP A
) uu

T Tk

(4.10)

where k = number of regressors including a constant. In this case, k observations
are ‘lost” as k parameters are estimated, leaving T' — k degrees of freedom. It can also
be shown (see the appendix to this chapter) that the parameter variance—covariance
matrix is given by

var(B) = s3(X' X) ! %.11)

The leading diagonal terms give the coefficient variances while the off-diagonal
terms give the covariances between the parameter estimates, so that the variance
of /§ 1 1s the first diagonal element, the variance of ,32 is the second element on
the leading diagonal, and the variance of Bk is the kth diagonal element. The
coefticient standard errors are thus simply given by taking the square roots of each
of the terms on the leading diagonal.

Example4.1 00 0000000000000 000000000000000000000000000000000000000000000000000000O0CO0

The following model with three regressors (including the constant) is estimated over
fifteen observations

y = B1+ Boxs+ Bsxs +u (4.12)

and the following data have been calculated from the original xs

2.0 35 —1.0 -3.0
(XX)'=| 35 1.0 65|, (Xy=| 22|, i4i=1096
-1.0 65 43 0.6

Calculate the coefficient estimates and their standard errors.

) g; 20 35 —1.0
B = =(XX)'Xy=| 35 1.0 65
: 1.0 65 43
Br
~3.0 1.10
x| 22| =1 —440 4.13)
0.6 19.88

To calculate the standard errors, an estimate of o> is required

, RSS 1096
2= = =0.91 (4.14)
T—k 15-3
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The variance—covariance matrix of 8 is given by

1.82 3.19 —0.91
SPXXNTT=091(XX)" =] 319 091 5.92 (4.15)
—0.91 5.92  3.91

The coefficient variances are on the diagonals, and the standard errors are found
by taking the square roots of each of the coefficient variances

var(B;) = 1.82  SE(B1) = 1.35 (4.16)
var(B2) = 0.91 & SE(B>) = 0.95 (4.17)
var(B3) = 3.91  SE(B3) = 1.98 (4.18)

The estimated equation would be written

y = 1.10 — 4.40x, + 19.88x;

(4.19)
(1.35) (0.95) (1.98)

Fortunately, in practice all econometrics software packages will estimate the cofficient
values and their standard errors. Clearly, though, it is still useful to understand where
these estimates came from.

Testing multiple hypotheses: the F-test

The t-test was used to test single hypotheses, i.e. hypotheses involving only one
coefticient. But what if it is of interest to test more than one coefticient simultane-
ously? For example, what if a researcher wanted to determine whether a restriction
that the coefticient values for 8, and B3 are both unity could be imposed, so that
an increase in either one of the two variables x, or x3 would cause y to rise by
one unit? The f-testing framework is not sufficiently general to cope with this
sort of hypothesis test. Instead, a more general framework is employed, centring
on an F-test. Under the F-test framework, two regressions are required, known
as the unrestricted and the restricted regressions. The unrestricted regression is
the one in which the coefticients are freely determined by the data, as has been
constructed previously. The restricted regression is the one in which the coefti-
cients are restricted, i.e. the restrictions are imposed on some fBs. Thus the F-test
approach to hypothesis testing is also termed restricted least squares, for obvious
reasons.

The residual sums of squares from each regression are determined, and the two
residual sums of squares are ‘compared’ in the test statistic. The F-test statistic for
testing multiple hypotheses about the coefficient estimates is given by

RRSS—URSS T —k%

test statistic = X (4.20)
URSS m
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where the following notation applies:

URSS = residual sum of squares from unrestricted regression
RRSS = residual sum of squares from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

The most important part of the test statistic to understand is the numerator
expression RRSS — URSS. To see why the test centres around a comparison of
the residual sums of squares from the restricted and unrestricted regressions, recall
that OLS estimation involved choosing the model that minimised the residual
sum of squares, with no constraints imposed. Now if, after imposing constraints
on the model, a residual sum of squares results that is not much higher than the
unconstrained model’s residual sum of squares, it would be concluded that the
restrictions were supported by the data. On the other hand, if the residual sum
of squares increased considerably after the restrictions were imposed, it would be
concluded that the restrictions were not supported by the data and therefore that
the hypothesis should be rejected.

It can be further stated that RRSS > URSS. Only under a particular set of
very extreme circumstances will the residual sums of squares for the restricted and
unrestricted models be exactly equal. This would be the case when the restriction
was already present in the data, so that it is not really a restriction at all (it would
be said that the restriction is ‘not binding’, i.e. it does not make any difference to
the parameter estimates). So, for example, if the null hypothesis is Hy: 82 = 1 and
B3 =1, then RRSS = URSS only in the case where the coefticient estimates for
the unrestricted regression had been ,32 =1and ,é 3 = 1. Of course, such an event
is extremely unlikely to occur in practice.

Example42 ©0000000000000000000000000000000000000000000000000000000000000000000000

Dropping the time subscripts for simplicity, suppose that the general regression is
y = B1+ Baxa+ B3xs + Baxa +u 4.21)

and that the restriction 83 + B4 = 1 is under test (there exists some hypothesis from
theory which suggests that this would be an interesting hypothesis to study). The
unrestricted regression is (4.21) above, but what is the restricted regression? It could be
expressed as

y = B+ Boxz + Bsxs + Baxy +u S.t. (subjectto) B3 + By =1 (4.22)

The restriction (85 + B4 = 1) is substituted into the regression so that it is automatically
imposed on the data. The way that this would be achieved would be to make either
B3 or B4 the subject of (4.22), e.g.

Bs+Bi=1=By=1—p; (4.23)
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and then substitute into (4.21) for S,
y=pB+ B2+ Bsxs+ (1 —Ba)xa+u (4.24)

Equation (4.24) is already a restricted form of the regression, but it is not yet in the form
that is required to estimate it using a computer package. In order to be able to
estimate a model using OLS, software packages usually require each RHS variable to
be multiplied by one coefficient only. Therefore, a little more algebraic manipulation is
required. First, expanding the brackets around (1 — 83)

y = Bi+ Boxa+ Baxs + x4 — Baxy +u (4.25)
Then, gathering all of the terms in each f; together and rearranging
(y — x4) = B1 + Boxo + Bs(os — x4) +u (4.26)

Note that any variables without coefficients attached (e.g. x; in (4.25)) are taken over to
the LHS and are then combined with y. Equation (4.26) is the restricted regression. It is
actually estimated by creating two new variables - call them, say, P and Q, where

P =y —xyand Q = x3 — x4 —so the regression that is actually estimated is

P=p+px+p3Q+u (4.27)

What would have happened if instead 8; had been made the subject of (4.23) and S;
had therefore been removed from the equation? Although the equation that would
have been estimated would have been different from (4.27), the value of the residual
sum of squares for these two models (both of which have imposed upon them the
same restriction) would be the same.

The test statistic follows the F-distribution under the null hypothesis. The F-
distribution has two degrees of freedom parameters (recall that the f-distribution
had only one degree of freedom parameter, equal to T — k). The value of the
degrees of freedom parameters for the F-test are m, the number of restrictions
imposed on the model, and (T — k), the number of observations less the number
of regressors for the unrestricted regression, respectively. Note that the order of
the degree of freedom parameters is important. The appropriate critical value will
be in column m, row (T — k) of the F-distribution tables.

4.4.1 The relationship between the - and the F-distributions

Any hypothesis that could be tested with a ¢-test could also have been tested using
an F-test, but not the other way around. So, single hypotheses involving one
coefficient can be tested using a t- or an F-test, but multiple hypotheses can be
tested only using an F-test. For example, consider the hypothesis

Ho . ,32 =0.5
H1 2,32 #05
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This hypothesis could have been tested using the usual f-test

A

—05
fest star = 2702 (4.28)

SE(B2)
or it could be tested in the framework above for the F-test. Note that the two
tests always give the same conclusion since the f-distribution is just a special case
of the F-distribution. For example, consider any random variable Z that follows
a t-distribution with T'— k degrees of freedom, and square it. The square of the
t is equivalent to a particular form of the F-distribution

72 ~ > (T — k) then also Z*> ~ F(1, T — k)

Thus the square of a f-distributed random variable with T — k degrees of free-
dom also follows an F-distribution with 1 and T — k degrees of freedom. This
relationship between the ¢ and the F-distributions will always hold — take some
examples from the statistical tables and try it!

The F-distribution has only positive values and is not symmetrical. Therefore,
the null is rejected only if the test statistic exceeds the critical F-value, although
the test is a two-sided one in the sense that rejection will occur if ,32 is significantly
bigger or significantly smaller than 0.5.

Determining the number of restrictions, m
How is the appropriate value of m decided in each case? Informally, the number of

restrictions can be seen as ‘the number of equality signs under the null hypothesis’.
To give some examples

Hy : hypothesis No. of restrictions, m
P+ B2 =2 1
B>=1and B3 = —1 2
Bo=0,63=0and B, =0 3

At first glance, you may have thought that in the first of these cases, the number
of restrictions was two. In fact, there is only one restriction that involves two
coefticients. The number of restrictions in the second two examples is obvious, as
they involve two and three separate component restrictions, respectively.

The last of these three examples is particularly important. If the model is

y = B1+ Baxa + Brxs + Paxy +u (4.29)
then the null hypothesis of
Ho:8,=0 and B3;=0 and B4 =0

is tested by “THE’ regression F-statistic. It tests the null hypothesis that all of the
coefhicients except the intercept coefticient are zero. This test is sometimes called a
test for ‘junk regressions’, since if this null hypothesis cannot be rejected, it would
imply that none of the independent variables in the model was able to explain
variations in y.
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4.4 Testing multiple hypotheses: the F-test

Note the form of the alternative hypothesis for all tests when more than one
restriction is involved

Hi:B#0 or B3#0 or By#0

In other words, ‘and’ occurs under the null hypothesis and ‘or’ under the alterna-
tive, so that it takes only one part of a joint null hypothesis to be wrong for the
null hypothesis as a whole to be rejected.

Hypotheses that cannot be tested with either an F- or a ¢-test

It is not possible to test hypotheses that are not linear or that are multiplicative
using this framework — for example, Hy : .83 = 2, or Hy : ,322 = 1 cannot be
tested.

Suppose that a researcher wants to test whether the returns on a company stock (y)
show unit sensitivity to two factors (factor x, and factor x3) among three considered.
The regression is carried out on 144 monthly observations. The regression is

y = Bi+ Boxo + Bsxs + Baxy + u (4.30)

(1) What are the restricted and unrestricted regressions?
(2) If the two RSS are 436.1 and 397.2, respectively, perform the test.

Unit sensitivity to factors x, and x3 implies the restriction that the coefficients on these
two variables should be unity, so Hy: 82 = 1 and B3 = 1. The unrestricted regression
will be the one given by (4.30) above. To derive the restricted regression, firstimpose
the restriction:

y=p1+Boxo+ Baxs+Paxs+u st Po=1 and B3 =1 (4.31)
Replacing B, and B3 by their values under the null hypothesis

y=PB1+ x4+ x3+ Baxy +u (6.32)
Rearranging

y—xo—x3 =P+ Baxy +u (4.33)
Defining z = y — x» — x3, the restricted regression is one of z on a constant and x4

2= P14 Bixs+u (4.34)

The formula for the F-test statistic is given in (4.20) above. For this application, the
following inputs to the formula are available: T'= 144, k = 4, m = 2, RRSS = 436.1,
URSS = 397.2. Plugging these into the formula gives an F-test statistic value of 6.86.
This statistic should be compared with an F(m, T' — k), which in this case is an

F (2, 140). The critical values are 4.07 at the 5% level and 4.79 at the 1% level. The test
statistic clearly exceeds the critical values at both the 5% and 1% levels, and hence the
null hypothesis is rejected. It would thus be concluded that the restriction is not
supported by the data.
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The following sections will now re-examine the CAPM model as an illustration of
how to conduct multiple hypothesis tests using EViews.

seccccccsces Q Sample EViews output for multiple hypothesis tests

Reload the ‘capm.wk1’ workfile constructed in the previous chapter. As a
reminder, the results are included again below.

( )

Dependent Variable: ERFORD
Method: Least Squares
Date: 07/02/13 Time: 10:55
Sample (adjusted): 2002M02 2013M04
Included observations: 135 after adjustments

Coefficient Std. error t-Statistic Prob.
C —0.319863 1.086409 —0.294423 0.7689
ERSANDP 2.026213 0.237743 8.522711 0.0000
R-squared 0.353228 Mean dependent var —0.078204
Adjusted R-squared 0.348365 S.D. dependent var 15.63184
S.E. of regression 12.61863 Akaike info criterion 7.922930
Sum squared resid 21177.56 Schwarz criterion 7.965971
Log likelihood —532.7977 Hannan-Quinn criter. 7.940420
F-statistic 72.63660 Durbin-Watson stat 2.588482
Prob(F-statistic) 0.000000

N J

If we examine the regression F-test, this also shows that the regression slope
coefticient is very significantly different from zero, which in this case is exactly
the same result as the r-test for the beta coefficient (since there is only one slope
coefticient). Thus, in this instance, the F-test statistic is equal to the square of the
slope t-ratio.

Now suppose that we wish to conduct a joint test that both the intercept
and slope parameters are 1. We would perform this test exactly as for a test
involving only one coefticient. Select View/Coeflicient Diagnostics/Wald
Test — Coefficient Restrictions... and then in the box that appears, type
C(1)=1, C(2)=1. There are two versions of the test given: an F-version and a
x>-version. The F-version is adjusted for small sample bias and should be used
when the regression is estimated using a small sample (see chapter 5). Both statistics
asymptotically yield the same result, and in this case the p-values are very similar.
The conclusion is that the joint null hypothesis, Hy : 81 = 1 and B, = 1, is strongly
rejected.
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Multiple regression in EViews using an APT-style model

In the spirit of arbitrage pricing theory (APT), the following example will examine
regressions that seek to determine whether the monthly returns on Microsoft stock
can be explained by reference to unexpected changes in a set of macroeconomic
and financial variables. Open a new EViews workfile to store the data. There
are 254 monthly observations in the file ‘macro.xls’, starting in March 1986 and
ending in April 2013. There are thirteen series in total plus a column of dates.
The series in the Excel file are the Microsoft stock price, the S&P500 index value,
the consumer price index, an industrial production index, Treasury bill yields for
the following maturities: three months, six months, one year, three years, five years
and ten years, a measure of ‘narrow’ money supply, a consumer credit series, and
a ‘credit spread’ series. The latter is defined as the difference in annualised average
yields between a portfolio of bonds rated AAA and a portfolio of bonds rated
BAA.

Import the data from the Excel file and save the resulting workfile as
‘macro.wfl’.

The first stage is to generate a set of changes or differences for each of the variables,
since the APT posits that the stock returns can be explained by reference to the
unexpected changes in the macroeconomic variables rather than their levels. The
unexpected value of a variable can be defined as the difference between the actual
(realised) value of the variable and its expected value. The question then arises
about how we believe that investors might have formed their expectations, and
while there are many ways to construct measures of expectations, the easiest is
to assume that investors have naive expectations that the next period value of the
variable is equal to the current value. This being the case, the entire change in the
variable from one period to the next is the unexpected change (because investors
are assumed to expect no change).'

Transforming the variables can be done as described above. Press Genr and
then enter the following in the ‘Enter equation’ box:

dspread = baa_aaa_spread — baa_aaa_spread(-1)
Repeat these steps to conduct all of the following transformations:

dcredit = consumer_credit — consumer_credit(-1)

dprod = industrial_production — industrial_production(-1)
rmsoft = 100*dlog(microsoft)

rsandp = 100*dlog(sandp)

dmoney = mlmoney_supply — mlmoney_supply(-1)

' Tt is an interesting question as to whether the differences should be taken on the levels of the
variables or their logarithms. If the former, we have absolute changes in the variables, whereas
the latter would lead to proportionate changes. The choice between the two is essentially an
empirical one, and this example assumes that the former is chosen, apart from for the stock price
series themselves and the consumer price series.
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inflation = 100*dlog(cpi)
term = ustb10y — ustb3m

and then click OK. Next, we need to apply further transformations to some of
the transformed series, so repeat the above steps to generate

dinflation = inflation — inflation(-1)
mustb3m = ustb3m/12

rterm = term — term(-1)

ermsoft = rmsoft — mustb3m
ersandp = rsandp — mustb3m

The final two of these calculate excess returns for the stock and for the index.

We can now run the regression. So click Object/New Object/Equation
and name the object ‘msofireg’. Type the following variables in the Equation
specification window

ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION
DMONEY DSPREAD RTERM

and use Least Squares over the whole sample period. The table of results will
appear as follows.

4 )
Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/02/13 Time: 12:23
Sample (adjusted): 1986M05 2013M04
Included observations: 324 after adjustments
Coefficient Std. error t-Statistic Prob.
C —0.151409 0.904787 —0167342 0.8672
ERSANDP 1.360448 0.156615 8.686592 0.0000
DPROD —1.425779 1.324467 —1.076493 0.2825
DCREDIT —4.05E-05 7.64E-05 —0.530496 0.5961
DINFLATION 2.959910 2.166209 1.366401 0.1728
DMONEY —0.011087 0.035175 —0.315184 0.7528
DSPREAD 5.366629 6.913915 0.776207 0.4382
RTERM 4.315813 2.515179 1.715907 0.0872
R-squared 0.206805 Mean dependent var —0.311466
Adjusted R-squared 0.189234 S.D. dependent var 14.05871
S.E. of regression 12.65882 Akaike info criterion 7.938967
Sum squared resid 50637.65 Schwarz criterion 8.032319
Log likelihood —1278.113 Hannan-Quinn criter. 7.976228
F-statistic 11.76981 Durbin-Watson stat 2.165384
Prob(F-statistic) 0.000000

- J
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Take a few minutes to examine the main regression results. Which of the
variables has a statistically significant impact on the Microsoft excess returns? Using
your knowledge of the effects of the financial and macro-economic environment
on stock returns, examine whether the coefficients have their expected signs and
whether the sizes of the parameters are plausible.

The regression F-statistic takes a value 11.77. Remember that this tests the
null hypothesis that all of the slope parameters are jointly zero. The p-value of
zero attached to the test statistic shows that this null hypothesis should be rejected.
However, there are a number of parameter estimates that are not significantly
different from zero — specifically those on the DPROD, DCREDIT, DINFLA-
TION, DMONEY and DSPREAD variables. Let us test the null hypothesis that
the parameters on these three variables are jointly zero using an F-test. To test this,
Click on View/Coefficient Diagnostics/Wald Test — Coefficient Restric-
tions. . .and in the box that appears type C(3)=0, C(4)=0, C(5)=0, C(6)=0,
C(7)=0 and click OK. The resulting F-test statistic follows an F(5, 316) distri-
bution as there are five restrictions, 324 usable observations and eight parameters to
estimate in the unrestricted regression. The F-statistic value 1s 0.853 with p-value
0.51, suggesting that the null hypothesis cannot be rejected. The parameter on
RTERM is significant at the 10% level and so the parameter is not included in this
F-test and the variable is retained.

Stepwise regression

There is a procedure known as a stepwise regression that is available in EViews.
Stepwise regression is an automatic variable selection procedure which chooses
the jointly most ‘important’ (variously defined) explanatory variables from a set of
candidate variables. There are a number of difterent stepwise regression procedures,
but the simplest is the uni-directional forwards method. This starts with no variables
in the regression (or only those variables that are always required by the researcher
to be in the regression) and then it selects first the variable with the lowest p-
value (largest f-ratio) if it were included, then the variable with the second lowest
p-value conditional upon the first variable already being included, and so on.
The procedure continues until the next lowest p-value relative to those already
included variables is larger than some specified threshold value, then the selection
stops, with no more variables being incorporated into the model.

To conduct a stepwise regression which will automatically select from among
these variables the most important ones for explaining the variations in Microsoft
stock returns, click Object/New Object and then keep the default option
Equation. Name the equation Msoftstepwise and then in the ‘Estimation set-
tings/Method’ box, change LS — Least Squares (NLS and ARMA) to STEPLS —
Stepwise Least Squares and then in the top box that appears, ‘Dependent variable
followed by list of always included regressors’, enter

ERMSOFT C

This shows that the dependent variable will be the excess returns on Microsoft stock
and that an intercept will always be included in the regression. If the researcher had



| [ specficaton | Options |

~Equation spedification

Dependent variable followed by list of always induded regressors

ermsoft ¢

List of search regressors

ersandp dprod deredit dinflation dmoney dspread rterm

~Estimation settings

Sample: I 1986m03 2013m04

o

J [ cancel |

Screenshot 4.1

Stepwise procedure equation estimation window

p-value forwards: 0.2
p-value backwards: | 0.2

~Selection Method
L : v] (@ Forwards
Stepwise ) R -
~Stopping Criteria ~Weights
@ pvalue (@ tstat Type:

YWeight
Series!

Scaling: | EvViews default -

~Maximum steps
Use number of regressors i o
Mumber of regressors .
Nreai 1 Backwards: | 1000
Total: 2000

Screenshot 4.2  Stepwise procedure estimation options window




149

4.6 Multiple regression in EViews

a strong prior view that a particular explanatory variable must always be included
in the regression, it should be listed in this first box. In the second box, ‘List
of search regressors’, type the list of all of the explanatory variables used above:
ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD
RTERM. The window will appear as in screenshot 4.1.

Clicking on the ‘Options’ tab gives a number of ways to conduct the regres-
sion as shown in screenshot 4.2. For example, ‘Forwards’ will start with the list
of required regressors (the intercept only in this case) and will sequentially add
to them, while ‘Backwards’ will start by including all of the variables and will
sequentially delete variables from the regression. The default criterion is to include
variables if the p-value is less than 0.5, but this seems high and could potentially
result in the inclusion of some very insignificant variables, so modify this to 0.2
and then click OK to see the results.

4 )
Dependent Variable: ERMSOFT
Method: Stepwise Regression
Date: 08/27/07 Time: 10:21
Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments
Number of always included regressors: 1
Number of search regressors: 7
Selection method: Stepwise forwards
Stopping criterion: p-value forwards/backwards = 0.2/0.2

Coefficient Std. error t-Statistic Prob.*
C —0.687341 0.702716 —0.978120 0.3288
ERSANDP 1.338211 0.153056 8.743299 0.0000
RTERM 4.369891 2.497110 1.749979 0.0811
DINFLATION 2.876958 2.069933 1.389880 0.1655
R-squared 0.200924 Mean dependent var —0.311466
Adjusted R-squared 0.193432 S.D. dependent var 14.05871
S.E. of regression 12.62600 Akaike info criterion 7.921663
Sum squared resid 51013.10 Schwarz criterion 7.968338
Log likelihood —1379.309 Hannan-Quinn criter. 7.940293
F-statistic 26.82081 Durbin-Watson stat 2.144133
Prob(F-statistic) 0.000000

Selection Summary

Added ERSANDP
Added RTERM

Added DINFLATION
- J

*Note: p-values and subsequent tests do not account for stepwise selection.
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As can be seen, the excess market return, the term structure, and unexpected
inflation variables have been included, while the money supply, default spread and
credit variables have been omitted.

Stepwise procedures have been strongly criticised by statistical purists. At the
most basic level, they are sometimes argued to be no better than automated
procedures for data mining, in particular if the list of potential candidate variables
is long and results from a ‘fishing trip’ rather than a strong prior financial theory.
More subtly, the iterative nature of the variable selection process implies that the
size of the tests on parameters attached to variables in the final model will not
be the nominal values (e.g. 5%) that would have applied had this model been the
only one estimated. Thus the p-values for tests involving parameters in the final
regression should really be modified to take into account that the model results
from a sequential procedure, although they are usually not in statistical packages
such as EViews.

A note on sample sizes and asymptotic theory

A question that is often asked by those new to econometrics is ‘what is an appro-
priate sample size for model estimation?” While there is no definitive answer to
this question, it should be noted that most testing procedures in econometrics rely
on asymptotic theory. That 1s, the results in theory hold only if there are an infinite
number of observations. In practice, an infinite number of observations will never
be available and fortunately, an infinite number of observations are not usually
required to invoke the asymptotic theory. An approximation to the asymptotic
behaviour of the test statistics can be obtained using finite samples, provided that
they are large enough. In general, as many observations as possible should be used
(although there are important caveats to this statement relating to ‘structural stabil-
ity’, discussed in chapter 5). The reason is that all the researcher has at his disposal
is a sample of data from which to estimate parameter values and to infer their likely
population counterparts. A sample may fail to deliver something close to the exact
population values owing to sampling error. Even if the sample is randomly drawn
from the population, some samples will be more representative of the behaviour
of the population than others, purely owing to ‘luck of the draw’. Sampling error
is minimised by increasing the size of the sample, since the larger the sample, the
less likely it is that all of the data drawn will be unrepresentative of the population.

Data mining and the true size of the test

Recall that the probability of rejecting a correct null hypothesis is equal to the size
of the test, denoted «. The possibility of rejecting a correct null hypothesis arises
from the fact that test statistics are assumed to follow a random distribution and
hence they will take on extreme values that fall in the rejection region some of the
time by chance alone. A consequence of this is that it will almost always be possible
to find significant relationships between variables if enough variables are examined.
For example, suppose that a dependent variable y; and twenty explanatory variables
X2, .-, X21; (excluding a constant term) are generated separately as independent
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normally distributed random variables. Then y is regressed separately on each
of the twenty explanatory variables plus a constant, and the significance of each
explanatory variable in the regressions is examined. If this experiment is repeated
many times, on average one of the twenty regressions will have a slope coefficient
that is significant at the 5% level for each experiment. The implication is that for
any regression, if enough explanatory variables are employed in a regression, often
one or more will be significant by chance alone. More concretely, it could be
stated that if an a% size of test is used, on average one in every (100/«a) regressions
will have a significant slope coefficient by chance alone.

Trying many variables in a regression without basing the selection of the
candidate variables on a financial or economic theory is known as ‘data mining’
or ‘data snooping’. The result in such cases is that the true significance level
will be considerably greater than the nominal significance level assumed. For
example, suppose that twenty separate regressions are conducted, of which three
contain a significant regressor, and a 5% nominal significance level is assumed,
then the true significance level would be much higher (e.g. 25%). Therefore, if
the researcher then shows only the results for the regression containing the final
three equations and states that they are significant at the 5% level, inappropriate
conclusions concerning the significance of the variables would result.

As well as ensuring that the selection of candidate regressors for inclusion in a
model is made on the basis of financial or economic theory, another way to avoid
data mining is by examining the forecast performance of the model in an ‘out-of-
sample’ data set (see chapter 6). The idea is essentially that a proportion of the data
is not used in model estimation, but is retained for model testing. A relationship
observed in the estimation period that is purely the result of data mining, and is
therefore spurious, is very unlikely to be repeated for the out-of-sample period.
Therefore, models that are the product of data mining are likely to fit very poorly
and to give very inaccurate forecasts for the out-of-sample period.

Goodness of fit statistics
R2

It is desirable to have some measure of how well the regression model actually fits
the data. In other words, it is desirable to have an answer to the question, ‘how well
does the model containing the explanatory variables that was proposed actually
explain variations in the dependent variable?” Quantities known as goodness of fit
statistics are available to test how well the sample regression function (SRF) fits
the data — that is, how ‘close’ the fitted regression line is to all of the data points
taken together. Note that it is not possible to say how well the sample regression
function fits the population regression function — i.e. how the estimated model
compares with the true relationship between the variables, since the latter is never
known.

But what measures might make plausible candidates to be goodness of fit
statistics? A first response to this might be to look at the residual sum of squares
(RSS). Recall that OLS selected the coefficient estimates that minimised this
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quantity, so the lower was the minimised value of the RSS, the better the model
fitted the data. Consideration of the RSS is certainly one possibility, but RSS is
unbounded from above (strictly, RSS is bounded from above by the total sum of
squares — see below) — i.e. it can take any (non-negative) value. So, for example,
if the value of the RSS under OLS estimation was 136.4, what does this actually
mean? It would therefore be very difficult, by looking at this number alone, to
tell whether the regression line fitted the data closely or not. The value of RSS
depends to a great extent on the scale of the dependent variable. Thus, one
way to pointlessly reduce the RSS would be to divide all of the observations
on y by 10!

In fact, a scaled version of the residual sum of squares is usually employed. The
most common goodness of fit statistic is known as R?. One way to define R? is
to say that it is the square of the correlation coefficient between y and y — that
is, the square of the correlation between the values of the dependent variable and
the corresponding fitted values from the model. A correlation coefficient must lie
between —1 and +1 by definition. Since R? defined in this way is the square of a
correlation coefficient, it must lie between 0 and 1. If this correlation is high, the
model fits the data well, while if the correlation is low (close to zero), the model
is not providing a good fit to the data.

Another definition of R? requires a consideration of what the model is attempt-
ing to explain. What the model is trying to do in effect is to explain variability of
y about its mean value, y. This quantity, y, which is more specifically known as
the unconditional mean of y, acts like a benchmark since, if the researcher had no
model for y, he could do no worse than to regress y on a constant only. In fact,
the coefficient estimate for this regression would be the mean of y. So, from the
regression

ye = B+ uy (4.35)

the coefficient estimate B, will be the mean of y, i.e. y. The total variation across
all observations of the dependent variable about its mean value is known as the
total sum of squares, TSS, which is given by:

TSS = (y, = })’ (4.36)
t

The TSS can be split into two parts: the part that has been explained by the model
(known as the explained sum of squares, ESS) and the part that the model was not
able to explain (the RSS). That is

TSS = ESS 4+ RSS (4.37)

==Y G+ Y i (%.38)

t t
Recall also that the residual sum of squares can also be expressed as

Z (v = 70)°

t



4.8 Goodness of fit statistics 153

Vi

Xt
Figure 41 R? = 0 demonstrated by a flat estimated line, i.e. a zero slope coefficient
since a residual for observation ¢ is defined as the difference between the actual

and fitted values for that observation. The goodness of fit statistic is given by the
ratio of the explained sum of squares to the total sum of squares:

, ESS
_ (4.39)
TSS
but since TSS = ESS + RSS, it is also possible to write
, ESS TSS—RSS RSS
R* = = =1-— (4.40)
TSS TSS TSS

R? must always lie between zero and one (provided that there is a constant term
in the regression). This is intuitive from the correlation interpretation of R? given
above, but for another explanation, consider two extreme cases

RSS=TSS ie. ESS=0 so R>=ESS/TSS=0
ESS=TSS ie. RSS=0 so R>=ESS/TSS=1

In the first case, the model has not succeeded in explaining any of the variability of
y about its mean value, and hence the residual and total sums of squares are equal.
This would happen only where the estimated values of all of the coefficients were
exactly zero. In the second case, the model has explained all of the variability of y
about its mean value, which implies that the residual sum of squares will be zero.
This would happen only in the case where all of the observation points lie exactly
on the fitted line. Neither of these two extremes is likely in practice, of course,
but they do show that R* is bounded to lie between zero and one, with a higher
R? implying, everything else being equal, that the model fits the data better.

To sum up, a simple way (but crude, as explained next) to tell whether the
regression line fits the data well is to look at the value of R?. A value of R®
close to 1 indicates that the model explains nearly all of the variability of the
dependent variable about its mean value, while a value close to zero indicates that
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Yt

Xt

Figure 4.2 R? = 1 when all data points lie exactly on the estimated line

the model fits the data poorly. The two extreme cases, where R> = 0 and R =1,
are indicated in figures 4.1 and 4.2 in the context of a simple bivariate regression.

Problems with R? as a goodness of fit measure

R? is simple to calculate, intuitive to understand, and provides a broad indication
of the fit of the model to the data. However, there are a number of problems with
R? as a goodness of fit measure:

M

R? is defined in terms of variation about the mean of y so that if a model
is reparameterised (rearranged) and the dependent variable changes, R* will
change, even if the second model was a simple rearrangement of the first, with
identical RSS. Thus it is not sensible to compare the value of R? across models
with different dependent variables.

R? never falls if more regressors are added to the regression. For example,
consider the following two models:

Regression 1: y = By + Boxs + Paxs + u (4.41)
Regression 2: y = B1 4 Boxa + Baxs + Baxg + u (4.42)

R? will always be at least as high for regression 2 relative to regression 1. The
R? from regression 2 would be exactly the same as that for regression 1 only
if the estimated value of the coefficient on the new variable were exactly zero,
i.e. ,34 = 0. In practice, ,34 will always be non-zero, even if not significantly
50, and thus in practice R? always rises as more variables are added to a model.
This feature of R? essentially makes it impossible to use as a determinant of
whether a given variable should be present in the model or not.
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(3) R? can take values of 0.9 or higher for time series regressions, and hence it is
not good at discriminating between models, since a wide array of models will
frequently have broadly similar (and high) values of R>.

Adjusted R?

In order to get around the second of these three problems, a modification to R>
is often made which takes into account the loss of degrees of freedom associated
with adding extra variables. This is known as R?, or adjusted R?, which is defined
as

RP=1-— [—(1 — R%} (4.43)

So if an extra regressor (variable) is added to the model, k increases and unless R*
increases by a more than off-setting amount, R> will actually fall. Hence R® can
be used as a decision-making tool for determining whether a given variable should
be included in a regression model or not, with the rule being: include the variable
if R? rises and do not include it if R? falls. .

However, there are still problems with the maximisation of R? as criterion for
model selection, and principal among these is that it is a ‘soft’ rule, implying that
by following it, the researcher will typically end up with a large model, containing
a lot of marginally significant or insignificant variables. Also, while R*> must be at
least zero if an intercept is included in the regression, its adjusted counterpart may
take negative values, even with an intercept in the regression, if the model fits the
data very poorly.

Now reconsider the results from the previous exercises using EViews in the
previous chapter and earlier in this chapter. If we first consider the hedging model
from chapter 3, the R? value for the returns regression was 0.9955, indicat-
ing that almost all of the variation in spot returns is explained by the futures
returns.

The fit is not so good for the Ford stock CAPM regression described in
chapter 3, where the R? is around 35%. The conclusion here would be that for
this stock and this sample period, around a third of the monthly movement in
the excess returns can be attributed to movements in the market as a whole, as
measured by the S&P500.

Finally, if we look at the results from the recently conducted regressions for
Microsoft, we again find a reasonable fit. It is of interest to compare the model
fit for the original regression that included all of the variables with the results
of the stepwise procedure. We can see that the raw R? is slightly higher for the
original regression containing all of the possible explanatory variables (0.207 versus
0.201 for the stepwise regression, to three decimal places), exactly as we would
expect. Since the original regression contains more variables, the R*-value must
be at least as high. But comparing the R’s, the stepwise regression value (0.193)
is slightly higher than for the full regression (0.189), indicating that the additional
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regressors in the full regression do not justify their presence, at least according to
this criterion.

There now follows another case study of the application of the OLS method
of regression estimation, including interpretation of t-ratios and RZ.

Hedonic pricing models

One application of econometric techniques where the coefticients have a particu-
larly intuitively appealing interpretation is in the area of hedonic pricing models.
Hedonic models are used to value real assets, especially housing, and view the asset
as representing a bundle of characteristics, each of which gives either utility or
disutility to its consumer. Hedonic models are often used to produce appraisals or
valuations of properties, given their characteristics (e.g. size of dwelling, number
of bedrooms, location, number of bathrooms, etc). In these models, the coefticient
estimates represent ‘prices of the characteristics’.

One such application of a hedonic pricing model is given by Des Rosiers and
Thériault (1996), who consider the eftect of various amenities on rental values for
buildings and apartments in five sub-markets in the Quebec area of Canada. After
accounting for the effect of ‘contract-specific’ features which will affect rental
values (such as whether furnishings, lighting, or hot water are included in the
rental price), they arrive at a model where the rental value in Canadian dollars per
month (the dependent variable) is a function of nine—fourteen variables (depending
on the area under consideration). The paper employs 1990 data for the Quebec
City region, and there are 13,378 observations. The twelve explanatory variables
are:

LnAGE log of the apparent age of the property

NBROOMS number of bedrooms

AREABYRM area per room (in square metres)

ELEVATOR a dummy variable = 1 if the building has an
elevator; O otherwise

BASEMENT a dummy variable = 1 if the unit is located in a
basement; 0 otherwise

OUTPARK number of outdoor parking spaces

INDPARK number of indoor parking spaces

NOLEASE a dummy variable = 1 if the unit has no lease
attached to it; O otherwise

LoDISTCBD log of the distance in kilometres to the central
business district (CBD)

SINGLPAR percentage of single parent families in the area
where the building stands

DSHOPCNTR distance in kilometres to the nearest shopping
centre

VACDIFF1 vacancy difference between the building and the

census figure
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Table 4.1 Hedonic model of rental values in Quebec City, 1990.

Dependent variable: Canadian dollars per month

Variable Coefficient t-ratio sign expected A priori
Intercept 282.21 56.09 +
LnAGE —53.10 —59.71 —
NBROOMS 48.47 104.81 TF
AREABYRM 3.97 29.99 +
ELEVATOR 88.51 45.04 aF
BASEMENT —15.90 —11.32 —
OUTPARK 717 7.07 TF
INDPARK 73.76 31.25 IF
NOLEASE —16.99 —7.62 —
LnDISTCBD 5.84 4.60 —
SINGLPAR —4.27 —38.88 —
DSHOPCNTR —10.04 —-5.97 —
VACDIFF1 0.29 5.98 —
- J

Notes: Adjusted R? = 0.651; regression F-statistic = 2082.27.
Source: Des Rosiers and Thériault (1996). Reprinted with permission of American Real Estate
Society.

This list includes several variables that are dummy variables. Dummy variables are
also known as qualitative variables because they are often used to numerically repre-
sent a qualitative entity. Dummy variables are usually specified to take on one of a
narrow range of integer values, and in most instances only zero and one are used.

Dummy variables can be used in the context of cross-sectional or time series
regressions. The latter case will be discussed extensively below. Examples of the use
of dummy variables as cross-sectional regressors would be for sex in the context
of starting salaries for new traders (e.g. male = 0, female = 1) or in the context
of sovereign credit ratings (e.g. developing country = 0, developed country =
1), and so on. In each case, the dummy variables are used in the same way as
other explanatory variables and the coefticients on the dummy variables can be
interpreted as the average differences in the values of the dependent variable for
each category, given all of the other factors in the model.

Des Rosiers and Thériault (1996) report several specifications for five difterent
regions, and they present results for the model with variables as discussed here in
their exhibit 4, which is adapted and reported here as table 4.1.

The adjusted R? value indicates that 65% of the total variability of rental prices
about their mean value is explained by the model. For a cross-sectional regression,
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The relationship between the regression F-statistic and R?

There is a particular relationship between a regression’s R? value and the
regression F-statistic. Recall that the regression F-statistic tests the null
hypothesis that all of the regression slope parameters are simultaneously zero.
Let us call the residual sum of squares for the unrestricted regression including
all of the explanatory variables RSS, while the restricted regression will simply
be one of y, on a constant

ye =B+ u (4.44)

Since there are no slope parameters in this model, none of the variability of y,
about its mean value would have been explained. Thus the residual sum of
squares for equation (4.44) will actually be the total sum of squares of y,, TSS.
We could write the usual F-statistic formula for testing this null that all of the
slope parameters are jointly zero as

TSS—RSS T—k
X

RSS k—1

In this case, the number of restrictions (‘m’) is equal to the number of slope

parameters, k — 1. Recall that 7SS — RSS = ESS and dividing the numerator
and denominator of equation (4.45) by TSS, we obtain

ESS/TSS T —k

F — stat = (4.45)

F — stat = X (4.46)
RSS/TSS k-1
Now the numerator of equation (4.46) is R?, while the denominator is
1 — R?, so that the F-statistic can be written
R*(T — k)
F —stat = —————— (6.47)
1—R¥(k—1)

This relationship between the F-statistic and R> holds only for a test of this
null hypothesis and not for any others.

J

this 1s quite high. Also, all variables are significant at the 0.01% level or lower
and consequently, the regression F-statistic rejects very strongly the null hypothesis
that all coefficient values on explanatory variables are zero. Note that there is a
relationship between the regression F-statistic and R?, as shown in box 4.1.

As stated above, one way to evaluate an econometric model is to determine
whether it is consistent with theory. In this instance, no real theory is available,
but instead there is a notion that each variable will affect rental values in a given
direction. The actual signs of the coefficients can be compared with their expected
values, given in the last column of table 4.1 (as determined by this author). It can
be seen that all coefficients except two (the log of the distance to the CBD and
the vacancy differential) have their predicted signs. It is argued by Des Rosiers and
Thériault that the ‘distance to the CBD’ coefficient may be expected to have a
positive sign since, while it is usually viewed as desirable to live close to a town
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centre, everything else being equal, in this instance most of the least desirable
neighbourhoods are located towards the centre.

The coefticient estimates themselves show the Canadian dollar rental price per
month of each feature of the dwelling. To offer a few illustrations, the NBROOMS
value of 48 (rounded) shows that, everything else being equal, one additional
bedroom will lead to an average increase in the rental price of the property by $48
per month at 1990 prices. A basement coefficient of —16 suggests that an apartment
located in a basement commands a rental $16 less than an identical apartment above
ground. Finally the coefficients for parking suggest that on average each outdoor
parking space adds $7 to the rent while each indoor parking space adds $74,
and so on. The intercept shows, in theory, the rental that would be required of
a property that had zero values on all the attributes. This case demonstrates, as
stated previously, that the coefficient on the constant term often has little useful
interpretation, as it would refer to a dwelling that has just been built, has no
bedrooms each of zero size, no parking spaces, no lease, right in the CBD and
shopping centre, etc.

One limitation of such studies that is worth mentioning at this stage is their
assumption that the implicit price of each characteristic is identical across types of
property, and that these characteristics do not become saturated. In other words, it
is implicitly assumed that if more and more bedrooms or allocated parking spaces
are added to a dwelling indefinitely, the monthly rental price will rise each time by
$48 and $7, respectively. This assumption is very unlikely to be upheld in practice,
and will result in the estimated model being appropriate for only an ‘average’
dwelling. For example, an additional indoor parking space is likely to add far more
value to a luxury apartment than a basic one. Similarly, the marginal value of an
additional bedroom is likely to be bigger if the dwelling currently has one bedroom
than if it already has ten. One potential remedy for this would be to use dummy
variables with fixed effects in the regressions; see, for example, chapter 10 for an
explanation of these.

Tests of non-nested hypotheses

All of the hypothesis tests conducted thus far in this book have been in the context
of ‘nested’ models. This means that, in each case, the test involved imposing
restrictions on the original model to arrive at a restricted formulation that would
be a sub-set of, or nested within, the original specification.

However, it is sometimes of interest to compare between non-nested models.
For example, suppose that there are two researchers working independently, each
with a separate financial theory for explaining the variation in some variable, y,.
The models selected by the researchers respectively could be

Yi = 0 + aoxp + 1y (4.48)
Vi = B1 + Boxz + v, (4.49)

where u, and v, are iid error terms. Model (4.48) includes variable x, but not
x3, while model (4.49) includes x3 but not x». In this case, neither model can be
viewed as a restriction of the other, so how then can the two models be compared
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Box 4.2 Selecting between models D

(1) y» is statistically significant but y; is not. In this case, (4.50) collapses to
(4.48), and the latter is the preferred model.

(2) s is statistically significant but y» is not. In this case, (4.50) collapses to
(4.49), and the latter is the preferred model.

(3) y» and y3 are both statistically significant. This would imply that both
x> and x3 have incremental explanatory power for y, in which case
both variables should be retained. Models (4.48) and (4.49) are both
ditched and (4.50) is the preferred model.

(4) Neither y» nor yj3 are statistically significant. In this case, none of the
models can be dropped, and some other method for choosing between
them must be employed.

N J

as to which better represents the data, y,? Given the discussion in section 4.8, an
obvious answer would be to compare the values of R? or adjusted R*> between the
models. Either would be equally applicable in this case since the two specifications
have the same number of RHS variables. Adjusted R? could be used even in cases
where the number of variables was different across the two models, since it employs
a penalty term that makes an allowance for the number of explanatory variables.
However, adjusted R? is based upon a particular penalty function (that is, T — k
appears in a specific way in the formula). This form of penalty term may not
necessarily be optimal. Also, given the statement above that adjusted R? is a soft
rule, it is likely on balance that use of it to choose between models will imply that
models with more explanatory variables are favoured. Several other similar rules
are available, each having more or less strict penalty terms; these are collectively
known as ‘information criteria’. These are explained in some detail in chapter 5,
but suffice to say for now that a difterent strictness of the penalty term will in
many cases lead to a different preferred model.

An alternative approach to comparing between non-nested models would be
to estimate an encompassing or hybrid model. In the case of (4.48) and (4.49), the
relevant encompassing model would be

Y = V1 + Yaxor + V3x3 + w; (4.50)

where w; is an error term. Formulation (4.50) contains both (4.48) and (4.49) as
special cases when y3 and y» are zero, respectively. Therefore, a test for the best
model would be conducted via an examination of the significances of y, and y;
in model (4.50). There will be four possible outcomes (box 4.2).

However, there are several limitations to the use of encompassing regressions
to select between non-nested models. Most importantly, even if models (4.48) and
(4.49) have a strong theoretical basis for including the RHS wvariables that they
do, the hybrid model may be meaningless. For example, it could be the case that



4111

4.11 Quantile regression 161

financial theory suggests that y could either follow model (4.48) or model (4.49),
but model (4.50) is implausible.

Also, if the competing explanatory variables x, and x3 are highly related
(i.e. they are near collinear), it could be the case that if they are both included,
neither y, nor ys are statistically significant, while each is significant in their
separate regressions (4.48) and (4.49); see the section on multicollinearity in
chapter 4.

An alternative approach is via the J-encompassing test due to Davidson and
MacKinnon (1981). Interested readers are referred to their work or to Gujarati

(2003, pp. 533-6) for further details.
Quantile regression
Background and motivation

Standard regression approaches effectively model the (conditional) mean of the
dependent variable — that is, they capture the average value of y given the
average values of all of the explanatory variables. We could of course calculate
from the fitted regression line the value that y would take for any values of
the explanatory variables, but this would essentially be an extrapolation of the
behaviour of the relationship between y and x at the mean to the remainder of the
data.

As a motivational example of why this approach will often be sub-optimal,
suppose that it is of interest to capture the cross-sectional relationship across coun-
tries between the degree of regulation of banks and gross domestic product (GDP).
Starting from a very low level of regulation (or no regulation), an increase in reg-
ulation 1s likely to encourage a rise in economic activity as the banking system
functions better as a result of more trust and stability in the financial environment.
However, there is likely to come a point where further increasing the amount of
regulation may impede economic growth by stifling innovation and the respon-
siveness of the banking sector to the needs of the industries it serves. Thus we
may think of there being a non-linear (N-shaped) relationship between regulation
and GDP growth, and estimating a standard linear regression model may lead to
seriously misleading estimates of this relationship as it will ‘average’ the positive
and negative eftects from very low and very high regulation.

Of course, in this situation it would be possible to include non-linear (i.e.
polynomial) terms in the regression model (for example, squared, cubic, ... terms
of regulation in the equation). But quantile regressions, developed by Koenker and
Bassett (1978), represent a more natural and flexible way to capture the complex-
ities inherent in the relationship by estimating models for the conditional quantile
functions. Quantile regressions can be conducted in both time series and cross-
sectional contexts, although the latter are more common. It is usually assumed that
the dependent variable, often called the response variable in the literature on quan-
tile regressions, is independently distributed and homoscedastic; these assumptions
can of course be relaxed but at the cost of additional complexity. Quantile regres-
sions represent a comprehensive way to analyse the relationships between a set



162

4.11.2

Further development of classical linear regression

of variables, and are far more robust to outliers and non-normality than OLS
regressions in the same fashion that the median is often a better measure of aver-
age or ‘typical’ behaviour than the mean when the distribution is considerably
skewed by a few large outliers. Quantile regression is a non-parametric tech-
nique since no distributional assumptions are required to optimally estimate the
parameters.

The notation and approaches commonly used in quantile regression modelling
are different to those that we are familiar with in financial econometrics, and this
probably limited the early take up of the technique, which was historically more
widely used in other disciplines. Numerous applications in labour economics were
developed for example. However, the more recent availability of the techniques
in econometric software packages and increased interest in modelling the ‘tail
behaviour’ of series have spurred applications of quantile regression in finance.
The most common use of the technique here is to value at risk modelling. This
seems natural given that the models are based on estimating the quantile of a
distribution of possible losses — see, for example, the study by Chernozhukov
and Umanstev (2001) and the development of the CaViaR model by Engle and
Manganelli (2004).°

Quantiles, denoted T, refer to the position where an observation falls within
an ordered series for y — for example, the median is the observation in the very
middle; the (lower) tenth percentile is the value that places 10% of observations
below it (and therefore 90% of observations above), and so on. More precisely,
we can define the T-th quantile, (), of a random variable y having cumulative
distribution F(y) as

Qr)=infy: F(y) >t (4.51)

where inf refers to the infimum, or the ‘greatest lower bound’ which is the smallest
value of y satistying the inequality. By definition, quantiles must lie between zero
and one.

Quantile regressions take the concept of quantiles a stage further and effectively
model the entire conditional distribution of y given the explanatory variables
(rather than only the mean as is the case for OLS) — thus they examine their
impact on not only the location and scale of the distribution of y, but also on
the shape of the distribution as well. So we can determine how the explanatory
variables affect the fifth or ninetieth percentiles of the distribution of y or its
median and so on.

Estimation of quantile functions

In the same fashion as the ordinary least squares estimator finds the mean value that
minimises the sum of the squared residuals, minimising the sum of the absolute
values of the residuals will yield the median value. By definition, the absolute

2 For further reading on quantile regression, Koenker and Hallock (2001) represents a very accessible,
albeit brief, introduction to quantile regressions and their applications. A more thorough treatment
is given in the book by Koenker (2005).
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value function is symmetrical so that the median always has the same number of
data points above it as below it. But if instead the absolute residuals are weighted
differently depending on whether they are positive or negative, we can calculate the
quantiles of the distribution. To estimate the 7-th quantile, we would set the weight
on positive observations to T, which is the quantile of interest, and that on negative
observations to 1 — 7. We can select the quantiles of interest (or the software might
do this for us), but common choices would be 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95.
The fit is not always good for values of T too close to its limits of 0 and 1, so it is
advisable to avoid such values.

We could write the minimisation problem for a set of quantile regression

parameters fB;, each element of which is a k x 1 vector, as

B =argming | D" tlyi—Bxil+ Y (1—7)ly — Bxil (4.52)

iyi>px; iy <PBx;

This equation makes it clear where the weighting enters into the optimisation. As
above, for the median, T = 0.5 and the weights are symmetric, but for all other
quantiles they will be asymmetric. This optimisation problem can be solved using
a linear programming representation via the simplex algorithm or it can be cast
within the generalised method of moments framework.

As an alternative to quantile regression, it would be tempting to think of
partitioning the data and running separate regressions on each of them — for
example, dropping the top 90% of the observations on y and the corresponding
data points for the xs, and running a regression on the remainder. However,
this process, tantamount to truncating the dependent variable, would be wholly
inappropriate and could lead to potentially severe sample selection biases of the
sort discussed in chapter 12 here and highlighted by Heckman (1979). In fact,
quantile regression does not partition the data — all observations are used in the
estimation of the parameters for every quantile.

It is quite useful to plot each of the estimated parameters, ,é,',t (for i =
1, ..., k), against the quantile, T (from 0 to 1) so that we can see whether the
estimates vary across the quantiles or are roughly constant. Sometimes £2 standard
error bars are also included on the plot, and these tend to widen as the limits of T are
approached. Producing these standard errors for the quantile regression parameters
is unfortunately more complex conceptually than estimating the parameters them-
selves and thus a discussion of these is beyond the scope of this book. Under some
assumptions, Koenker (2005) demonstrates that the quantile regression parameters
are asymptotically normally distributed. A number of approaches have been pro-
posed for estimating the variance-covariance matrix of the parameters, including
one based on a bootstrap — see chapter 13 for a discussion of this.

An application of quantile regression: evaluating fund performance

A study by Bassett and Chen (2001) performs a style attribution analysis for a
mutual fund and, for comparison, the S&P500 index. In order to examine how a
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portfolio’s exposure to various styles varies with performance, they use a quantile
regression approach.

Eftectively evaluating the performance of mutual fund managers is made dif-
ficult by the observation that certain investment styles — notably, value and small
cap —yield higher returns on average than the equity market as a whole. In response
to this, factor models such as those of Fama and French (1993) have been employed
to remove the impact of these characteristics — see chapter 14 for a detailed pre-
sentation of these models. The use of such models also ensures that fund manager
skill in picking highly performing stocks is not confused with randomly investing
within value and small cap styles that will outperform the market in the long run.
For example, if a manager invests in a relatively high proportion of his portfolio
in small firms, we would expect to observe higher returns than average from this
manager because of the firm size effect alone.

Bassett and Chen (2001) conduct a style analysis in this spirit by regressing
the returns of a fund on the returns of a large growth portfolio, the returns of
a large value portfolio, the returns of a small growth portfolio, and the returns
of a small value portfolio. These style portfolio returns are based on the Russell
style indices. In this way, the parameter estimates on each of these style-mimicking
portfolio returns will measure the extent to which the fund is exposed to that style.
Thus we can determine the actual investment style of a fund without knowing
anything about its holdings purely based on an analysis of its returns ex post and
their relationships with the returns of style indices. Table 4.2 presents the results
from a standard OLS regression and quintile regressions for 7 = 0.1, 0.3, 0.5 (i.e.
the median), 0.7 and 0.9. The data are observed over the five years to December
1997 and the standard errors are based on a bootstrapping procedure.

Notice that the sum of the style parameters for a given regression is always
one (except for rounding errors). To conserve space, I only present the results for
the Magellan active fund and not those for the S&P — the latter exhibit very little
variation in the estimates across the quantiles. The OLS results (column 2) show
that the mean return has by far its biggest exposure to large value stocks (and
this parameter estimate is also statistically significant), but it also exposed to small
growth and, to a lesser extent, large growth stocks. It is of interest to compare
the mean (OLS) results with those for the median, Q(0.5). The latter show much
higher exposure to large value, less to small growth and none at all to large
growth.

It is also of interest to examine the factor tilts as we move through the quantiles
from left (Q(0.1)) to right (Q(0.9)). We can see that the loading on large growth
monotonically falls from 0.31 at Q(0.1) to 0.01 at Q(0.9) while the loadings on
large value and small growth substantially increase. The loading on small value
falls from 0.31 at Q(0.1) to -0.51 at Q(0.9). A way to interpret (mine, not the
authors’) these results is to say that when the fund has historically performed
poorly, this has resulted in equal amounts from its overweight exposure to large
value and growth, and small growth. On the other hand, when it has historically
performed well, this is a result of its exposure to large value and small growth
but it was underweight small value stocks. Finally, it is obvious that the intercept
(coefticient on the constant) estimates should be monotonically increasing from
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Table 4.2 OLS and quantile regression results for the

Magellan fund
oLS Q(.1) Q0.3 Q(0.5) Q(0.7) Q(0.9)
Large growth 0.14 0.35 0.19 0.01 0.12 0.01
(0.15) (0.31) (0.22) (0.16) (0.20) (0.22)
Large value 0.69 0.31 0.75 0.83 0.85 0.82
(0.20) (0.38) (0.30) (0.25) (0.30) (0.36)
Small growth 0.21 —0.01 0.10 0.14 0.27 0.53
(0.11) (0.15) (0.16) (0.17) (0.17) (0.15)
Small value —0.03 0.31 0.08 0.07 —0.31 —0.51
(0.20) (0.31) (0.27) (0.29) (0.32) (0.35)
Constant —0.05 —1.90 —1.11 —0.30 0.89 2.31
(0.25) (0.39) (0.27) (0.38) (0.40) (0.57)

\_ J

Notes: Standard errors in parentheses.
Source: Bassett and Chen (2001). Reprinted with the permission of Springer-Verlag.

left to right since the quantile regression effectively sorts on average performance
and the intercept can be interpreted as the performance expected if the fund had
zero exposure to all of the styles.

Quantile regression in EViews

To illustrate how to run quantile regressions using EViews, we will now
employ the simple CAPM beta estimation conducted previously. So Re-open
the ‘CAPM.wf1’> workfile constructed previously. Click on Quick/Estimate
Equation. . ., and change Method in Estimation settings to QREG - Quantile
regression (including LAD) and screenshot 4.3 will appear. Write ‘erford c
ersandp’ in the Equation specification window. As usual, there is an Options tab
that allows the user to control various aspects of the estimation technique, but these
can be left at the default so just click OK and the quantile regression results for
the median will appear. EViews will estimate the median (0.5 quantile) by default,
but any value of T between O and 1 can be chosen. Rather than estimate each
quantile separately and obtain a full statistical output in each case, after estimating
a single quantile, click View/Quantile Process/Process Coefficients. EViews
will then open a window that permits the simultaneous estimation of a number
of quantiles. The default here is to estimate quantiles for the data split into ten
segments (T = 0.1, 0.2, ..., 0.9). The quantile estimates can be displayed in a table
or in a graph for all of the coefficients (the default) or for specific coefticients. Just
click OK and the following table will appear.
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Spedification lm‘

~Equation spedfication

Dependent variable followed by list of regressors OR an explicit
linear equation like Y=c{1)+c(2)*X.

erford c ersandp

Quantile to estimate: | 0.5

-Estimation settings

Method: [QREG - Quantile Regression (induding LAD) i

Sample: | 2002m01 2013m04

[ ok || cancel

Screenshot 4.3  Quantile regression estimation window

As for the Magellan example, the monotonic fall in the intercept coefticients as
the quantiles increase is to be expected since the data on y have been arranged that
way. But the slope estimates are very revealing — they show that the beta estimate
is much higher in the lower tail than in the rest of the distribution of ordered
data. Thus the relationship between the excess returns on Ford stock and those
of the S&P500 is much stronger when Ford share prices are falling most sharply.
This is worrying, for it shows that the ‘tail systematic risk’ of the stock is greater
than for the distribution as a whole. This is related to the observation that when
stock prices fall, they tend to all fall at the same time, and thus the benefits of
diversification that would be expected from examining only a standard regression
of y on x could be much overstated.

Several diagnostic and specification tests for quantile regressions may be com-
puted, and one of particular interest is whether the coefticients for each quantile
can be restricted to be the same. To compute this test following estimation of
a quantile regression, click View/Quantile Process/Slope Equality Test. . ..
Again, several options are possible. Run the test for 10 quantiles and click OK.
Output is then shown first as a test of whether the corresponding slope coefticients
are identical, followed by a pairwise comparison of one quantile with the next one
(e.g. 0.1 with 0.2). The results in this case show that none of the statistics are
significant, indicating that, despite the beta estimates diftering across the quantiles
by an economically large magnitude, they are not statistically significantly difterent.
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Quantile Process Estimates

Equation: UNTITLED

Specification: ERFORD C ERSANDP

Estimated equation quantile tau = 0.5

Number of process quantiles

Display all coefficients

Quantile Coefficient Std. error t-Statistic

C 0.100 —12.42521 1.550047 —8.016025
0.200 —8.294803 1.088524 —7.620228
0.300 —5.592712 0.964050 —5.801266
0.400 —4.294994 0.994117 —4.320411
0.500 —1.626581 1.006131 —1.616669
0.600 1.039469 1.104484 0.941135
0.700 2.739059 1.143703 2.394904
0.800 7.115613 1.503729 4.731978
0.900 14.43761 2.947024 4.899046

ERSANDP 0.100 2.399342 0.514023 4.667776
0.200 1.845833 0.461919 3.996006
0.300 1.599782 0.341128 4.689681
0.400 1.670868 0.341534 4.892246
0.500 1.659274 0.303687 5.463766
0.600 1.767672 0.314817 5.614920
0.700 1.652457 0.311495 5.304915
0.800 1.970517 0.310818 6.339783
0.900 1.615321 0.614305 2.629509

(. J

A further test can be conducted for whether the quantiles are symmetric — that is,
the estimates for T = 0.1 and 7 = 0.9 are identical for instance. Again, if we run
this test for the CAPM example here we would find that the null hypothesis is not
rejected.

The key terms to be able to define and explain from this chapter are

o multiple regression model
e restricted regression

e residual sum of squares

e multiple hypothesis test

[ ] RZ

e hedonic model

e data mining

e variance-covariance matrix
e F-distribution

e total sum of squares

e non-nested hypotheses

o R?

e encompassing regression
e quantile regression

~
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Appendix4.1 Mathematical derivations of CLRM results

Derivation of the OLS coefficient estimator in the multiple
regression context

In the multiple regression context, in order to obtain the parameter estimates,
Bis B2y - - -, Br, the RSS would be minimised with respect to all the elements of
B. Now the residuals are expressed in a vector:

uq

w=1 . (6A.1)

The RSS s still the relevant loss function, and would be given in a matrix notation
by expression (4A.2)

L=t =[iyis.. gl | | | =di+a3+ - +if=) i (4A.2)

Denoting the vector of estimated parameters as B, it is also possible to write
A A "N 5 / 5/ /v P 5~ v D
L=ii=(y—-XB(y-=XB)=yy—BXy—yXp+pXXB (A3

It turns out that ,B/X’y is (1 xk)yx(kxT)x(Tx1)=1x1, and also that
Y XBis (1 x T) x (Tx k) x (kx1)=1x1, soin fact B X'y = y XB. Thus
(4A.3) can be written

L=i'i=(y— XB)(y— XB)=y'y— 28 X'y + B X XB
=u'u=(y B)(y—XB)=yy—28Xy+BXXB (LA.L)

Differentiating this expression with respect to 8 and setting it to zero in order to
find the parameter values that minimise the residual sum of squares would yield
oL

i 22Xy 4+2X'XB=0 (4A.5)

This expression arises since the derivative of y’'y is zero with respect to 8, and

B/X/ X,é acts like a square of XB , which is differentiated to 2.X’ X,é. Rearranging
(4A.5)

2X'y = 2X' XB (4A.6)

X'y = X'XB (4A.7)
Pre-multiplying both sides of (4A.7) by the inverse of X' X

B=(XX""Xy (4A.8)
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Thus, the vector of OLS coefficient estimates for a set of k parameters is given

by

f
ho_ /32 _ —1
B=|""|=XX"XYy
Bt

Derivation of the OLS standard error estimator in the multiple

regression context

(6A.9)

The variance of a vector of random variables ,3 is given by the formula E [(,3 —

,B)(ﬁ — B)']. Since y = XB + u, it can also be stated, given (4A.9), that

B=(XX)""X(XB+u)
Expanding the parentheses

B=(XX)'XXB+ (XX Xu

B=B+(XX)"Xu

Thus, it is possible to express the variance of 8 as

(4A.10)

(A1)
(4A12)

E[B—B)B—B)]=E[B+ (XX "'Xu—-B)B+(XX) "' Xu~—p)

Cancelling the B terms in each set of parentheses
E[(B = B)(B — B)] = EL(X' 07" Xu)(X'X) "' X'u)']
Expanding the parentheses on the RHS of (4A.14) gives
E|(B = B)(f — B)] = EL(X'X) "' X'un' X(X' )]
E[(B = B)(B — B = (X'X) 7 X E[un | X(X'X) ™!
Now E[uu'] is estimated by s, so that
E[(B = B)(B — )1 = (X' X)X IX(X'X)™!
where I is a k X k identity matrix. Rearranging further,
E[(B =) — B)] = > (X X)X X(X'X) ™!
The X' X and the last (X' X)™! term cancel out to leave

var(B) = s2(X' X)~"'

(4A13)

(6A14)

(4A.15)

(6A.16)

(A7)

(4A.18)

(4A19)

as the expression for the parameter variance—covariance matrix. This quan-
tity, s2(X'X)"!, is known as the estimated variance—covariance matrix of the
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coefficients. The leading diagonal terms give the estimated coefficient variances
while the off-diagonal terms give the estimated covariances between the parameter

estimates. The variance of 1 is the first diagonal element, the variance of B, is

the second element on the leading diagonal, . . ., and the variance of ,3 k 1s the kth
diagonal element, etc. as discussed in the body of the chapter.

Appendix4.2 A brief introduction to factor models and principal components analysis

Factor models are employed primarily as dimensionality reduction techniques in
situations where we have a large number of closely related variables and where
we wish to allow for the most important influences from all of these variables
at the same time. Factor models decompose the structure of a set of series into
factors that are common to all series and a proportion that is specific to each series
(idiosyncratic variation). There are broadly two types of such models, which can be
loosely characterised as either macroeconomic or mathematical factor models. The
key distinction between the two is that the factors are observable for the former
but are latent (unobservable) for the latter. Observable factor models include
the APT model of Ross (1976). The most common mathematical factor model
1s principal components analysis (PCA). PCA is a technique that may be useful
where explanatory variables are closely related — for example, in the context of near
multicollinearity. Specifically, if there are k explanatory variables in the regression
model, PCA will transform them into k uncorrelated new variables. To elucidate,
suppose that the original explanatory variables are denoted xi, xo,..., x%, and
denote the principal components by p1, pa,. .., pr. These principal components
are independent linear combinations of the original data

P1 = 01X F opxo + - X

P2 = 021X + 00Xy + + ¢ -+ X (4A.20)

Pk = Qp1X1 + Qpoxp 4 -0+ Xy

where «;; are coefficients to be calculated, representing the coefficient on the jth
explanatory variable in the ith principal component. These coefficients are also
known as factor loadings. Note that there will be T observations on each principal
component if there were T observations on each explanatory variable.

It is also required that the sum of the squares of the coefficients for each
component is one, 1.e.

2 2 2 _
oy tap + e tag =1

(6A.21)

2 p) >
O + o+ gy, =1
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This requirement could also be expressed using sigma notation
doi=1V i=1,... .k (4A.22)

Constructing the components is a purely mathematical exercise in constrained
optimisation, and thus no assumption is made concerning the structure, distribu-
tion, or other properties of the variables.

The principal components are derived in such a way that they are in descending
order of importance. Although there are k principal components, the same as the
number of explanatory variables, if there is some collinearity between these original
explanatory variables, it is likely that some of the (last few) principal components
will account for so little of the variation that they can be discarded. However, if
all of the original explanatory variables were already essentially uncorrelated, all
of the components would be required, although in such a case there would have
been little motivation for using PCA in the first place.

The principal components can also be understood as the eigenvalues of (X' X),
where X is the matrix of observations on the original variables. Thus the number
of eigenvalues will be equal to the number of variables, k. If the ordered eigenvalues
are denoted A; (i = 1,..., k), the ratio

gives the proportion of the total variation in the original data explained by the
principal component i. Suppose that only the first ¥ (0 < r < k) principal compo-
nents are deemed sufficiently useful in explaining the variation of (X' X), and that
they are to be retained, with the remaining k —r components being discarded.
The regression finally estimated, after the principal components have been formed,
would be one of y on the r principal components

Yt:y()+y1pll+"'+yrprt+”l (4A23)

In this way, the principal components are argued to keep most of the important
information contained in the original explanatory variables, but are orthogonal.
This may be particularly useful for independent variables that are very closely
related. The principal component estimates (¥;,i = 1, ..., r) will be biased esti-
mates, although they will be more efficient than the OLS estimators since redun-
dant information has been removed. In fact, if the OLS estimator for the original

regression of y on x is denoted B, it can be shown that
v, =PB (4A.24)

where p, are the coefficient estimates for the principal components, and P,
is a matrix of the first r principal components. The principal component
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coefticient estimates are thus simply linear combinations of the original OLS
estimates.

An application of principal components to interest rates

Many economic and financial models make use of interest rates in some form or
another as independent variables. Researchers may wish to include interest rates
on a large number of different assets in order to reflect the variety of investment
opportunities open to investors. However, market interest rates could be argued
to be not sufficiently independent of one another to make the inclusion of several
interest rate series in an econometric model statistically sensible. One approach to
examining this issue would be to use PCA on several related interest rate series
to determine whether they did move independently of one another over some
historical time period or not.

Fase (1973) conducted such a study in the context of monthly Dutch market
interest rates from January 1962 until December 1970 (108 months). Fase exam-
ined both ‘money market’ and ‘capital market’ rates, although only the money
market results will be discussed here in the interests of brevity. The money market
instruments investigated were:

Call money

Three-month Treasury paper
One-year Treasury paper

Two-year Treasury paper

Three-year Treasury paper

Five-year Treasury paper

Loans to local authorities: three-month
Loans to local authorities: one-year
Eurodollar deposits

Netherlands Bank ofticial discount rate.

Prior to analysis, each series was standardised to have zero mean and unit variance
by subtracting the mean and dividing by the standard deviation in each case. The
three largest of the ten eigenvalues are given in table 4A.1.

The results in table 4A.1 are presented for the whole period using the monthly
data, for two monthly sub-samples, and for the whole period using data sampled
quarterly instead of monthly. The results show clearly that the first principal
component is sufficient to describe the common variation in these Dutch interest
rate series. The first component is able to explain over 90% of the variation
in all four cases, as given in the last row of table 4A.1. Clearly, the estimated
eigenvalues are fairly stable across the sample periods and are relatively invariant to
the frequency of sampling of the data. The factor loadings (coefticient estimates)
for the first two ordered components are given in table 4A.2.

As table 4A.2 shows, the loadings on each factor making up the first principal
component are all positive. Since each series has been standardised to have zero
mean and unit variance, the coefficients &;; and «;j> can be interpreted as the
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Table 4A.1 Principal component ordered eigenvalues for Dutch
interest rates, 1962-70
Monthly data Quarterly data

Jan 62-Dec 70 Jan 62-Jun 66 Jul 66-Dec 70 Jan 62-Dec 70
A 9.57 9.31 9.32 9.67
Ao 0.20 0.31 0.40 0.16
A3 0.09 0.20 0.17 0.07
b1 95.7% 93.1% 93.2% 96.7%

\_

Source: Fase (1973). Reprinted with the permission of Elsevier.

correlations between the interest rate j and the first and second principal com-
ponents, respectively. The factor loadings for each interest rate series on the first
component are all very close to one. Fase (1973) therefore argues that the first
component can be interpreted simply as an equally weighted combination of all of
the market interest rates. The second component, which explains much less of the
variability of the rates, shows a factor loading pattern of positive coefficients for
the Treasury paper series and negative or almost zero values for the other series.
Fase (1973) argues that this is owing to the characteristics of the Dutch Treasury
instruments that they rarely change hands and have low transactions costs, and
therefore have less sensitivity to general interest rate movements. Also, they are
not subject to default risks in the same way as, for example Eurodollar deposits.
Therefore, the second principal component is broadly interpreted as relating to
default risk and transactions costs.

Principal components can be useful in some circumstances, although the tech-
nique has limited applicability for the following reasons:

e A change in the units of measurement of x will change the principal compo-
nents. It is thus usual to transform all of the variables to have zero mean and
unit variance prior to applying PCA.

e The principal components usually have no theoretical motivation or interpre-
tation whatsoever.

e The r principal components retained from the original k are the ones that
explain most of the variation in x, but these components might not be the
most useful as explanations for y.

Calculating principal components in EViews

In order to calculate the principal components of a set of series with EViews,
the first stage is to compile the series concerned into a group. Re-open the
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Table 4A.2 Factor loadings of the first and second principal

components for Dutch interest rates, 1962-70
J Debt instrument o1 o2
1 Call money 0.95 —0.22
2 3-month Treasury paper 0.98 0.12
3 1-year Treasury paper 0.99 0.15
4 2-year Treasury paper 0.99 0.13
S 3-year Treasury paper 0.99 0.11
6 5-year Treasury paper 0.99 0.09
7 Loans to local authorities: 3-month 0.99 —0.08
8 Loans to local authorities: 1-year 0.99 —0.04
9 Eurodollar deposits 0.96 —0.26
10 Netherlands Bank official discount rate 0.96 —0.03
Eigenvalue, A; 9.57 0.20
Proportion of variability explained by 95.7 2.0
K eigenvalue i, ¢;(%) j

Source: Fase (1973). Reprinted with the permission of Elsevier.

‘macro.wfl’ file which contains US Treasury bill and bond series of various
maturities. Select Object/New Object and change ‘Equation’ to ‘Group’ but do
not name the object and click OK. When EViews prompts you to give a ‘List of
series, groups and/or series expressions’, enter

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

and click OK. You will then see a spreadsheet containing all six of the series.
Name the group Interest by clicking the Name tab. From within this window,
click View/Principal Components. . .. Screenshot 4.4 will appear.

There are many features of principal components that can be examined, but
for now keep the defaults and click OK. The results will appear as in the following
table.

It 1s evident that there is a great deal of common variation in the series, since
the first principal component captures over 96% of the variation in the series and
the first two components capture 99.8%. Consequently, if we wished, we could
reduce the dimensionality of the system by using two components rather than the
entire six interest rate series. Interestingly, the first component comprises almost
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Principal Components Analysis

Date: 07/04/13 Time: 10:27

Sample: 1986M03 2013M04

Included observations: 326

Computed using: Ordinary correlations
Extracting 6 of 6 possible components

Eigenvalues: (Sum = 6, Average = 1)
Cumulative ~ Cumulative

Number Value Difference Proportion value proportion
1 5.791739 5.594419 0.9653 5.791739 0.9653
2 0.197320 0.189221 0.0329 5.989059 0.9982
3 0.008100 0.005865 0.0013 5.997159 0.9995
4 0.002235 0.001831 0.0004 5.999394 0.9999
5 0.000404 0.000203 0.0001 5.999798 1.0000
6 0.000202 - 0.0000 6.000000 1.0000

Eigenvectors (loadings):

Variable PC 1 PC 2 PC 3 PC 4 PC5 PC 6
USTB3M  0.406637  —0.44824  0.514612  —0.46067  0.313742  —0.24136
USTB6M  0.408960  —0.39631  0.101355  0.198316  —0.498750  0.61427
USTB1Y 0412145  —027130  —0.31644  0.598774  0.059054  —0.54257
USTB3Y  0.414372  0.117583  —0.56123  —0.21834  0.539421 0.40105
USTB5Y  0.409819  0.364608  —0.22123  —0.46562 —0.576110 —0.31854
USTB10Y  0.397340  0.649350  0.510727 0.35419  0.162654  0.08785

Ordinary correlations:
USTB3M USTB6M USTB1Y USTB3Y USTB5Y  USTB10Y

USTB3M 1.000000

USTB6M 0.998334 1.000000

USTB1Y 0.99275 0.997345 1.000000

USTB3Y 0.963436 0.971666 0.98394 1.000000

USTB5Y 0.932431 0.941871 0.958699 0.993079 1.000000

USTB10Y  0.880137 0.890911 0.912862 0.966203 0.988502 1.000000

exactly equal weights in all six series while the second component puts a large
negative weight on the shortest yield and gradually increasing weights thereafter.
This ties in with the common belief that the first component captures the level of
interest rates, the second component captures the slope of the term structure (and
the third component captures curvature in the yield curve).
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~ Display ~Component selection
Retain minimum number statisfying one of:
Eigenvalues plots : ; ’—
Variable loadings plots Maimum number: &
Component scores plots Minimum eigenvalue: 0

Biplots (scores & loadings)

Cumulative proportion: | 1.0

Table summary of eigenvalues
and eigenvectors (component
loadings). (Use * to indicate an unrestricted
maximum number of components)

~Qutput
Eigenvalues
vector:
Eigenvectors

matrix:

ok J[ conce

Screenshot 4.4  Conducting PCA in EViews

Then Minimise this group and you will see that the ‘Interest” group has
been added to the list of objects.

Self-study questions

1. By using examples from the relevant statistical tables, explain the relationship
between the f- and the F-distributions.
For questions 2—5, assume that the econometric model is of the form

ye = B1 + Boxoy + Baxy + Baxy + Bsxs, + uy (4.53)

2. Which of the following hypotheses about the coefficients can be tested using
a t-test? Which of them can be tested using an F-test? In each case, state the
number of restrictions.

a) HO : ,33 =2

) Ho: B3+ B =1

() Hy: s+ ps=1andfs =1

(d) Hy:B,=0and B3 =0and By =0and 5 =0

) Ho: f2ps =1

3. Which of the above null hypotheses constitutes “THE’ regression F-statistic

in the context of (4.53)? Why is this null hypothesis always of interest
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whatever the regression relationship under study? What exactly would
constitute the alternative hypothesis in this case?

. Which would you expect to be bigger — the unrestricted residual sum of
squares or the restricted residual sum of squares, and why?

. You decide to investigate the relationship given in the null hypothesis of
question 2, part (c). What would constitute the restricted regression? The
regressions are carried out on a sample of 96 quarterly observations, and the
residual sums of squares for the restricted and unrestricted regressions are
102.87 and 91.41, respectively. Perform the test. What is your conclusion?

. You estimate a regression of the form given by (4.54) below in order to
evaluate the effect of various firm-specific factors on the returns of a sample
of firms. You run a cross-sectional regression with 200 firms

ri = Bo+ 1S + BoMB; + B3PE; + B4BETA; + u; (4.54)

where: r; is the percentage annual return for the stock
S; 1s the size of firm i measured in terms of sales revenue
MB; is the market to book ratio of the firm
PE; is the price/earnings (P/E) ratio of the firm
BETA; is the stock’s CAPM beta coefficient

You obtain the following results (with standard errors in parentheses)

7 = 0.080 + 0.801S; + 0.321MB; + 0.164PE; — 0.084BETA;
(0.064) (0.147)  (0.136)  (0.420)  (0.120) (4.55)

Calculate the f-ratios. What do you conclude about the effect of each variable
on the returns of the security? On the basis of your results, what variables
would you consider deleting from the regression? If a stock’s beta increased
from 1 to 1.2, what would be the expected effect on the stock’s return? Is the
sign on beta as you would have expected? Explain your answers in each case.
. A researcher estimates the following econometric models including a lagged
dependent variable

yi = Bi + Boxar + Baxz + Bayi—1 + uy (4.56)

Ay, = yi + Yaxor + V3x3 + Vayi—1 + v (4.57)

where 1, and v, are iid disturbances.

Will these models have the same value of (a) The residual sum of squares
(RSS), (b) R?, (c) Adjusted R>? Explain your answers in each case.
. A researcher estimates the following two econometric models

ye = B1 + Boxo, + Baxz + uy (4.58)
ye = Bi1 + Boxor + Baxse + Baxy + vy (4.59)

where u; and v, are iid disturbances and x3; is an irrelevant variable which
does not enter into the data generating process for y,. Will the value of (a)
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10.

11.
12.
13.

R?, (b) Adjusted R?, be higher for the second model than the first? Explain

your answers.

. Re-open the CAPM Eviews file and estimate CAPM betas for each of the

other stocks in the file.

(a) Which of the stocks, on the basis of the parameter estimates you obtain,
would you class as defensive stocks and which as aggressive stocks?
Explain your answer.

(b) Is the CAPM able to provide any reasonable explanation of the overall
variability of the returns to each of the stocks over the sample period?
Why or why not?

Re-open the Macro file and apply the same APT-type model to some of the

other time series of stock returns contained in the CAPM-file.

(a) Run the stepwise procedure in each case. Is the same sub-set of variables
selected for each stock? Can you rationalise the difterences between the
series chosen?

(b) Examine the sizes and signs of the parameters in the regressions in each
case — do these make sense?

What are the units of R??

What are quantile regressions and why are they useful?

A researcher wishes to examine the link between the returns on two assets A

and B 1in situations where the price of B is falling rapidly. To do this, he

orders the data according to changes in the price of B and drops the top 80%

of ordered observations. He then runs a regression of the returns of A on the

returns of B for the remaining lowest 20% of observations. Would this be a

good way to proceed? Explain your answer.
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Learning outcomes R\

In this chapter, you will learn how to

e Describe the steps involved in testing regression residuals for
heteroscedasticity and autocorrelation

e Explain the impact of heteroscedasticity or autocorrelation on the optimality of
ordinary least squares (OLS) parameter and standard error estimation

e Distinguish between the Durbin-Watson and Breusch-Godfrey tests for
autocorrelation

e Highlight the advantages and disadvantages of dynamic models

e Test for whether the functional form of the model employed is appropriate

e Determine whether the residual distribution from a regression differs
significantly from normality

e Investigate whether the model parameters are stable

e Appraise different philosophies of how to build an econometric model

e Conduct diagnostic tests in EViews

o /

oooooooooooo@ Introductlon

Recall that five assumptions were made relating to the classical linear regression
model (CLRM). These were required to show that the estimation technique,
ordinary least squares (OLS), had a number of desirable properties, and also so that
hypothesis tests regarding the coefticient estimates could validly be conducted.
Specifically, it was assumed that:

1 Eu,) =0

M

2) var(u;) = 0% < 00
(3) cov(ui,u;) =0

(4) cov(us,x;) =0

B) u, ~ N(0, 02)



180

Classical linear regression model assumptions

These assumptions will now be studied further, in particular looking at the fol-
lowing:

How can violations of the assumptions be detected?

What are the most likely causes of the violations in practice?

‘What are the consequences for the model if an assumption is violated but this
fact is ignored and the researcher proceeds regardless?

The answer to the last of these questions is that, in general, the model could
encounter any combination of three problems:

A

e the coefficient estimates (8s) are wrong
e the associated standard errors are wrong
e the distributions that were assumed for the test statistics are inappropriate.

A pragmatic approach to ‘solving’ problems associated with the use of models
where one or more of the assumptions is not supported by the data will then be
adopted. Such solutions usually operate such that:

e the assumptions are no longer violated, or
e the problems are side-stepped, so that alternative techniques are used which
are still valid.

Statistical distributions for diagnostic tests

The text below discusses various regression diagnostic (misspecification) tests that
are based on the calculation of a test statistic. These tests can be constructed
in several ways, and the precise approach to constructing the test statistic will
determine the distribution that the test statistic is assumed to follow. Two particular
approaches are in common usage and their results are given by the statistical
packages: the Lagrange Multiplier (LM) test and the Wald test. Further details
concerning these procedures are given in chapter 8. For now; all that readers require
to know is that LM test statistics in the context of the diagnostic tests presented
here follow a x2 distribution with degrees of freedom equal to the number of
restrictions placed on the model, and denoted m. The Wald version of the test
follows an F-distribution with (m, T — k) degrees of freedom. Asymptotically,
these two tests are equivalent, although their results will differ somewhat in small
samples. They are equivalent as the sample size increases towards infinity since
there is a direct relationship between the x2- and F-distributions. Asymptotically,
an F-variate will tend towards a x> variate divided by its degrees of freedom

x> (m)
m

as T — oo

F(m, T—k) —

Computer packages typically present results using both approaches, although only
one of the two will be illustrated for each test below. They will usually give the
same conclusion, although if they do not, the F-version is usually considered
preferable for finite samples, since it is sensitive to sample size (one of its degrees of
freedom parameters depends on sample size) in a way that the x-version is not.
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Figure 5.1 Effect of no intercept on a regression line

Assumption 1: E(u,) =0

The first assumption required is that the average value of the errors is zero. In fact,
if a constant term is included in the regression equation, this assumption will never
be violated. But what if financial theory suggests that, for a particular application,
there should be no intercept so that the regression line 1s forced through the origin?
If the regression did not include an intercept, and the average value of the errors
was non-zero, several undesirable consequences could arise. First, R?, defined as
ESS/TSS can be negative, implying that the sample average, y, ‘explains’ more of
the variation in y than the explanatory variables. Second, and more fundamentally,
a regression with no intercept parameter could lead to potentially severe biases in
the slope coefticient estimates. To see this, consider figure 5.1.

The solid line shows the regression estimated including a constant term, while
the dotted line shows the eftect of suppressing (i.e. setting to zero) the constant
term. The effect is that the estimated line in this case is forced through the origin,
so that the estimate of the slope coefticient (ﬁ) is biased. Additionally, R* and R?
are usually meaningless in such a context. This arises since the mean value of the
dependent variable, y, will not be equal to the mean of the fitted values from the
model, i.e. the mean of y if there is no constant in the regression.

Assumption 2: var(u,) = 0% < 00

It has been assumed thus far that the variance of the errors is constant, o> —
this 1s known as the assumption of homoscedasticity. 1f the errors do not have a
constant variance, they are said to be heteroscedastic. To consider one illustration of
heteroscedasticity, suppose that a regression had been estimated and the residuals,
i, have been calculated and then plotted against one of the explanatory variables,
X2, as shown in figure 5.2.
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Figure 5.2  Graphical illustration of heteroscedasticity

It is clearly evident that the errors in figure 5.2 are heteroscedastic — that
is, although their mean value is roughly constant, their variance is increasing
systematically with xy,.

Detection of heteroscedasticity

How can one tell whether the errors are heteroscedastic or not? It is possible to
use a graphical method as above, but unfortunately one rarely knows the cause or
the form of the heteroscedasticity, so that a plot is likely to reveal nothing. For
example, if the variance of the errors was an increasing function of x3;, and the
researcher had plotted the residuals against x5, he would be unlikely to see any
pattern and would thus wrongly conclude that the errors had constant variance.
It 1s also possible that the variance of the errors changes over time rather than
systematically with one of the explanatory variables; this phenomenon is known
as ‘ARCH’ and is described in chapter 9.

Fortunately, there are a number of formal statistical tests for heteroscedastic-
ity, and one of the simplest such methods is the Goldfeld-Quandt (1965) test.
Their approach is based on splitting the total sample of length T into two sub-
samples of length T; and T;. The regression model is estimated on each sub-sample
and the two residual variances are calculated as s7 = iy /(T; — k) and s3 =
uhiio/(Th — k) respectively. The null hypothesis is that the variances of the distur-
bances are equal, which can be written Hy : 07 = 0}, against a two-sided alterna-
tive. The test statistic, denoted GQ, is simply the ratio of the two residual variances
where the larger of the two variances must be placed in the numerator (i.e. s7 is
the higher sample variance for the sample with length Tj, even if it comes from
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the second sub-sample):
5t
$2

The test statistic is distributed as an F(T; — k, T, — k) under the null hypothesis,
and the null of a constant variance is rejected if the test statistic exceeds the critical
value.

The GQ test is simple to construct but its conclusions may be contingent upon
a particular, and probably arbitrary, choice of where to split the sample. Clearly,
the test is likely to be more powerful when this choice is made on theoretical
grounds — for example, before and after a major structural event. Suppose that it is
thought that the variance of the disturbances is related to some observable variable
2 (which may or may not be one of the regressors). A better way to perform the
test would be to order the sample according to values of z; (rather than through
time) and then to split the re-ordered sample into T; and T;.

An alternative method that is sometimes used to sharpen the inferences from
the test and to increase its power is to omit some of the observations from the
centre of the sample so as to introduce a degree of separation between the two
sub-samples.

A further popular test is White’s (1980) general test for heteroscedasticity. The
test is particularly useful because it makes few assumptions about the likely form
of the heteroscedasticity. The test is carried out as in box 5.1.

Example5.1 0000000000000 0000000000000000000000000000000000000000000000000000000000

Suppose that the model (5.2) above has been estimated using 120 observations, and
the R? from the auxiliary regression (5.3) is 0.234. The test statistic will be given by

TR? = 120 x 0.234 = 28.8, which will follow a x?(5) under the null hypothesis. The 5%
critical value from the x 2 table is 11.07. The test statistic is therefore more than the
critical value and hence the null hypothesis is rejected. It would be concluded that
there is significant evidence of heteroscedasticity, so that it would not be plausible to
assume that the variance of the errors is constant in this case.

5.4.2 Consequences of using OLS in the presence of heteroscedasticity

What happens if the errors are heteroscedastic, but this fact is ignored and the
researcher proceeds with estimation and inference? In this case, OLS estimators
will still give unbiased (and also consistent) coefficient estimates, but they are no
longer best linear unbiased estimators (BLUE) — that is, they no longer have the
minimum variance among the class of unbiased estimators. The reason is that the
error variance, 0%, plays no part in the proof that the OLS estimator is consistent
and unbiased, but 02 does appear in the formulae for the coefficient variances. If
the errors are heteroscedastic, the formulae presented for the coefficient standard
errors no longer hold. For a very accessible algebraic treatment of the consequences
of heteroscedasticity, see Hill, Griffiths and Judge (1997, pp. 217-18).
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Box 5.1 Conducting White's test

(1

Assume that the regression model estimated is of the standard linear
form, e.g.

ye = B1 + Baxoy + Baxa + uy (5.2)

To test var(u,;) = o2, estimate the model above, obtaining the residuals,
iy
Then run the auxiliary regression

2 » 2
U, = a1 + oaxo + @3x3 + 045, + W55, + QX X3 + Uy (5.3)

where v; is a normally distributed disturbance term independent of u,.
This regression is of the squared residuals on a constant, the original
explanatory variables, the squares of the explanatory variables and their
cross-products. To see why the squared residuals are the quantity of
interest, recall that for a random variable u,, the variance can be written

var(u,) = E[(u, — E(u,))’] (5.4)

Under the assumption that E(u,) = 0, the second part of the RHS of
this expression disappears:

var(u,) = E[u] (5.5)

Once again, it is not possible to know the squares of the population
disturbances, u?, so their sample counterparts, the squared residuals, are
used instead.

The reason that the auxiliary regression takes this form is that it is
desirable to investigate whether the variance of the residuals (embodied
in #12) varies systematically with any known variables relevant to the
model. Relevant variables will include the original explanatory
variables, their squared values and their cross-products. Note also that
this regression should include a constant term, even if the original
regression did not. This is as a result of the fact that 47 will always have
a non-zero mean, even if i, has a zero mean.

Given the auxiliary regression, as stated above, the test can be
conducted using two different approaches. First, it is possible to use the
F-test framework described in chapter 4. This would involve estimating
(5.3) as the unrestricted regression and then running a restricted
regression of 17 on a constant only. The RSS from each specification
would then be used as inputs to the standard F-test formula.

With many diagnostic tests, an alternative approach can be adopted
that does not require the estimation of a second (restricted) regression.
This approach is known as a Lagrange Multiplier (LM) test, which
centres around the value of R? for the auxiliary regression. If one or
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more coefficients in (5.3) is statistically significant, the value of R? for
that equation will be relatively high, while if none of the variables is
significant, R* will be relatively low. The LM test would thus operate
by obtaining R* from the auxiliary regression and multiplying it by the
number of observations, 1" It can be shown that

TR* ~ x*(m)

where m is the number of regressors in the auxiliary regression
(excluding the constant term), equivalent to the number of restrictions
that would have to be placed under the F-test approach.

(4) The test is one of the joint null hypothesis that o, = 0, and a3 = 0, and
oy =0, and a5 = 0, and g = 0. For the LM test, if the x2-test statistic
from step 3 is greater than the corresponding value from the statistical
table then reject the null hypothesis that the errors are homoscedastic.

-

So, the upshot is that if OLS is still used in the presence of heteroscedasticity,
the standard errors could be wrong and hence any inferences made could be
misleading. In general, the OLS standard errors will be too large for the intercept
when the errors are heteroscedastic. The effect of heteroscedasticity on the slope
standard errors will depend on its form. For example, if the variance of the errors
is positively related to the square of an explanatory variable (which is often the
case in practice), the OLS standard error for the slope will be too low. On the
other hand, the OLS slope standard errors will be too big when the variance of
the errors is inversely related to an explanatory variable.

Dealing with heteroscedasticity

If the form (i.e. the cause) of the heteroscedasticity is known, then an alternative
estimation method which takes this into account can be used. One possibility is
called generalised least squares (GLS). For example, suppose that the error variance
was related to z; by the expression

var(u,) = Gzztz (5.6)

All that would be required to remove the heteroscedasticity would be to divide
the regression equation through by z
X2t X3¢

1
L 5.7
z z z

<zt t

U .
Where Uy = — 1S an error term.
<t

22

u var(u o

Now, if Var(ut)ZGZZ%, var(v;) = var (—t) = ( t)z L =0¢? for
<t

known z.
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Box 5.2 ‘Solutions’ for heteroscedasticity Y

(1) Tiansforming the variables into logs or reducing by some other measure of
size’. This has the effect of rescaling the data to ‘pull in’ extreme
observations. The regression would then be conducted upon the
natural logarithms or the transformed data. Taking logarithms also has
the effect of making a previously multiplicative model, such as the
exponential regression model discussed previously (with a multiplicative
error term), into an additive one. However, logarithms of a variable
cannot be taken in situations where the variable can take on zero or
negative values, for the log will not be defined in such cases.

(2)  Using heteroscedasticity-consistent standard error estimates. Most standard
econometrics software packages have an option (usually called
something like ‘robust’) that allows the user to employ standard error
estimates that have been modified to account for the heteroscedasticity
following White (1980). The eftect of using the correction is that,
if the variance of the errors is positively related to the square of an
explanatory variable, the standard errors for the slope coefficients are
increased relative to the usual OLS standard errors, which would make
hypothesis testing more ‘conservative’, so that more evidence would be
required against the null hypothesis before it would be rejected.

N /

Therefore, the disturbances from (5.7) will be homoscedastic. Note that this
latter regression does not include a constant since f; is multiplied by (1/%). GLS
can be viewed as OLS applied to transformed data that satisty the OLS assumptions.
GLS is also known as weighted least squares (WLS), since under GLS a weighted
sum of the squared residuals is minimised, whereas under OLS it is an unweighted
sum.

However, researchers are typically unsure of the exact cause of the heteroscedas-
ticity, and hence this technique is usually infeasible in practice. Two other possible
‘solutions’ for heteroscedasticity are shown in box 5.2.

Examples of tests for heteroscedasticity in the context of the single index
market model are given in Fabozzi and Francis (1980). Their results are strongly
suggestive of the presence of heteroscedasticity, and they examine various factors
that may constitute the form of the heteroscedasticity.

Testing for heteroscedasticity using EViews

Re-open the Microsoft (‘Macro’) Workfile that was examined in the previous
chapter and the regression that included all the macroeconomic explanatory vari-
ables and make sure that the regression output window is open (showing the table
of parameter estimates). First, plot the residuals by selecting View/Actual, Fitted,
Residuals/Residual Graph. If theresiduals of the regression have systematically
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changing variability over the sample, that is a sign of heteroscedasticity. In this case,
it is hard to see any clear pattern (although it is interesting to note the consid-
erable reduction in volatility post-2003), so we need to run the formal statistical
test. To test for heteroscedasticity using White’s test, click on the View button
in the regression window and select Residual Diagnostics/Heteroscedasticity
Tests. . . . You will see a large number of different tests available, including the
autoregressive conditional heteroscedasticity (AR CH) test that will be discussed in
chapter 9. For now, select the White specification. You can also select whether to
include the cross-product terms or not (i.e. each variable multiplied by each other
variable) or include only the squares of the variables in the auxiliary regression.
Uncheck the ‘Include White cross terms’ given the relatively large number of
variables in this regression and then click OK. The results of the test will appear
as follows.

4 I
Heteroskedasticity test: White
F-statistic 0.285965 Prob. F(7,316) 0.9592
Obs:*R-squared 2.039511 Prob. Chi-Square(7) 0.9576
Scaled explained SS 12.15911 Prob. Chi-Square(7) 0.0954

Test Equation:

Dependent Variable: RESID"2
Method: Least Squares

Date: 07/04/13 Time: 13:42
Sample: 1986M05 20013M04
Included observations: 324

Coefficient Std. Error t-Statistic Prob.
C 193.5672 42.83306 4.519108 0.0000
ERSAND"2P —0.16274 0.698446 —0.2330 0.8159
DPROD"2 —11.3366 31.19290 —0.36344 0.7165
DCREDIT"2 —1.01E-08 3.98E-08 —0.25438 0.7994
DINFLATION"2 —65.7807 150.0464 —0.43840 0.6614
DMONEY*2 —0.01229 0.027218 —0.45135 0.6520
DSPREAD"2 —2.02297 638.3524 —0.00317 0.9975
RTERM"2 —196.336 294.3750 —0.66696 0.5053
R-squared 0.006295 Mean dependent var 156.2891
Adjusted R-squared —0.015718 S.D. dependent var 554.1926
S.E. of regression 558.5309 Akaike info criterion 15.51288
Sum squared resid 98578340 Schwarz criterion 15.60623
Log likelihood —2505.086 Hannan-Quinn criter. 15.55014
F-statistic 0.285965 Durbin-Watson stat 2.028098
Prob(F-statistic) 0.959219
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EViews presents three difterent types of tests for heteroscedasticity and then the
auxiliary regression in the first results table displayed. The test statistics give us the
information we need to determine whether the assumption of homoscedasticity
is valid or not, but seeing the actual auxiliary regression in the second table can
provide useful additional information on the source of the heteroscedasticity if any
is found. In this case, both the F- and x> (‘LM’) versions of the test statistic give
the same conclusion that there is no evidence for the presence of heteroscedasticity,
since the p-values are considerably in excess of 0.05. The third version of the test
statistic, ‘Scaled explained SS’, which as the name suggests is based on a normalised
version of the explained sum of squares from the auxiliary regression, suggests in
this case that there is some limited evidence of heteroscedasticity (with the test
result significant at the 10% level but not lower). Thus the conclusion of the test
1s slightly ambiguous but overall we would probably be satistied that there is not a
serious problem here.

Using White’s modified standard error estimates in EViews

In order to estimate the regression with heteroscedasticity-robust standard errors
in EViews, select this from the option button in the regression entry window.
In other words, close the heteroscedasticity test window and click on the orig-
inal ‘Msoftreg’ regression results, then click on the Estimate button and in the
Equation Estimation window, choose the Options tab and screenshot 5.1 will
appear.

In the ‘Coefticient covariance matrix’ box at the top left of the tab, change
the option to White and click OK. Comparing the results of the regression using
heteroscedasticity-robust standard errors with those using the ordinary standard
errors, the changes in the significances of the parameters are only marginal. Of
course, only the standard errors have changed and the parameter estimates have
remained identical to those from before. The heteroscedasticity-consistent standard
errors are smaller for all variables, resulting in the ¢-ratios growing in absolute value
and the p-values being smaller. The main changes in the conclusions reached are
that the term structure variable, which was previously significant only at the 10%
level, is now significant at 5%, and the unexpected inflation and change in industrial
production variables are now significant at the 10% level.

Assumption 3: cov(u;, u;) = O0fori # j

Assumption 3 that is made of the CLRM’s disturbance terms is that the covariance
between the error terms over time (or cross-sectionally, for that type of data) is zero.
In other words, it is assumed that the errors are uncorrelated with one another. If
the errors are not uncorrelated with one another, it would be stated that they are
‘autocorrelated’ or that they are ‘serially correlated’. A test of this assumption is
therefore required.

Again, the population disturbances cannot be observed, so tests for autocor-
relation are conducted on the residuals, 1. Before one can proceed to see how
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formal tests for autocorrelation are formulated, the concept of the lagged value of
a variable needs to be defined.

The concept of a lagged value

The lagged value of a variable (which may be y;, x;, or u,) is simply the value that
the variable took during a previous period. So for example, the value of y, lagged
one period, written y;—1, can be constructed by shifting all of the observations
forward one period in a spreadsheet, as illustrated in table 5.1.

So, the value in the 2006 M 10 row and the y;_; column shows the value that
y: took in the previous period, 2006 M09, which was 0.8. The last column in
table 5.1 shows another quantity relating to y, namely the ‘first difterence’. The
first difference of y, also known as the change in y, and denoted Ay, is calculated
as the difterence between the values of y in this period and in the previous period.
This is calculated as

Ay =y — Y (5.8)

Note that when one-period lags or first differences of a variable are constructed,
the first observation is lost. Thus a regression of Ay, using the above data would
begin with the October 2006 data point. It is also possible to produce two-period
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Table 5.1 Constructing a series of lagged values and first

differences

t Yt Vi1 Ay

2006M09 0.8 — —

2006M10 1.3 0.8 (1.3—-0.8)=0.5
2006M11 -0.9 18 (=09 —-13)=-2.2
2006M12 0.2 -0.9 (0.2 —--0.9 =11
2007M01 1.7 0.2 (-1.7 -0.2)=-1.9
2007M02 2.3 1.7 2.3—--1.7)=4.0
2007M03 0.1 2.3 (0.1 —23)=—22
2007M04 0.0 0.1 (0.0 — 0.1) = -0.1

lags, three-period lags and so on. These would be accomplished in the obvious
way.

Graphical tests for autocorrelation

In order to test for autocorrelation, it is necessary to investigate whether any rela-
t1onsh1ps exist between the current value of i, i,, and any of its previous values,
i1, U—o, ... The first step is to consider poss1ble relationships between the cur-
rent residual and the immediately previous one, #,_1, via a graphical exploration.
Thus #, is plotted against 11,1, and 1, is plotted over time. Some stereotypical
patterns that may be found in the residuals are discussed below.

Figures 5.3 and 5.4 show positive autocorrelation in the residuals, which is
indicated by a cyclical residual plot over time. This case is known as positive
autocorrelation since on average if the residual at time t — 1 is positive, the residual
at time ¢ is likely to be also positive; similarly, if the residual at r — 1 is negative,
the residual at ¢ is also likely to be negative. Figure 5.3 shows that most of the
dots representing observations are in the first and third quadrants, while figure 5.4
shows that a positively autocorrelated series of residuals will not cross the time-axis
very frequently.

Figures 5.5 and 5.6 show negative autocorrelation, indicated by an alternating
pattern in the residuals. This case is known as negative autocorrelation since on
average if the residual at time ¢ — 1 is positive, the residual at time ¢ is likely to be
negative; similarly, if the residual at t — 1 is negative, the residual at ¢ is likely to
be positive. Figure 5.5 shows that most of the dots are in the second and fourth
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Figure 5.4  Plot of i, over time, showing positive autocorrelation
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Figure 5.3  Plot of i, against #,_;, showing positive autocorrelation
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Figure 5.5 Plot of i, against il,_1, showing negative autocorrelation

Figure 5.6  Plot of i1, over time, showing negative autocorrelation

quadrants, while figure 5.6 shows that a negatively autocorrelated series of residuals
will cross the time-axis more frequently than if they were distributed randomly.

Finally, figures 5.7 and 5.8 show no pattern in residuals at all: this is what is
desirable to see. In the plot of i, against 1, (figure 5.7), the points are randomly
spread across all four quadrants, and the time series plot of the residuals (figure 5.8)
does not cross the x-axis either too frequently or too little.
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Figure 5.8  Plot of i, over time, showing no autocorrelation

5.5.3 Detecting autocorrelation: the Durbin-Watson test

Of course, a first step in testing whether the residual series from an estimated
model are autocorrelated would be to plot the residuals as above, looking for any
patterns. Graphical methods may be difficult to interpret in practice, however, and
hence a formal statistical test should also be applied. The simplest test is due to
Durbin and Watson (1951).
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Durbin—Watson (DI¥) is a test for first order autocorrelation — i.e. it tests only
for a relationship between an error and its immediately previous value. One way
to motivate the test and to interpret the test statistic would be in the context of a
regression of the time ¢ error on its previous value

up = pu;—1 + v (5.9)
where v; ~ N(0, 02). The DIV test statistic has as its null and alternative hypotheses
Ho:p=0 and H;:p #0

Thus, under the null hypothesis, the errors at time ¢t — 1 and ¢ are independent of
one another, and if this null were rejected, it would be concluded that there was
evidence of a relationship between successive residuals. In fact, it is not necessary
to run the regression given by (5.9) since the test statistic can be calculated using
quantities that are already available after the first regression has been run

T
Z (ﬁt - ijtt—l)z
DIV = =2 — (5.10)
> i
t=2

The denominator of the test statistic is simply (the number of observations —1) x
the variance of the residuals. This arises since if the average of the residuals is zero

. o 1
var(it) = E() = -—— ) 1]
=2
so that
T
> i} = var(ii,) x (T = 1)
t=2

The numerator ‘compares’ the values of the error at times t — 1 and ¢. If there
is positive autocorrelation in the errors, this difference in the numerator will be
relatively small, while if there is negative autocorrelation, with the sign of the error
changing very frequently, the numerator will be relatively large. No autocorrelation
would result in a value for the numerator between small and large.

It is also possible to express the DIV statistic as an approximate function of the
estimated value of p

DW ~ 2(1 — p) (5.11)

where p is the estimated correlation coefficient that would have been obtained
from an estimation of (5.9). To see why this is the case, consider that the numerator
of (5.10) can be written as the parts of a quadratic

T T

T T
Dl —d) =D ap Y ir =2 i (5.12)
t=2 t=2

t=2 t=2
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Consider now the composition of the first two summations on the RHS of (5.12).
The first of these 1s

T
A2 AD A2 A2 A2
u, =uy +uz+uy+ -+ uy

=2

while the second is
T
) KD A2 A2
E:“t—1:“1+”2+“3+ +“T—

Thus, the only diftference between them is that they difter in the first and last terms
in the summation

T
2 i
t=2

contains 1% but not 77, while

0
g

WE

Il
)

t

contains #7 but not #%. As the sample size, T, increases towards infinity, the
difference between these two will become negligible. Hence, the expression in
(5.12), the numerator of (5.10), is approximately

T
ZZQ —ZZutu,_
=2 t=2

Replacing the numerator of (5.10) with this expression leads to

T
ZZA[Z_ZZMI‘MZ— I/Altﬁt_l
DWW~ — =2]1- ’ZZT— (5.13)
A2 AD
D D
t=2 =2

The covariance between u; and u,_y can be written as E[(u, — E(u,))(u,—1 —
E(u;—1))]. Under the assumption that E(1,) = 0 (and therefore that E(u,_1) = 0),
the covariance will be E[u, u,_1]. For the sample residuals, this covariance will be
evaluated as

1 T
L P
T—1 P

Thus, the sum in the numerator of the expression on the right of (5.13) can be
seen as T — 1 times the covariance between i, and #,_;, while the sum in the
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Figure 5.9 Rejection and non-rejection regions for DIV test

denominator of the expression on the right of (5.13) can be seen from the previous
exposition as T'— 1 times the variance of #,. Thus, it is possible to write

(T_ 1) COV(i:tt, ﬁt—l)) -2 <1 . COV("A’N ﬁt—l))

(T — 1) var(u,) var(ii,)

DW’%2<1—

=2 (1 — corr(it;, ti,_1)) (5.14)

so that the DIV test statistic is approximately equal to 2(1 — p). Since p is a
correlation, it implies that —1 < p < 1. That is, p is bounded to lie between —1
and +1. Substituting in these limits for p to calculate DIV from (5.11) would give
the corresponding limits for DIV as 0 < DI¥ < 4. Consider now the implication
of DIV taking one of three important values (0, 2, and 4):

e p=0,DIW=2 Thisis the case where there is no autocorrelation in the
residuals. So roughly speaking, the null hypothesis would not be rejected if
DIV is near 2 — i.e. there is little evidence of autocorrelation.

e p=1,DW=0 This corresponds to the case where there is perfect positive
autocorrelation in the residuals.

e p=—1,DW=4 This corresponds to the case where there is perfect neg-
ative autocorrelation in the residuals.

The DIV test does not follow a standard statistical distribution such as a ¢, F,
or x2. DW has 2 critical values: an upper critical value (d(;) and a lower critical
value (dp), and there is also an intermediate region where the null hypothesis of
no autocorrelation can neither be rejected nor not rejected! The rejection, non-
rejection and inconclusive regions are shown on the number line in figure 5.9.

So, to reiterate, the null hypothesis is rejected and the existence of positive
autocorrelation presumed if DIV is less than the lower critical value; the null
hypothesis is rejected and the existence of negative autocorrelation presumed if
DIV is greater than 4 minus the lower critical value; the null hypothesis is not
rejected and no significant residual autocorrelation is presumed if DIV is between
the upper and 4 minus the upper limits.

Example52 ©0000000000000000000000000000000000000000000000000000000000000000000000

A researcher wishes to test for first order serial correlation in the residuals from a linear
regression. The D1 test statistic value is 0.86. There are eighty quarterly observations
in the regression, and the regression is of the form

ye = B1 + Boxo + Bz + Paxa + uy (5.15)
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Box 5.3 Conditions for DW to be a valid test N

(1) There must be a constant term in the regression

(2) The regressors must be non-stochastic — as assumption 4 of the CLRM
(see chapter 7)

(3) There must be no lags of dependent variable (see section 5.5.8) in the
regression.

- J

The relevant critical values for the test (see table A2.6 in the appendix of statistical
distributions at the end of this book), are d; = 1.42, dy; = 1.57,s04 — dy; = 2.43 and
4 — d; = 2.58. The test statistic is clearly lower than the lower critical value and hence
the null hypothesis of no autocorrelation is rejected and it would be concluded that the
residuals from the model appear to be positively autocorrelated.

5.5.4 Conditions which must be fulfilled for D17 to be a valid test

In order for the DIV test to be valid for application, three conditions must be
tulfilled (box 5.3).

If the test were used in the presence of lags of the dependent variable or oth-
erwise stochastic regressors, the test statistic would be biased towards 2, suggesting
that in some instances the null hypothesis of no autocorrelation would not be
rejected when it should be.

5.5.5 Another test for autocorrelation: the Breusch-Godfrey test

Recall that DIV is a test only of whether consecutive errors are related to one
another. So, not only can the DIV test not be applied if a certain set of circumstances
are not fulfilled, there will also be many forms of residual autocorrelation that DIV
cannot detect. For example, if corr(ii;, #,—1) = 0, but corr(ii,, t1,—5) # 0, DW
as defined above will not find any autocorrelation. One possible solution would
be to replace #,_1 in (5.10) with u,_». However, pairwise examinations of the
correlations (i1;, 1,—1), (s, U,—2), (1, t,—3),...will be tedious in practice and
is not coded in econometrics software packages, which have been programmed
to construct DI using only a one-period lag. In addition, the approximation in
(5.11) will deteriorate as the difference between the two time indices increases.
Consequently, the critical values should also be modified somewhat in these cases.

Therefore, it is desirable to examine a joint test for autocorrelation that will
allow examination of the relationship between #, and several of its lagged values at
the same time. The Breusch—Godfrey test is a more general test for autocorrelation
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up to the rth order. The model for the errors under this test is
g = Prue—1 + pouts—2 + pauy—3+ -+ pru—, + 0, vy ™~ N(O» O'UZ)
(5.16)

The null and alternative hypotheses are:

Hy: p1 =0 and po =0 and ...and p, =0
H :p1#0 or po#0 or...orp, #0

So, under the null hypothesis, the current error is not related to any of'its r previous
values. The test is carried out as in box 5.4.

Box 5.4 Conducting a Breusch—-Godfrey test N

Estimate the linear regression using OLS and obtain the residuals, #,
Regress #; on all of the regressors from stage 1 (the xs) plus 4,1,
Ui _o,...,t;,; the regression will thus be

—
N —
- —

Uy = Y1+ Vaxor + V33 + Vaxae + pride—1 + p2ii—o + p3tii—3
+- o+ prily—y 4+ vy, v, ~ N(0,07) (5.17)

Obtain R? from this auxiliary regression
(3) Letting T denote the number of observations, the test statistic is given

by

(T —r)R2 ~ x?

N J

Note that (T — r) pre-multiplies R? in the test for autocorrelation rather than
T (as was the case for the heteroscedasticity test). This arises because the first r
observations will effectively have been lost from the sample in order to obtain
the r lags used in the test regression, leaving (7" — r) observations from which to
estimate the auxiliary regression. If the test statistic exceeds the critical value from
the chi-squared statistical tables, reject the null hypothesis of no autocorrelation.
As with any joint test, only one part of the null hypothesis has to be rejected to
lead to rejection of the hypothesis as a whole. So the error at time ¢ has to be
significantly related only to one of its previous r values in the sample for the null
of no autocorrelation to be rejected. The test is more general than the DIV test,
and can be applied in a wider variety of circumstances since it does not impose
the DIV restrictions on the format of the first stage regression.

One potential difficulty with Breusch—Godfrey, however, is in determining an
appropriate value of r, the number of lags of the residuals, to use in computing the
test. There is no obvious answer to this, so it is typical to experiment with a range
of values, and also to use the frequency of the data to decide. So, for example, if
the data is monthly or quarterly, set r equal to 12 or 4, respectively. The argument
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would then be that errors at any given time would be expected to be related only
to those errors in the previous year. Obviously, if the model is statistically adequate,
no evidence of autocorrelation should be found in the residuals whatever value of
r is chosen.

Consequences of ignoring autocorrelation if it is present

In fact, the consequences of ignoring autocorrelation when it is present are similar
to those of ignoring heteroscedasticity. The coefficient estimates derived using
OLS are still unbiased, but they are inefficient, i.e. they are not BLUE, even at
large sample sizes, so that the standard error estimates could be wrong. There thus
exists the possibility that the wrong inferences could be made about whether a
variable is or is not an important determinant of variations in y. In the case of
positive serial correlation in the residuals, the OLS standard error estimates will be
biased downwards relative to the true standard errors. That is, OLS will understate
their true variability. This would lead to an increase in the probability of type
I error — that is, a tendency to reject the null hypothesis sometimes when it is
correct. Furthermore, R? is likely to be inflated relative to its ‘correct’ value if
autocorrelation is present but ignored, since residual autocorrelation will lead to
an underestimate of the true error variance (for positive autocorrelation).

Dealing with autocorrelation

If the form of the autocorrelation is known, it would be possible to use a GLS pro-
cedure. One approach, which was once fairly popular, is known as the Cochrane—
Orecutt procedure (see box 5.5). Such methods work by assuming a particular form
for the structure of the autocorrelation (usually a first order autoregressive process —
see chapter 6 for a general description of these models). The model would thus be
specified as follows:

ye = B+ Baxa + B3z + uy, u, = pu—1 + v, (5.18)

Note that a constant is not required in the specification for the errors since
E(u,;) = 0. If this model holds at time ¢, it is assumed to also hold for time t — 1,
so that the model in (5.18) is lagged one period

Yim1 = B1+ Baxo—1 + Brxs—1 41— (5.19)
Multiplying (5.19) by p

PYi—1 = pP1 + pPaxz—1 + pB3x3—1 + pui—1 (5.20)
Subtracting (5.20) from (5.18) would give

Vi — pYi—1=PB1 — pB1 + Boxoy — pPaxai—1 + Baxzy — pP3x3—1 + 1y — pui_q
(5.21)
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Factorising, and noting that v, =u, — pu,_y
(v — pyi—1) =1 — p)B1 + Ba(x2r — pxoi—1) + B3(xz, — px3—1) + v, (522)

Setting  y=1y, — pyi—1, By =1 — p)B1, x5, = (x20 — px2—1), and x3, = (x3, —
px3—1), the model in (5.22) can be written

yi=Bf+ Baxs, + Bixs, + v (5.23)

Since the final specification (5.23) contains an error term that is free from auto-
correlation, OLS can be directly applied to it. This procedure is effectively an
application of GLS. Of course, the construction of y;" etc. requires p to be known.
In practice, this will never be the case so that p has to be estimated before (5.23)
can be used.

A simple method would be to use the p obtained from rearranging the equation
for the DIV statistic given in (5.11). However, this is only an approximation as the
related algebra showed. This approximation may be poor in the context of small
samples.

The Cochrane—Orcutt procedure is an alternative, which operates as in box 5.5.
This could be the end of the process. However, Cochrane and Orcutt (1949) argue
that better estimates can be obtained by going through steps 2—4 again. That is,
given the new coefficient estimates, B, B2, B3, etc. construct again the residual
and regress it on its previous value to obtain a new estimate for p. This would
then be used to construct new values of the variables y, x3,, x5, and a new (5.23)
is estimated. This procedure would be repeated until the change in p between
one iteration and the next is less than some fixed amount (e.g. 0.01). In practice,
a small number of iterations (no more than five) will usually suffice.

However, the Cochrane—Orcutt procedure and similar approaches require a
specific assumption to be made concerning the form of the model for the auto-
correlation. Consider again (5.22). This can be rewritten taking py,_ over to the
RHS

e = (1= p)B1 + Ba(x2r — pxo—1) + B3(xz — px3—1) + pyi—1 + vy (5.24)

Expanding the brackets around the explanatory variable terms would give

yi = (1 = p)B1 + Baxo, — pBaxoi—1 + B3xz — pB3xz—1 + pyi—1 + v, (525

Now, suppose that an equation containing the same variables as (5.26) were esti-
mated using OLS

Ye = V1 + Vaxor + V3Xoi—1 + Vaxz + V5x3i—1 + Ve Yi—1 + Ut (5.26)

It can be seen that (5.26) is a restricted version of (5.27), with the restrictions
imposed that the coefficient on x,, in (5.26) multiplied by the negative of the
coefficient on y,_; gives the coeftficient on x»,_1, and that the coefficient on x3;
multiplied by the negative of the coefticient on y;_; gives the coefficient on x3,_1.
Thus, the restrictions implied for (5.27) to get (5.26) are

VoVe = —V¥3 and  Y4Ye = —Vs
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Box 5.5 The Cochrane—Orcutt procedure ™~

(1) Assume that the general model is of the form (5.18) above. Estimate the
equation in (5.18) using OLS, ignoring the residual autocorrelation.
(2) Obtain the residuals, and run the regression

Uy = pii—1 + v, (5.27)

(3) Obtain p and construct y;* etc. using this estimate of p.

(4) Run the GLS regression (5.23).
- J

These are known as the common factor restrictions, and they should be tested before
the Cochrane—Orecutt or similar procedure is implemented. If the restrictions hold,
Cochrane—Orcutt can be validly applied. If not, however, Cochrane—Orcutt and
similar techniques would be inappropriate, and the appropriate step would be to
estimate an equation such as (5.27) directly using OLS. Note that in general there
will be a common factor restriction for every explanatory variable (excluding a
constant) Xy, X3, . . . , Xpr 10 the regression. Hendry and Mizon (1978) argued that
the restrictions are likely to be invalid in practice and therefore a dynamic model
that allows for the structure of y should be used rather than a residual correction
on a static model — see also Hendry (1980).

The White variance—covariance matrix of the coefticients (that is, calculation
of the standard errors using the White correction for heteroscedasticity) is appro-
priate when the residuals of the estimated equation are heteroscedastic but serially
uncorrelated. Newey and West (1987) develop a variance—covariance estimator
that 1s consistent in the presence of both heteroscedasticity and autocorrelation. So
an alternative approach to dealing with residual autocorrelation would be to use
appropriately modified standard error estimates.

While White’s correction to standard errors for heteroscedasticity as discussed
above does not require any user input, the Newey—West procedure requires the
specification of a truncation lag length to determine the number of lagged residu-
als used to evaluate the autocorrelation. EViews uses INTEGER [4(T/100)%/°]. In
EViews, the Newey—West procedure for estimating the standard errors is employed
by invoking it from the same place as the White heteroscedasticity correction. That
is, click the Estimate button and in the Equation Estimation window, choose the
Options tab and then instead of checking the “White’ box, check Newey-West.
While this option is listed under ‘Heteroskedasticity consistent coefficient vari-
ance’, the Newey-West procedure in fact produces ‘HAC’ (Heteroscedasticity and
Autocorrelation Consistent) standard errors that correct for both autocorrelation
and heteroscedasticity that may be present.

A more ‘modern’ view concerning autocorrelation is that it presents an oppor-
tunity rather than a problem. This view, associated with Sargan, Hendry and
Mizon, suggests that serial correlation in the errors arises as a consequence of
‘misspecified dynamics’. For another explanation of the reason why this stance is
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taken, recall that it is possible to express the dependent variable as the sum of the
parts that can be explained using the model, and a part which cannot (the residuals)

ye = P + i (5.28)

where y; are the fitted values from the model (= Bl + Bzxm + B3x3t + -+
,ékxkt). Autocorrelation in the residuals is often caused by a dynamic structure in
y that has not been modelled and so has not been captured in the fitted values.
In other words, there exists a richer structure in the dependent variable y and
more information in the sample about that structure than has been captured by
the models previously estimated. What 1s required is a dynamic model that allows
for this extra structure in y.

Dynamic models

All of the models considered so far have been static in nature, e.g.
ye = Bi + Baxar + B3xz + Paxar + Psxs, + uy (5.29)

In other words, these models have allowed for only a contemporaneous relationship
between the variables, so that a change in one or more of the explanatory vari-
ables at time ¢ causes an instant change in the dependent variable at time ¢. But
this analysis can easily be extended to the case where the current value of y,
depends on previous values of y or on previous values of one or more of the
variables, e.g.

Ve = Bi+ Boxog + B3y + Baxu + Bs x5, + Viyi—1 + Vaxoi—i
+ o Vet + Uy (5.30)

It is of course possible to extend the model even more by adding further lags, e.g.
X2r—2, Yi—3. Models containing lags of the explanatory variables (but no lags of the
explained variable) are known as distributed lag models. Specifications with lags of
both explanatory and explained variables are known as autoregressive distributed lag
(ADL) models.

How many lags and of which variables should be included in a dynamic
regression model? This is a tricky question to answer, but hopefully recourse
to financial theory will help to provide an answer; for another response, see
section 5.14.

Another potential ‘remedy’ for autocorrelated residuals would be to switch to
a model in first differences rather than in levels. As explained previously, the first
difference of y,, i.e. y, — y,—1 is denoted Ay,; similarly, one can construct a series
of first differences for each of the explanatory variables, e.g. Axy, = x, — x2,—1,
etc. Such a model has a number of other useful features (see chapter 8 for more
details) and could be expressed as

Ay, = Bi + BoAxo + B3 Az + uy (5.31)
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Sometimes the change in y is purported to depend on previous values of the level
of y or x;(i =2, ..., k) as well as changes in the explanatory variables

Ay = B + BoAxo + B3 Axze + Baxo—1 + Bsyi—1 + uy (5.32)

Why might lags be required in a regression?

Lagged values of the explanatory variables or of the dependent variable (or both)
may capture important dynamic structure in the dependent variable that might be
caused by a number of factors. Two possibilities that are relevant in finance are as
follows:

e Inertia of the dependent variable Often a change in the value of one of
the explanatory variables will not affect the dependent variable immediately
during one time period, but rather with a lag over several time periods.
For example, the effect of a change in market microstructure or government
policy may take a few months or longer to work through since agents may be
initially unsure of what the implications for asset pricing are, and so on. More
generally, many variables in economics and finance will change only slowly.
This phenomenon arises partly as a result of pure psychological factors — for
example, in financial markets, agents may not fully comprehend the eftects of
a particular news announcement immediately, or they may not even believe
the news. The speed and extent of reaction will also depend on whether the
change in the variable is expected to be permanent or transitory. Delays in
response may also arise as a result of technological or institutional factors. For
example, the speed of technology will limit how quickly investors” buy or sell
orders can be executed. Similarly, many investors have savings plans or other
financial products where they are ‘locked in” and therefore unable to act for
a fixed period. It is also worth noting that dynamic structure is likely to be
stronger and more prevalent the higher is the frequency of observation of the
data.

e Opverreactions It is sometimes argued that financial markets overreact to
good and to bad news. So, for example, if a firm makes a profit warning,
implying that its profits are likely to be down when formally reported later
in the year, the markets might be anticipated to perceive this as implying that
the value of the firm is less than was previously thought, and hence that the
price of its shares will fall. If there is an overreaction, the price will initially
fall below that which is appropriate for the firm given this bad news, before
subsequently bouncing back up to a new level (albeit lower than the initial
level before the announcement).

Moving from a purely static model to one which allows for lagged eftects is
likely to reduce, and possibly remove, serial correlation which was present in the
static model’s residuals. However, other problems with the regression could cause
the null hypothesis of no autocorrelation to be rejected, and these would not be
remedied by adding lagged variables to the model:
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e Omission of relevant variables, which are themselves autocorrelated
In other words, if there is a variable that is an important determinant of
movements in y, but which has not been included in the model, and which
itself is autocorrelated, this will induce the residuals from the estimated model
to be serially correlated. To give a financial context in which this may arise,
it is often assumed that investors assess one-step-ahead expected returns on a
stock using a linear relationship

ry = Qo+ ath—l + uy (5.33)

where €2,_; is a set of lagged information variables (i.e. €2,_; is a vector
of observations on a set of variables at time t — 1). However, (5.33) cannot
be estimated since the actual information set used by investors to form their
expectations of returns is not known. 2,4 is therefore proxied with an assumed
sub-set of that information, Z_;. For example, in many popular arbitrage
pricing specifications, the information set used in the estimated model includes
unexpected changes in industrial production, the term structure of interest
rates, inflation and default risk premia. Such a model is bound to omit some
informational variables used by actual investors in forming expectations of
returns, and if these are autocorrelated, it will induce the residuals of the
estimated model to be also autocorrelated.

e Autocorrelation owing to unparameterised seasonality Suppose that
the dependent variable contains a seasonal or cyclical pattern, where cer-
tain features periodically occur. This may arise, for example, in the con-
text of sales of gloves, where sales will be higher in the autumn and win-
ter than in the spring or summer. Such phenomena are likely to lead
to a positively autocorrelated residual structure that is cyclical in shape,
such as that of figure 5.4, unless the seasonal patterns are captured by the
model. See chapter 10 for a discussion of seasonality and how to deal
with it.

e If ‘misspecification’ error has been committed by using an inappro-
priate functional form For example, if the relationship between y and the
explanatory variables was a non-linear one, but the researcher had specified a
linear regression model, this may again induce the residuals from the estimated
model to be serially correlated.

The long-run static equilibrium solution

Once a general model of the form given in (5.32) has been found, it may contain
many differenced and lagged terms that make it difficult to interpret from a
theoretical perspective. For example, if the value of x, were to increase in period
t, what would be the effect on y in periods, ¢, t 4+ 1, 4+ 2, and so on? One
interesting property of a dynamic model that can be calculated is its long-run or
static equilibrium solution.
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The relevant definition of ‘equilibrium’ in this context is that a system has
reached equilibrium if the variables have attained some steady state values and are
no longer changing, i.e. if y and x are in equilibrium, it is possible to write

Ve = Yi41 = ... =y and xp; = xp;41 = ... = X», and so on.

Consequently, Ay, = yy— 1=y —y =0, Axp, = x0; — X1 = Xp — Xp =
0, etc. since the values of the variables are no longer changing. So the way to
obtain a long-run static solution from a given empirical model such as (5.32) is:

1) Remove all time subscripts from the variables

1M

(2) Set error terms equal to their expected values of zero, i.e E(u;) = 0

(3) Remove differenced terms (e.g. Ay,) altogether

(4) Gather terms in x together and gather terms in y together

(5) Rearrange the resulting equation if necessary so that the dependent variable y

is on the left-hand side (LHS) and is expressed as a function of the independent
variables.

ExampleSS ©0000000000000000000000000000000000000000000000000000000000000000000000

Calculate the long-run equilibrium solution for the following model

Ay, = Bi+ B2Axy + BsAxsy + Baxo—1 + Bsyi—1 + 1y (5.34)
Applying first steps 1-3 above, the static solution would be given by

0=p81+Paxa+ Bsy (5.35)
Rearranging (5.35) to bring y to the LHS

Bsy = —B1 — Baxa (5.36)
and finally, dividing through by 5

Y= _& - &xz (5.37)

Bs Bs

Equation (5.37) is the long-run static solution to (5.34). Note that this equation does not
feature x3, since the only term which contained x3 was in first differenced form, so that
x3 does not influence the long-run equilibrium value of y.

5511 Problems with adding lagged regressors to ‘cure’ autocorrelation

In many instances, a move from a static model to a dynamic one will result in
a removal of residual autocorrelation. The use of lagged variables in a regression
model does, however, bring with it additional problems:

e Inclusion of lagged values of the dependent variable violates the
assumption that the explanatory variables are non-stochastic (assump-
tion 4 of the CLRM), since by definition the value of y is determined partly
by a random error term, and so its lagged values cannot be non-stochastic.
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In small samples, inclusion of lags of the dependent variable can lead to
biased coefticient estimates, although they are still consistent, implying that the
bias will disappear asymptotically (that is, as the sample size increases towards
infinity).

e What does an equation with a large number of lags actually mean?
A model with many lags may have solved a statistical problem (autocorrelated
residuals) at the expense of creating an interpretational one (the empirical
model containing many lags or differenced terms is difficult to interpret and
may not test the original financial theory that motivated the use of regression
analysis in the first place).

Note that if there is still autocorrelation in the residuals of a model including
lags, then the OLS estimators will not even be consistent. To see why this occurs,
consider the following regression model

ye = B1 + Boxor + Baxs + Bayi—1 + uy (5.38)

where the errors, u,, follow a first order autoregressive process

U = pus—1 + v (5.39)
Substituting into (5.38) for u, from (5.39)
yi = B+ Baxos + B3xse + Bayi—1 + pui—1 + v, (5.40)

Now, clearly y, depends upon y,_;. Taking (5.38) and lagging it one period (i.e.
subtracting one from each time index)

Yie1 = Bi1 + Boxoi—1 + Bsxz—1 + Bayi—2 + iy (5.41)

It 1s clear from (5.41) that y,_; is related to u,_4 since they both appear in
that equation. Thus, the assumption that E(X'u) = 0 is not satisfied for (5.41)
and therefore for (5.38). Thus the OLS estimator will not be consistent, so
that even with an infinite quantity of data, the coefficient estimates would be

biased.

Autocorrelation and dynamic models in EViews

In EViews, the lagged values of variables can be used as regressors or for other
purposes by using the notation x(—1) for a one-period lag, x(—5) for a five-period
lag, and so on, where x is the variable name. EViews will automatically adjust the
sample period used for estimation to take into account the observations that are
lost in constructing the lags. For example, if the regression contains five lags of
the dependent variable, five observations will be lost and estimation will commence
with observation six.

In EViews, the DIV statistic is calculated automatically, and was given in the
general estimation output screens that result from estimating any regression model.
To view the results screen again, click on the View button in the regression window
and select Estimation output. For the Microsoft macroeconomic regression that
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included all of the explanatory variables, the value of the DI/ statistic was 2.165.
What is the appropriate conclusion regarding the presence or otherwise of first

order autocorrelation in this case?

The Breusch—Godfrey test can be conducted by selecting View/Residual
Diagnostics/Serial Correlation LM Test. .. In the new window, type again
the number of lagged residuals you want to include in the test and click on OK.
Assuming that you selected to employ ten lags in the test, the results would be as

given in the following table.

4 I
Breusch-Godfrey serial correlation LM test:
F-statistic 2.296984 Prob. F(10,306) 0.0130
Obs*R-squared 22.62283 Prob. chi-Square(10) 0.0122
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 07/04/13 Time: 14:11
Sample: 1986M05 2013M04
Included observations: 324
Presample missing value lagged residuals set to zero.
Coefficient Std. error t-Statistic Prob.
C 0.055522 0.887748 0.062542 0.9502
ERSANDP —0.00123 0.155137 —0.00792 0.9937
DPROD 0.217579 1.308076 0.166335 0.8680
DCREDIT —1.19E-05 7.55E-05 —0.15797 0.8746
DINFLATION —0.52145 2.170113 —2.40E-01 8.10E-01
DMONEY —0.00521 0.034704 —0.15008 0.8808
DSPREAD 0.108645 6.816919 0.015938 0.9873
RTERM 0.377417 2.502172 0.150836 0.8802
RESID(-1) —0.13700 0.057579 —2.37928 0.0180
RESID(-2) —0.05756 0.057540 —1.00042 0.3179
RESID(-3) —0.03018 0.057403 —0.52574 0.5994
RESID(-4) —0.13534 0.057235 —2.36454 0.0187
RESID(-5) —0.13527 0.056885 —2.37803 0.0180
RESID(-6) —0.11296 0.057015 —1.98118 0.0485
RESID(-7) —0.07431 0.057277 —1.29740 0.1955
RESID(-8) —0.10770 0.057247 —1.88125 0.0609
RESID(-9) —0.15779 0.057370 —2.75032 0.0063
RESID(-10) —0.05742 0.057536 —0.99800 0.3191
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R-squared 0.069824 Mean dependent var —4.93E-16
Adjusted R-squared 0.018147 S.D. dependent var 12.52090
S.E. of regression 12.40677 Akaike info criterion 7.928310
Sum squared resid 47101.95 Schwarz criterion 8.138356
Log likelihood —1266.387 Hannan-Quinn criter. 8.012151
F-statistic 1.351167 Durbin-Watson stat 2.008661
Prob(F-statistic) 0.159775

/

In the first table of output, EViews offers two versions of the test — an F-
version and a x2 version, while the second table presents the estimates from the
auxiliary regression. The conclusion from both versions of the test in this case is
that the null hypothesis of no autocorrelation should be rejected since the p-values
are below 0.05. Does this agree with the DIV test result? We might thus wish to
consider taking remedial action along the lines described above so think about the
possibilities.

Autocorrelation in cross-sectional data

The possibility that autocorrelation may occur in the context of a time- series
regression is quite intuitive. However, it is also plausible that autocorrelation could
be present in certain types of cross-sectional data. For example, if the cross-
sectional data comprise the profitability of banks in difterent regions of the US,
autocorrelation may arise in a spatial sense, if there is a regional dimension to
bank profitability that is not captured by the model. Thus the residuals from
banks of the same region or in neighbouring regions may be correlated. Testing
for autocorrelation in this case would be rather more complex than in the time
series context, and would involve the construction of a square, symmetric ‘spatial
contiguity matrix’ or a ‘distance matrix’. Both of these matrices would be N x N,
where N is the sample size. The former would be a matrix of zeros and ones,
with one for element i, j when observation i occurred for a bank in the same
region to, or sufficiently close to, region j and zero otherwise (i, j = 1,..., N).
The distance matrix would comprise elements that measured the distance (or the
inverse of the distance) between bank i and bank j. A potential solution to a
finding of autocorrelated residuals in such a model would be again to use a model
containing a lag structure, in this case known as a ‘spatial lag’. Further details are
contained in Anselin (1988).

Assumption 4: the x; are non-stochastic

Fortunately, it turns out that the OLS estimator is consistent and unbiased in the
presence of stochastic regressors, provided that the regressors are not correlated
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with the error term of the estimated equation. To see this, recall that

B = (X'X)"'X'y and y=XB+u (5.42)
Thus

p= (X7 X(XB +u) 5.43)

B=(XX""XXB+ (XX 'Xu (5.44)

B=B+ (XX Xu (5.45)
Taking expectations, and provided that X and u are independent,’

E(B) = E(B) + E(X'X)™' X'u) 5.4

EB) =B+ E[(X'X)~" X|E(u) (5.47)

Since E(u) = 0, this expression will be zero and therefore the estimator is still
unbiased, even if the regressors are stochastic.

However, if one or more of the explanatory variables is contemporaneously
correlated with the disturbance term, the OLS estimator will not even be consis-
tent. This results from the estimator assigning explanatory power to the variables
where in reality it is arising from the correlation between the error term and
y:. Suppose for illustration that x», and u, are positively correlated. When the
disturbance term happens to take a high value, y, will also be high (because
ye = B1 + Boxo + -+ - 4 uy). But if xy, 1s positively correlated with u,, then xy, is
also likely to be high. Thus the OLS estimator will incorrectly attribute the high
value of y; to a high value of x,,, where in reality y, is high simply because u, is high,
which will result in biased and inconsistent parameter estimates and a fitted line
that appears to capture the features of the data much better than it does in reality.

Assumption 5: the disturbances are normally distributed

Recall that the normality assumption (#, ~ N(0, 02)) is required in order to
conduct single or joint hypothesis tests about the model parameters.

Testing for departures from normality

One of the most commonly applied tests for normality is the Bera—Jarque (hereafter
BJ) test. BJ uses the property of a normally distributed random variable that the
entire distribution is characterised by the first two moments — the mean and the
variance. Recall from chapter 2 that standardised third and fourth moments of a
distribution are known as its skewness and kurtosis. A normal distribution is not
skewed and 1s defined to have a coefficient of kurtosis of 3. It is possible to define a
coefficient of excess kurtosis, equal to the coefficient of kurtosis minus 3; a normal
distribution will thus have a coefficient of excess kurtosis of zero. Bera and Jarque

! A situation where X and u are not independent is discussed at length in chapter 7.
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(1981) formalise these ideas by testing whether the coefficient of skewness and the
coefficient of excess kurtosis are jointly zero. Denoting the errors by u and their
variance by 02, it can be proved that the coefficients of skewness and kurtosis can
be expressed respectively as

E[w’] E[u']

bl = —(0—2)3/2 and b2 = (02)2

(5.48)

The kurtosis of the normal distribution is 3 so its excess kurtosis (b, — 3) is zero.
The Bera—Jarque test statistic is given by
b2  (by —3)?
W=T|-++——
[ 24

5.49
P (5.49)

where T is the sample size. The test statistic asymptotically follows a x?(2) under
the null hypothesis that the distribution of the series is symmetric and mesokurtic.
b1 and by can be estimated using the residuals from the OLS regression, #. The
null hypothesis is of normality, and this would be rejected if the residuals from the
model were either significantly skewed or leptokurtic/platykurtic (or both).

Testing for non-normality using EViews

The Bera—Jarque normality tests results can be viewed by selecting View/Residual
Diagnostics/Histogram — Normality Test. The statistic has a x? distribution
with two degrees of freedom under the null hypothesis of normally distributed
errors. If the residuals are normally distributed, the histogram should be bell-shaped
and the Bera—Jarque statistic would not be significant. This means that the p-value
given at the bottom of the normality test screen should be bigger than 0.05 to
not reject the null of normality at the 5% level. In the example of the Microsoft
regression, the screen would appear as in screenshot 5.2.

In this case, the residuals are very negatively skewed and are leptokurtic. Hence
the null hypothesis for residual normality is rejected very strongly (the p-value for
the BJ test is zero to six decimal places), implying that the inferences we make
about the coefficient estimates could be wrong, although the sample is probably
large enough that we need be less concerned than we would be with a small
sample. The non-normality in this case appears to have been caused by a small
number of very large negative residuals representing monthly stock price falls of
more than —25%.

What should be done if evidence of non-normality is found?

It 1s not obvious what should be done! It is, of course, possible to employ an
estimation method that does not assume normality, but such a method may be
difficult to implement, and one can be less sure of its properties. It is thus desirable
to stick with OLS if possible, since its behaviour in a variety of circumstances
has been well researched. For sample sizes that are sufficiently large, violation of
the normality assumption is virtually inconsequential. Appealing to a central limit



5.7 Assumption 5: the disturbances are normally distributed 211

"= Equation: MSOFTREG. Workfile: MACRO: Untitiedh _ox

[View[ Pmc[ Object] [ Print I N&me] Freeze] [ Estimate I Forecast I Stats I Resids ]

(1]
Series: Residusls
| z Sample 1385M05 2013004
S Observations 224
40 e Mean 7 6817
) = Median 0.555835
04 8 Maximum 2845717
j Minimum  -67.71242
Std. Dev. 12.48238
2 Skewness  -2.501607
Kurtosis 13.37730
104
Jargque-Bera  1751.834
0 e ERLLLLLEEL L] Probability  0.000000
LI (L L B I | LN L

- S0 S -0 -3 - -10 g

Screenshot 5.2 Non-normality test results

theorem, the test statistics will asymptotically follow the appropriate distributions
even in the absence of error normality.”

In economic or financial modelling, it is quite often the case that one or
two very extreme residuals cause a rejection of the normality assumption. Such
observations would appear in the tails of the distribution, and would therefore lead
u*, which enters into the definition of kurtosis, to be very large. Such observations
that do not fit in with the pattern of the remainder of the data are known as outliers.
If this is the case, one way to improve the chances of error normality is to use
dummy variables or some other method to effectively remove those observations.

In the time series context, suppose that a monthly model of asset returns from
1980-90 had been estimated, and the residuals plotted, and that a particularly large
outlier has been observed for October 1987, shown in figure 5.10.

A new variable called D87M10, could be defined as D87M10, = 1 during
October 1987 and zero otherwise the observations for the dummy variable would
appear as in box 5.6. The dummy variable would then be used just like any other

2 The law of large numbers states that the average of a sample (which is a random variable) will
converge to the population mean (which is fixed), and the central limit theorem states that the
sample mean converges to a normal distribution.
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Figure 5.10 Regression residuals from stock return data, showing large outlier for October
1987

Box 5.6 Observations for the dummy variable ™
Time Value of dummy variable D87 M10;
1986M12 0
1987M01 0
1987M09 0
1987M10 1
1987M11 0

N J

variable in the regression model, e.g.
v = Bi+ Boxa + Baxs + B4 D8TMI0; + u, (5.50)

This type of dummy variable that takes the value one for only a single obser-
vation has an effect exactly equivalent to knocking out that observation from
the sample altogether, by forcing the residual for that observation to zero. The
estimated coefficient on the dummy variable will be equal to the residual that
the dummied observation would have taken if the dummy variable had not been
included.
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Figure 5.11  Possible effect of an outlier on OLS estimation

However, many econometricians would argue that dummy variables to remove
outlying residuals can be used to artificially improve the characteristics of the
model — in essence fudging the results. Removing outlying observations will
reduce standard errors, reduce the RSS, and therefore increase R?, thus improving
the apparent fit of the model to the data. The removal of observations is also hard
to reconcile with the notion in statistics that each data point represents a useful
piece of information.

The other side of this argument is that observations that are ‘a long way away’
from the rest, and seem not to fit in with the general pattern of the rest of the data
are known as outliers. Outliers can have a serious effect on coefficient estimates,
since by definition, OLS will receive a big penalty, in the form of an increased
RSS, for points that are a long way from the fitted line. Consequently, OLS will
try extra hard to minimise the distances of points that would have otherwise been
a long way from the line. A graphical depiction of the possible effect of an outlier
on OLS estimation, is given in figure 5.11.

In figure 5.11, one point is a long way away from the rest. If this point is
included in the estimation sample, the fitted line will be the dotted one, which
has a slight positive slope. If this observation were removed, the full line would be
the one fitted. Clearly, the slope is now large and negative. OLS would not select
this line if the outlier is included since the observation is a long way from the
others and hence when the residual (the distance from the point to the fitted line)
is squared, it would lead to a big increase in the RSS. Note that outliers could be
detected by plotting y against x only in the context of a bivariate regression. In
the case where there are more explanatory variables, outliers are easiest identified
by plotting the residuals over time, as in figure 5.10, etc.

So, it can be seen that a trade-off potentially exists between the need to remove
outlying observations that could have an undue impact on the OLS estimates and
cause residual non-normality on the one hand, and the notion that each data point
represents a useful piece of information on the other. The latter is coupled with
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the fact that removing observations at will could artificially improve the fit of the
model. A sensible way to proceed is by introducing dummy variables to the model
only if there is both a statistical need to do so and a theoretical justification for their
inclusion. This justification would normally come from the researcher’s knowledge
of the historical events that relate to the dependent variable and the model over
the relevant sample period. Dummy variables may be justifiably used to remove
observations corresponding to ‘one-off” or extreme events that are considered
highly unlikely to be repeated, and the information content of which is deemed of
no relevance for the data as a whole. Examples may include stock market crashes,
financial panics, government crises, and so on.

Non-normality in financial data could also arise from certain types of het-
eroscedasticity, known as ARCH — see chapter 8. In this case, the non-normality
1s intrinsic to all of the data and therefore outlier removal would not make the
residuals of such a model normal.

Another important use of dummy variables is in the modelling of seasonality
in financial data, and accounting for so-called ‘calendar anomalies’, such as day-
of-the-week eftects and weekend eftects. These are discussed in chapter 10.

Dummy variable construction and use in EViews

As we saw from the plot of the distribution above, the non-normality in the
residuals from the Microsoft regression appears to have been caused by a small
number of outliers in the sample. Such events can be identified if they are present by
plotting the actual values, the fitted values and the residuals of the regression. This
can be achieved in EViews by selecting View/Actual, Fitted, Residual/Actual,
Fitted, Residual Graph. The plot should look as in screenshot 5.3.

From the graph, it can be seen that there are several large (negative) outliers,
but the largest of all occur in early 1998 and early 2003. All of the large outliers
correspond to months where the actual return was much smaller (i.e. more nega-
tive) than the model would have predicted. Interestingly, the residual in October
1987 is not quite so prominent because even though the stock price fell, the market
index value fell as well, so that the stock price fall was at least in part predicted
(this can be seen by comparing the actual and fitted values during that month).

In order to identify the exact dates that the biggest outliers were realised, we
could use the shading option by right clicking on the graph and selecting the
‘add lines & shading’ option. But it is probably easier to just examine a table of
values for the residuals, which can be achieved by selecting View/Actual, Fitted,
Residual/Actual, Fitted, Residual Table. If we do this, it is evident that the
two most extreme residuals (with values to the nearest integer) were in February
1998 (—64.3) and February 2003 (—67.7).

As stated above, one way to remove big outliers in the data is by using dummy
variables. It would be tempting, but incorrect, to construct one dummy variable
that takes the value 1 for both Feb 1998 and Feb 2003, but this would not have
the desired effect of setting both residuals to zero. Instead, to remove two outliers
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Screenshot 5.3  Regression residuals, actual values and fitted series

requires us to construct two separate dummy variables. In order to create the Feb
1998 dummy first, we generate a series called ‘FEB98DUM’ that will initially
contain only zeros. Generate this series (hint: you can use ‘Quick/Generate
Series” and then type in the box ‘FEB9SDUM = (’. Double click on the new
object to open the spreadsheet and turn on the editing mode by clicking ‘Edit
+/—"and input a single 1 in the cell that corresponds to February 1998. Leave all
other cell entries as zeros).

Once this dummy variable has been created, repeat the process above to cre-
ate another dummy variable called ‘FEBO3DUM’ that takes the value 1 in
February 2003 and zero elsewhere and then rerun the regression including all
the previous variables plus these two dummy variables. This can most easily be
achieved by clicking on the ‘Msoftreg’ results object, then the Estimate button
and adding the dummy variables to the end of the variable list. The full list of
variables is

ermsoft ¢ ersandp dprod dcredit dinflation dmoney dspread rterm
feb98dum feb03dum

and the results of this regression are as in the following table.
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Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/04/13 Time: 14:45
Sample (adjusted): 1986M05 2013M04
Included observations: 324 after adjustments
Coefficient Std. Error t-Statistic Prob.
C 0.294125 0.826235 0.355982 0.7221
ERSANDP 1.401288 0.143171 9.787491 0.0000
DPROD —1.33384 1.206715 —1.10535 0.2699
DCREDIT —3.95E-05 6.96E-05 —0.56709 0.5711
DINFLATION 3.517510 1.975394 1.78E+00 7.59E-02
DMONEY —0.02196 0.032097 —0.68416 0.4944
DSPREAD 5.351376 6.302128 0.849138 0.3965
RTERM 4.650169 2.291471 2.029337 0.0433
FEB98DUM —66.4813 11.60474 —5.72881 0.0000
FEBO3DUM —67.6132 11.58117 —5.83821 0.0000
R-squared 0.346058 Mean dependent var —0.311466
Adjusted R-squared 0.327315 S.D. dependent var 14.05871
S.E. of regression 11.53059 Akaike info criterion 7.758261
Sum squared resid 41747.69 Schwarz criterion 7.874951
Log likelihood —1246.838 Hannan-Quinn criter. 7.804837
F-statistic 18.46280 Durbin-Watson stat 2.156576
Prob(F-statistic) 0.000000

N J

Note that the dummy variable parameters are both highly significant and take
approximately the values that the corresponding residuals would have taken if
the dummy variables had not been included in the model.” By comparing the
results with those of the regression above that excluded the dummy variables,
it can be seen that the coefficient estimates on the remaining variables change
quite a bit in this instance and the significances improve considerably. The term
structure parameter is now significant at the 5% level and the unexpected inflation
parameter is now significant at the 10% level. The R value has risen from 0.21
to 0.35 because of the perfect fit of the dummy variables to those two extreme
outlying observations.

Finally, if we re-examine the normality test results by clicking View/Residual
Tests/Histogram — Normality Test, we will see that while the skewness and

> Note the inexact correspondence between the values of the residuals and the values of the dummy
variable parameters because two dummies are being used together; had we included only one
dummy, the value of the dummy variable coefticient and that which the residual would have taken
would be identical.
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kurtosis are both slightly closer to the values that they would take under normality,
the Bera—Jarque test statistic still takes a value of 1601 (compared with 1845
previously). We would thus conclude that the residuals are still a long way from
following a normal distribution, and the distribution plot shows that there are still
several more very large negative residuals. While it would be possible to continue
to generate dummy variables, there is a limit to the extent to which it would be
desirable to do so. With this particular regression, we are unlikely to be able to
achieve a residual distribution that is close to normality without using an excessive
number of dummy variables. As a rule of thumb, in a monthly sample with 324
observations, it is reasonable to include, perhaps, two or three dummy variables
for outliers, but more would probably be excessive.

Multicollinearity

An implicit assumption that is made when using the OLS estimation method is
that the explanatory variables are not correlated with one another. If there is no
relationship between the explanatory variables, they would be said to be orthogonal
to one another. If the explanatory variables were orthogonal to one another, adding
or removing a variable from a regression equation would not cause the values of
the coefticients on the other variables to change.

In any practical context, the correlation between explanatory variables will be
non-zero, although this will generally be relatively benign in the sense that a small
degree of association between explanatory variables will almost always occur but
will not cause too much loss of precision. However, a problem occurs when the
explanatory variables are very highly correlated with each other, and this problem
is known as multicollinearity. It is possible to distinguish between two classes of
multicollinearity: perfect multicollinearity and near multicollinearity.

Petfect multicollinearity occurs when there is an exact relationship between two
or more variables. In this case, it is not possible to estimate all of the coefficients in
the model. Perfect multicollinearity will usually be observed only when the same
explanatory variable is inadvertently used twice in a regression. For illustration,
suppose that two variables were employed in a regression function such that the
value of one variable was always twice that of the other (e.g. suppose x3 = 2x»).
If both x3 and x, were used as explanatory variables in the same regression, then
the model parameters cannot be estimated. Since the two variables are perfectly
related to one another, together they contain only enough information to estimate
one parameter, not two. Technically, the difticulty would occur in trying to invert
the (X' X) matrix since it would not be of full rank (two of the columns would be
linearly dependent on one another), so that the inverse of (X' X) would not exist
and hence the OLS estimates ,3 = (X' X)"' X'y could not be calculated.

Near multicollinearity is much more likely to occur in practice, and would
arise when there was a non-negligible, but not perfect, relationship between two
or more of the explanatory variables. Note that a high correlation between the
dependent variable and one of the independent variables is not multicollinearity.
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Visually, we could think of the difterence between near and perfect multi-
collinearity as follows. Suppose that the variables x», and x3, were highly correlated.
If we produced a scatter plot of x,, against x3;, then perfect multicollinearity would
correspond to all of the points lying exactly on a straight line, while near multi-
collinearity would correspond to the points lying close to the line, and the closer
they were to the line (taken altogether), the stronger would be the relationship
between the two variables.

Measuring near multicollinearity

Testing for multicollinearity is surprisingly difticult, and hence all that is presented
here is a simple method to investigate the presence or otherwise of the most easily
detected forms of near multicollinearity. This method simply involves looking
at the matrix of correlations between the individual variables. Suppose that a
regression equation has three explanatory variables (plus a constant term), and that
the pair-wise correlations between these explanatory variables are.

corr X2 X3 X4

X2 - 0.2 w
X3 0.2 - 0.3
X4 % 0.3 -

Clearly, if multicollinearity was suspected, the most likely culprit would be a high
correlation between x; and x4. Of course, if the relationship involves three or more
variables that are collinear — e.g. x> + x3 & x4 — then multicollinearity would be
very difficult to detect.

Problems if near multicollinearity is present but ignored

First, R? will be high but the individual coefficients will have high standard errors,
so that the regression ‘looks good’ as a whole, but the individual variables are not
significant.* This arises in the context of very closely related explanatory variables
as a consequence of the difficulty in observing the individual contribution of
each variable to the overall fit of the regression. Second, the regression becomes
very sensitive to small changes in the specification, so that adding or removing an
explanatory variable leads to large changes in the coefficient values or significances
of the other variables. Finally, near multicollinearity will thus make confidence
intervals for the parameters very wide, and significance tests might therefore give
inappropriate conclusions, and so make it difficult to draw sharp inferences.

Solutions to the problem of multicollinearity
A number of alternative estimation techniques have been proposed that are valid

in the presence of multicollinearity — for example, ridge regression, or principal
components. Principal components analysis was discussed briefly in an appendix

* Note that multicollinearity does not affect the value of R? in a regression.
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to the previous chapter. Many researchers do not use these techniques, however, as
they can be complex, their properties are less well understood than those of the OLS
estimator and, above all, many econometricians would argue that multicollinearity
is more a problem with the data than with the model or estimation method.

Other, more ad hoc methods for dealing with the possible existence of near

multicollinearity include:

Ignore it, if the model is otherwise adequate, 1.e. statistically and in terms of
each coefticient being of a plausible magnitude and having an appropriate sign.
Sometimes, the existence of multicollinearity does not reduce the f-ratios on
variables that would have been significant without the multicollinearity suffi-
ciently to make them insignificant. It is worth stating that the presence of near
multicollinearity does not affect the BLUE properties of the OLS estimator —
i.e. it will still be consistent, unbiased and efficient since the presence of near
multicollinearity does not violate any of the CLRM assumptions 1-4. How-
ever, in the presence of near multicollinearity, it will be hard to obtain small
standard errors. This will not matter if the aim of the model-building exercise
is to produce forecasts from the estimated model, since the forecasts will be
unaftected by the presence of near multicollinearity so long as this relation-
ship between the explanatory variables continues to hold over the forecasted
sample.

Drop one of the collinear variables, so that the problem disappears. How-
ever, this may be unacceptable to the researcher if there were strong a priori
theoretical reasons for including both variables in the model. Also, if the
removed variable was relevant in the data generating process for y, an omitted
variable bias would result (see section 5.10).

Transform the highly correlated variables into a ratio and include only
the ratio and not the individual variables in the regression. Again, this may be
unacceptable if financial theory suggests that changes in the dependent variable
should occur following changes in the individual explanatory variables, and
not a ratio of them.

Finally, as stated above, it is also often said that near multicollinearity is more a
problem with the data than with the model, so that there is insufficient information
in the sample to obtain estimates for all of the coefticients. This is why near
multicollinearity leads coefticient estimates to have wide standard errors, which
is exactly what would happen if the sample size were small. An increase in the
sample size will usually lead to an increase in the accuracy of coefficient
estimation and consequently a reduction in the coefficient standard errors,
thus enabling the model to better dissect the eftects of the various explanatory
variables on the explained variable. A further possibility, therefore, is for the
researcher to go out and collect more data — for example, by taking a
longer run of data, or switching to a higher frequency of sampling. Of course,
it may be infeasible to increase the sample size if all available data is being
utilised already. A further method of increasing the available quantity of data
as a potential remedy for near multicollinearity would be to use a pooled
sample. This would involve the use of data with both cross-sectional and time
series dimensions (see chapter 11).
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5.8.4 Multicollinearity in EViews
For the Microsoft stock return example given above previously, a correlation
matrix for the macroeconomic independent variables can be constructed in
EViews by clicking Quick/Group Statistics/Correlations and then entering
the list of regressors (not including the regressand or the S&P returns) in the
dialog box that appears:
dprod dcredit dinflation dmoney dspread rterm
A new window will be displayed that contains the correlation matrix of the series
in a spreadsheet format:
DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM
DPROD 1.000000 0.141066 —0.124269 —0.130060 —0.055573 —0.002375
DCREDIT 0.141066 1.000000 0.045164 —0.011724 0.015264 0.009675
DINFLATION —0.124269 0.045164 1.000000 —0.097972 —0.224838 —0.054192
DMONEY -0.130060 —0.011724 —0.097972 1.000000 0.213576  —0.086218
DSPREAD —0.055573 0.015264 —0.224838 0.213576 1.000000 0.001571
RTERM —0.002375 0.009675 —0.054192 —0.086218 0.001571 1.000000

Do the results indicate any significant correlations between the independent
variables? In this particular case, the largest observed correlations (in absolute
value) are is 0.21 between the money supply and term structure variables, and
—0.22 between the term structure and unexpected inflation. This is probably
sufficiently small that it can reasonably be ignored.

Adopting the wrong functional form

A further implicit assumption of the classical linear regression model is that the
appropriate ‘functional form’ is linear. This means that the appropriate model
is assumed to be linear in the parameters, and that in the bivariate case, the
relationship between y and x can be represented by a straight line. However, this
assumption may not always be upheld. Whether the model should be linear can
be formally tested using Ramsey’s (1969) RESET test, which is a general test for
misspecification of functional form. Essentially, the method works by using higher
order terms of the fitted values (e.g. 7, J7, etc.) in an auxiliary regression. The
auxiliary regression is thus one where y,, the dependent variable from the original
regression, is regressed on powers of the fitted values together with the original
explanatory variables

Y =0 +062)A/t2+0€3f/t3+"~+0tp)7f+Z,3ixix+vt (5.51)

Higher order powers of the fitted values of y can capture a variety of non-
linear relationships, since they embody higher order powers and cross-products of
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the original explanatory variables, e.g.
5 A A A A 5
Ye = (B + Baxor + Baxze + -+ - + BeXur) (5.52)

The value of R? is obtained from the regression (5.51), and the test statistic, given
by TR?, is distributed asymptotically as a x2(p — 1). Note that the degrees of
freedom for this test will be (p — 1) and not p. This arises because p is the highest
order term in the fitted values used in the auxiliary regression and thus the test will
involve p — 1 terms, one for the square of the fitted value, one for the cube,. . .,
one for the pth power. If the value of the test statistic is greater than the x 2 critical
value, reject the null hypothesis that the functional form was correct.

What if the functional form is found to be inappropriate?

One possibility would be to switch to a non-linear model, but the RESET test
presents the user with no guide as to what a better specification might be! Also,
non-linear models in the parameters typically preclude the use of OLS, and require
the use of a non-linear estimation technique. Some non-linear models can still be
estimated using OLS, provided that they are linear in the parameters. For example,
if the true model is of the form

i = Bi + Baxas + Bsxa, + Baxs, + u, (5.53)

— that is, a third order polynomial in x — and the researcher assumes that the
relationship between y, and x; is linear (i.e. x3, and x5, are missing from the
specification), this is simply a special case of omitted variables, with the usual
problems (see section 5.10) and obvious remedy.

However, the model may be multiplicatively non-linear. A second possibility
that is sensible in this case would be to transform the data into logarithms. This will
linearise many previously multiplicative models into additive ones. For example,
consider again the exponential growth model

ye = BialPu, (5.54)
Taking logs, this becomes
In(y,) = In(B1) + B2 In(x;) + In(u) (5.55)

or
Y =a+ ,32 Xi + vy (5.56)

where Y, = In(y,), @« =In(B1), X; = In(x;), v; = In(u,). Thus a simple logarithmic
transformation makes this model a standard linear bivariate regression equation that
can be estimated using OLS.

Loosely following the treatment given in Stock and Watson (2011), the fol-
lowing list shows four different functional forms for models that are either linear
or can be made linear following a logarithmic transformation to one or more of
the dependent or independent variables, examining only a bivariate specification
for simplicity. Care is needed when interpreting the coefficient values in each case.
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(1) Linear model: y;, = By + Boxo, + u;; a 1-unit increase in xp, causes a fp-unit
increase in y;.

Yt

X2t

(2) Log-linear: In(y,) = B1 + Poxa, + uy; a 1-unit increase in x,, causes a 100 X
B>% increase in ;.

Iny, Vi

Xy, Xt

(3) Linear-log: y; = B1 + Baln(xz) + us; a 1% increase in xp, causes a 0.01 X -
unit increase in y;.

In(xy,) Xy

(4) Double log: In(y;) = B1 + Baln(xz) 4 u; a 1% increase in xp, causes a So%
increase in y;. Note that to plot y against x, would be more complex since

the shape would depend on the size of Bs.
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In(y,)

In(xy,)

Note also that we cannot use R? or adjusted R? to determine which of these
four types of model is most appropriate since the dependent variables are different
across some of the models.

RESET tests using EViews

Using EViews, the Ramsey RESET test is found in the View menu of the regres-
sion window (for ‘Msoftreg’) under Stability diagnostics/Ramsey RESET
test. . . . EViews will prompt you for the ‘number of fitted terms’, equivalent to
the number of powers of the fitted value to be used in the regression; leave the
default of 1 to consider only the square of the fitted values. The Ramsey RESET
test for this regression is in eftect testing whether the relationship between the
Microsoft stock excess returns and the explanatory variables is linear or not. The
results of this test for one fitted term are shown in the following table.

\

Ramsey RESET Test

Equation: MSOFTREG

Specification: ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION
DMONEY DSPREAD RTERM FEB98DUM FEBO3DUM

Omitted Variables: Squares of fitted values

Value df Probability

t-statistic 1.672232 313 0.0955

F-statistic 2.796359 (1,313) 0.0955

Likelihood ratio 2.881779 1 0.0860
F-test summary:

Sum of Sq. df Mean Squares

Test SSR 369.6734 1 369.6734

Restricted SSR 41747.69 314 132.9544

Unrestricted SSR 41378.02 313 132.1981
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4 )
LR-test summary:
Value df
Restricted LogL —1246.838 314
Unrestricted LoglL —1245.397 313
Test Equation:
Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/04/13 Time: 15:24
Sample: 1986M05 2013M04
Included observations: 324
Coefficient Std. Error t-Statistic Prob.
C —0.283755 0.893422 —0.317605 0.7510
ERSANDP 1.500030 0.154493 9.709365 0.0000
DPROD —1.447299 1.205189 —1.200890 0.2307
DCREDIT —0.000031 0.000070 —0.442150 0.6587
DINFLATION 3.586413 1.970198 1.820331 0.0697
DMONEY —0.022506 0.032008 —0.703158 0.4825
DSPREAD 4.487382 6.305382 0.711675 0.4772
RTERM 4.517819 2.286315 1.976026 0.0490
FEB98DUM —104.6090 25.56902 —4.091250 0.0001
FEBO3DUM —123.6420 35.43968 —3.488800 0.0006
FITTED"2 0.011717 0.007007 1.672232 0.0955
R-squared 0.351849 Mean dependent var —0.311466
Adjusted R-squared 0.331141 S.D. dependent var 14.05871
S.E. of regression 11.49774 Akaike info criterion 7.755540
Sum squared resid 41378.02 Schwarz criterion 7.883898
Log likelihood —1245.397 Hannan-Quinn criter. 7.806774
F-statistic 16.99122 Durbin-Watson stat 2.109156
Prob(F-statistic) 0.000000

J

t, F— and yx? versions of the test are presented in the first three rows respec-
tively, and it can be seen that there is limited evidence for non-linearity in the
regression equation (the p-values indicate that the test statistics are significant at
the 10% level but not at 5%). So it would be concluded that there is some support
for the notion that the linear model for the Microsoft returns is appropriate.

Omission of an important variable

What would be the effects of excluding from the estimated regression a variable
that is a determinant of the dependent variable? For example, suppose that the
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true, but unknown, data generating process is represented by
Ye = B+ Baxoe + B3 s + Paxar + P x50+ uy (5.57)
but the researcher estimated a model of the form
ye = Br+ Baxa + B3 x50 4 Baxas + uy (5.58)

so that the variable x5, is omitted from the model. The consequence would be that
the estimated coefficients on all the other variables will be biased and inconsistent
unless the excluded variable is uncorrelated with all the included variables. Even
if this condition is satisfied, the estimate of the coefficient on the constant term
will be biased, which would imply that any forecasts made from the model would
be biased. The standard errors will also be biased (upwards), and hence hypothesis
tests could yield inappropriate inferences. Further intuition is offered in Dougherty
(1992, pp. 168-73).

Inclusion of an irrelevant variable

Suppose now that the researcher makes the opposite error to section 5.10, i.e. that
the true data generating process (DGP) was represented by

yi = B1+ Baxa + B3 x3 + By x4y + 1y (5.59)
but the researcher estimates a model of the form

ye = B+ Baxor + B3 x3 + Baxy + Bs x5, + uy (5.60)

thus incorporating the superfluous or irrelevant variable xs,. As xs, is irrelevant,
the expected value of B is zero, although in any practical application, its estimated
value is very unlikely to be exactly zero. The consequence of including an irrelevant
variable would be that the coefficient estimators would still be consistent and
unbiased, but the estimators would be inefficient. This would imply that the
standard errors for the coefficients are likely to be inflated relative to the values
which they would have taken if the irrelevant variable had not been included.
Variables which would otherwise have been marginally significant may no longer
be so in the presence of irrelevant variables. In general, it can also be stated that
the extent of the loss of efficiency will depend positively on the absolute value of
the correlation between the included irrelevant variable and the other explanatory
variables.

Summarising the last two sections it is evident that when trying to determine
whether to err on the side of including too many or too few variables in a regression
model, there is an implicit trade-off between inconsistency and efficiency; many
researchers would argue that while in an ideal world, the model will incorporate
precisely the correct variables — no more and no less — the former problem is more
serious than the latter and therefore in the real world, one should err on the side
of incorporating marginally significant variables.
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So far, regressions of a form such as

Ve = Bi + Boxor + Baxs + uy (5.61)

Classical linear regression model assumptions

have been estimated. These regressions embody the implicit assumption that the
parameters (81, B> and f3) are constant for the entire sample, both for the data
period used to estimate the model, and for any subsequent period used in the
construction of forecasts.

This implicit assumption can be tested using parameter stability tests. The idea
1s essentially to split the data into sub-periods and then to estimate up to three
models, for each of the sub-parts and for all the data and then to ‘compare’ the
RSS of each of the models. There are two types of test that will be considered,
namely the Chow (analysis of variance) test and predictive failure tests.

Box 5.7 Conducting a Chow test ™

(1) Split the data into two sub-periods. Estimate the regression over the whole
period and then for the two sub-periods separately (three regressions).
Obtain the RSS for each regression.

(2)  The restricted regression is now the regression for the whole period while the
‘unrestricted regression’ comes in two parts: one for each of the
sub-samples. It is thus possible to form an F-test, which is based on the
difference between the RSSs. The statistic is

.. RSS—(RSS; +RSS;) T-—2k
test statistic = X (5.62)
RSS; + RSS, k

where RSS = residual sum of squares for whole sample
RSS; = residual sum of squares for sub-sample 1
RSS, = residual sum of squares for sub-sample 2
T = number of observations
2k = number of regressors in the ‘unrestricted’ regression (since it comes
in two parts)
k = number of regressors in (each) ‘unrestricted’ regression

The unrestricted regression is the one where the restriction has not been
imposed on the model. Since the restriction is that the coefficients are
equal across the sub-samples, the restricted regression will be the single
regression for the whole sample. Thus, the test is one of how much the
residual sum of squares for the whole sample (RSS) is bigger than the sum
of the residual sums of squares for the two sub-samples (RSS; + RSS,). If
the coefticients do not change much between the samples, the residual
sum of squares will not rise much upon imposing the restriction. Thus the
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test statistic in (5.62) can be considered a straightforward application of the
standard F-test formula discussed in chapter 3. The restricted residual sum
of squares in (5.62) is RSS,
while the unrestricted residual sum of squares is (RSS; 4+ RSS;).
The number of restrictions is equal to the number of coefficients
that are estimated for each of the regressions, i.e. k. The number of
regressors in the unrestricted regression (including the constants) is 2k,
since the unrestricted regression comes in two parts, each with k
regressors.

(3) Petform the test. If the value of the test statistic is greater than the critical
value from the F-distribution, which is an F(k, T—2k), then reject the
null hypothesis that the parameters are stable over time.

5121 The Chow test

The steps involved are shown in box 5.7. Note that it is also possible to use a
dummy variables approach to calculating both Chow and predictive failure tests.
In the case of the Chow test, the unrestricted regression would contain dummy
variables for the intercept and for all of the slope coefficients (see also chapter 10).
For example, suppose that the regression is of the form

ye = Bi + Baxor + By + uy (5.63)

If the split of the total of T observations is made so that the sub-samples contain
T and T; observations (where T; + T, = T), the unrestricted regression would
be given by

ye = B1 + Boxor + Baxy + Ba Dy + Bs Dixoy + B Dixse + vy (5.64)

where D, = 1 for t € Tj and zero otherwise. In other words, D; takes the value
one for observations in the first sub-sample and zero for observations in the second
sub-sample. The Chow test viewed in this way would then be a standard F-test
of the joint restriction Hy: B4 = 0 and 5 = 0 and B¢, = 0, with (5.64) and (5.63)
being the unrestricted and restricted regressions, respectively.

Example5.4 000000000000 0000000000000000000000000000000000000000000000000000000000O0

Suppose that it is now January 1993. Consider the following regression for the standard
CAPM g for the returns on a stock

ror = + Bray + u; (5.65)

where r,, and r,, are excess returns on Glaxo shares and on a market portfolio,
respectively. Suppose that you are interested in estimating beta using monthly data
from 1981 to 1992, to aid a stock selection decision. Another researcher expresses
concern that the October 1987 stock market crash fundamentally altered the risk-return
relationship. Test this conjecture using a Chow test. The model for each sub-period is
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1981M1-1987M10

For =024 4+12ry, T =82 RSS; =0.03555 (5.66)
1987 M11-1992M12

fgt =0.68+1.53ry, T =62 RSS,=0.00336 (5.67)
1981M1-1992M12

For = 0.394+1.37ry, T =144 RSS=0.0434 (5.68)

The null hypothesis is

Hy: a1 =, and By = B>

where the subscripts 1 and 2 denote the parameters for the first and second
sub-samples, respectively. The test statistic will be given by
0.0434 — (0.0355 4+ 0.00336) 144 — 4

fest statistic = X (5.69)
0.0355 + 0.00336 2

= 7.698

The test statistic should be compared with a 5%, F (2, 140) = 3.06. Hj is rejected at the
5% level and hence it is concluded that the restriction that the coefficients are the same
in the two periods cannot be employed. The appropriate modelling response would
probably be to employ only the second part of the data in estimating the CAPM beta
relevant for investment decisions made in early 1993.

5.12.2 The predictive failure test

A problem with the Chow test is that it is necessary to have enough data to do
the regression on both sub-samples, i.e. T; >> k, T; > k. This may not hold in
the situation where the total number of observations available is small. Even more
likely 1s the situation where the researcher would like to examine the effect of
splitting the sample at some point very close to the start or very close to the end
of the sample. An alternative formulation of a test for the stability of the model is
the predictive failure test, which requires estimation for the full sample and one of
the sub-samples only. The predictive failure test works by estimating the regression
over a ‘long’ sub-period (i.e. most of the data) and then using those coefticient
estimates for predicting values of y for the other period. These predictions for y
are then implicitly compared with the actual values. Although it can be expressed
in several difterent ways, the null hypothesis for this test is that the prediction errors
for all of the forecasted observations are zero.

To calculate the test:

e Run the regression for the whole period (the restricted regression) and
obtain the RSS.
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e Run the regression for the ‘large’ sub-period and obtain the RSS (called
RSSy). Note that in this book, the number of observations for the long esti-
mation sub-period will be denoted by T; (even though it may come second).
The test statistic is given by

o RSS — RSS, T —k
test statistic = X (5.70)
RSS, T

where T, = number of observations that the model is attempting to ‘predict’.
The test statistic will follow an F(T3, T] — k).

For an intuitive interpretation of the predictive failure test statistic formulation,
consider an alternative way to test for predictive failure using a regression containing
dummy variables. A separate dummy variable would be used for each observation
that was in the prediction sample. The unrestricted regression would then be
the one that includes the dummy variables, which will be estimated using all T'
observations, and will have (k + 1) regressors (the k original explanatory variables,
and a dummy variable for each prediction observation, i.e. a total of I, dummy
variables). Thus the numerator of the last part of (5.70) would be the total number
of observations (T) minus the number of regressors in the unrestricted regression
(k 4+ T3). Noting also that T — (k + T5) = (T; — k), since T} + T, = T, this gives
the numerator of the last term in (5.70). The restricted regression would then be
the original regression containing the explanatory variables but none of the dummy
variables. Thus the number of restrictions would be the number of observations
in the prediction period, which would be equivalent to the number of dummy
variables included in the unrestricted regression, T5.

To offer an illustration, suppose that the regression is again of the form of
(5.63), and that the last three observations in the sample are used for a predictive
failure test. The unrestricted regression would include three dummy variables, one
for each of the observations in 15

tgr =+ Braye +y1 D1, + y> D2, + y3 D3, + uy (5.71)

where D1, = 1 for observation T— 2 and zero otherwise, D2, = 1 for observation
T — 1 and zero otherwise, D3, = 1 for observation T and zero otherwise. In this
case, k = 2, and T, = 3. The null hypothesis for the predictive failure test in
this regression is that the coefficients on all of the dummy variables are zero (i.e.
Hy : 1 =0and y» = 0 and y3 = 0). Both approaches to conducting the predictive
failure test described above are equivalent, although the dummy variable regression
is likely to take more time to set up.

However, for both the Chow and the predictive failure tests, the dummy
variables approach has the one major advantage that it provides the user with
more information. This additional information comes from the fact that one can
examine the significances of the coefficients on the individual dummy variables
to see which part of the joint null hypothesis is causing a rejection. For example,
in the context of the Chow regression, is it the intercept or the slope coefticients
that are significantly diftferent across the two sub-samples? In the context of the
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predictive failure test, use of the dummy variables approach would show for which
period(s) the prediction errors are significantly different from zero.

5.12.3 Backward versus forward predictive failure tests

There are two types of predictive failure tests — forward tests and backwards tests.
Forward predictive failure tests are where the last few observations are kept back for
forecast testing. For example, suppose that observations for 1980Q1-2013Q4 are
available. A forward predictive failure test could involve estimating the model over
1980Q1-2012Q4 and forecasting 2013Q1-2013Q4. Backward predictive failure
tests attempt to ‘back-cast’ the first few observations, e.g. if data for 1980Q1-
2013Q4 are available, and the model is estimated over 1971Q1-2013Q4 and
back-cast 1980Q1-1980Q4. Both types of test offer further evidence on the
stability of the regression relationship over the whole sample period.

Exampl85‘5 000000000000 00000000000000000000000000000000000000000000000000000000000

Suppose that the researcher decided to determine the stability of the estimated model
for stock returns over the whole sample in example 5.4 by using a predictive failure
test of the last two years of observations. The following models would be estimated:

1981M1-1992M12 (whole sample)

fg, =039+ 1.37r T =144 RSS = 0.0434 (5.72)
1981M1-1990M12 (‘long sub-sample’)
fgt =0.32 4+ 1.31r T =120 RSS; = 0.0420 (5.73)

Can this regression adequately ‘forecast’ the values for the last two years? The test
statistic would be given by
0.0434 — 0.0420 120—2

test statistic = X (5.74)
0.0420 24

= 0.164

Compare the test statistic with an F (24, 118) = 1.66 at the 5% level. So the null
hypothesis that the model can adequately predict the last few observations would not
be rejected. It would thus be concluded that the model did not suffer from predictive
failure during the 1991M1-1992M12 period.

5.12.4 How can the appropriate sub-parts to use be decided?

As a rule of thumb, some or all of the following methods for selecting where the
overall sample split occurs could be used:

e Plot the dependent variable over time and split the data accordingly to any
obvious structural changes in the series, as illustrated in figure 5.12.

It is clear that y in figure 5.12 underwent a large fall in its value around

observation 175, and it is possible that this may have caused a change in its
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behaviour. A Chow test could be conducted with the sample split at this
observation.

e Split the data according to any known important historical events (e.g. a stock
market crash, change in market microstructure, new government elected). The
argument is that a major change in the underlying environment in which y is
measured is more likely to cause a structural change in the model’s parameters
than a relatively trivial change.

e Use all but the last few observations and do a forwards predictive failure test on
those.

e Use all but the first few observations and do a backwards predictive failure test on
those.

1400 7
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Observation number

Figure 5.12  Plot of a variable showing suggestion for break date

If a model is good, it will survive a Chow or predictive failure test with any
break date. If the Chow or predictive failure tests are failed, two approaches could
be adopted. Either the model is respecified, for example, by including additional
variables, or separate estimations are conducted for each of the sub-samples. On
the other hand, if the Chow and predictive failure tests show no rejections, it is
empirically valid to pool all of the data together in a single regression. This will
increase the sample size and therefore the number of degrees of freedom relative
to the case where the sub-samples are used in isolation.

The QLR test

The Chow and predictive failure tests will work satisfactorily if the date of a
structural break in a financial time series can be specified. But more often, a
researcher will not know the break date in advance, or may know only that it
lies within a given range (sub-set) of the sample period. In such circumstances, a
modified version of the Chow test, known as the Quandt likelihood ratio (QLR) test,
named after Quandt (1960), can be used instead. The test works by automatically
computing the usual Chow F-test statistic repeatedly with different break dates,
then the break date giving the largest F-statistic value is chosen. While the test
statistic is of the F-variety, it will follow a non-standard distribution rather than
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an F-distribution since we are selecting the largest from a number of F-statistics
rather than examining a single one.

The test is well behaved only when the range of possible break dates is suf-
ficiently far from the end points of the whole sample, so it is usual to ‘trim’ the
sample by (typically) 5% at each end. To illustrate, suppose that the full sample
comprises 200 observations; then we would test for a structural break between
observations 31 and 170 inclusive. The critical values will depend on how much
of the sample is trimmed away, the number of restrictions under the null hypothesis
(the number of regressors in the original regression as this is effectively a Chow
test) and the significance level.

Stability tests based on recursive estimation

An alternative to the QLR test for use in the situation where a researcher believes
that a series may contain a structural break but is unsure of the date is to perform a
recursive estimation. This is sometimes known as recursive least squares (RLS). The
procedure is appropriate only for time-series data or cross-sectional data that have
been ordered in some sensible way (for example, a sample of annual stock returns,
ordered by market capitalisation). Recursive estimation simply involves starting
with a sub-sample of the data, estimating the regression, then sequentially adding
one observation at a time and re-running the regression until the end of the sample
is reached. It is common to begin the initial estimation with the very minimum
number of observations possible, which will be k + 1. So at the first step, the
model is estimated using observations 1 to k + 1; at the second step, observations
1 to k + 2 are used and so on; at the final step, observations 1 to T are used. The
final result will be the production of T — k separate estimates of every parameter
in the regression model.

It is to be expected that the parameter estimates produced near the start
of the recursive procedure will appear rather unstable since these estimates are
being produced using so few observations, but the key question is whether they
then gradually settle down or whether the volatility continues through the whole
sample. Seeing the latter would be an indication of parameter instability.

It should be evident that RLS in itself is not a statistical test for parameter
stability as such, but rather it provides qualitative information which can be plotted
and thus gives a very visual impression of how stable the parameters appear to be.
But two important stability tests, known as the CUSUM and CUSUMSQ tests,
are derived from the residuals of the recursive estimation (known as the recursive
residuals).” The CUSUM statistic is based on a normalised (i.e. scaled) version of
the cumulative sums of the residuals. Under the null hypothesis of perfect parameter
stability, the CUSUM statistic is zero however many residuals are included in the
sum (because the expected value of a disturbance is always zero). A set of &2

> Strictly, the CUSUM and CUSUMSQ statistics are based on the one-step ahead prediction
errors — 1.e. the differences between y, and its predicted value based on the parameters estimated
at time t — 1. See Greene (2002, chapter 7) for full technical details.
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Screenshot 5.4 Chow test for parameter stability

standard error bands is usually plotted around zero and any statistic lying outside
the bands is taken as evidence of parameter instability.

The CUSUMSQ test is based on a normalised version of the cumulative sums
of squared residuals. The scaling is such that under the null hypothesis of parameter
stability, the CUSUMSAQ statistic will start at zero and end the sample with a value
of 1. Again, a set of &2 standard error bands is usually plotted around zero and
any statistic lying outside these is taken as evidence of parameter instability.

Stability tests in EViews

In EViews, to access the Chow test, click on View/Stability Diagnostics/Chow
Breakpoint Test. . .in the ‘Msoftreg’ regression window. In the new window
that appears, enter the date at which it is believed that a breakpoint occurred.
Input 1996:01 in the dialog box in screenshot 5.4 to split the sample roughly in
half. Note that it is not possible to conduct a Chow test or a parameter stability
test when there are outlier dummy variables in the regression, so make sure that
FEB98DUM and FEBO3DUM are omitted from the variable list. This occurs
because when the sample is split into two parts, the dummy variable for one of the
parts will have values of zero for all observations, which would thus cause perfect
multicollinearity with the column of ones that is used for the constant term. So
ensure that the Chow test is performed using the regression containing all of the
explanatory variables except the dummies. By default, EViews allows the values of
all the parameters to vary across the two sub-samples in the unrestricted regressions,
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although if we wanted, we could force some of the parameters to be fixed across
the two sub-samples.
EViews gives three versions of the test statistics, as shown in the following

table.

\

Chow Breakpoint Test: 1996M01

Null Hypothesis: No breaks at specified breakpoints
Varying regressors: C ERSANDP DPROD DCREDIT
DINFLATION DMONEY DSPREAD RTERM

Equation Sample: 1986M05 2013M04

F-statistic 0.756884 Prob. F(8,306) 0.6411
Log likelihood ratio 6.348645 Prob. Chi-Square(8) 0.6082
Wald Statistic 6.055072 Prob. Chi-Square(8) 0.6411

\_ J

The first version of the test is the familiar F-test, which computes a restricted
version and an unrestricted version of the auxiliary regression and ‘compares’ the
residual sums of squares, while the second and third versions are based on x?
formulations. In this case, all three test statistics are smaller than their critical values
and so the null hypothesis that the parameters are constant across the two sub-
samples 1s not rejected. Note that the Chow forecast (i.e. the predictive failure) test
could also be employed by clicking on the View/Stability Diagnostics/Chow
Forecast Test. .. in the regression window. Determine whether the model
can predict the last four observations by entering 2013:01 in the dialog box.
The results of this test are given in the following table (note that only the first two
lines of results are presented since the remainder are not needed for interpretation).

~

Chow Forecast Test

Equation: MSOFTREG

C ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM
Test predictions for observations from 2013M01 to 2013M04

Value df Probability
F-statistic 0.518180 (4,310) 0.7224
Likelihood ratio 2.159117 4 0.7065

- J

The table indicates that the model can indeed adequately predict the 2007
observations. Thus the conclusions from both forms of the test are that there is no
evidence of parameter instability. However, the conclusion should really be that
the parameters are stable with respect to these particular break dates. It is important to
note that for the model to be deemed adequate, it needs to be stable with respect
to any break dates that we may choose. A good way to test this is to use one of the
tests based on recursive estimation.
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Screenshot 5.5 Plotting recursive coefficient estimates

Click on View/Stability Diagnostics/Recursive Estimates (OLS
Only). . .. You will be presented with a menu as shown in screenshot 5.5 contain-
ing a number of options including the CUSUM and CUSUMSQ) tests described
above and also the opportunity to plot the recursively estimated coefficients.

First, check the box next to Recursive coefficients and then recursive esti-
mates will be given for all those parameters listed in the ‘Coefficient display list’
box, which by default is all of them. Click OK and you will be presented with
eight small figures, one for each parameter, showing the recursive estimates and
+2 standard error bands around them. As discussed above, it is bound to take
some time for the coefticients to stabilise since the first few sets are estimated using
such small samples. Given this, the parameter estimates in all cases are remark-
ably stable over time. Now go back to View/Stability Diagnostics/Recursive
Estimates (OLS Only). .. and choose CUSUM Test. The resulting graph is in
screenshot 5.6.

Since the line 1s well within the confidence bands, the conclusion would be
again that the null hypothesis of stability is not rejected. Now repeat the above
but using the CUSUMSAQ test rather than CUSUM. Do we retain the same
conclusion? (Yes) Why?

Measurement errors

As stated above, one of the of the assumptions of the classical linear regression
model is that the explanatory variables are non-stochastic. One way in which this
assumption can be violated is when there is a two-way causal relationship between
the explanatory and explained variable, and this situation (simultaneous equations bias)
is discussed in detail in chapter 7. A further situation where the assumption will not
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apply is when there is measurement error in one or more of the explanatory variables.
Sometimes this is also known as the errors-in-variables problem. Measurement errors
can occur in a variety of circumstances — for example, macroeconomic variables are
almost always estimated quantities (GDP, inflation and so on), as is most information
contained in company accounts. Similarly, it is sometimes the case that we cannot
observe or obtain data on a variable we require and so we need to use a proxy
variable — for instance, many models include expected quantities (e.g. expected
inflation) but since we cannot typically measure expectations, we need to use
a proxy. More generally, measurement error could be present in the dependent
or independent variables, and each of these cases is considered in the following
sub-sections.

Measurement error in the explanatory variable(s)

For simplicity, suppose that we wish to estimate a model containing just one
explanatory variable, x;

yi = B+ Boxy + uy (5.75)
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where u, is a disturbance term. Suppose further that x; is measured with error
so that instead of observing its true value, we observe a noisy version, X; that
comprises the actual x, plus some additional noise, v, that is independent of x;
and u;

% =x 4, (5.76)
Taking equation (5.75) and substituting in for x; from (5.76), we get
ye = B+ Ba(xe — i) + uy (5.77)

We can rewrite this equation by separately expressing the composite error
term, (u, — Bav;)

ye = B1 + Bexy + (u; — Bavy) (5.78)

It should be clear from (5.76) and (5.78) that the explanatory variable measured
with error, (x), and the composite error term (1, — Bov;) are correlated since both
depend on v,. Thus the requirement that the explanatory variables are non-
stochastic does not hold. This causes the parameters to be estimated inconsistently.
It can be shown that the size of the bias in the estimates will be a function of the
variance of the noise in x; as a proportion of the overall disturbance variance. It
can be further shown that it B, is positive, the bias will be negative but it B, is
negative, the bias will be positive — in other words, the parameter estimate will
always be biased towards zero as a result of the measurement noise.

The impact of this estimation bias when the explanatory variables are measured
with error can be quite important and is a serious issue in particular when testing
asset pricing models. The standard approach to testing the CAPM pioneered by
Fama and MacBeth (1973) comprises two stages (discussed more fully in chap-
ter 14). Stage one is to run separate time series regressions for each firm to estimate
the betas and the second stage involves running a cross-sectional regression of the
stock returns on the betas. Since the betas are estimated at the first stage rather
than being directly observable, they will surely contain measurement error. In the
finance literature, the effect of this has sometimes been termed attenuation bias.
Early tests of the CAPM showed that the relationship between beta and returns
was positive but smaller than expected, and this is precisely what would happen
as a result of measurement error in the betas. Various approaches to solving this
issue have been proposed, the most common of which is to use portfolio betas
in place of individual stock betas in the second stage. The hope is that this will
smooth out the estimation error in the betas. An alternative approach attributed
to Shanken (1992) is to modify the standard errors in the second stage regression
to adjust directly for the measurement errors in the betas. More discussion of this
issue will be presented in chapter 14.

Measurement error in the explained variable
Measurement error in the explained variable is much less serious than in the

explanatory variable(s); recall that one of the motivations for the inclusion of the
disturbance term in a regression model is that it can capture measurement errors in
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y. Thus, when the explained variable is measured with error, the disturbance term
will in effect be a composite of the usual disturbance term and another source of
noise from the measurement error. In such circumstances, the parameter estimates
will still be consistent and unbiased and the usual formulae for calculating standard
errors will still be appropriate. The only consequence is that the additional noise
means the standard errors will be enlarged relative to the situation where there was
Nno measurement error in jy.

A strategy for constructing econometric models and a discussion of
model-building philosophies

The objective of many econometric model-building exercises is to build a statis-
tically adequate empirical model which satisties the assumptions of the CLRM,
is parsimonious, has the appropriate theoretical interpretation, and has the right
‘shape’ (i.e. all signs on coefficients are ‘correct’ and all sizes of coefficients are
‘correct’).

But how might a researcher go about achieving this objective? A common
approach to model building is the ‘LSE’ or general-to-specific methodology asso-
ciated with Sargan and Hendry. This approach essentially involves starting with a
large model which is statistically adequate and restricting and rearranging the model
to arrive at a parsimonious final formulation. Hendry’s approach (see Gilbert,
1986) argues that a good model is consistent with the data and with theory. A
good model will also encompass rival models, which means that it can explain all
that rival models can and more. The Hendry methodology suggests the extensive
use of diagnostic tests to ensure the statistical adequacy of the model.

An alternative philosophy of econometric model-building, which pre-dates
Hendry’s research, is that of starting with the simplest model and adding to it
sequentially so that it gradually becomes more complex and a better descrip-
tion of reality. This approach, associated principally with Koopmans (1937), is
sometimes known as a ‘specific-to-general’ or ‘bottoms-up’ modelling approach.
Gilbert (1986) termed this the ‘Average Economic Regression’ since most applied
econometric work had been tackled in that way. This term was also having a joke
at the expense of a top economics journal that published many papers using such
a methodology.

Hendry and his co-workers have severely criticised this approach, mainly on
the grounds that diagnostic testing is undertaken, if at all, almost as an after-thought
and in a very limited fashion. However, if diagnostic tests are not performed, or are
performed only at the end of the model-building process, all earlier inferences are
potentially invalidated. Moreover, if the specific initial model is generally misspec-
ified, the diagnostic tests themselves are not necessarily reliable in indicating the
source of the problem. For example, if the initially specified model omits relevant
variables which are themselves autocorrelated, introducing lags of the included
variables would not be an appropriate remedy for a significant DIV test statistic.
Thus the eventually selected model under a specific-to-general approach could
be sub-optimal in the sense that the model selected using a general-to-specific
approach might represent the data better. Under the Hendry approach, diagnostic
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tests of the statistical adequacy of the model come first, with an examination of
inferences for financial theory drawn from the model left until after a statistically
adequate model has been found.

According to Hendry and Richard (1982), a final acceptable model should
satisty several criteria (adapted slightly here). The model should:

be logically plausible
be consistent with underlying financial theory, including satistying any relevant
parameter restrictions
have regressors that are uncorrelated with the error term
have parameter estimates that are stable over the entire sample
have residuals that are white noise (i.e. completely random and exhibiting no
patterns)
e be capable of explaining the results of all competing models and more.

The last of these is known as the encompassing principle. A model that nests
within it a smaller model always trivially encompasses it. But a small model is
particularly favoured if it can explain all of the results of a larger model; this is
known as parsimonious encompassing.

The advantages of the general-to-specific approach are that it is statistically
sensible and also that the theory on which the models are based usually has nothing
to say about the lag structure of a model. Therefore, the lag structure incorporated
in the final model is largely determined by the data themselves. Furthermore, the
statistical consequences from excluding relevant variables are usually considered
more serious than those from including irrelevant variables.

The general-to-specific methodology is conducted as follows. The first step
is to form a ‘large’ model with lots of variables on the RHS. This is known as
a generalised unrestricted model (GUM), which should originate from financial
theory, and which should contain all variables thought to influence the dependent
variable. At this stage, the researcher is required to ensure that the model satisfies
all of the assumptions of the CLRM. If the assumptions are violated, appropriate
actions should be taken to address or allow for this, e.g. taking logs, adding lags,
adding dummy variables.

It is important that the steps above are conducted prior to any hypothesis
testing. It should also be noted that the diagnostic tests presented above should be
cautiously interpreted as general rather than specific tests. In other words, rejection
ofa particular diagnostic test null hypothesis should be interpreted as showing that
there is something wrong with the model. So, for example, if the RESET test or
White’s test show a rejection of the null, such results should not be immediately
interpreted as implying that the appropriate response is to find a solution for inap-
propriate functional form or heteroscedastic residuals, respectively. It is quite often
the case that one problem with the model could cause several assumptions to be
violated simultaneously. For example, an omitted variable could cause failures of
the RESET, heteroscedasticity and autocorrelation tests. Equally, a small number
of large outliers could cause non-normality and residual autocorrelation (if they
occur close together in the sample) and heteroscedasticity (if the outliers occur
for a narrow range of the explanatory variables). Moreover, the diagnostic tests
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themselves do not operate optimally in the presence of other types of misspecifica-
tion since they essentially assume that the model is correctly specified in all other
respects. For example, it is not clear that tests for heteroscedasticity will behave
well if the residuals are autocorrelated.

Once a model that satisfies the assumptions of the CLRM has been obtained, it
could be very big, with large numbers of lags and independent variables. The next
stage 1s therefore to reparameterise the model by knocking out very insignificant
regressors. Also, some coefficients may be insignificantly different from each other,
so that they can be combined. At each stage, it should be checked whether the
assumptions of the CLRM are still upheld. If this is the case, the researcher should
have arrived at a statistically adequate empirical model that can be used for testing
underlying financial theories, forecasting future values of the dependent variable,
or for formulating policies.

However, needless to say, the general-to-specific approach also has its critics.
For small or moderate sample sizes, it may be impractical. In such instances, the
large number of explanatory variables will imply a small number of degrees of
freedom. This could mean that none of the variables is significant, especially if
they are highly correlated. This being the case, it would not be clear which of
the original long list of candidate regressors should subsequently be dropped.
Moreover, in any case the decision on which variables to drop may have profound
implications for the final specification of the model. A variable whose coefficient
was not significant might have become significant at a later stage if other variables
had been dropped instead.

In theory, sensitivity of the final specification to the various possible paths of
variable deletion should be carefully checked. However, this could imply checking
many (perhaps even hundreds) of possible specifications. It could also lead to several
final models, none of which appears noticeably better than the others.

The general-to-specific approach, if followed faithfully to the end, will hope-
fully lead to a statistically valid model that passes all of the usual model diagnostic
tests and contains only statistically significant regressors. However, the final model
could also be a bizarre creature that is devoid of any theoretical interpretation.
There would also be more than just a passing chance that such a model could be
the product of a statistically vindicated data mining exercise. Such a model would
closely fit the sample of data at hand, but could fail miserably when applied to
other samples if it is not based soundly on theory.

There now follows another example of the use of the classical linear regression
model in finance, based on an examination of the determinants of sovereign credit
ratings by Cantor and Packer (1996).

Determinants of sovereign credit ratings
Background
Sovereign credit ratings are an assessment of the riskiness of debt issued by govern-

ments. They embody an estimate of the probability that the borrower will default
on her obligation. Two famous US ratings agencies, Moody’s and Standard and
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Poor’s (S&P), provide ratings for many governments. Although the two agencies
use different symbols to denote the given riskiness of a particular borrower, the
ratings of the two agencies are comparable. Gradings are split into two broad cate-
gories: investment grade and speculative grade. Investment grade issuers have good
or adequate payment capacity, while speculative grade issuers either have a high
degree of uncertainty about whether they will make their payments, or are already
in default. The highest grade offered by the agencies, for the highest quality of
payment capacity, is ‘triple A’, which Moody’s denotes ‘Aaa’ and S&P denotes
‘AAA’. The lowest grade issued to a sovereign in the Cantor and Packer sample
was B3 (Moody’s) or B— (S&P). Thus the number of grades of debt quality from
the highest to the lowest given to governments in their sample is 16.

The central aim of Cantor and Packer’s paper is an attempt to explain and
model how the agencies arrived at their ratings. Although the ratings themselves
are publicly available, the models or methods used to arrive at them are shrouded
in secrecy. The agencies also provide virtually no explanation as to what the
relative weights of the factors that make up the rating are. Thus, a model of
the determinants of sovereign credit ratings could be useful in assessing whether
the ratings agencies appear to have acted rationally. Such a model could also be
employed to try to predict the rating that would be awarded to a sovereign that
has not previously been rated and when a re-rating is likely to occur. The paper
continues, among other things, to consider whether ratings add to publicly available
information, and whether it is possible to determine what factors aftect how the
sovereign yields react to ratings announcements.

Data

Cantor and Packer (1996) obtain a sample of government debt ratings for forty-
nine countries as of September 1995 that range between the above gradings. The
ratings variable is quantified, so that the highest credit quality (Aaa/AAA) in the
sample is given a score of 16, while the lowest rated sovereign in the sample is given
ascore of 1 (B3/B—). This score forms the dependent variable. The factors that are
used to explain the variability in the ratings scores are macroeconomic variables. All
of these variables embody factors that are likely to influence a government’s ability
and willingness to service its debt costs. Ideally, the model would also include
proxies for socio-political factors, but these are difficult to measure objectively and
so are not included. It is not clear in the paper from where the list of factors was
drawn. The included variables (with their units of measurement) are:

e  Der capita income (in 1994 US dollars, thousands). Cantor and Packer argue
that per capita income determines the tax base, which in turn influences the
government’s ability to raise revenue.

o  GDP growth (annual 1991—4 average, %). The growth rate of increase in GDP
is argued to measure how much easier it will become to service debt costs in
the future.

e Inflation (annual 1992—4 average, %). Cantor and Packer argue that high
inflation suggests that inflationary money financing will be used to service
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debt when the government is unwilling or unable to raise the required revenue
through the tax system.

e  Fiscal balance (average annual government budget surplus as a proportion of
GDP 19924, %). Again, a large fiscal deficit shows that the government has
a relatively weak capacity to raise additional revenue and to service debt costs.

e External balance (average annual current account surplus as a proportion of
GDP 1992—4, %). Cantor and Packer argue that a persistent current account
deficit leads to increasing foreign indebtedness, which may be unsustainable in
the long run.

e  External debt (foreign currency debt as a proportion of exports in 1994, %).
Reasoning as for external balance (which is the change in external debt over
time).

e Dummy for economic development (=1 for a country classified by the International
Monetary Fund (IMF) as developed, 0 otherwise). Cantor and Packer argue
that credit ratings agencies perceive developing countries as relatively more
risky beyond that suggested by the values of the other factors listed above.

o Dummy for default history (=1 if a country has defaulted, O otherwise). It is
argued that countries that have previously defaulted experience a large fall in
their credit rating.

The income and inflation variables are transformed to their logarithms. The model
is linear and estimated using OLS. Some readers of this book who have a back-
ground in econometrics will note that strictly, OLS is not an appropriate technique
when the dependent variable can take on only one of a certain limited set of values
(in this case, 1, 2, 3,...16). In such applications, a technique such as ordered
probit (not covered in this text) would usually be more appropriate. Cantor and
Packer argue that any approach other than OLS is infeasible given the relatively
small sample size (forty-nine), and the large number (sixteen) of ratings categories.

The results from regressing the rating value on the variables listed above are pre-
sented in their exhibit 5, adapted and presented here as table 5.2. Four regressions
are conducted, each with identical independent variables but a difterent depen-
dent variable. Regressions are conducted for the rating score given by each agency
separately, with results presented in columns (4) and (5) of table 5.2. Occasionally,
the ratings agencies give different scores to a country — for example, in the case
of Italy, Moody’s gives a rating of ‘A1’°, which would generate a score of 12 on a
16-scale. S&P, on the other hand, gives a rating of ‘AA’, which would score 14 on
the 16-scale, two gradings higher. Thus a regression with the average score across
the two agencies, and with the difference between the two scores as dependent
variables, 1s also conducted, and presented in columns (3) and (6), respectively of

table 5.2.

Interpreting the models

The models are difficult to interpret in terms of their statistical adequacy, since
virtually no diagnostic tests have been undertaken. The values of the adjusted R?,
at over 90% for each of the three ratings regressions, are high for cross-sectional
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Dependent variable
Explanatory Expected Average Moody's S&P Difference
variable sign rating rating rating Moody’'s/S&P
M (2 (€)] (4) (5) 6)
Intercept ? 1.442 3.408 —0.524 3.932*
(0.663) (1.379) (—=0.223) (2.521)
Per capita income + 1.242% 1.027+* 1.458** —0.431%*
(5.302) (4.041) (6.048) (—2.688)
GDP growth + 0.151 0.130 0.171* —0.040
(1.935) (1.545) (2.132) ( 0.756)
Inflation — —0.611** —0.630** —0.591% —0.039
(—2.839) (=2.701) (—2.671) (—0.265)
Fiscal balance 4F 0.073 0.049 0.097* —0.048
(1.324) (0.818) (1.71) (—1.274)
External balance + 0.003 0.006 0.001 0.006
(0.314) (0.535) (0.046) (0.779)
External debt — —0.013*** —0.015%* —0.07 1% —0.004***
(—5.088) (—5.365) (—4.236) (—2.133)
Development dummy + 2,776 2.957%* 2.595%* 0.362
(4.25) (4.175) (3.861) (0.81)
Default dummy — —2.042% —1.63** —2.622** 1.159*
(—3.175) (—2.097) (—3.962) (2.632)
Adjusted R? 0.924 0.905 0.926 0.836 )

Notes: t-ratios in parentheses; *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

regressions, indicating that the model seems able to capture almost all of the
variability of the ratings about their mean values across the sample. There does
not appear to be any attempt at reparameterisation presented in the paper, so it is
assumed that the authors reached this set of models after some searching.

In this particular application, the residuals have an interesting interpretation
as the difterence between the actual and fitted ratings. The actual ratings will be
integers from 1 to 16, although the fitted values from the regression and therefore
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the residuals can take on any real value. Cantor and Packer argue that the model
is working well as no residual is bigger than 3, so that no fitted rating is more
than three categories out from the actual rating, and only four countries have
residuals bigger than two categories. Furthermore, 70% of the countries have
ratings predicted exactly (i.e. the residuals are less than 0.5 in absolute value).

Now, turning to interpret the models from a financial perspective, it is of
interest to investigate whether the coefticients have their expected signs and sizes.
The expected signs for the regression results of columns (3)—(5) are displayed in
column (2) of table 5.2 (as determined by this author). As can be seen, all of
the coefficients have their expected signs, although the fiscal balance and external
balance variables are not significant or are only very marginally significant in all
three cases. The coefficients can be interpreted as the average change in the rating
score that would result from a unit change in the variable. So, for example, a rise
in per capita income of $1,000 will on average increase the rating by 1.0 units
according to Moody’s and 1.5 units according to S&P. The development dummy
suggests that, on average, a developed country will have a rating three notches
higher than an otherwise identical developing country. And everything else equal,
a country that has defaulted in the past will have a rating two notches lower than
one that has always kept its obligation.

By and large, the ratings agencies appear to place similar weights on each of the
variables, as evidenced by the similar coefticients and significances across columns
(4) and (5) of table 5.2. This is formally tested in column (6) of the table, where the
dependent variable is the difference between Moody’s and S&P ratings. Only three
variables are statistically significantly difterently weighted by the two agencies. S&P
places higher weights on income and default history, while Moody’s places more
emphasis on external debt.

The relationship between ratings and yields

In this section of the paper, Cantor and Packer try to determine whether ratings
have any additional information useful for modelling the cross-sectional variability
of sovereign yield spreads over and above that contained in publicly available
macroeconomic data. The dependent variable is now the log of the yield spread,
Le.

In(Yield on the sovereign bond — Yield on a US Treasury Bond)

One may argue that such a measure of the spread is imprecise, for the true credit
spread should be defined by the entire credit quality curve rather than by just two
points on it. However, leaving this issue aside, the results are presented in table 5.3.

Three regressions are presented in table 5.3, denoted specifications (1), (2) and
(3). The first of these is a regression of the In(spread) on only a constant and the
average rating (column (1)), and this shows that ratings have a highly significant
inverse impact on the spread. Specification (2) is a regression of the In(spread) on
the macroeconomic variables used in the previous analysis. The expected signs are
given (as determined by this author) in column (2). As can be seen, all coefficients
have their expected signs, although now only the coefficients belonging to the
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\
Dependent variable: In (yield spread)
Variable Expected sign M 2 3)
Intercept ? 2.105** 0.466 0.074
(16.148) (0.345) (0.071)
Average rating — —0.221* —0.218***
(=19.175) (—4.276)
Per capita — —0.144 0.226
income (—0.927) (1.523)
GDP growth — —0.004 0.029
(—0.142) (1.227)
Inflation —+ 0.108 —0.004
(1.393) (—0.068)
Fiscal balance — —0.037 —0.02
(—1.557) (—1.045)
External balance — —0.038 —0.023
(—1.29) (—1.008)
External debt + 0.003*** 0.000
(2.651) (0.095)
Development — —0.723*** —0.38
dummy (—2.059) (—1.341)
Default dummy + 0.612** 0.085
(2.577) (0.385)
Adjusted R? 0.919 0.857 0.914 )

Notes: t-ratios in parentheses; *, **and *** indicate significance at the 10%, 5% and 1% levels,

respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

external debt and the two dummy variables are statistically significant. Specification
(3) is a regression on both the average rating and the macroeconomic variables.
When the rating is included with the macroeconomic factors, none of the latter
is any longer significant — only the rating coefticient is statistically significantly
different from zero. This message is also portrayed by the adjusted R? values,
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which are highest for the regression containing only the rating, and slightly lower
for the regression containing the macroeconomic variables and the rating. One
may also observe that, under specification (3), the coefticients on the per capita
income, GDP growth and inflation variables now have the wrong sign. This is,
in fact, never really an issue, for if a coefficient is not statistically significant, it
is indistinguishable from zero in the context of hypothesis testing, and therefore
it does not matter whether it is actually insignificant and positive or insignificant
and negative. Only coefficients that are both of the wrong sign and statistically
significant imply that there is a problem with the regression.

It would thus be concluded from this part of the paper that there is no more
incremental information in the publicly available macroeconomic variables that is
useful for predicting the yield spread than that embodied in the rating. The infor-
mation contained in the ratings encompasses that contained in the macroeconomic
variables.

What determines how the market reacts to ratings announcements?

Cantor and Packer also consider whether it is possible to build a model to predict
how the market will react to ratings announcements, in terms of the resulting
change in the yield spread. The dependent variable for this set of regressions
is now the change in the log of the relative spread, i.e. log[(yield — treasury
yield)/treasury yield], over a two-day period at the time of the announcement.
The sample employed for estimation comprises every announcement of a ratings
change that occurred between 1987 and 1994; seventy-nine such announcements
were made, spread over eighteen countries. Of these, thirty nine were actual ratings
changes by one or more of the agencies, and forty were listed as likely in the near
tuture to experience a regrading. Moody’s calls this a ‘watchlist’, while S&P term
it their ‘outlook’ list. The explanatory variables are mainly dummy variables for:

whether the announcement was positive — i.e. an upgrade

whether there was an actual ratings change or just listing for probable regrading
whether the bond was speculative grade or investment grade

whether there had been another ratings announcement in the previous sixty
days

e the ratings gap between the announcing and the other agency.

The following cardinal variable was also employed:
e the change in the spread over the previous sixty days.

The results are presented in table 5.4, but in this text, only the final specification
(numbered 5 in Cantor and Packer’s exhibit 11) containing all of the variables
described above is included.

As can be seen from table 5.4, the models appear to do a relatively poor job
of explaining how the market will react to ratings announcements. The adjusted
R? value is only 12%, and this is the highest of the five specifications tested
by the authors. Further, only two variables are significant and one marginally
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Table 5.4 What determines reactions to ratings announcements?

Dependent variable: log relative spread
Independent variable Coefficient (t-ratio)
Intercept —0.02
(—1.4)
Positive announcements 0.01
(0.34)
Ratings changes —0.01
(—0.37)
Moody’s announcements 0.02
(1.51)
Speculative grade 0.03**
(2.33)
Change in relative spreads from day —60 to day —1 —0.06
(—=1.1)
Rating gap 0.03*
(1.7)
Other rating announcements from day —60 to day —1 0.05**
(2.15)
Adjusted R? 0.12
- J

Note: * and ** denote significance at the 10% and 5% levels, respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

significant of the seven employed in the model. It can therefore be stated that yield
changes are significantly higher following a ratings announcement for speculative
than investment grade bonds, and that ratings changes have a bigger impact on
yield spreads if there is an agreement between the ratings agencies at the time
the announcement is made. Further, yields change significantly more if there has
been a previous announcement in the past sixty days than if not. On the other
hand, neither whether the announcement is an upgrade or a downgrade, nor
whether it is an actual ratings change or a name on the watchlist, nor whether the
announcement is made by Moody’s or S&P, nor the amount by which the relative
spread has already changed over the past sixty days, has any significant impact on
how the market reacts to ratings announcements.
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5.15.6 Conclusions

e To summarise, six factors appear to play a big role in determining sovereign
credit ratings — incomes, GDP growth, inflation, external debt, industrialised
or not and default history

e The ratings provide more information on yields than all of the macro-economic
factors put together

e One cannot determine with any degree of confidence what factors determine
how the markets will react to ratings announcements.

\

The key terms to be able to define and explain from this chapter are

e homoscedasticity e heteroscedasticity

e autocorrelation e dynamic model

e equilibrium solution e robust standard errors

e skewness e kurtosis

e outlier e functional form

¢ multicollinearity e omitted variable

e irrelevant variable e parameter stability

e recursive least squares e general-to-specific approach
e measurement error

(N J

Self-study questions

1. Are assumptions made concerning the unobservable error terms (1) or about
their sample counterparts, the estimated residuals (11,)? Explain your answer.

2. What pattern(s) would one like to see in a residual plot and why?

3. A researcher estimates the following model for stock market returns, but
thinks that there may be a problem with it. By calculating the ¢-ratios and
considering their significance and by examining the value of R? or otherwise,
suggest what the problem might be.

7: = 0.638 + 0.402x5, — 0.891x3, R>=0.96, R>=0.89
(0.436) (0.291)  (0.763)

(5.79)

How might you go about solving the perceived problem?
4. (a) State in algebraic notation and explain the assumption about the CLRM’s
disturbances that is referred to by the term ‘homoscedasticity’.
(b) What would the consequence be for a regression model if the errors were
not homoscedastic?
(c) How might you proceed if you found that (b) were actually the case?
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. (@) What do you understand by the term ‘autocorrelation’?

(b) An econometrician suspects that the residuals of her model might be
autocorrelated. Explain the steps involved in testing this theory using the
Durbin—Watson (DIV) test.

(c) The econometrician follows your guidance (!!!) in part (b) and calculates
a value for the Durbin—Watson statistic of 0.95. The regression has sixty
quarterly observations and three explanatory variables (plus a constant
term). Perform the test. What is your conclusion?

(d) In order to allow for autocorrelation, the econometrician decides to use a
model in first differences with a constant

Ay = Bi + BaAxo + B3 Axs + BaAxy + u, (5.80)

By attempting to calculate the long-run solution to this model, explain
what might be a problem with estimating models entirely in first
differences.

() The econometrician finally settles on a model with both first differences
and lagged levels terms of the variables

Ay, = B1 + BoAxo + B3Axsy + BaAxy + Bsxog
+ Boxsi—1 + Brxg—1 + vy (5.81)

Can the Durbin—Watson test still validly be used in this case?
. Calculate the long-run static equilibrium solution to the following dynamic
econometric model

Ay = Bi + BoAxo + B3Ax3 + Bayi—1 + Bsxoi—
+ Box3i—1 + Brxzi—4 + 1y (5.82)

. What might Ramsey’s RESET test be used for? What could be done if it

were found that the RESET test has been failed?

. (a) Why is it necessary to assume that the disturbances of a regression model
are normally distributed?

(b) In a practical econometric modelling situation, how might the problem
that the residuals are not normally distributed be addressed?

. (a) Explain the term ‘parameter structural stability’?

(b) A financial econometrician thinks that the stock market crash of October
1987 fundamentally changed the risk—return relationship given by the
CAPM equation. He decides to test this hypothesis using a Chow test.
The model is estimated using monthly data from January 1981-December
1995, and then two separate regressions are run for the sub-periods
corresponding to data before and after the crash. The model is

re=o+ BRy + u; (5.83)

so that the excess return on a security at time ¢ is regressed upon the
excess return on a proxy for the market portfolio at time ¢. The results
for the three models estimated for a given stock are as follows:
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10.

11.
12.

13.

1981 M1-1995M 12

re = 0.0215 4 1.491r,,; RSS=0.189 T =180 (5.84)
1981 M1-1987M 10

ry =0.0163 4+ 1.308 1, RSS=0.079 T = 82 (5.85)
1987M11-1995M12

re = 0.0360 + 1.613r,,, RSS =0.082 T = 98 (5.86)

(c) What are the null and alternative hypotheses that are being tested here, in
terms of @ and f?

(d) Perform the test. What is your conclusion?

For the same model as above, and given the following results, do a forward

and backward predictive failure test:

1981 M1-1995M12

ry = 0.0215 + 1.491r,,; RSS =0.189 T = 180 (5.87)
1981 M1-1994M 12

re = 0.0212 + 1.478 v, RSS =0.148 T = 168 (5.88)
1982M1-1995M12

ry = 0.0217 + 1.523 v, RSS=0.182 T'= 168 (5.89)

‘What is your conclusion?

Why is it desirable to remove insignificant variables from a regression?

Explain why it is not possible to include an outlier dummy variable in a

regression model when you are conducting a Chow test for parameter

stability. Will the same problem arise if you were to conduct a predictive
failure test? Why or why not?

Re-open the ‘macro.wtl’ and apply the stepwise procedure including all of

the explanatory variables as listed above, i.e. ersandp dprod dcredit dinflation

dmoney dspread rterm with a strict 5% threshold criterion for inclusion in
the model. Then examine the resulting model both financially and
statistically by investigating the signs, sizes and significances of the parameter
estimates and by conducting all of the diagnostic tests for model adequacy.

(a) Explain the term ‘measurement error’.

(b) How does measurement error arise?

(c) Is measurement error more serious if it is present in the dependent
variable or the independent variable(s) of a regression? Explain your
answer.

(d) What is the likely impact of measurement error on tests of the CAPM
and what are the possible solutions?
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Learning outcomes Y

In this chapter, you will learn how to

e Explain the defining characteristics of various types of stochastic processes

e Identify the appropriate time series model for a given data series

e Produce forecasts for autoregressive moving average (ARMA) and
exponential smoothing models

e Evaluate the accuracy of predictions using various metrics

e Estimate time series models and produce forecasts from them in EViews

0000000 coee Introductlon

Univariate time series models are a class of specifications where one attempts to model
and to predict financial variables using only information contained in their own
past values and possibly current and past values of an error term. This practice can
be contrasted with structural models, which are multivariate in nature, and attempt
to explain changes in a variable by reference to the movements in the current
or past values of other (explanatory) variables. Time series models are usually
a-theoretical, implying that their construction and use is not based upon any
underlying theoretical model of the behaviour of a variable. Instead, time series
models are an attempt to capture empirically relevant features of the observed data
that may have arisen from a variety of different (but unspecified) structural models.
An important class of time series models is the family of autoregressive integrated
moving average (ARIMA) models, usually associated with Box and Jenkins (1976).
Time series models may be useful when a structural model is inappropriate. For
example, suppose that there is some variable y, whose movements a researcher
wishes to explain. It may be that the variables thought to drive movements of y,
are not observable or not measurable, or that these forcing variables are measured
at a lower frequency of observation than y,. For example, y, might be a series of
daily stock returns, where possible explanatory variables could be macroeconomic
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indicators that are available monthly. Additionally, as will be examined later in this
chapter, structural models are often not useful for out-of-sample forecasting. These
observations motivate the consideration of pure time series models, which are the
focus of this chapter.

The approach adopted for this topic is as follows. In order to define, estimate
and use ARIMA models, one first needs to specify the notation and to define
several important concepts. The chapter will then consider the properties and
characteristics of a number of specific models from the ARIMA family. The book
endeavours to answer the following question: ‘For a specified time series model
with given parameter values, what will be its defining characteristics?” Following
this, the problem will be reversed, so that the reverse question is asked: ‘Given a set
of data, with characteristics that have been determined, what is a plausible model
to describe that data?’

Some notation and concepts

The following sub-sections define and describe several important concepts in time
series analysis. Each will be elucidated and drawn upon later in the chapter. The first
of these concepts is the notion of whether a series is stationary or not. Determining
whether a series is stationary or not is very important, for the stationarity or
otherwise of a series can strongly influence its behaviour and properties. Further
detailed discussion of stationarity, testing for it, and implications of it not being
present, are covered in chapter 8.

A strictly stationary process

A strictly stationary process is one where, for any t, t,..., tr € Z, any k € Z
and T=1,2,...
Eys Yoo ooos VeVt oo o0 Y1) = FYtites Yootes - s Yoo - yr) - (61)

where F denotes the joint distribution function of the set of random variables
(Tong, 1990, p.3). It can also be stated that the probability measure for the sequence
{y:} is the same as that for {y,4}V k (where V k> means ‘for all values of k’). In
other words, a series is strictly stationary if the distribution of its values remains the
same as time progresses, implying that the probability that y falls within a particular
interval is the same now as at any time in the past or the future.

A weakly stationary process

If a series satisfies (6.2)—(6.4) for t = 1, 2, ..., 00, it is said to be weakly or
covariance stationary

(1) E(y) =n (6.2)
@) E(yi— )y —w) =0? <00 6.3)
G) E(yn =)y, = ) = Vipmry V11, 12 (6.4)
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These three equations state that a stationary process should have a constant mean, a
constant variance and a constant autocovariance structure, respectively. Definitions
of the mean and variance of a random variable are probably well known to readers,
but the autocovariances may not be.

The autocovariances determine how y is related to its previous values, and for
a stationary series they depend only on the difference between f; and f,, so that
the covariance between y, and y,_; is the same as the covariance between y;_1¢
and y,_11, etc. The moment

E(Yt - E(yt»(yt—s - E(yt—5>) =V, S = O’ 17 2’ s (6.5)

is known as the autocovariance function. When s = 0, the autocovariance at lag zero
is obtained, which is the autocovariance of y, with y;, i.e. the variance of y. These
covariances, Y, are also known as autocovariances since they are the covariances
of y with its own previous values. The autocovariances are not a particularly useful
measure of the relationship between y and its previous values, however, since the
values of the autocovariances depend on the units of measurement of y;, and hence
the values that they take have no immediate interpretation.

It 1s thus more convenient to use the autocorrelations, which are the autoco-
variances normalised by dividing by the variance

=2 s=01,2 ... (6.6)

Yo

The series 7, now has the standard property of correlation coefficients that the
values are bounded to lie between £1. In the case that s = 0, the autocorrelation
at lag zero is obtained, i.e. the correlation of y, with y,, which is of course 1. If 7,
is plotted against s = 0, 1, 2, ..., a graph known as the autocorrelation function (acf)
or correlogram is obtained.

A white noise process

Roughly speaking, a white noise process is one with no discernible structure. A
definition of a white noise process is

E(y) =n 6.7)

var(y,) = o (6.8)
o if t=v

Vier = {O otherwise (6.9)

Thus a white noise process has constant mean and variance, and zero autocovari-
ances, except at lag zero. Another way to state this last condition would be to say
that each observation is uncorrelated with all other values in the sequence. Hence
the autocorrelation function for a white noise process will be zero apart from a
single peak of 1 at s = 0. If u = 0, and the three conditions hold, the process is
known as zero mean white noise.
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If it is further assumed that y, is distributed normally, then the sample auto-
correlation coefticients are also approximately normally distributed

T, ~ approx. N(0,1/T)

where T is the sample size, and 7, denotes the autocorrelation coefficient at lag
s estimated from a sample. This result can be used to conduct significance tests
for the autocorrelation coefficients by constructing a non-rejection region (like
a confidence interval) for an estimated autocorrelation coefficient to determine
whether it is significantly different from zero. For example, a 95% non-rejection
region would be given by

1
+1.96 x —
JT

for s # 0. If the sample autocorrelation coefficient, 7y, falls outside this region for
a given value of s, then the null hypothesis that the true value of the coefticient at
that lag s is zero is rejected.

It is also possible to test the joint hypothesis that all m of the 7;, correlation
coefficients are simultaneously equal to zero using the Q-statistic developed by
Box and Pierce (1970)

m

Q=TY # (6.10)
k=1

where T = sample size, m = maximum lag length.

The correlation coefficients are squared so that the positive and negative coef-
ficients do not cancel each other out. Since the sum of squares of independent
standard normal variates is itself a x> variate with degrees of freedom equal to the
number of squares in the sum, it can be stated that the Q-statistic is asymptotically
distributed as a x> under the null hypothesis that all m autocorrelation coefficients
are zero. As for any joint hypothesis test, only one autocorrelation coefficient needs
to be statistically significant for the test to result in a rejection.

However, the Box—Pierce test has poor small sample properties, implying that
it leads to the wrong decision too frequently for small samples. A variant of the
Box—Pierce test, having better small sample properties, has been developed. The
modified statistic is known as the Ljung—Box (1978) statistic

m AD
QF = T(T+2)Z Tfk

k=1

~ X 6.11)

It should be clear from the form of the statistic that asymptotically (that is, as
the sample size increases towards infinity), the (T'+ 2) and (T — k) terms in the
Ljung—Box formulation will cancel out, so that the statistic is equivalent to the
Box—Pierce test. This statistic is very useful as a portmanteau (general) test of linear
dependence in time series.
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Suppose that a researcher had estimated the first five autocorrelation coefficients using
a series of length 100 observations, and found them to be

Lag 1 2 3 4 5
Autocorrelation coefficient 0.207 —0.013 0.086 0.005 —-0.022

Test each of the individual correlation coefficients for significance, and test all
five jointly using the Box-Pierce and Ljung-Box tests.

00 00000000000 0000000000000000000000000000000000000000000000000
A 95% confidence interval can be constructed for each coefficient using

1
+1.96 x —

vT

where T'= 100 in this case. The decision rule is thus to reject the null hypothesis
that a given coefficient is zero in the cases where the coefticient lies outside the
range (—0.196, +0.196). For this example, it would be concluded that only the
first autocorrelation coefficient is significantly different from zero at the 5% level.

Now, turning to the joint tests, the null hypothesis is that all of the first five
autocorrelation coefficients are jointly zero, i.e.

I_I()Z'L'1 :O,TQZO,T3:O,T4:O,T5:O
The test statistics for the Box—Pierce and Ljung—Box tests are given respectively as

Q=100 x (0.207* + —0.013* + 0.086 + 0.005> 4+ —0.022%)
=5.09 (6.12)

0.2072 —0.013>  0.086>
+ +
100—1  100—2  100—3

Q*:lOOXlOZx(

0.0052 —0.0222
=5.26 (6.13)

100—4+ 100 =5

The relevant critical values are from a x 2 distribution with five degrees of freedom,
which are 11.1 at the 5% level, and 15.1 at the 1% level. Clearly, in both cases,
the joint null hypothesis that all of the first five autocorrelation coefficients are
zero cannot be rejected. Note that, in this instance, the individual test caused
a rejection while the joint test did not. This is an unexpected result that may
have arisen as a result of the low power of the joint test when four of the five
individual autocorrelation coefficients are insignificant. Thus the effect of the
significant autocorrelation coefficient is diluted in the joint test by the insignificant
coefticients. The sample size used in this example is also modest relative to those
commonly available in finance.
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Moving average processes

The simplest class of time series model that one could entertain is that of the

moving average process. Let u, (t = 1, 2, 3,...) be a white noise process with
E(u;) = 0 and var(u,) = o2. Then
Ve :,Uv+”t+91”t—1+92“172+"'+94sz4 (6.14)

is a ¢ th order moving average mode, denoted MA(q). This can be expressed using
sigma notation as

q
yo=p+ Y O+ (6.15)
i=1

A moving average model is simply a linear combination of white noise processes,
so that y, depends on the current and previous values of a white noise disturbance
term. Equation (6.15) will later have to be manipulated, and such a process is most
easily achieved by introducing the lag operator notation. This would be written
Ly, = y,—1 to denote that y, is lagged once. In order to show that the ith lag of y,
is being taken (that is, the value that y, took i periods ago), the notation would be
L'y, = y,_i. Note that in some books and studies, the lag operator is referred to
as the ‘backshift operator’, denoted by B. Using the lag operator notation, (6.15)
would be written as

q
yo=n+Y 6Lu +u (6.16)
i=1
or as
yi = pn+0(L)u, 6.17)

where: (L) =146, L+ 6,L*> + --- + 6, L.

In much of what follows, the constant (i) is dropped from the equations.
Removing p considerably eases the complexity of algebra involved, and is incon-
sequential for it can be achieved without loss of generality. To see this, consider
a sample of observations on a series, 2 that has a mean 2. A zero-mean series, y;
can be constructed by simply subtracting z from each observation z;.

The distinguishing properties of the moving average process of order g given
above are

(1) E(y) =n (6.18)

@ var(y)=w=(14+6{+6;+---+6)o° 6.19)

(3) covariances y;

(6.20)

2

(95 + 95+191 + 95+292 + -+ Qqeq_s) (o2 fOi’ s = l, 2, ceesq
0 for s > q

So, a moving average process has constant mean, constant variance, and autoco-

variances which may be non-zero to lag ¢ and will always be zero thereafter. Each
of these results will be derived below.
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Consider the following MA(2) process

Y=ty + 61+ O, (6.21)

where 1, is a zero mean white noise process with variance 0.

(1) Calculate the mean and variance of y,.

(2) Derive the autocorrelation function for this process (i.e. express the
autocorrelations, 7y, 1o, . . . as functions of the parameters 6, and 6,).

(3) If6; = —0.5and 6, = 0.25, sketch the acf of y,.

Solution
() It E(u;) =0, then E(u,—;) =0V i (6.22)

So the expected value of the error term is zero for all time periods. Taking
expectations of both sides of (6.21) gives

E(y;) = E(u; + 01u;—1 + Oou, )
= E(Mt) + 91E<Mt_1) + QZE(“t—Z) = O (623)

var(y,) = E[y, — E(y)lly: — E(yi)] (6.24)

but E(y,) = 0, so that the last component in each set of square brackets in
(6.24) is zero and this reduces to

var(y;) = E[(y:)(y:)] (6.25)
Replacing y; in (6.25) with the RHS of (6.21)

var(y,) = E[(u; + O1u,—1 + O, o) (u; + Oru—1 + Oru,_5)] (6.26)

var(y;) = E [Mtz +607u |+ 603u , + cross—products] (6.27)

But Elcross-products] = 0 since cov(u,, u;—;) = 0 for s # 0. ‘Cross-products’ is
thus a catchall expression for all of the terms in u which have different time
subscripts, such as u,_ju,_» or u;_su,_», etc. Again, one does not need to
worry about these cross-product terms, since these are effectively the autoco-
variances of u,, which will all be zero by definition since u, is a random error
process, which will have zero autocovariances (except at lag zero). So

var(y) = yo = E [u] + 07u;_ + 65u; | (6.28)
var(y) = yo = 0> + 670° + 6507 6.29)
var(y) =y = (1467 4+ 65) o” (6.30)

Yo can also be interpreted as the autocovariance at lag zero.
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(2) Calculating now the acf of y,, first determine the autocovariances and then
the autocorrelations by dividing the autocovariances by the variance.
The autocovariance at lag 1 is given by

v = Elys = E(y)llyi-1 — E(yi-1)] (6.31)

v = Elydlyi-1] (6.32)

vi = E[(u; + O + Ouy o) (-1 + 011, + Or1,_3)] (6.33)
Again, ignoring the cross-products, (6.33) can be written as

i =E[(61u;_, + 616207 ,)] (6.34)

y1 = 610"+ 6,6,0° (6.35)

yi =6 +66,)0° (6.36)

The autocovariance at lag 2 is given by

= Ely: — E(y)llyi—2 — E(yi—2)] (6.37)

= E[yly:-2] (6.38)
= E[(u; + Or1t,—1 + Ostiy—2) (11— + O111,—3 + Ortiy_s)] (6.39)

= E[(62u7_,)] (6.40)

Y2 = 60" (6.41)

The autocovariance at lag 3 is given by

vs = Elyr — E(y)llyi—s — E(yi-3)] (6.42)
vs = Elylyi-3] (6.43)
v3 = E[(u; + 0111 + Ooui; o) (13 + Oru,_4 + G211, _5)] (6.44)
Vs =0 (6.45)

So ¥ = 0 for s 2. All autocovariances for the MA(2) process will be zero for
any lag length, s, greater than 2.
The autocorrelation at lag 0 is given by

Yo

=" =1 (6.46)
Yo
The autocorrelation at lag 1 is given by
01 + 6,6,)0> 0, + 6,0
= O +6i6)0” (01 +6:16) 6.47)

v (1+67+03)0> (1+67+063)
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Figure 6.1  Autocorrelation function for sample MA(2) process
The autocorrelation at lag 2 is given by
0,)o 2
=" = (22) = , (6.48)
v o (1+68+63)0% (1+67+063)
The autocorrelation at lag 3 is given by
=220 (6.49)
Yo
The autocorrelation at lag s is given by
Vs
T, =—=0Vs>2 (6.50)
Yo
(3) For 6 = —0.5 and 6, = 0.25, substituting these into the formulae above
gives the first two autocorrelation coefficients as 7y = —0.476, 7, = 0.190.

Autocorrelation coefticients for lags greater than 2 will all be zero for an

MA(2) model. Thus the acf plot will appear as in figure 6.1.

secccscccsns @ Autoregressive processes

An autoregressive model is one where the current value of a variable, y, depends
upon only the values that the variable took in previous periods plus an error term.

An autoregressive model of order p, denoted as AR (p), can be expressed as

yi=un+oiyt oyt dpyi—p +u

(6.51)
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where u, is a white noise disturbance term. A manipulation of expression (6.51)
will be required to demonstrate the properties of an autoregressive model. This
expression can be written more compactly using sigma notation

p
ye=p+ Z Gi yi—i + 1y (6.52)
i=1

or using the lag operator, as

P
yr=w+Y diLy+u (6.53)
i=1
or
d(L)y, = pn+u, (6.54)
where ¢(L) = (1 — ¢ L — ¢poL? —--- — ¢, LP).

Box 6.1 The stationarity condition for an AR(p) model ™

Setting p to zero in (6.54), for a zero mean AR (p) process, y;, given by

L)y = u (6.55)
it would be stated that the process is stationary if it is possible to write
o =(L) u, (6.56)

with ¢(L)~! converging to zero. This means that the autocorrelations will
decline eventually as the lag length is increased. When the expansion
(L)~ is calculated, it will contain an infinite number of terms, and can be
written as an MA(00), e.g. aju,—1 + axu,—p + azu,—3 + - -- 4+ u,. If the
process given by (6.54) is stationary, the coefticients in the MA(00)
representation will decline eventually with lag length. On the other hand, if
the process is non-stationary, the coefticients in the MA(00) representation
would not converge to zero as the lag length increases.

The condition for testing for the stationarity of a general AR (p) model
is that the roots of the ‘characteristic equation’

| —rz— o — — 2’ =0 (6.57)

all lie outside the unit circle. The notion of a characteristic equation is
so-called because its roots determine the characteristics of the process y, —
for example, the acf for an AR process will depend on the roots of this
characteristic equation, which is a polynomial in z.

J
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6.4.1  The stationarity condition

Stationarity is a desirable property of an estimated AR model, for several reasons.
One important reason is that a model whose coefficients are non-stationary will
exhibit the unfortunate property that previous values of the error term will have a
non-declining effect on the current value of y, as time progresses. This is arguably
counter-intuitive and empirically implausible in many cases. More discussion on
this issue will be presented in chapter 8. Box 6.1 defines the stationarity condition
algebraically.

EXample63 0000000000000 0000000000000000000000000000000000000000000000000000000000
Is the following model stationary?
Vi = Yi—1 (6.58)

In order to test this, first write y,_; in lag operator notation (i.e. as Ly,), and take this
term over to the LHS of (6.58), and factorise

ye = Ly +u, (6.59)
ye — Ly, = u, (6.60)
y(1 — L) = u, (6.61)

Then the characteristic equation is
1—2=0, (6.62)

having the root z = 1, which lies on, not outside, the unit circle. In fact, the particular
AR(p) model given by (6.58) is a non-stationary process known as a random walk (see
chapter 8).

This procedure can also be adopted for autoregressive models with longer lag
lengths and where the stationarity or otherwise of the process is less obvious. For
example, is the following process for y, stationary?

Ve =3yi—1 — 275y + 0.75y,_3 + u; (6.63)

Again, the first stage is to express this equation using the lag operator notation,
and then taking all the terms in y over to the left hand side (LHS)

yi = 3Ly, — 2.75L%y, + 0.75L%y, + u, (6.64)
(1 —=3L+275L* —0.75L%y, = u, (6.65)
The characteristic equation is
1—=3242752 —0.752 =0 (6.66)
which fortunately factorises to

(1—2)(1 =151 —052) =0 (6.67)
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so that the roots are z =1, 2= 2/3, and z =2. Only one of these lies outside the
unit circle and hence the process for y, described by (6.63) is not stationary.

Wold’s decomposition theorem

Wold’s decomposition theorem states that any stationary series can be decomposed
into the sum of two unrelated processes, a purely deterministic part and a purely
stochastic part, which will be an MA(00). A simpler way of stating this in the
context of AR modelling is that any stationary autoregressive process of order p
with no constant and no other terms can be expressed as an infinite order moving
average model. This result is important for deriving the autocorrelation function
for an autoregressive process.

For the AR (p) model, given in, for example, (6.51) (with w set to zero for
simplicity) and expressed using the lag polynomial notation, ¢(L)y, = u,, the
Wold decomposition is

yi = Y (L)u, (6.68)

where Y/(L) = (L)™' = (1 =1 L — ¢ L —--- — ¢, LF)”"
The characteristics of an autoregressive process are as follows. The (uncondi-
tional) mean of y is given by

E(y,) = a (6.69)

l—¢p1—¢po—---— 9,

The autocovariances and autocorrelation functions can be obtained by solving a set
of simultaneous equations known as the Yule—Walker equations. The Yule—Walker
equations express the correlogram (the ts) as a function of the autoregressive
coefticients (the ¢s)

T=¢+T+ -+ 71,19,
=T+ + -+ 71,00,

(6.70)
T, = Tp—1¢1 + Tp—2¢2 + -+ ¢p

For any AR model that is stationary, the autocorrelation function will decay
geometrically to zero.! These characteristics of an autoregressive process will be
derived from first principles below using an illustrative example.

Consider the following simple AR(1) model
v =n+or1y—1+u 6.71)
! Note that the 7, will not follow an exact geometric sequence, but rather the absolute value of the

7, is bounded by a geometric series. This means that the autocorrelation function does not have
to be monotonically decreasing and may change sign.
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(1) Calculate the (unconditional) mean y;,.

For the remainder of the question, set the constant to zero (u = 0) for simplicity.
(2) Calculate the (unconditional) variance of y;.
(3) Derive the autocorrelation function for this process.

Solution

(i) The unconditional mean will be given by the expected value of expression

(6.71)

E(y) = E(n + ¢1y:-1) (6.72)

E(y) = u+ $E(yi—1) (6.73)
But also

V-1 = U+ P1y—2 + 1y (6.74)
So, replacing y;—1 in (6.73) with the RHS of (6.74)

E(y:) = n+ é1(u + ¢1E(yi—2)) (6.75)

E(y) =+ ¢+ ¢7E(yi-2) (6.76)

Lagging (6.74) by a further one period

Yico =+ Gry—3+us (6.77)

Repeating the steps given above one more time
E(y) = m+ ¢+ ¢ (1 + $1E(y,-3)) (6.78)
E(y) = u+ o1+ &l + $E(y-3) (6.79)

Hopefully, readers will by now be able to see a pattern emerging. Making n
such substitutions would give

E() = u(1+ ¢+ 7+ + ¢! ") + ¢ E(yim) (6.80)

So long as the model is stationary, i.e. |¢1| < 1, then ¢ = 0. Therefore,
taking limits as n — 00, then lim,_ 0@ E(y,—,) = 0, and so

E)=u(l+¢+¢7+) (6.81)

Recall the rule of algebra that the finite sum of an infinite number of geomet-
rically declining terms in a series is given by ‘first term in series divided by
(1 minus common difference)’, where the common difference is the quantity
that each term in the series is multiplied by to arrive at the next term. It can

thus be stated from (6.81) that

I
I—¢

E(y,) = (6.82)
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(ii)

(iii)

Thus the expected or mean value of an autoregressive process of order one
is given by the intercept parameter divided by one minus the autoregressive
coefticient.

Calculating now the variance of y;, with p set to zero

Ye =1yt (6.83)
This can be written equivalently as
yi(l =i L) = u, (6.84)

From Wold’s decomposition theorem, the AR(p) can be expressed as an
MA(00)

ye =1 —¢1L) u, (6.85)

yo= (14 ¢ L+¢2L2+ - )u, (6.86)
or

Yo =t 4 b1+ Pl o+ Plus+ - (6.87)

Solong as [¢1] < 1, i.e. so long as the process for y, is stationary, this sum will
converge.

From the definition of the variance of any random variable y, it is possible
to write

var(y) = E[y: — E(y)lly: — E(yn)] (6.88)
but E(y;) = 0, since i is set to zero to obtain (6.83) above. Thus

var(y,) = E[(y)(y0)] (6.89)

var(y,) = E[(u 4+ 11—t + u—o+ - ) (u, + dru— + du—o+ )]

(6.90)

var(y,) = E[u] + ¢ju;_, + ¢pju;_, + - + cross-products] (6.91)
As discussed above, the ‘cross-products’ can be set to zero.

var(y) = yo = E[u] + ¢u;_ + dju;_, + -] 6.92)

var(y) = 0” + 1o + ¢f62 4+ (6.93)

var(y) =0 (1+ ¢ + ¢/ +--) (6.94)
Provided that |¢]| < 1, the infinite sum in (6.94) can be written as

o2
var(y,) = m (6.95)

Turning now to the calculation of the autocorrelation function, the auto-
covariances must first be calculated. This is achieved by following similar
algebraic manipulations as for the variance above, starting with the definition
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of the autocovariances for a random variable. The autocovariances for lags 1,
2,3,...,s,wil be denoted by y1, ¥2, ¥3, - - ., Vs, as previously.

Y1 = cov (yr, yi—1) = Elyr = E(y)llyi—1 — E(yi—1)] (6.96)
Since p has been set to zero, E(y;) = 0 and E(y,—1) = 0, so
Y1 = Elyiyi—] (6.97)

under the result above that E(y,) = E(y;—1) = 0. Thus

V)= E[(wr + Priti—1 + Pl + - -)(Mr—1 + o+ Plu s+ - )]

(6.98)
vi =E[¢ru;_ + ¢ju;_, + - -+ + cross — products| (6.99)
Again, the cross-products can be ignored so that
Vi =107 +¢lo’ + ¢l + - (6.100)
n=o0’(1+¢7+¢+--) 6.101)
V1= ¢1—02 (6.102)
(1-¢7)
For the second autocovariance,
Y2 = cov(ys, yi—2) = E[yr = E(y)llyi—2 — E(yi—2)] (6.103)
Using the same rules as applied above for the lag 1 covariance
v2 = Elyiyi-2] (6.104)
V2= E[(”z + Gru1 + Pius + - ')(”t72 + s+ Pius+ - )]
(6.105)
Vo = E[@7u;_, + ¢plu;_5 + - - - ~cross-products] (6.106)
2= ¢+ ¢lo’ + - (6.107)
vo=¢io’(1+¢;+¢/+--) (6.108)
V2= i (6.109)
(1-¢7)

By now it should be possible to see a pattern emerging. If these steps were
repeated for ys, the following expression would be obtained

3 .2
16

V3 = m (6.110)
1
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and for any lag s, the autocovariance would be given by

s 2
%=—&i; 6.111)
(1-97)
The acf can now be obtained by dividing the covariances by the variance, so
that
n="—1 6.112)
Yo
1—¢7
== (1= ¢7) — 6.113)
Yo o?
(1-97)
1—¢7
Q:@:J__i*wf (6.114)
Yo o’
(1-97)
3= ¢; (6.115)

The autocorrelation at lag s is given by
T = ¢ (6.116)

which means that corr(y;, y;—;) = ¢;. Note that use of the Yule-Walker equa-
tions would have given the same answer.

secccccccces @ The partial autocorrelation function

The partial autocorrelation function, or pact (denoted 7), measures the corre-
lation between an observation k periods ago and the current observation, after
controlling for observations at intermediate lags (i.e. all lags < k) —i.e. the corre-
lation between y; and y,_p, after removing the effects of y,—p4+1, Yi—k+2s -« +» Yi—1-
For example, the pacf for lag 3 would measure the correlation between y, and y;_3
after controlling for the effects of y,_1 and y,_».

At lag 1, the autocorrelation and partial autocorrelation coefticients are equal,
since there are no intermediate lag effects to eliminate. Thus, 717 = 11, where 74
is the autocorrelation coefficient at lag 1.

At lag 2

wm=(n-—1)/(1-1) (6.117)

where 7y and 7 are the autocorrelation coefficients at lags 1 and 2, respectively. For
lags greater than two, the formulae are more complex and hence a presentation of
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these is beyond the scope of this book. There now proceeds, however, an intuitive
explanation of the characteristic shape of the pact for a moving average and for an
autoregressive process.

In the case of an autoregressive process of order p, there will be direct con-
nections between y, and y,_; for s < p, but no direct connections for s > p. For
example, consider the following AR (3) model

Vi =¢0+ d1yi—1 + d2yi—2 + d3yi—3 + u; (6.118)

There is a direct connection through the model between y, and y,_1, and between
y: and y,_», and between y, and y,_3, but not between y, and y,_;, for s > 3.
Hence the pact will usually have non-zero partial autocorrelation coefficients for
lags up to the order of the model, but will have zero partial autocorrelation coeffi-
cients thereafter. In the case of the AR (3), only the first three partial autocorrelation
coefticients will be non-zero.

‘What shape would the partial autocorrelation function take for a moving aver-
age process? One would need to think about the MA model as being transformed
into an AR in order to consider whether y, and y,_p, k = 1, 2,.. ., are directly
connected. In fact, so long as the MA(q) process is invertible, it can be expressed
as an AR (00). Thus a definition of invertibility is now required.

The invertibility condition

An MA(q) model is typically required to have roots of the characteristic equation
0(z) = 0 greater than one in absolute value. The invertibility condition is math-
ematically the same as the stationarity condition, but is different in the sense that
the former refers to MA rather than AR processes. This condition prevents the
model from exploding under an AR (00) representation, so that §~'(L) converges
to zero. Box 6.2 shows the invertibility condition for an MA(2) model.

Box 6.2 The invertibility condition for an MA(2) model ™~

In order to examine the shape of the pact for moving average processes,
consider the following MA(2) process for y;
e = u; + O1u,—q + Ou—p = 60(L)u, 6.119)
Provided that this process is invertible, this MA(2) can be expressed as an
AR (00)
o0

yi= Ly +u (6.120)
i=1

Ve =C1Yi—1 T Y2+ 33+ uy (6.121)
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It is now evident when expressed in this way that for a moving average
model, there are direct connections between the current value of y and all
of its previous values. Thus, the partial autocorrelation function for an
MA(g) model will decline geometrically, rather than dropping off to zero
after ¢ lags, as is the case for its autocorrelation function. It could thus be
stated that the acf for an AR has the same basic shape as the pact for an
MA, and the acf for an MA has the same shape as the pacf for an AR.

.........I..Q ARMAprOCesses

By combining the AR (p) and MA(q) models, an ARMA(p, q) model is obtained.
Such a model states that the current value of some series y depends linearly on its
own previous values plus a combination of current and previous values of a white
noise error term. The model could be written

J

d(L)y, = o+ 0(L)u, (6.122)
where
¢(L)=1—¢L—¢L>— - —¢,L" and

O(L)=1+6,L+6,L>+---+06,L
or

Ye =M+ ¢1)/z—1 + ¢2Yt—2 + -+ ¢p)’t—p + 01,

+ 6o+ Ou g+ ouy (6.123)
with
E(u;) = 0; E(Mtz) =0 E(uu,)=0,t #s

The characteristics of an ARMA process will be a combination of those from
the autoregressive (AR) and moving average (MA) parts. Note that the pacf is
particularly useful in this context. The acf alone can distinguish between a pure
autoregressive and a pure moving average process. However, an ARMA process
will have a geometrically declining acf, as will a pure AR process. So, the pacf is
useful for distinguishing between an AR (p) process and an ARMA(p, q) process —
the former will have a geometrically declining autocorrelation function, but a
partial autocorrelation function which cuts oft to zero after p lags, while the latter
will have both autocorrelation and partial autocorrelation functions which decline
geometrically.

We can now summarise the defining characteristics of AR, MA and ARMA
processes.

An autoregressive process has:
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e a geometrically decaying acf
e anumber of non-zero points of pacf = AR order.

A moving average process has:

number of non-zero points of acf = MA order
a geometrically decaying pacf.

A combination autoregressive moving average process has:

a geometrically decaying acf
a geometrically decaying pact.

In fact, the mean of an ARMA series is given by

E(y;) = ad (6.124)

R
The autocorrelation function will display combinations of behaviour derived from
the AR and MA parts, but for lags beyond g, the act will simply be identical to
the individual AR (p) model, so that the AR part will dominate in the long term.
Deriving the act and pact for an ARMA process requires no new algebra, but is
tedious and hence is left as an exercise for interested readers.

Sample acf and pacf plots for standard processes

Figures 6.2—6.8 give some examples of typical processes from the ARMA family
with their characteristic autocorrelation and partial autocorrelation functions. The
acfand pact are not produced analytically from the relevant formulae for a model of
that type, but rather are estimated using 100,000 simulated observations with distur-
bances drawn from a normal distribution. Each figure also has 5% (two-sided) rejec-
tion bands represented by dotted lines. These are based on (£1.96/,/100000) =
£0.0062, calculated in the same way as given above. Notice how, in each case, the
act and pacf are identical for the first lag.

In figure 6.2, the MA(1) has an acf that is significant for only lag 1, while the
pact declines geometrically, and is significant until lag 7. The act at lag 1 and all of
the pacfs are negative as a result of the negative coefficient in the MA generating
process.

Again, the structures of the acf and pacf in figure 6.3 are as anticipated.
The first two autocorrelation coefficients only are significant, while the partial
autocorrelation coefficients are geometrically declining. Note also that, since the
second coefficient on the lagged error term in the MA is negative, the act and
pact alternate between positive and negative. In the case of the pact, we term this
alternating and declining function a ‘damped sine wave’ or ‘damped sinusoid’.

For the autoregressive model of order 1 with a fairly high coefticient — 1.e.
relatively close to 1 — the autocorrelation function would be expected to die away
relatively slowly, and this is exactly what is observed here in figure 6.4. Again, as
expected for an AR (1), only the first pact coefticient is significant, while all others
are virtually zero and are not significant.
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acf and pacf

B acf
pacf

lag, s

Figure 6.2 Sample autocorrelation and partial autocorrelation functions for an MA(1)
model: y, = —0.5u,-1 + u,

0.4

0.3 B acf
pacf

0.2 1

0.1+

acf and pacf

lag, s

Figure 6.3  Sample autocorrelation and partial autocorrelation functions for an MA(2)
model: y; = 0.5u,_17 — 0.25u,_5 + u,

Figure 6.5 plots an AR (1), which was generated using identical error terms,
but a much smaller autoregressive coefticient. In this case, the autocorrelation
function dies away much more quickly than in the previous example, and in fact
becomes insignificant after around five lags.

Figure 6.6 shows the acfand pact for an identical AR (1) process to that used for
figure 6.5, except that the autoregressive coefticient is now negative. This results
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0.9 4

0.6

acf and pacf
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Figure 6.4 Sample autocorrelation and partial autocorrelation functions for a slowly
decaying AR (1) model: y, = 0.9y, + u;
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Figure 6.5 Sample autocorrelation and partial autocorrelation functions for a more rapidly
decaying AR (1) model: y, = 0.5y, + u;

in a damped sinusoidal pattern for the act, which again becomes insignificant after
around lag 5. Recalling that the autocorrelation coefticient for this AR(1) at lag s
is equal to (—0.5)%, this will be positive for even s, and negative for odd s. Only
the first pact coefficient is significant (and negative).

Figure 6.7 plots the acf and pacf for a non-stationary series (see chapter 8 for an
extensive discussion) that has a unit coefticient on the lagged dependent variable.
The result is that shocks to y never die away, and persist indefinitely in the system.
Consequently, the act function remains relatively flat at unity, even up to lag 10.
In fact, even by lag 10, the autocorrelation coefficient has fallen only to 0.9989.
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Figure 6.6 Sample autocorrelation and partial autocorrelation functions for a more rapidly
decaying AR (1) model with negative coefticient: y, = —0.5y,_1 + u;
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acf and pacf

Figure 6.7 Sample autocorrelation and partial autocorrelation functions for a
non-stationary model (i.e. a unit coefticient): y, = y,—1 + u,

Note also that on some occasions, the act does die away, rather than looking like
figure 6.7, even for such a non-stationary process, owing to its inherent instability
combined with finite computer precision. The pacf, however, is significant only
for lag 1, correctly suggesting that an autoregressive model with no moving average
term is most appropriate.

Finally, figure 6.8 plots the acf and pact for a mixed ARMA process. As one
would expect of such a process, both the acf'and the pacf'decline geometrically — the
acf as a result of the AR part and the pacf as a result of the MA part. The
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Figure 6.8 Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1)
model: y, = 0.5y, + 0.5u,_1 + u,

coefficients on the AR and MA are, however, sufficiently small that both acf and
pact coefticients have become insignificant by lag 6.

Building ARMA models: the Box—Jenkins approach

Although the existence of ARMA models predates them, Box and Jenkins (1976)
were the first to approach the task of estimating an ARMA model in a systematic
manner. Their approach was a practical and pragmatic one, involving three steps:

(1) Identification
(2) Estimation
(3) Diagnostic checking.

These steps are now explained in greater detail.

Step 1

This involves determining the order of the model required to capture the dynamic features
of the data. Graphical procedures are used (plotting the data over time and plotting
the act and pacf) to determine the most appropriate specification.

Step 2

This involves estimation of the parameters of the model specified in step 1. This can
be done using least squares or another technique, known as maximum likelihood,
depending on the model.
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Step 3

This involves model checking — i.e. determining whether the model specified and
estimated is adequate. Box and Jenkins suggest two methods: overfitting and resid-
ual diagnostics. Owerfitting involves deliberately fitting a larger model than that
required to capture the dynamics of the data as identified in stage 1. If the model
specified at step 1 is adequate, any extra terms added to the ARMA model would
be insignificant. Residual diagnostics imply checking the residuals for evidence of
linear dependence which, if present, would suggest that the model originally spec-
ified was inadequate to capture the features of the data. The acf, pacf or Ljung—Box
tests could be used.

It is worth noting that ‘diagnostic testing’ in the Box—Jenkins world essentially
involves only autocorrelation tests rather than the whole barrage of tests outlined
in chapter 4. Also, such approaches to determining the adequacy of the model
could only reveal a model that is underparameterised (‘too small’) and would not
reveal a model that is overparameterised (‘too big’).

Examining whether the residuals are free from autocorrelation is much more
commonly used than overfitting, and this may partly have arisen since for ARMA
models, it can give rise to common factors in the overfitted model that make
estimation of this model difficult and the statistical tests ill behaved. For example,
if the true model is an ARMA(1,1) and we deliberately then fit an ARMA(2,2)
there will be a common factor so that not all of the parameters in the latter model
can be identified. This problem does not arise with pure AR or MA models, only
with mixed processes.

It is usually the objective to form a parsimonious model, which is one that
describes all of the features of data of interest using as few parameters (i.e. as simple
a model) as possible. A parsimonious model is desirable because:

e The residual sum of squares is inversely proportional to the number of degrees
of freedom. A model which contains irrelevant lags of the variable or of
the error term (and therefore unnecessary parameters) will usually lead to
increased coefficient standard errors, implying that it will be more difficult to
find significant relationships in the data. Whether an increase in the number
of variables (i.e. a reduction in the number of degrees of freedom) will actually
cause the estimated parameter standard errors to rise or fall will obviously
depend on how much the RSS falls, and on the relative sizes of T and k. If T'
is very large relative to k, then the decrease in RSS is likely to outweigh the
reduction in T — k so that the standard errors fall. Hence ‘large’ models with
many parameters are more often chosen when the sample size is large.

e Models that are profligate might be inclined to fit to data specific features,
which would not be replicated out-of-sample. This means that the models
may appear to fit the data very well, with perhaps a high value of R?, but
would give very inaccurate forecasts. Another interpretation of this concept,
borrowed from physics, is that of the distinction between ‘signal” and ‘noise’.
The idea is to fit a model which captures the signal (the important features of
the data, or the underlying trends or patterns), but which does not try to fit a
spurious model to the noise (the completely random aspect of the series).
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Information criteria for ARMA model selection

The identification stage would now typically not be done using graphical plots of
the acf and pact. The reason is that when ‘messy’ real data is used, it unfortunately
rarely exhibits the simple patterns of figures 6.2—6.8. This makes the acf and pact
very hard to interpret, and thus it is difticult to specify a model for the data. Another
technique, which removes some of the subjectivity involved in interpreting the
act and pacf, i1s to use what are known as information criteria. Information criteria
embody two factors: a term which is a function of the residual sum of squares
(RSS), and some penalty for the loss of degrees of freedom from adding extra
parameters. So, adding a new variable or an additional lag to a model will have
two competing eftects on the information criteria: the residual sum of squares will
fall but the value of the penalty term will increase.

The object is to choose the number of parameters which minimises the value
of the information criteria. So, adding an extra term will reduce the value of
the criteria only if the fall in the residual sum of squares is sufficient to more
than outweigh the increased value of the penalty term. There are several difterent
criteria, which vary according to how stift the penalty term is. The three most
popular information criteria are Akaike’s (1974) information criterion (AIC),
Schwarz’s (1978) Bayesian information criterion (SBIC) and the Hannan—Quinn
criterion (HQIC). Algebraically, these are expressed, respectively, as

2k

AIC = In(6?) + = (6.125)
o, K
SBIC = In(*) + —In T (6.126)
o 2k
HQIC = In(c7) + Fln(ln(T)) (6.127)

where 62 is the residual variance (also equivalent to the residual sum of squares
divided by the number of observations, T), k = p 4+ ¢ + 1 is the total number
of parameters estimated and T is the sample size. The information criteria are
actually minimised subject to p < p,q < ¢, i.e. an upper limit is specified on
the number of moving average (q) and/or autoregressive (p) terms that will be
considered.

It is worth noting that SBIC embodies a much stifter penalty term than AIC,
while HQIC is somewhere in between. The adjusted R?> measure can also be
viewed as an information criterion, although it is a very soft one, which would
typically select the largest models of all.

Which criterion should be preferred if they suggest different
model orders?

SBIC is strongly consistent (but inefticient) and AIC is not consistent, but is
generally more efficient. In other words, SBIC will asymptotically deliver the
correct model order, while AIC will deliver on average too large a model, even
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with an infinite amount of data. On the other hand, the average variation in
selected model orders from different samples within a given population will be
greater in the context of SBIC than AIC. Overall, then, no criterion is definitely
superior to others.

ARIMA modelling

ARIMA modelling, as distinct from ARMA modelling, has the additional letter
‘T’ in the acronym, standing for ‘integrated’. An integrated autoregressive process is one
whose characteristic equation has a root on the unit circle. Typically researchers
difference the variable as necessary and then build an ARMA model on those
differenced variables. An ARMA(p, q) model in the variable differenced d times
is equivalent to an ARIMA(p, d, q) model on the original data — see chap-
ter 8 for further details. For the remainder of this chapter, it is assumed that
the data used in model construction are stationary, or have been suitably trans-
formed to make them stationary. Thus only ARMA models will be considered
further.

Constructing ARMA models in EViews
Getting started

This example uses the monthly UK house price series which was already incor-
porated in an EViews workfile in chapter 1. There were a total of 268 monthly
observations running from February 1991 (recall that the January observation was
‘lost” in constructing the lagged value) to May 2013 for the percentage change in
house price series.

The objective of this exercise is to build an ARMA model for the house price
changes. Recall that there are three stages involved: identification, estimation and
diagnostic checking. The first stage is carried out by looking at the autocor-
relation and partial autocorrelation coefticients to identify any structure in the
data.

Estimating the autocorrelation coefficients for up to twelve lags

Double click on the DHP series and then click View and choose Correlogram
. ... In the ‘Correlogram Specification’ window, choose Level (since the series we
are investigating has already been transformed into percentage returns or percentage
changes) and in the ‘Lags to include’ box, type 12. Click on OK. The output,
including relevant test statistics, is given in screenshot 6.1.

It is clearly evident from the first columns that the series is quite persistent
given that it is already in percentage change form. The autocorrelation function
dies away quite slowly. Only the first two partial autocorrelation coefficients appear
strongly significant while the autocorrelation coefticients are significant until lag six
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{79 Series: DHP Workfile: UKHP:Untitled!\ =
[Viewl Proc[Objec’tI Prupertiesl { Printl Na mel Freezel [Samplel Geml Sheetl Graph I Stats I]
Correlogram of DHP

Date: 07/06/13 Time: 10:10
Sample: 1991M01 2013M05
Included observations: 268

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0.356 0.356 34.360 0.000
0.432 0350 85175 0.000
0.240 0.021 100.96 0.000
0.200 -0.013 111.96 0.000
0139 0.006 117.26 0.000
0138 0.047 12255 0.000
0.074 -0.022 124.07 0.000
0.117 0.052 127.87 0.000
0176 0.147 136.49 0.000
10 0.141 0.024 14209 0.000
11 0247 0127 15932 0.000
12 0295 0181 183.90 0.000

W oD~ e pa =

Screenshot 6.1  Estimating the correlogram

(they are all outside the dotted lines in the picture), the coefficient is insignificant
at lag seven but then they become significant again from lag eight. The numerical
values of the autocorrelation and partial autocorrelation coefficients at lags 1-12
are given in the fourth and fifth columns of the output, with the lag length given
in the third column.

The penultimate column of output gives the statistic resulting from a Ljung—
Box test with number of lags in the sum equal to the row number (i.e. the number
in the third column). The test statistics will follow a x2(1) for the first row, a x(2)
for the second row, and so on. p-values associated with these test statistics are given
in the last column.

Remember that as a rule of thumb, a given autocorrelation coefficient is classed

as significant if it is outside a £1.96 x 1/(T)% band, where T is the number of
observations. In this case, it would imply that a correlation coefticient is classed as
significant if it is bigger than approximately 0.11 or smaller than —0.11. The band
is of course wider when the sampling frequency is monthly, as it is here, rather than
daily where there would be more observations. It can be deduced that the first six
autocorrelation coefficients (then eight through twelve) and the first two partial
autocorrelation coefficients (then nine, eleven and twelve) are significant under
this rule. Since the first acf coefticient is highly significant, the Ljung—Box joint
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test statistic rejects the null hypothesis of no autocorrelation at the 1% level for all
numbers of lags considered. It could be concluded that a mixed ARMA process
could be appropriate, although it is hard to precisely determine the appropriate
order given these results. In order to investigate this issue further, the information
criteria are now employed.

Using information criteria to decide on model orders

As demonstrated above, deciding on the appropriate model orders from autocor-
relation functions could be very difficult in practice. An easier way is to choose
the model order that minimises the value of an information criterion.

An important point to note is that books and statistical packages often differ
in their construction of the test statistic. For example, the formulae given earlier
in this chapter for Akaike’s and Schwarz’s Information Criteria were

o 2k

AIC = In(6%) + = (6.128)
o,k

SBIC = In(6%) + —(In T) (6.129)

where 62 is the estimator of the variance of regressions disturbances u,, k is the
number of parameters and 7 is the sample size. When using the criterion based on
the estimated standard errors, the model with the lowest value of AIC and SBIC
should be chosen. However, EViews uses a formulation of the test statistic derived
from the log-likelihood function value based on a maximum likelihood estimation
(see chapter 9). The corresponding EViews formulae are

2k

AIC, = =20/ T+ — 6.130)
k

SBIC; = =2/ T+ —(n T) 6.131)

T
where | = —E(l +InQm) + In(i'i/ T))

Unfortunately, this modification is not benign, since it affects the relative
strength of the penalty term compared with the error variance, sometimes leading
different packages to select different model orders for the same data and criterion.

Suppose that it is thought that ARMA models from order (0,0) to (5,5) are
plausible for the house price changes. This would entail considering thirty-six
models (ARMA(0,0), ARMA(1,0), ARMA(2,0), ... ARMA(5,5)), i.e. from zero
up to five lags in both the autoregressive and moving average terms.

In EViews, this can be done by separately estimating each of the models and
noting down the value of the information criteria in each case.” This would be

2 Alternatively, any reader who knows how to write programs in EViews could set up a structure
to loop over the model orders and calculate all the values of the information criteria together —
see chapter 13.
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done in the following way. From the EViews main menu, click on Quick and
choose Estimate Equation .... EViews will open an Equation Specification
window. In the Equation Specification editor, type, for example

dhp c ar(1) ma(1)

For the estimation settings, select LS — Least Squares (NLS and ARMA), select
the whole sample, and click OK — this will specify an ARMAC(1,1). The output is
given in the table below.

4 )

Dependent Variable: DHP
Method: Least Squares
Date: 07/06/13 Time: 10:20
Sample (adjusted): 1991M03 2013M05
Included observations: 267 after adjustments
Convergence achieved after 8 iterations
MA Backcast: 1991M02
Coefficient Std. Error t-Statistic Prob.
C 0.448704 0.180581 2.484784 0.0136
AR(1) 0.840140 0.063711 13.18666 0.0000
MA(1) —0.56410 0.097038 —5.81321 0.0000
R-squared 0.205312 Mean dependent var 0.436493
Adjusted R-squared 0.199292 S.D. dependent var 1.202504
S.E. of regression 1.076028 Akaike info criterion 2.995603
Sum squared resid 305.5590 Schwarz criterion 3.035909
Log likelihood —396.9130 Hannan-Quinn criter. 3.011794
F-statistic 34.10301 Durbin-Watson stat 2.114776
Prob(F-statistic) 0.000000
Inverted AR Roots .84
Inverted MA Roots .56

- )

In theory, the output would then be interpreted in a similar way to that
discussed in chapter 3. However, in reality it is very difficult to interpret the
parameter estimates in the sense of, for example, saying, ‘a one unit increase in
x leads to a B unit increase in y’. In part because the construction of ARMA
models is not based on any economic or financial theory, it is often best not to
even try to interpret the individual parameter estimates, but rather to examine the
plausibility of the model as a whole and to determine whether it describes the data
well and produces accurate forecasts (if this is the objective of the exercise, which it
often is).

The inverses of the AR and MA roots of the characteristic equation are also
shown. These can be used to check whether the process implied by the model is
stationary and invertible. For the AR and MA parts of the process to be stationary
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and invertible, respectively, the inverted roots in each case must be smaller than
one in absolute value, which they are in this case. Note also that the roots are
identical to (absolute values of) the values of the parameter estimates in this case
(since there is only one AR term and one MA term) — in general this will not be
the case when there are more lags. The header for the EViews output for ARMA
models states the number of iterations that have been used in the model estimation
process. This shows that, in fact, an iterative numerical optimisation procedure has
been employed to estimate the coefficients (see chapter 9 for further details).

Repeating these steps for the other ARMA models would give all of the
required values for the information criteria. To give just one more example, in the
case of an ARMA(5,5), the following would be typed in the Equation Specification
editor box:

dhp c ar(1) ar(2) ar(3) ar(4) ar(5) ma(1) ma(2) ma(3) ma(4) ma(5)

Note that, in order to estimate an ARMA(5,5) model, it is necessary to write
out the whole list of terms as above rather than to simply write, for example,
‘dhp c ar(5) ma(5)’, which would give a model with a fifth lag of the dependent
variable and a fifth lag of the error term but no other variables. The values of
all of the Akaike and Schwarz information criteria calculated using EViews are as
follows.

\

Information criteria for ARMA models of the percentage changes in UK house prices
AlC
p/q 0 1 2 3 4 5
0 3.207 3.137 2.999 2.989 2.983 2.981
1 3.082 2.995 2.968 2.959 2.990 2.982
2 2.953 2.960 2.968 2.952 2.952 2.941
3 2.958 2.964 2.969 2.960 2.949 2.953
4 2.965 2.972 2.925 2.932 2.940 2.903
5 2.976 2.957 2.955 2.919 2.945 2.918
SBIC
p/q 0 1 2 3 4 5
0 3.220 3.164 3.039 3.043 3.050 3.061
1 3.109 3.036 3.021 3.026 3.071 3.076
2 2.993 3.014 3.036 3.033 3.046 3.049
3 3.012 3.031 3.050 3.054 3.057 3.075
4 3.033 3.054 3.019 3.041 3.062 3.038
5 3.058 3.052 3.063 3.041 3.080 3.067

- J

So which model actually minimises the two information criteria? In this case,
the criteria choose different models: AIC selects an ARMA(4,5), while SBIC
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selects the smaller ARMA(2,0) model — i.e. an AR(2). These chosen models are
highlighted in bold in the table. It will always be the case that SBIC selects a
model that is at least as small (i.e. with fewer or the same number of parameters)
as AIC, because the former criterion has a stricter penalty term. This means that
SBIC penalises the incorporation of additional terms more heavily. Many different
models provide almost identical values of the information criteria, suggesting that
the chosen models do not provide particularly sharp characterisations of the data
and that a number of other specifications would fit the data almost as well. Note
that we could also have employed the Hannan-Quinn criterion and as an exercise,
you might determine the appropriate model order using that approach too.

Examples of time series modelling in finance
Covered and uncovered interest parity

The determination of the price of one currency in terms of another (i.e. the
exchange rate) has received a great deal of empirical examination in the inter-
national finance literature. Of these, three hypotheses in particular are studied —
covered interest parity (CIP), uncovered interest parity (UIP) and purchasing power
parity (PPP). The first two of these will be considered as illustrative examples in
this chapter, while PPP will be discussed in chapter 8. All three relations are rel-
evant for students of finance, for violation of one or more of the parities may
offer the potential for arbitrage, or at least will offer further insights into how
financial markets operate. All are discussed briefly here; for a more comprehensive
treatment, see Cuthbertson and Nitzsche (2004) or the many references therein.

Covered interest parity

Stated in its simplest terms, CIP implies that, if financial markets are efficient, it
should not be possible to make a riskless profit by borrowing at a risk-free rate
of interest in a domestic currency, switching the funds borrowed into another
(foreign) currency, investing them there at a risk-free rate and locking in a forward
sale to guarantee the rate of exchange back to the domestic currency. Thus, if CIP
holds, it is possible to write

fi—si=@ —r"), (6.132)

where f; and s, are the log of the forward and spot prices of the domestic in terms
of the foreign currency at time ¢, r is the domestic interest rate and r * is the foreign
interest rate. This is an equilibrium condition which must hold otherwise there
would exist riskless arbitrage opportunities, and the existence of such arbitrage
would ensure that any deviation from the condition cannot hold indefinitely. It is
worth noting that, underlying CIP are the assumptions that the risk-free rates are
truly risk-free — that is, there is no possibility for default risk. It is also assumed that
there are no transactions costs, such as broker’s fees, bid—ask spreads, stamp duty,
etc., and that there are no capital controls, so that funds can be moved without
restriction from one currency to another.
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Uncovered interest parity

UIP takes CIP and adds to it a further condition known as ‘forward rate unbi-
asedness’ (FRU). Forward rate unbiasedness states that the forward rate of foreign
exchange should be an unbiased predictor of the future value of the spot rate. If
this condition does not hold, again in theory riskless arbitrage opportunities could
exist. UIP, in essence, states that the expected change in the exchange rate should
be equal to the interest rate differential between that available risk-free in each of
the currencies. Algebraically, this may be stated as

Sipp — S = —r%), 6.133)

where the notation is as above and s ; is the expectation, made at time ¢ of the
spot exchange rate that will prevail at time ¢ + 1.

The literature testing CIP and UIP is huge with literally hundreds of published
papers. Tests of CIP unsurprisingly (for it is a pure arbitrage condition) tend not to
reject the hypothesis that the condition holds. Taylor (1987, 1989) has conducted
extensive examinations of CIP, and concluded that there were historical periods
when arbitrage was profitable, particularly during periods where the exchange
rates were under management.

Relatively simple tests of UIP and FRU take equations of the form (6.133)
and add intuitively relevant additional terms. If UIP holds, these additional terms
should be insignificant. Ito (1988) tests UIP for the yen/dollar exchange rate with
the three-month forward rate for January 1973 until February 1985. The sample
period is split into three as a consequence of perceived structural breaks in the
series. Strict controls on capital movements were in force in Japan until 1977,
when some were relaxed and finally removed in 1980. A Chow test confirms Ito’s
intuition and suggests that the three sample periods should be analysed separately.
Two separate regressions are estimated for each of the three sample sub-periods

Siys — fra=a +bi(si — fi—33) +ba(si—1 — fi—43) + 1y (6.134)

where 5,43 is the spot interest rate prevailing at time ¢ + 3, f; 3 is the forward rate
for three periods ahead available at time ¢, and so on, and u, is an error term. A
natural joint hypothesis to test is Hy: @ = 0 and by =0 and b, = 0. This hypothesis
represents the restriction that the deviation of the forward rate from the realised
rate should have a mean value insignificantly different from zero (¢ = 0) and it
should be independent of any information available at time ¢ (b; = 0 and b, =
0). All three of these conditions must be fulfilled for UIP to hold. The second
equation that Ito tests is

Si4s — fia=a +b(s — fi3) + v (6.135)

where v, is an error term and the hypothesis of interest in this case is Hp: a = 0
and b = 0.

Equation (6.134) tests whether past forecast errors have information useful for
predicting the difference between the actual exchange rate at time ¢ 4 3, and the
value of it that was predicted by the forward rate. Equation (6.135) tests whether
the forward premium has any predictive power for the difterence between the
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Table 6.1 Uncovered interest parity test results

\

Sample period 1973M1-1977M3 1977M4-1980M12 1981M1-1985M2

Panel A: Estimates and hypothesis tests for

Sit3— fia=a+ bils — fi33) + bals1 — fis3) + U

Estimate of a 0.0099 0.0031 0.027
Estimate of by 0.020 0.24 0.077
Estimate of by —-0.37 0.16 -0.21
Joint test x?(3) 23.388 5.248 6.022
P-value for joint test 0.000 0.155 0.111

Panel B: Estimates and hypothesis tests for

Sii3— fra=a+ b(ss — fi3) + v

Estimate of a 0.00 —0.052 —0.89
Estimate of b 0.095 4.18 2.93
Joint test x%(2) 31.923 22.06 5.39
p-value for joint test 0.000 0.000 0.07

J

Source: Ito (1988). Reprinted with permission from MIT Press Journals.

actual exchange rate at time t + 3, and the value of it that was predicted by the
forward rate. The results for the three sample periods are presented in Ito’s table 3,
and are adapted and reported here in table 6.1.

The main conclusion is that UIP clearly failed to hold throughout the period
of strictest controls, but there is less and less evidence against UIP as controls were
relaxed.

Exponential smoothing

Exponential smoothing is another modelling technique (not based on the ARIMA
approach) that uses only a linear combination of the previous values of a series
for modelling it and for generating forecasts of its future values. Given that only
previous values of the series of interest are used, the only question remaining
is how much weight should be attached to each of the previous observations.
Recent observations would be expected to have the most power in helping to
forecast future values of a series. If this is accepted, a model that places more
weight on recent observations than those further in the past would be desirable.
On the other hand, observations a long way in the past may still contain some
information useful for forecasting future values of a series, which would not be
the case under a centred moving average. An exponential smoothing model will
achieve this, by imposing a geometrically declining weighting scheme on the
lagged values of a series. The equation for the model is
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where o is the smoothing constant, with 0 < o < 1, y; is the current realised
value, S is the current smoothed value.

Since o + (1 — o) = 1, S is modelled as a weighted average of the current
observation y, and the previous smoothed value. The model above can be rewritten
to express the exponential weighting scheme more clearly. By lagging (6.136) by
one period, the following expression is obtained

Soi=ay_1+1—a)S._» (6.137)
and lagging again

Soo=ay+1—a)S._; (6.138)
Substituting into (6.136) for S;_; from (6.137)

S=ay+1 —a)(ay—1 + (1 —a)S-2) (6.139)

S=ay+0 —a)ay_ + (1 —a)3S,_, (6.140)
Substituting into (6.140) for S;_» from (6.138)

S=ay+ 1 —a)ay_ + 1 —a)Yy—+ 1 —a)S_s) (6.141)

S=ay+0 —a)ay_ + (1 —a)Yay,_+ (1 —a)PS,_; (6.142)

T successive substitutions of this kind would lead to

T
S, = (Z a(l — oe)'%,) + (1 —a)™Ss (6.143)
i=0

Since o 0O, the effect of each observation declines geometrically as the variable
moves another observation forward in time. In the limit as T — oo, (1—a)T S, —
0, so that the current smoothed value is a geometrically weighted infinite sum of
the previous realisations.

The forecasts from an exponential smoothing model are simply set to the
current smoothed value, for any number of steps ahead, s

fie=S,s=1,2,3,... (6.144)

The exponential smoothing model can be seen as a special case of a Box—Jenkins
model, an ARIMA(0,1,1), with MA coefticient (1 — o) — see Granger and New-
bold (1986, p. 174).

The technique above is known as single or simple exponential smoothing, and
it can be modified to allow for trends (Holt’s method) or to allow for seasonality
(Winter’s method) in the underlying variable. These augmented models are not
pursued further in this text since there is a much better way to model the trends
(using a unit root process — see chapter 8) and the seasonalities (see chapter 9) of
the form that are typically present in financial data.

Exponential smoothing has several advantages over the slightly more complex
ARMA class of models discussed above. First, exponential smoothing is obviously
very simple to use. There is no decision to be made on how many parameters
to estimate (assuming only single exponential smoothing is considered). Thus it is
easy to update the model if a new realisation becomes available.
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Among the disadvantages of exponential smoothing is the fact that it is overly
simplistic and inflexible. Exponential smoothing models can be viewed as but
one model from the ARIMA family, which may not necessarily be optimal for
capturing any linear dependence in the data. Also, the forecasts from an exponential
smoothing model do not converge on the long-term mean of the variable as the
horizon increases. The upshot is that long-term forecasts are overly affected by
recent events in the history of the series under investigation and will therefore be
sub-optimal.

A discussion of how exponential smoothing models can be estimated using
EViews will be given after the following section on forecasting in econometrics.

Forecasting in econometrics

Although the words ‘forecasting’ and ‘prediction’ are sometimes given difterent
meanings in some studies, in this text the words will be used synonymously. In this
context, prediction or forecasting simply means an attempt to determine the values
that a series is likely to take. Of course, forecasts might also usefully be made in a
cross-sectional environment. Although the discussion below refers to time series
data, some of the arguments will carry over to the cross-sectional context.

Determining the forecasting accuracy of a model is an important test of its
adequacy. Some econometricians would go as far as to suggest that the statistical
adequacy of a model in terms of whether it violates the CLRM assumptions
or whether it contains insignificant parameters, is largely irrelevant if the model
produces accurate forecasts. The following sub-sections of the book discuss why
forecasts are made, how they are made from several important classes of models,
how to evaluate the forecasts, and so on.

Why forecast?

Forecasts are made essentially because they are useful! Financial decisions often
involve a long-term commitment of resources, the returns to which will depend
upon what happens in the future. In this context, the decisions made today will
reflect forecasts of the future state of the world, and the more accurate those
forecasts are, the more utility (or money!) is likely to be gained from acting on them.

Some examples in finance of where forecasts from econometric models might
be useful include:

Forecasting tomorrow’s return on a particular share

Forecasting the price of a house given its characteristics

Forecasting the riskiness of a portfolio over the next year

Forecasting the volatility of bond returns

Forecasting the correlation between US and UK stock market movements tomorrow
Forecasting the likely number of defaults on a portfolio of home loans.

Again, it is evident that forecasting can apply either in a cross-sectional or a time
series context. It is useful to distinguish between two approaches to forecasting:
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Out-of-sample forecast
In-sample estimation period evaluation period

|
N RN /

Jan 1990 Dec 1998 Jan 1999 Dec 1999

Figure 6.9 Use of in-sample and out-of-sample periods for analysis

o  Econometric (structural) forecasting — relates a dependent variable to one or more
independent variables. Such models often work well in the long run, since
a long-run relationship between variables often arises from no-arbitrage or
market efficiency conditions. Examples of such forecasts would include return
predictions derived from arbitrage pricing models, or long-term exchange
rate prediction based on purchasing power parity or uncovered interest parity
theory.

e Time series forecasting — involves trying to forecast the future values of a series
given its previous values and/or previous values of an error term.

The distinction between the two types is somewhat blurred — for example, it is not
clear where vector autoregressive models (see chapter 7 for an extensive overview)
fit into this classification.

It is also worth distinguishing between point and interval forecasts. Point fore-
casts predict a single value for the variable of interest, while interval forecasts provide
a range of values in which the future value of the variable is expected to lie with
a given level of confidence.

The difference between in-sample and out-of-sample forecasts

In-sample forecasts are those generated for the same set of data that was used to
estimate the model’s parameters. One would expect the ‘forecasts’ of a model to
be relatively good in-sample, for this reason. Therefore, a sensible approach to
model evaluation through an examination of forecast accuracy is not to use all
of the observations in estimating the model parameters, but rather to hold some
observations back. The latter sample, sometimes known as a holdout sample, would
be used to construct out-of-sample forecasts.

To give an illustration of this distinction, suppose that some monthly FTSE
returns for 120 months (January 1990-December 1999) are available. It would
be possible to use all of them to build the model (and generate only in-sample
forecasts), or some observations could be kept back, as shown in figure 6.9.

What would be done in this case would be to use data from 1990M1 until
1998M12 to estimate the model parameters, and then the observations for 1999
would be forecasted from the estimated parameters. Of course, where each of the
in-sample and out-of-sample periods should start and finish is somewhat arbitrary
and at the discretion of the researcher. One could then compare how close the
forecasts for the 1999 months were relative to their actual values that are in the
holdout sample. This procedure would represent a better test of the model than an
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examination of the in-sample fit of the model since the information from 1999M 1
onwards has not been used when estimating the model parameters.

Some more terminology: one-step-ahead versus multi-step-ahead
forecasts and rolling versus recursive samples

A one-step-ahead forecast is a forecast generated for the next observation only, whereas
multi-step-ahead forecasts are those generated for 1, 2, 3,..., s steps ahead, so that
the forecasting horizon is for the next s periods. Whether one-step- or multi-
step-ahead forecasts are of interest will be determined by the forecasting horizon
of interest to the researcher.

Suppose that the monthly FTSE data are used as described in the example
above. If the in-sample estimation period stops in December 1998, then up to
twelve-step-ahead forecasts could be produced, giving twelve predictions that can
be compared with the actual values of the series. Comparing the actual and forecast
values in this way is not ideal, for the forecasting horizon is varying from one to
twelve steps ahead. It might be the case, for example, that the model produces
very good forecasts for short horizons (say, one or two steps), but that it produces
inaccurate forecasts further ahead. It would not be possible to evaluate whether
this was in fact the case or not since only a single one-step-ahead forecast, a single
two-step-ahead forecast, and so on, are available. An evaluation of the forecasts
would require a considerably larger holdout sample.

A useful way around this problem is to use a recursive or rolling window, which
generates a series of forecasts for a given number of steps ahead. A recursive
forecasting model would be one where the initial estimation date is fixed, but
additional observations are added one at a time to the estimation period. A rolling
window, on the other hand, is one where the length of the in-sample period used to
estimate the model is fixed, so that the start date and end date successively increase
by one observation. Suppose now that only one-, two-, and three-step-ahead
forecasts are of interest. They could be produced using the following recursive and
rolling window approaches:

\

Objective: to produce Data used to estimate model parameters

1-. 2-, 3-step-ahead forecasts for: Rolling window Recursive window

1999M1, M2, M3
1999M2, M3, M4
1999M3, M4, M5
1999Mm4, M5, M6
1999M5, M6, M7
1999M6, M7, M8
1999M7, M8, M9
1999M8, M9, M10
1999M9, M10, M11
1999M10, M11, M12

1990M1-1998M12
1990M2-1999M1
1990M3-1999M2
1990M4-1999M3
1990M5-1999M4
1990M6-1999M5
1990M7-1999M6
1990M8-1999M7
1990M9-1999M8
1990M10-1999M9

1990M1-1998M12
1990M1-1999M1
1990M1-1999M2
1990M1-1999M3
1990M1-1999M4
1990M1-1999M5
1990M1-1999M6
1990M1-1999M7
1990M1-1999M8
1990M1-1999M9
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The sample length for the rolling windows above 1s always set at 108 observations,
while the number of observations used to estimate the parameters in the recursive
case increases as we move down the table and through the sample.

Forecasting with time series versus structural models

To understand how to construct forecasts, the idea of conditional expectations is
required. A conditional expectation would be expressed as

E(Yz+1 |Qt)

This expression states that the expected value of y is taken for time ¢ 4 1, condi-
tional upon, or given, (|) all information available up to and including time ¢ (£2;).
Contrast this with the unconditional expectation of y, which is the expected
value of y without any reference to time, i.e. the unconditional mean of y. The
conditional expectations operator is used to generate forecasts of the series.

How this conditional expectation is evaluated will of course depend on the
model under consideration. Several families of models for forecasting will be
developed in this and subsequent chapters.

A first point to note is that by definition the optimal forecast for a zero mean
white noise process is zero

E(u,4|Q2) =0Vs >0 (6.145)

The two simplest forecasting ‘methods’ that can be employed in almost every
situation are shown in box 6.3.

Box 6.3 Naive forecasting methods ™

(1) Assume no change so that the forecast, f, of the value of y, s steps into
the future is the current value of y

E(yi45|82) = y; (6.146)

Such a forecast would be optimal if y, followed a random walk process.

(2) In the absence of a full model, forecasts can be generated using the
long-term average of the series. Forecasts using the unconditional mean
would be more useful than ‘no change’ forecasts for any series that is
‘mean-reverting’ (i.e. stationary).

N J

Time series models are generally better suited to the production of time series
forecasts than structural models. For an illustration of this, consider the following
linear regression model

ye = B1 4 Boxo 4 Baxs 4 - -+ B + uy (6.147)
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To forecast y, the conditional expectation of its future value is required. Taking
expectations of both sides of (6.147) yields

E(y: 1€2/—1) = E(B1 + Boxor + Baxze + -+ + Brxpe + 1) (6.148)

The parameters can be taken through the expectations operator, since this is
a population regression function and therefore they are assumed known. The
following expression would be obtained

E(y: 12i—1) = B1 + B2E(x2) + B3E(x31) + -+ - + BrE(xks) (6.149)

But there is a problem: what are E(xy;), etc.? Remembering that information is
available only until time t — 1, the values of these variables are unknown. It may be
possible to forecast them, but this would require another set of forecasting models
for every explanatory variable. To the extent that forecasting the explanatory
variables may be as difficult, or even more difficult, than forecasting the explained
variable, this equation has achieved nothing! In the absence of a set of forecasts for
the explanatory variables, one might think of using x», etc., i.e. the mean values
of the explanatory variables, giving

E(y;) = B1 + Bodo + B3z + -+ - + Bex = j! (6.150)

Thus, if the mean values of the explanatory variables are used as inputs to the
model, all that will be obtained as a forecast is the average value of y. Forecasting
using pure time series models is relatively common, since it avoids this problem.

Forecasting with ARMA models

Forecasting using ARMA models is a fairly simple exercise in calculating condi-
tional expectations. Although any consistent and logical notation could be used,
the following conventions will be adopted in this book. Let f; . denote a forecast
made using an ARMA(p,q) model at time ¢ for s steps into the future for some
series y. The forecasts are generated by what is known as a forecast function,

typically of the form

p 9

ft,s = Zaift,sfi + ij”H»sfj (6.151)

i=1 j=1
where fis = yi4s, $ <0; U1y =0, 5 >0 =4, s <0
and a; and b; are the autoregressive and moving average coefficients, respectively.

A demonstration of how one generates forecasts for separate AR and MA
processes, leading to the general equation (6.151) above, will now be given.

Forecasting the future value of an MA(g) process

A moving average process has a memory only of length ¢, and this limits the
sensible forecasting horizon. For example, suppose that an MA(3) model has been
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estimated
Yi=wp+ 01+ Ou o+ 00,3+ u, (6.152)

Since parameter constancy over time is assumed, if this relationship holds for the
series y at time f, it is also assumed to hold for y at time t + 1,14+ 2,..., s0 1
can be added to each of the time subscripts in (6.152), and 2 added to each of the
time subscripts, and then 3, and so on, to arrive at the following

Yirt = 1+ Orup + Ouyq + O30, o + 4 (6.153)

Yirr =+ 01 + Oouy + Ozu g + uign (6.154)

Yits = MU+ 01+ Oouy gy + O3, + 1 (6.155)
Suppose that all information up to and including that at time ¢ is available and
that forecasts for 1,2, ..., s steps ahead — i.e. forecasts for y at times t + 1, ¢ +
2,...,t+s are wanted. y;, ¥;—1, ..., and u;, u,_q, are known, so producing the
forecasts is just a matter of taking the conditional expectation of (6.153)

Jin = E(yig11) = E(u + 011y + Ooui—q + O30, + 1y 41]€2) (6.156)
where E(y;41)¢) 1s a short-hand notation for E(y11|€2;)

i1 = E(1) = i+ 61u, + 0o,y + 31,2 (6.157)

Thus the forecast for y, one step ahead, made at time ¢, is given by this linear
combination of the disturbance terms. Note that it would not be appropriate to
set the values of these disturbance terms to their unconditional mean of zero. This
arises because it is the conditional expectation of their values that is of interest. Given
that all information is known up to and including that at time ¢ is available, the
values of the error terms up to time ¢ are known. But 44 is not known at time ¢
and therefore E(u,41);) = 0, and so on.

The forecast for two steps ahead is formed by taking the conditional expecta-
tion of (6.154)

Ji2 = E(yi421) = E(u + 01141 + Orup + O30, + tpyo | ) (6.158)
2= E(yit21) = 1+ Oou; + 031,y (6.159)

In the case above, 1,4, is not known since information is available only to time ¢,
so E(u42) is set to zero. Continuing and applying the same rules to generate 3-,
4-, ..., s-step-ahead forecasts

Si3=EWisa0) = E( + 01140 + 6oty + O3up + uig3 | Q) (6.160)
fi3= E(yi4311) = 1+ 31, (6.161)
Jia = EWisa1) = 1 (6.162)
Jis = E(sp) =pn Vs =4 (6.163)

As the MA(3) process has a memory of only three periods, all forecasts four or
more steps ahead collapse to the intercept. Obviously, if there had been no constant
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term in the model, the forecasts four or more steps ahead for an MA(3) would be
zero.

Forecasting the future value of an AR(p) process

Unlike a moving average process, an autoregressive process has infinite memory.
To illustrate, suppose that an AR (2) model has been estimated

Vi=W+Q1yi—1 +Payi—o + uy (6.164)

Again, by appealing to the assumption of parameter stability, this equation will
hold for times t + 1, t + 2, and so on

Vier =W+ Prye + Goyi—1 + Ui (6.165)
Yivr =+ 1y + Poyr H 1o (6.166)
Vies = U+ P1yiro + Poyipr + 13 (6.167)

Producing the one-step-ahead forecast is easy, since all of the information required
is known at time t. Applying the expectations operator to (6.165), and setting
E(u,41) to zero would lead to

fra = EQira) = E@ + drye + doyir i | ) (6.168)

Jir=EQi) =+ 1 E(ye | 1) + $2E(yi—1 | 1) (6.169)

Joi = EQrevi1) = 1+ @1y + @2y (6.170)
Applying the same procedure in order to generate a two-step-ahead forecast

fro = E(yiran) = E@ + @1y + oy g | ) (6.171)

fi2 = E(eyop) = 0+ Q1 E(yig1 [ £) + 2 E(y: | 1) 6.172)

The case above is now slightly more tricky, since E(y,11) is not known, although
this in fact is the one-step-ahead forecast, so that (6.172) becomes

Ji2 = E(yrg21) = 0+ @1 fo1 + b2y (6.173)
Similarly, for three, four,...and s steps ahead, the forecasts will be, respectively,
given by

Si3 = E(yi311) = E( + 1yi42 + G2yisr + vig5 | Q) (6.174)

Si3=EWi310) = L+ Q1 EQes2 | 1) + G2 E(yisr | 1) (6.175)

fi3=E(a) =+ b1 fi2+ b2 fia (6.176)

fra=n+o1fiz+dafin (6.177)
etc. so

fos=m+¢ fis—1+dofio (6.178)



292

6.11.8

Univariate time series modelling and forecasting

Table 6.2 Forecast error aggregation ™\

Steps ahead Forecast Actual Squared error Absolute error

1 0.20 —0.40 (0.20——0.40)> = 0.360 |0.20 — —0.40| = 0.600
2 0.15 0.20 (0.15—0.20)?> = 0.002 |0.15—0.20| = 0.050

3 0.10 0.10 (0.10—0.10)> = 0.000 |0.10—0.10] = 0.000

4 0.06 —0.10 (0.06 ——0.10)> = 0.026 |0.06 — —0.10] = 0.160
5 0.04 —0.05 (0.04 ——0.05)2 =0.008 |0.04 ——0.05| = 0.090

N J

Thus the s-step-ahead forecast for an AR(2) process is given by the intercept +
the coefticient on the one-period lag multiplied by the time s — 1 forecast 4 the
coefhicient on the two-period lag multiplied by the s — 2 forecast.

ARMA(p,q) forecasts can easily be generated in the same way by applying the
rules for their component parts, and using the general formula given by (6.151).

Determining whether a forecast is accurate or not

For example, suppose that tomorrow’s return on the FTSE is predicted to be
0.2, and that the outcome is actually —0.4. Is this an accurate forecast? Clearly,
one cannot determine whether a forecasting model is good or not based upon
only one forecast and one realisation. Thus in practice, forecasts would usually
be produced for the whole of the out-of-sample period, which would then be
compared with the actual values, and the difference between them aggregated in
some way. The forecast error for observation i is defined as the difference between
the actual value for observation i and the forecast made for it. The forecast error,
defined in this way, will be positive (negative) if the forecast was too low (high).
Therefore, it is not possible simply to sum the forecast errors, since the positive
and negative errors will cancel one another out. Thus, before the forecast errors
are aggregated, they are usually squared or the absolute value taken, which renders
them all positive. To see how the aggregation works, consider the example in
table 6.2, where forecasts are made for a series up to five steps ahead, and are then
compared with the actual realisations (with all calculations rounded to three decimal
places).

The mean squared error (MSE) and mean absolute error (MAE) are now
calculated by taking the average of the fourth and fifth columns, respectively

MSE = (0.360 4 0.002 4 0.000 4 0.026 + 0.008)/5 = 0.079 6.179)
MAE = (0.600 4- 0.050 4 0.000 4 0.160 + 0.090)/5 = 0.180 (6.180)

Taken individually, little can be gleaned from considering the size of the MSE or
MAE, for the statistic is unbounded from above (like the residual sum of squares or
RSS). Instead, the MSE or MAE from one model would be compared with those
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of other models for the same data and forecast period, and the model(s) with the
lowest value of the error measure would be argued to be the most accurate.

MSE provides a quadratic loss function, and so may be particularly useful
in situations where large forecast errors are disproportionately more serious than
smaller errors. This may, however, also be viewed as a disadvantage if large errors
are not disproportionately more serious, although the same critique could also,
of course, be applied to the whole least squares methodology. Indeed Dielman
(1986) goes as far as to say that when there are outliers present, least absolute
values should be used to determine model parameters rather than least squares.
Makridakis (1993, p. 528) argues that mean absolute percentage error (MAPE)
is ‘a relative measure that incorporates the best characteristics among the various
accuracy criteria’. Once again, denoting s-step-ahead forecasts of a variable made
at time ¢ as f;; and the actual value of the variable at time ¢ as y,;, then the MSE
can be defined as

T
MSE = c— fil)? 6.181
ﬂ =5 _ZT Yirs = fis) (6.181)

where T is the total sample size (in-sample 4 out-of-sample), and T; is the first
out-of-sample forecast observation. Thus in-sample model estimation initially runs
from observation 1 to (7{—1), and observations T; to T are available for out-of-
sample estimation, i.e. a total holdout sample of T'— (11 — 1).

MAE measures the average absolute forecast error, and is given by

MAE = ! > fil (6.182)
T T (m-ns |

Adjusted MAPE (AMAPE) or symmetric MAPE corrects for the problem of
asymmetry between the actual and forecast values

100 r

T— (T, — 1)

Yi+s — ft,s
Yt—i—s + ft,s

AMAPE = (6.183)

t=T,

The symmetry in (6.183) arises since the forecast error is divided by twice the
average of the actual and forecast values. So, for example, AMAPE will be the
same whether the forecast is 0.5 and the actual value is 0.3, or the actual value is
0.5 and the forecast is 0.3. The same is not true of the standard MAPE formula,
where the denominator is simply y,4s, so that whether y, or f;, is larger will
affect the result

T

100
MAPE= ———— %"
T— (-1 %

MAPE also has the attractive additional property compared to MSE that it can
be interpreted as a percentage error, and furthermore, its value is bounded from

below by 0.

Yt—l—s ft s
Yi+s

(6.184)
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Unfortunately, it is not possible to use the adjustment if the series and the
forecasts can take on opposite signs (as they could in the context of returns forecasts,
for example). This is due to the fact that the prediction and the actual value may,
purely by coincidence, take on values that are almost equal and opposite, thus
almost cancelling each other out in the denominator. This leads to extremely large
and erratic values of AMAPE. In such an instance, it is not possible to use MAPE
as a criterion either. Consider the following example: say we forecast a value of
fi.s = 3, but the out-turn is that y,4; = 0.0001. The addition to total MSE from
this one observation is given by

1
— % (0.0001 — 3)> = 0.0230 (6.185)
391

This value for the forecast is large, but perfectly feasible since in many cases it will
be well within the range of the data. But the addition to total MAPE from just
this single observation is given by

100 10.0001 — 3

— = 7670 (6.186)
391 | 0.0001

MAPE has the advantage that for a random walk in the log levels (i.e. a zero
forecast), the criterion will take the value one (or 100 if we multiply the formula
by 100 to get a percentage, as was the case for the equation above). So if a
forecasting model gives a MAPE smaller than one (or 100), it is superior to the
random walk model. In fact the criterion is also not reliable if the series can take
on absolute values less than one. This point may seem somewhat obvious, but it is
clearly important for the choice of forecast evaluation criteria.

Another criterion which is popular is Theil’s U-statistic (1966). The metric is
defined as follows

XT: (Yt-i—s - fl,s)z

t=T Yi+s

U= : (6.187)
i <Yt+: _fbt,5>
=T Vits

where fb, is the forecast obtained from a benchmark model (typically a simple
model such as a naive or random walk). A U-statistic of one implies that the model
under consideration and the benchmark model are equally (in)accurate, while a
value of less than one implies that the model is superior to the benchmark, and
vice versa for U > 1. Although the measure is clearly useful, as Makridakis and
Hibon (1995) argue, it is not without problems since if fb; ; is the same as y,4,
Uwill be infinite since the denominator will be zero. The value of U will also be
influenced by outliers in a similar vein to MSE and has little intuitive meaning.”

> Note that the Theil’s U-formula reported by EViews is slightly different.
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Statistical versus financial or economic loss functions

Many econometric forecasting studies evaluate the models’ success using statistical
loss functions such as those described above. However, it is not necessarily the case
that models classed as accurate because they have small mean squared forecast errors
are useful in practical situations. To give one specific illustration, it has recently
been shown (Gerlow, Irwin and Liu, 1993) that the accuracy of forecasts according
to traditional statistical criteria may give little guide to the potential profitability
of employing those forecasts in a market trading strategy. So models that perform
poorly on statistical grounds may still yield a profit if used for trading, and vice
versa.

On the other hand, models that can accurately forecast the sign of future
returns, or can predict turning points in a series have been found to be more
profitable (Leitch and Tanner, 1991). Two possible indicators of the ability of
a model to predict direction changes irrespective of their magnitude are those
suggested by Pesaran and Timmerman (1992) and by Refenes (1995). The relevant
formulae to compute these measures are, respectively

1 T
% correct sign predictions = m Z Zias (6.188)
- (L -1 %
where 24, =1 if ()’rﬁfr,;) >0

Zits = 0 otherwise

and

T’
1
% correct direction change predictions = ——— Zpops (6.189)
0 gep T— (T — 1) tXT: i+
=14

where z4. =1 if (yies — y)(frs — y1) > 0

Zi1s = 0 otherwise

Thus, in each case, the criteria give the proportion of correctly predicted signs and
directional changes for some given lead time s, respectively.

Considering how strongly each of the three criteria outlined above (MSE,
MAE and proportion of correct sign predictions) penalises large errors relative to
small ones, the criteria can be ordered as follows:

Penalises large errors least — penalises large errors most heavily
Sign prediction - MAE — MSE
MSE penalises large errors disproportionately more heavily than small errors,
MAE penalises large errors proportionately equally as heavily as small errors, while

the sign prediction criterion does not penalise large errors any more than small
errors.



296

6.11.10

Univariate time series modelling and forecasting

Finance theory and time series analysis

An example of ARIMA model identification, estimation and forecasting in the
context of commodity prices is given by Chu (1978). He finds ARIMA models
useful compared with structural models for short-term forecasting, but also finds
that they are less accurate over longer horizons. It also observed that ARIMA
models have limited capacity to forecast unusual movements in prices.

Chu (1978) argues that, although ARIMA models may appear to be com-
pletely lacking in theoretical motivation, and interpretation, this may not nec-
essarily be the case. He cites several papers and offers an additional example to
suggest that ARIMA specifications quite often arise naturally as reduced form
equations (see chapter 7) corresponding to some underlying structural relation-
ships. In such a case, not only would ARIMA models be convenient and easy to
estimate, they could also be well grounded in financial or economic theory after
all.

Forecasting using ARMA models in EViews

Once a specific model order has been chosen and the model estimated for a
particular set of data, it may be of interest to use the model to forecast future values
of the series. Suppose that the AR (2) model selected for the house price percentage
changes series were estimated using observations February 1991-December 2010,
leaving twenty-nine remaining observations to construct forecasts for and to test
torecast accuracy (for the period January 2011-May 2013).

Once the required model has been estimated and EViews has opened a window
displaying the output, click on the Forecast icon. In this instance, the sample
range to forecast would be entered as 2011M01-2013MO5. There are two methods
available in EViews for constructing forecasts: dynamic and static. Select the option
Dynamic to calculate multi-step forecasts starting from the first period in the
forecast sample or Static to calculate a sequence of one-step-ahead forecasts,
rolling the sample forwards one observation after each forecast. There is also a box
that allows you to choose to use actual rather than forecasted values for lagged
dependent variables for the out-of-sample observations. Screenshot 6.2 shows
the window to enter these options while the outputs for the dynamic and static
forecasts are given in screenshots 6.3 and 6.4. By default, EViews will store the
forecasts in a new series DHPE If you examine this series you will see that all of
the observations up to and including December 2010 are the same as the original
series (since we did not forecast those data points) but the data points from January
2011 onwards represent the forecasts from the AR (2).

The forecasts are plotted using the continuous line, while a confidence interval
is given by the two dotted lines in each case. For the dynamic forecasts, it is clearly
evident that the forecasts quickly converge upon the long-term unconditional
mean value as the horizon increases. Of course, this does not occur with the series
of one-step-ahead forecasts produced by the ‘static’ command. Several other useful
measures concerning the forecast errors are displayed in the plot box, including the
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~Forecast of :
Equation: UNTITLED Series: DHP ’
~Series names . ~Method
Forecast name: | Hueil @ Dynamic forecast

(7 Static forecast
["] structural (ignore ARMA)
Coef uncertainty in 5.E. calc

S.E. (optional): |

GARCHoptional): |

-Forecast sample ~Output
| 2011m01 2013m05 Forecast graph
Forecast evaluation

Insert actuals for out-of-sample observations

coc

Screenshot 6.2 The options available when producing forecasts

square root of the mean squared error (RMSE), the MAE, the MAPE and Theil’s
U-statistic. The MAPE for the dynamic and static forecasts for DHP are well
over 100% in both cases, which can sometimes happen for the reasons outlined
above. This indicates that the model forecasts are unable to account for much of
the variability of the out-of-sample part of the data. This is to be expected as
forecasting changes in house prices, along with the changes in the prices of any
other assets, is difficult!

EViews provides another piece of useful information — a decomposition of
the forecast errors. The mean squared forecast error can be decomposed into
a bias proportion, a variance proportion and a covariance proportion. The bias
component measures the extent to which the mean of the forecasts is difterent to
the mean of the actual data (i.e. whether the forecasts are biased). Similarly, the
variance component measures the difference between the variation of the forecasts
and the variation of the actual data, while the covariance component captures any
remaining unsystematic part of the forecast errors. As one might have expected,
the forecasts are not biased. Accurate forecasts would be unbiased and also have a
small variance proportion, so that most of the forecast error should be attributable
to the covariance (unsystematic or residual) component. For further details, see
Granger and Newbold (1986).

A robust forecasting exercise would of course employ a longer out-of-sample
period than the two years or so used here, would perhaps employ several competing
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Forecast: DHPF
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e Forcast sampk: 2011M01 2013005
24" Included observations: 25
Root Mean Squared Error 0.851845
11 Mean Absolute Error 0.673152
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Screenshot 6.3 Dynamic forecasts for the percentage changes in house prices

models in parallel, and would also compare the accuracy of the predictions by
examining the error measures given in the box after the forecast plots.

Exponential smoothing models in EViews

This class of models can be easily estimated in EViews by double clicking on the
desired variable in the workfile, so that the spreadsheet for that variable appears,
and selecting Proc on the button bar for that variable and then Exponential
Smoothing/Simple Exponential Smoothing. ... The screen with options
will appear as in screenshot 6.5.

There is a variety of smoothing methods available, including single and dou-
ble, or various methods to allow for seasonality and trends in the data. Select
Single (exponential smoothing), which is the only smoothing method that has
been discussed in this book, and specify the estimation sample period as 1991M1 —
2010M12 to leave twenty-nine observations for out-of-sample forecasting. Click-
ing OK will give the results in the following table.
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Screenshot 6.4  Static forecasts for the percentage changes in house prices
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/

Date: 07/06/13 Time: 14:31
Sample: 1991M02 2010M12
Included observations: 239
Method: Single Exponential
Original Series: DHP
Forecast Series: DHPSM

o

Parameters: Alpha 0.2400
Sum of Squared Residuals 299.3045
Root Mean Squared Error 1.119071
End of Period Levels: Mean —0.458934

J

The output includes the value of the estimated smoothing coefficient (= 0.24
in this case), together with the RSS for the in-sample estimation period and the
RMSE for the twenty-nine forecasts. The final in-sample smoothed value will
be the forecast for those twenty-nine observations (which in this case would be
-0.458934). EViews has automatically saved the smoothed values (i.e. the model
fitted values) and the forecasts in a series called ‘DHPSM’.
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Screenshot 6.5 Estimating exponential smoothing models

Key concepts

The key terms to be able to define and explain from this chapter are

ARIMA models

invertible MA

autocorrelation function
Box-Jenkins methodology
exponential smoothing

rolling window

multi-step forecast

mean absolute percentage error

~

Ljung-Box test

Wold'’s decomposition theorem
partial autocorrelation function
information criteria

recursive window
out-of-sample

mean squared error

J

Self-study questions

1. What are the differences between autoregressive and moving average models?
2. Why might ARMA models be considered particularly useful for financial
time series? Explain, without using any equations or mathematical notation,
the difference between AR, MA and ARMA processes.
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3. Consider the following three models that a researcher suggests might be a
reasonable model of stock market prices

Vi = Yi—1 + u; (6.190)
ye = 0.5y 1 + u, 6.191)
ye = 0.8u;1 + uy (6.192)

(a) What classes of models are these examples of?

(b) What would the autocorrelation function for each of these processes look
like? (You do not need to calculate the acf, simply consider what shape it
might have given the class of model from which it is drawn.)

(c) Which model is more likely to represent stock market prices from a
theoretical perspective, and why? If any of the three models truly
represented the way stock market prices move, which could potentially
be used to make money by forecasting future values of the series?

(d) By making a series of successive substitutions or from your knowledge of
the behaviour of these types of processes, consider the extent of
persistence of shocks in the series in each case.

4. (a) Describe the steps that Box and Jenkins (1976) suggested should be
involved in constructing an ARMA model.

(b) What particular aspect of this methodology has been the subject of
criticism and why?

(c) Describe an alternative procedure that could be used for this aspect.

5. You obtain the following estimates for an AR (2) model of some returns data

yr = 0.803y,_1 + 0.682y,_» + u,

where u, is a white noise error process. By examining the characteristic
equation, check the estimated model for stationarity.

6. A researcher is trying to determine the appropriate order of an ARMA
model to describe some actual data, with 200 observations available. She has
the following figures for the log of the estimated residual variance (i.e. log
(6%)) for various candidate models. She has assumed that an order greater
than (3,3) should not be necessary to model the dynamics of the data. What
is the ‘optimal’ model order?

ARMA(p,q) log(6?)
model order

(0,0) 0.932
0) 0.864
) 0.902
) 0.836
) 0.801
) 0.821
)

)

)

)

0,1
1,1
2,1
1,2
2,2 0.789
3,2 0.773
2,3 0.782
3,3

0.764

>

>

(1,
(
(
(
(
(
(
(
(

El
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7. How could you determine whether the order you suggested for question 6
was in fact appropriate?

8. ‘Given that the objective of any econometric modelling exercise is to find the
model that most closely ‘fits’ the data, then adding more lags to an ARMA
model will almost invariably lead to a better fit. Therefore a large model is
best because it will fit the data more closely’

Comment on the validity (or otherwise) of this statement.

9. (a) You obtain the following sample autocorrelations and partial

autocorrelations for a sample of 100 observations from actual data:

Lag 1 2 3 4 5 6 7 8
act 0.420 0.104 0.032 —0.206 —0.138 0.042 —0.018 0.074
pact 0.632 0.381 0.268 0.199  0.205 0.101  0.096 0.082

Can you identify the most appropriate time series process for this
data?

(b) Use the Ljung—Box Q™ test to determine whether the first three
autocorrelation coefficients taken together are jointly significantly
different from zero.

10. You have estimated the following ARMA(1,1) model for some time series
data

yr = 0.036 4 0.69y,_1 + 0.42u,_1 + u,

Suppose that you have data for time to t— 1, i.e. you know that y,_; = 3.4,

and 1, = —1.3

(a) Obtain forecasts for the series y for times ¢, t + 1, and f 4 2 using the
estimated ARMA model.

(b) If the actual values for the series turned out to be —0.032, 0.961, 0.203
for ¢, t + 1, t + 2, calculate the (out-of-sample) mean squared error.

(c) A colleague suggests that a simple exponential smoothing model might
be more useful for forecasting the series. The estimated value of the
smoothing constant is 0.15, with the most recently available smoothed
value, S,y being 0.0305. Obtain forecasts for the series y for times f,
t+1, and t 4 2 using this model.

(d) Given your answers to parts (a) to (c) of the question, determine whether
Box—Jenkins or exponential smoothing models give the most accurate
forecasts in this application.

11. (a) Explain what stylised shapes would be expected for the autocorrelation
and partial autocorrelation functions for the following stochastic

processes:
e white noise
e an AR(2)
e an MA(1)

e an ARMA (2,1).
(b) Consider the following ARMA process.

ye = 0.21 4+ 1.32y,1 + 0.58u,_1 + u,
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Determine whether the MA part of the process is invertible.

Produce one-, two-, three- and four-step-ahead forecasts for the process
given in part (b).

Outline two criteria that are available for evaluating the forecasts
produced in part (c), highlighting the differing characteristics of each.
What procedure might be used to estimate the parameters of an ARMA
model? Explain, briefly, how such a procedure operates, and why OLS is
not appropriate.

Briefly explain any difference you perceive between the characteristics of
macroeconomic and financial data. Which of these features suggest the
use of different econometric tools for each class of data?

Consider the following autocorrelation and partial autocorrelation
coetticients estimated using 500 observations for a weakly stationary
series, y;:

Lag acf pacf
1 0.307 0.307
2 —-0.013 0.264
3 0.086 0.147
4 0.031 0.086
5 —0.197 0.049

Using a simple ‘rule of thumb’, determine which, if any, of the acf and
pacf coefticients are significant at the 5% level. Use both the Box—Pierce
and Ljung—Box statistics to test the joint null hypothesis that the first five
autocorrelation coefficients are jointly zero.

What process would you tentatively suggest could represent the most
appropriate model for the series in part (b)? Explain your answer.

Two researchers are asked to estimate an ARMA model for a daily
USD/GBP exchange rate return series, denoted x;. Researcher A uses
Schwarz’s criterion for determining the appropriate model order and
arrives at an ARMA(0,1). Researcher B uses Akaike’s information
criterion which deems an ARMA(2,0) to be optimal. The estimated
models are

A N 9%[ = 0.38 + 0.101/![_]
B:x; =0.63+0.17x,_1 — 0.09x,_»

where u, is an error term.
You are given the following data for time until day z (l.e. t = 2)

x,=0.31, x,—1 = 0.02, x,_p = —0.16
uy=-—0.02, u._y =013, u,p =0.19
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(e)
®

Produce forecasts for the next four days (i.e. for times z4 1, 24 2,

z + 3, z + 4) from both models.

Outline two methods proposed by Box and Jenkins (1970) for
determining the adequacy of the models proposed in part (d).

Suppose that the actual values of the series x on days 241, 242, 2+ 3,
z+ 4 turned out to be 0.62, 0.19, —0.32, 0.72, respectively. Determine
which researcher’s model produced the most accurate forecasts.

13. Select two of the stock series from the ‘CAPM.XLS’ Excel file, construct a
set of continuously compounded returns, and then perform a time series
analysis of these returns. The analysis should include

(a)

An examination of the autocorrelation and partial autocorrelation

functions.

An estimation of the information criteria for each ARMA model order

from (0,0) to (5,5).

An estimation of the model that you feel most appropriate given the

results that you found from the previous two parts of the question.

The construction of a forecasting framework to compare the forecasting

accuracy of

1. Your chosen ARMA model

ii. An arbitrary ARMA(1,1)

iil.  An single exponential smoothing model

iv. A random walk with drift in the log price levels (hint: this is easiest
achieved by treating the returns as an ARMA(0,0) — i.e. simply
estimating a model including only a constant).

Then compare the fitted ARMA model with the models that were

estimated in chapter 4 based on exogenous variables. Which type of

model do you prefer and why?
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Learning outcomes B\

In this chapter, you will learn how to

e Compare and contrast single equation and systems-based approaches to
building models

e Discuss the cause, consequence and solution to simultaneous equations bias

e Derive the reduced form equations from a structural model

e Describe several methods for estimating simultaneous equations models

e Explain the relative advantages and disadvantages of VAR modelling

e Determine whether an equation from a system is identified

e Estimate optimal lag lengths, impulse responses and variance decompositions

e Conduct Granger causality tests

e Construct simultaneous equations models and VARs in EViews

\_ J
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All of the structural models that have been considered thus far have been single
equations models of the form

y=XB+u (7.1)

One of the assumptions of the classical linear regression model (CLRM) is that
the explanatory variables are non-stochastic, or fixed in repeated samples. There are
various ways of stating this condition, some of which are slightly more or less strict,
but all of which have the same broad implication. It could also be stated that all of
the variables contained in the X matrix are assumed to be exogenous — that is, their
values are determined outside that equation. This is a rather simplistic working
definition of exogeneity, although several alternatives are possible; this issue will
be revisited later in the chapter. Another way to state this is that the model is
‘conditioned on’ the variables in X.
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As stated in chapter 3, the X matrix is assumed not to have a probability
distribution. Note also that causality in this model runs from X to y, and not vice
versa, 1.e. that changes in the values of the explanatory variables cause changes
in the values of y, but that changes in the value of y will not impact upon the
explanatory variables. On the other hand, y is an endogenous variable — that is, its
value is determined by (7.1).

The purpose of the first part of this chapter is to investigate one of the important
circumstances under which the assumption presented above will be violated. The
impact on the OLS estimator of such a violation will then be considered.

To illustrate a situation in which such a phenomenon may arise, consider the
following two equations that describe a possible model for the total aggregate
(country-wide) supply of new houses (or any other physical asset).

Qu=a+BP+yS+u (7.2)

Qs =A+ul +c1Ti + v, (7.3)

Qar = Qu (7.4)
where

Q4 = quantity of new houses demanded at time ¢

Q,; = quantity of new houses supplied (built) at time ¢

P, = (average) price of new houses prevailing at time ¢

S = price of a substitute (e.g. older houses)

T; = some variable embodying the state of housebuilding technology, 1, and v,
are error terms.

Equation (7.2) is an equation for modelling the demand for new houses, and (7.3)
models the supply of new houses. (7.4) 1s an equilibrium condition for there to be
no excess demand (people willing and able to buy new houses but cannot) and no
excess supply (constructed houses that remain empty owing to lack of demand).

Assuming that the market always clears, that is, that the market is always in
equilibrium, and dropping the time subscripts for simplicity, (7.2)—(7.4) can be
written

Q=a+BP+yS+u (7.9
Q=i+puP+kT+v (7.6)

Equations (7.5) and (7.6) together comprise a simultaneous structural form of the
model, or a set of structural equations. These are the equations incorporating
the variables that economic or financial theory suggests should be related to one
another in a relationship of this form. The point is that price and quantity are
determined simultaneously (price affects quantity and quantity affects price). Thus,
in order to sell more houses, everything else equal, the builder will have to lower the
price. Equally, in order to obtain a higher price for each house, the builder should
construct and expect to sell fewer houses. P and Q are endogenous variables,
while S and T are exogenous.
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A set of reduced form equations corresponding to (7.5) and (7.6) can be
obtained by solving (7.5) and (7.6) for Pand for Q (separately). There will be a
reduced form equation for each endogenous variable in the system.

Solving for Q
a+pBP+yS+u=r+uP+xT+v (7.7)
Solving for P

— === = = = -——— - = (7.8)
BB B B w o n o ou o
Rearranging (7.7)
BP—uP=Ar—a+«T—yS+v—u (7.9
B-—wP=AL—a)+«kT—yS+ (v—u) (7.10)
A—a K % vV—u
P= + T— S+ (7.11)
B—n B—-—wn  p—n  p-nu
Multiplying (7.8) through by Bu and rearranging
UQ— ot —uyS—puu=pQ—BAr— BT — Bv (7.12)
UQ—BQ=puax —Br— BT+ nuyS+ uu — Bv (7.13)
(=B Q= (na — BA) — BT+ pny S+ (uu — Bv) (7.14)
— B _
P L ) R e (7.15)

T
w—p w—p w—p w—p
(7.11) and (7.15) are the reduced form equations for P and Q. They are the
equations that result from solving the simultaneous structural equations given by

(7.5) and (7.6). Notice that these reduced form equations have only exogenous
variables on the right hand side (RHS).

Simultaneous equations bias

It would not be possible to estimate (7.5) and (7.6) validly using OLS, as they
are clearly related to one another since they both contain P and Q, and OLS
would require them to be estimated separately. But what would have happened if
a researcher had estimated them separately using OLS? Both equations depend on
P. One of the CLRM assumptions was that X and u are independent (where X is
a matrix containing all the variables on the RHS of the equation), and given also
the assumption that E(u) = 0, then E(X'u) =0, i.e. the errors are uncorrelated
with the explanatory variables. But it is clear from (7.11) that P is related to the
errors in (7.5) and (7.6) — i.e. it is stochastic. So this assumption has been violated.

‘What would be the consequences for the OLS estimator, B if the simultaneity
were ignored? Recall that

B=(XX""XYy (7.16)
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and that
y=XB+u (7.17)
Replacing y in (7.16) with the RHS of (7.17)

B=(XX)""X(XB +u) (7.18)
so that

B=(XX)"XXB+ (XX Xu (7.19)

B=pB+(XX)"Xu (7.20)

Taking expectations,

E(B) = E(B) + E(X'X)™' X'u) 7.21)

E(B) =B+ E(X'X)™' X'u) 7.22)

If the Xs are non-stochastic (i.e. if the assumption had not been violated),
E[(X'X)"' X'u] = (X' X)"! X'E[u] = 0, which would be the case in a single equa-
tion system, so that E (é) = B in (7.22). The implication is that the OLS estimator,
B, would be unbiased.

But, if the equation is part of a system, then E[(X'X)™! X'u] # 0, in general,
so that the last term in (7.22) will not drop out, and so it can be concluded
that application of OLS to structural equations which are part of a simultaneous
system will lead to biased coefficient estimates. This is known as simultaneity bias
or simultaneous equations bias.

Is the OLS estimator still consistent, even though it is biased? No, in fact,
the estimator is inconsistent as well, so that the coefficient estimates would still
be biased even if an infinite amount of data were available, although proving this
would require a level of algebra beyond the scope of this book.

So how can simultaneous equations models be validly estimated?

Taking (7.11) and (7.15), i.e. the reduced form equations, they can be rewritten as
P=my+anT+m2S+ ¢ (7.23)
Q=mn+anT+m0nS+e (7.24)

where the 7 coefticients in the reduced form are simply combinations of the
original coefticients, so that

A—a K —y vV—u

T = , T = y, Tpp=——, &= ,
B—u B—n - B—u

. _ pa— B S —pr o Y 8__uu—ﬁv

20 = —""7—, 21 = ’ n=—", 2=
w—p w—p w—p w—p
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Equations (7.23) and (7.24) can be estimated using OLS since all the RHS variables
are exogenous, so the usual requirements for consistency and unbiasedness of the
OLS estimator will hold (provided that there are no other misspecifications).
Estimates of the 77;; coefficients would thus be obtained. But, the values of the
coefticients are probably not of much interest; what was wanted were the original
parameters in the structural equations — «, B, ¥, A, i, k. The latter are the
parameters whose values determine how the variables are related to one another
according to financial or economic theory.

Can the original coefficients be retrieved from the 75?

The short answer to this question is ‘sometimes’, depending upon whether the
equations are identified. Identification is the issue of whether there is enough infor-
mation in the reduced form equations to enable the structural form coefficients to
be calculated. Consider the following demand and supply equations

Q=o+ BP Supply equation (7.25)
Q=X+ puP Demand equation (7.26)

It 1s impossible to tell which equation is which, so that if one simply observed
some quantities of a good sold and the price at which they were sold, it would
not be possible to obtain the estimates of &, B, A and p. This arises since there is
insufficient information from the equations to estimate four parameters. Only two
parameters could be estimated here, although each would be some combination
of demand and supply parameters, and so neither would be of any use. In this
case, it would be stated that both equations are unidentified (or not identified or
underidentified). Notice that this problem would not have arisen with (7.5) and
(7.6) since they have different exogenous variables.

What determines whether an equation is identified or not?

Any one of three possible situations could arise, as shown in box 7.1.

How can it be determined whether an equation 1s identified or not? Broadly,
the answer to this question depends upon how many and which variables are present
in each structural equation. There are two conditions that could be examined to
determine whether a given equation from a system is identified — the order condition
and the rank condition:

e The order condition — is a necessary but not sufficient condition for an equation
to be identified. That is, even if the order condition is satisfied, the equation
might not be identified.

o The rank condition — is a necessary and sufficient condition for identification.
The structural equations are specified in a matrix form and the rank of a
coefficient matrix of all of the variables excluded from a particular equation
is examined. An examination of the rank condition requires some technical
algebra beyond the scope of this text.
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Box 7.1 Determining whether an equation is identified ™

(1) An equation is unidentified, such as (7.25) or (7.26). In the case of an
unidentified equation, structural coefticients cannot be obtained from
the reduced form estimates by any means.

(2) An equation is exactly identified (just identified), such as (7.5) or (7.6). In
the case of a just identified equation, unique structural form coefficient
estimates can be obtained by substitution from the reduced form
equations.

(3) If an equation is overidentified, more than one set of structural
coefticients can be obtained from the reduced form. An example of this
will be presented later in this chapter.

N J

Even though the order condition is not sufficient to ensure identification of an
equation from a system, the rank condition will not be considered further here.
For relatively simple systems of equations, the two rules would lead to the same
conclusions. Also, in fact, most systems of equations in economics and finance are
overidentified, so that underidentification is not a big issue in practice.

7.4.2 Statement of the order condition

There are a number of different ways of stating the order condition; that employed
here is an intuitive one (taken from Ramanathan, 1995, p. 666, and slightly mod-
ified):

Let G denote the number of structural equations. An equation is just identified
if the number of variables excluded from an equation is G— 1, where ‘excluded’
means the number of all endogenous and exogenous variables that are not present
in this particular equation. If more than G— 1 are absent, it is over-identified. If
less than G— 1 are absent, it is not identified.

One obvious implication of this rule is that equations in a system can have diftering
degrees of identification, as illustrated by the following example.

Example71 ©0000000000000000000000000000000000000000000000000000000000000000000000

In the following system of equations, the Ys are endogenous, while the Xs are
exogenous (with time subscripts suppressed). Determine whether each equation is
overidentified, underidentified, or just identified.
Y=o +ta o toY; +ou Xy + a5 X +uy (7.27)
Yo =B+ BiYs+ B Xi +uz (7.28)
Yos=w+nrY+us (7.29)
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In this case, there are G = 3 equations and 3 endogenous variables. Thus, if the
number of excluded variables is exactly 2, the equation is just identified. If the number
of excluded variables is more than 2, the equation is overidentified. If the number of
excluded variables is less than 2, the equation is not identified.

The variables that appear in one or more of the three equations are Y}, Y3, Y3, X|,
X5. Applying the order condition to (7.27)—(7.29):

e Equation (7.27): contains all variables, with none excluded, so that it is not identified
e Equation (7.28): has variables Y; and X, excluded, and so is just identified
e Equation (7.29): has variables Y;, X, X5 excluded, and so is overidentified

Simultaneous equations in finance

There are of course numerous situations in finance where a simultaneous equations
framework is more relevant than a single equation model. Two illustrations from the
market microstructure literature are presented later in this chapter, while another,
drawn from the banking literature, will be discussed now.

There has recently been much debate internationally, but especially in the
UK, concerning the eftectiveness of competitive forces in the banking industry.
Governments and regulators express concern at the increasing concentration in the
industry, as evidenced by successive waves of merger activity, and at the enormous
profits that many banks made in the late 1990s and early twenty-first century.
They argue that such profits result from a lack of effective competition. However,
many (most notably, of course, the banks themselves!) suggest that such profits are
not the result of excessive concentration or anti-competitive practices, but rather
partly arise owing to recent world prosperity at that phase of the business cycle
(the ‘profits won’t last’ argument) and partly owing to massive cost-cutting by
the banks, given recent technological improvements. These debates have fuelled
a resurgent interest in models of banking profitability and banking competition.
One such model is employed by Shafter and DiSalvo (1994) in the context of two
banks operating in south central Pennsylvania. The model is given by

Ingjy =ap+ailn Py +axln Pjy +a3InY, +a4ln Z + ast +u;y, (7.30)
3

In TRy = bo+bilngy + Y brpr Inwiy + uiz (7.31)
k=1

where i = 1, 2 are the two banks, ¢ is bank output, P, is the price of the output at
time ¢, Y; is a measure of aggregate income at time ¢, 7 is the price of a substitute
for bank activity at time ¢, the variable ¢ represents a time trend, TR;, is the total
revenue of bank i at time f, w;y, are the prices of input k (k = 1, 2, 3 for labour,
bank deposits and physical capital) for bank i at time ¢ and the u are unobservable
error terms. The coefficient estimates are not presented here, but suffice to say that
a simultaneous framework, with the resulting model estimated separately using
annual time series data for each bank, is necessary. Output is a function of price on
the RHS of (7.30), while in (7.31), total revenue, which is a function of output on
the RHS, is obviously related to price. Therefore, OLS is again an inappropriate
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estimation technique. Both of the equations in this system are overidentified, since
there are only two equations, and the income, the substitute for banking activity
and the trend terms are missing from (7.31), whereas the three input prices are
missing from (7.30).

cecccsccscos @ A definition of exogeneity

Leamer (1985) defines a variable x as exogenous if the conditional distribution
of y given x does not change with modifications of the process generating x.
Although several slightly different definitions exist, it is possible to classify two
forms of exogeneity — predeterminedness and strict exogeneity:

e A predetermined variable is one that is independent of the contemporaneous
and future errors in that equation

o A strictly exogenous variable is one that is independent of all contemporaneous,
future and past errors in that equation.

7.6.1 Tests for exogeneity

How can a researcher tell whether variables really need to be treated as endogenous
or not? In other words, financial theory might suggest that there should be a two-
way relationship between two or more variables, but how can it be tested whether
a simultaneous equations model is necessary in practice?

Example72 ©0000000000000000000000000000000000000000000000000000000000000000000000

Consider again (7.27)—(7.29). Equation (7.27) contains Y> and Y; - but are separate
equations required for them, or could the variables Y; and Y; be treated as
exogenous variables (in which case, they would be called X3 and X,!)? This can be
formally investigated using a Hausman test, which is calculated as shown in box 7.2.

Box 7.2 Conducting a Hausman test for exogeneity Y

(1) Obtain the reduced form equations corresponding to (7.27)—(7.29).
The reduced form equations are obtained as follows.

Substituting in (7.28) for Y; from (7.29):

Yo =P80+ Bi1(vo + 11 Ys+ usz) + B Xi + uy (7.32)

Yo = Bo+ Bivo+ Bivi Yo + Bius + Bo Xy + us (7.33)

Y2(1 — Biy1) = (Bo + Bivo) + B2 X1 + (uz + Brus) (7.34)
X

Y, = (Bo + Biyo) i B2 Xy i (un + Brus) s

(1 — Biy1) (1 — Biy1) (1 — Biy1)




7.6 A definition of exogeneity 313

(7.35) is the reduced form equation for Y, since there are no
endogenous variables on the RHS. Substituting in (7.27) for Y; from
(7.29):

Yi=aotaYo+o(yot+viYotus) +as Xy +asXo+up (7.36)
Yi=a)+ a1 Yo+ o3y + a3y Yo+ azusz + g Xy + a5 Xo + uy

(7.37)
Y = (oo + a3yo) + (a1 +asy) Yo + s Xy + a5 Xo + (ug + azu3)
(7.38)
Substituting in (7.38) for Y, from (7.35):
(Bo + Biyo) B2 Xi
Y = (a0 + azyo) + (o1 + azyr) (
1=58y) (A —=Bwn)
u> + Pbu
M) + o Xy + a5 Xo + (i1 + a33) (7.39)
(1= Bin)

(Bo + 51)/0)> (o +azy)BXq
(1 =Bn) (1= Biy1)

ol O(4X1 ar 0(5X2 A (M1 aF 013143)

Y, = (050 + azyo + (@1 + azyr)

(a1 + a3y1) (U2 + Brus)
(1 = Bin)

(7.40)
(Bo + ,31)/0)>

Yi = (060 + azyo + (o + 063)/1)m
— P1/1

(o1 + azy1) B2
* ( (= Fin)
i ((051 + a3y1) (U2 + Brus)
(1 = Biy1)

(7.41) is the reduced form equation for Y. Finally, to obtain the
reduced form equation for Yj3, substitute in (7.29) for Y, from (7.35):

_ y1(Bo + B1 VO)) V182X ()/1 (upy + Brus) )
" (y” A=) ) T 0=  Td—pm T

+ O{4> X] + (X5X2

+ (ug + 0l3“3)> (7.41)

(7.42)

So, the reduced form equations corresponding to (7.27)—(7.29) are,
respectively, given by (7.41), (7.35) and (7.42). These three equations
can also be expressed using 7;; for the coefficients, as discussed above:

Yi = mo+mn Xy + 712X + vy (7.43)
Yo = mo0 + 701 Xy + 02 (7.44)
Y; = w30+ Xy 4+ v3 (7.45)
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Estimate the reduced form equatlons (7.43)—(7.45) using OLS, and
obtain the fitted values, Yf, Y21, Y31, where the superfluous superscript
! denotes the fitted values from the reduced form estimation.

(2) Run the regression corresponding to (7.27) —i.e. the structural form
equation, at this stage ignoring any possible simultaneity.

(3) Run the regression (7.27) again, but now also including the fitted

values from the reduced form equations, )A/zl, i’;, as additional regressors
Yi=ap+ oYy +asVs+ 0y Xy + 05X + MY + AV 46 (7.46)

(4) Use an F-test to test the joint restriction that A, =0, and A3 = 0. If the
null hypothesis is rejected, Y5> and Y3 should be treated as endogenous.
If A, and A3 are significantly difterent from zero, there is extra important
information for modelling Y; from the reduced form equations. On the
other hand, if the null is not rejected, Y5> and Y3 can be treated as
exogenous for Y;, and there is no useful additional information
available for Y; from modelling Y> and Y3 as endogenous variables.

Steps 2—4 would then be repeated for (7.28) and (7.29). y
-

ceccsccsccss Q Triangular systems

Consider the following system of equations, with time subscripts omitted for

simplicity
Yi=Bio+yuXi +vieXo+u (7.47)
Yo =B+ Bor1 Y1 + v Xy + ¥ Xo +us (7.48)
Yi = B30+ B Yi + BnYo+ v Xi + v Xo + us (7.49)

Assume that the error terms from each of the three equations are not correlated
with each other. Can the equations be estimated individually using OLS? At first
blush, an appropriate answer to this question might appear to be, ‘No, because this
is a simultaneous equations system’. But consider the following:

e Equation (7.47): contains no endogenous variables, so Xj and X are not
correlated with #1. So OLS can be used on (7.47).

e Equation (7.48): contains endogenous Y together with exogenous X and Xj.
OLS can be used on (7.48) if all the RHS variables in (7.48) are uncorrelated
with that equation’s error term. In fact, Y] is not correlated with u, because
there is no Y5 term in (7.47). So OLS can be used on (7.48).

e Equation (7.49): contains both Y} and Y>; these are required to be uncorrelated
with #3. By similar arguments to the above, (7.47) and (7.48) do not contain
Y3;. So OLS can be used on (7.49).
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This is known as a recursive or triangular system, which is really a special case —a set of
equations that looks like a simultaneous equations system, but isn’t. In fact, there
is not a simultaneity problem here, since the dependence is not bi-directional, for
each equation it all goes one way.

Estimation procedures for simultaneous equations systems

Each equation that is part of a recursive system can be estimated separately using
OLS. But in practice, not many systems of equations will be recursive, so a direct
way to address the estimation of equations that are from a true simultaneous system
must be sought. In fact, there are potentially many methods that can be used, three
of which — indirect least squares, two-stage least squares and instrumental variables —
will be detailed here. Each of these will be discussed below.

Indirect least squares (ILS)

Although it is not possible to use OLS directly on the structural equations, it
is possible to validly apply OLS to the reduced form equations. If the system is
just identified, ILS involves estimating the reduced form equations using OLS,
and then using them to substitute back to obtain the structural parameters. ILS is
intuitive to understand in principle; however, it is not widely applied because:

(1) Solving back to get the structural parameters can be tedious. For a large system, the
equations may be set up in a matrix form, and to solve them may therefore
require the inversion of a large matrix.

(2)  Most simultaneous equations systems are overidentified, and ILS can be used to obtain
coefticients only for just identified equations. For overidentified systems, ILS
would not yield unique structural form estimates.

ILS estimators are consistent and asymptotically efficient, but in general they are
biased, so that in finite samples ILS will deliver biased structural form estimates.
In a nutshell, the bias arises from the fact that the structural form coefficients
under ILS estimation are transformations of the reduced form coefficients. When
expectations are taken to test for unbiasedness, it is in general not the case that the
expected value of a (non-linear) combination of reduced form coefficients will be
equal to the combination of their expected values (see Gujarati, 2003 for a proof).

Estimation of just identified and overidentified systems using 2SLS

This technique is applicable for the estimation of overidentified systems, where
ILS cannot be used. In fact, it can also be employed for estimating the coefticients
of just identified systems, in which case the method would yield asymptotically
equivalent estimates to those obtained from ILS.

Two-stage least squares (2SLS or TSLS) is done in two stages:

e Stage 1 Obtain and estimate the reduced form equations using OLS. Save the
fitted values for the dependent variables.
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e Stage 2 Estimate the structural equations using OLS, but replace any RHS
endogenous variables with their stage 1 fitted values.

Suppose that (7.27)-(7.29) are required. 2SLS would involve the following two steps:

e Stage 1 Estimate the reduced form equatlons (7 43) (7.45) individually by OLS and
obtain the fitted values, and denote them Yf, Yz, Ygl, where the superfluous
superscript ! indicates that these are the fitted values from the first stage.

e Stage? Replace the RHS endogenous variables with their stage 1 estimated

values
Y :a()‘l‘al{/gl +0l3§/31 + oy Xy + a5 Xo + uy (7.50)
Ys = By + B1Ys + BoXi + u (7.51)
Vs=w+nts +us (7.52)

where f’; and f’; are the fitted values from the reduced form estimation. Now f’;
and f’; will not be correlated with 4, XA’; will not be correlated with u,, and §’21 will
not be correlated with 3. The simultaneity problem has therefore been removed.
It is worth noting that the 2SLS estimator is consistent, but not unbiased.

In a simultaneous equations framework, it is still of concern whether the usual
assumptions of the CLRM are valid or not, although some of the test statistics require
modifications to be applicable in the systems context. Most econometrics packages
will automatically make any required changes. To illustrate one potential consequence
of the violation of the CLRM assumptions, if the disturbances in the structural equations
are autocorrelated, the 2SLS estimator is not even consistent.

The standard error estimates also need to be modified compared with their OLS
counterparts (again, econometrics software will usually do this automatically), but once
this has been done, the usual ¢-tests can be used to test hypotheses about the
structural form coefficients. This modification arises as a result of the use of the reduced
form fitted values on the RHS rather than actual variables, which implies that a
modification to the error variance is required.

00 0000000000000 0000000000000 0000000000000 000000000000000000000000000000

Instrumental variables

Broadly, the method of instrumental variables (IV) is another technique for param-
eter estimation that can be validly used in the context of a simultaneous equations
system. Recall that the reason that OLS cannot be used directly on the structural
equations is that the endogenous variables are correlated with the errors.

One solution to this would be not to use Y, or Y3, but rather to use some
other variables instead. These other variables should be (highly) correlated with
Y, and Y3, but not correlated with the errors — such variables would be known
as instruments. Suppose that suitable instruments for Y, and Y;, were found and



7.8.4

7.8.5

7.8 Estimation procedures for simultaneous equations systems 317

denoted 2z and z3, respectively. The instruments are not used in the structural
equations directly, but rather, regressions of the following form are run

Y, = )xl + )\.222 + & (7.53)
Y}, = )\43 —+ )\442‘3 + & (7.54)

Obtain the fitted values from (7.53) and (7.54), 1A/21 and lA/?}, and replace Y5 and Y3
with these in the structural equation. It is typical to use more than one instrument
per endogenous variable. If the instruments are the variables in the reduced form
equations, then IV is equivalent to 2SLS, so that the latter can be viewed as a
special case of the former.

What happens if IV or 2SLS are used unnecessarily?

In other words, suppose that one attempted to estimate a simultaneous system
when the variables specified as endogenous were in fact independent of one
another. The consequences are similar to those of including irrelevant variables
in a single equation OLS model. That is, the coefficient estimates will still be
consistent, but will be inefticient compared to those that just used OLS directly.

Other estimation techniques

There are, of course, many other estimation techniques available for systems of
equations, including three-stage least squares (3SLS), full information maximum
likelihood (FIML) and limited information maximum likelihood (LIML). Three-
stage least squares provides a third step in the estimation process that allows for
non-zero covariances between the error terms in the structural equations. It is
asymptotically more efficient than 2SLS since the latter ignores any information
that may be available concerning the error covariances (and also any additional
information that may be contained in the endogenous variables of other equations).
Full information maximum likelihood involves estimating all of the equations in
the system simultaneously using maximum likelihood (see chapter 8 for a discus-
sion of the principles of maximum likelihood estimation). Thus under FIML, all
of the parameters in all equations are treated jointly, and an appropriate likelihood
function 1s formed and maximised. Finally, limited information maximum likeli-
hood involves estimating each equation separately by maximum likelihood. LIML
and 2SLS are asymptotically equivalent. For further technical details on each of
these procedures, see Greene (2002, chapter 15).

The following section presents an application of the simultaneous equations
approach in finance to the joint modelling of bid—ask spreads and trading activity
in the S&P100 index options market. Two related applications of this technique
that are also worth examining are by Wang, Yau and Baptiste (1997) and by Wang
and Yau (2000). The former employs a bivariate system to model trading volume
and bid—ask spreads and they show using a Hausman test that the two are indeed
simultaneously related and so must both be treated as endogenous variables and
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are modelled using 2SLS. The latter paper employs a trivariate system to model
trading volume, spreads and intra-day volatility.

An application of a simultaneous equations approach to modelling
bid—-ask spreads and trading activity

Introduction

One of the most rapidly growing areas of empirical research in finance is the
study of market microstructure. This research is involved with issues such as price
formation in financial markets, how the structure of the market may affect the
way it operates, determinants of the bid—ask spread, and so on. One application of
simultaneous equations methods in the market microstructure literature is a study
by George and Longstaft (1993). Among other issues, this paper considers the
questions:

[s trading activity related to the size of the bid—ask spread?
How do spreads vary across options, and how is this related to the volume of
contracts traded? ‘Across options’ in this case means for different maturities
and strike prices for an option on a given underlying asset.

This chapter will now examine the George and Longstaft models, results and
conclusions.

The data

The data employed by George and Longstaft’ comprise options prices on the
S&P100 index, observed on all trading days during 1989. The S&P100 index has
been traded on the Chicago Board Options Exchange (CBOE) since 1983 on
a continuous open-outcry auction basis. The option price as used in the paper
is defined as the average of the bid and the ask. The average bid and ask prices
are calculated for each option during the time 2.00p.m.—2.15p.m. (US Central
Standard Time) to avoid time-of-day effects, such as difterences in behaviour at
the open and the close of the market. The following are then dropped from the
sample for that day to avoid any eftects resulting from stale prices:

e Any options that do not have bid and ask quotes reported during the fifteen
minutes hour
e Any options with fewer than ten trades during the day.

This procedure results in a total of 2,456 observations. A ‘pooled’ regression is
conducted since the data have both time series and cross-sectional dimensions.
That is, the data are measured every trading day and across options with different
strikes and maturities, and the data is stacked in a single column for analysis.
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How might the option price/trading volume and the bid-ask spread
be related?

George and Longstaft argue that the bid—ask spread will be determined by the
interaction of market forces. Since there are many market makers trading the
S&P100 contract on the CBOE, the bid—ask spread will be set to just cover
marginal costs. There are three components of the costs associated with being a
market maker. These are administrative costs, inventory holding costs and ‘risk
costs’. George and Longstaft consider three possibilities for how the bid—ask spread
might be determined:

o  Market makers equalise spreads across options This is likely to be the case if
order-processing (administrative) costs make up the majority of costs associ-
ated with being a market maker. This could be the case since the CBOE
charges market makers the same fee for each option traded. In fact, for every
contract (100 options) traded, a CBOE fee of 9 cents and an Options Clearing
Corporation (OCC) fee of 10 cents is levied on the firm that clears the trade.

o The spread might be a constant proportion of the option value This would be the
case if the majority of the market maker’s cost is in inventory holding costs,
since the more expensive options will cost more to hold and hence the spread
would be set wider.

o Market makers might equalise marginal costs across options irrespective of trading volume
This would occur if the riskiness of an unwanted position were the most
important cost facing market makers. Market makers typically do not hold
a particular view on the direction of the market — they simply try to make
money by buying and selling. Hence, they would like to be able to offload
any unwanted (long or short) positions quickly. But trading is not continuous,
and in fact the average time between trades in 1989 was approximately five
minutes. The longer market makers hold an option, the higher the risk they
face since the higher the probability that there will be a large adverse price
movement. Thus options with low trading volumes would command higher
spreads since it is more likely that the market maker would be holding these
options for longer.

In a non-quantitative exploratory analysis, George and Longstaff find that, com-
paring across contracts with different maturities, the bid—ask spread does indeed
increase with maturity (as the option with longer maturity is worth more) and
with ‘moneyness’ (that is, an option that is deeper in the money has a higher spread
than one which is less in the money). This is seen to be true for both call and put
options.

The influence of tick-size rules on spreads

The CBOE limits the tick size (the minimum granularity of price quotes), which
will of course place a lower limit on the size of the spread. The tick sizes are:
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e $1/8 for options worth $3 or more
$1/16 tor options worth less than $3.

The models and results

The intuition that the bid—ask spread and trading volume may be simultaneously
related arises since a wider spread implies that trading is relatively more expensive
so that marginal investors would withdraw from the market. On the other hand,
market makers face additional risk if the level of trading activity falls, and hence
they may be expected to respond by increasing their fee (the spread). The models
developed seek to simultaneously determine the size of the bid—ask spread and the
time between trades.
For the calls, the model is:

CBA, = oy + oy CDUM, + OlzC,‘ + 0[3CL,' + Ol47? + OZSCR,‘ +e; (7.55)
CLi =W+ nCBA + T + v T + va M} + v, (7.56)
And symmetrically for the puts:

PBA; = By + B1PDUM; + B> P; + BsPL; + B4T; + BsPR; + u; (7.57)
PL; =8y + 8iPBA; + 8T + 8517 + 84 M] + w; (7.58)

where CBA; and PBA; are the call bid—ask spread and the put bid—ask spread for
option i, respectively

C: and P; are the call price and put price for option i, respectively

CL; and PL; are the times between trades for the call and put option i,
respectively

CR; and PR; are the squared deltas of the options

CDUM; and PDUM; are dummy variables to allow for the minimum tick size

=0 ifC,’OV pi < $3
=1 ifCor P >$3

T is the time to maturity

T2 allows for a non-linear relationship between time to maturity and the spread
M? is the square of moneyness, which is employed in quadratic form since at-
the-money options have a higher trading volume, while out-of-the-money
and in-the-money options both have lower trading activity

CR; and PR; are measures of risk for the call and put, respectively, given by the
square of their deltas.

Equations (7.55) and (7.56), and then separately (7.57) and (7.58), are estimated
using 2SLS. The results are given here in tables 7.1 and 7.2.

The adjusted R?> ~ 0.6 for all four equations, indicating that the variables
selected do a good job of explaining the spread and the time between trades.
George and Longstaff argue that strategic market maker behaviour, which cannot
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CBA; = ag + a1CDUM; + a5C;j + a3CL; + a4 T; + asCR; + € (7.55)
CLi = yo + y1CBA; + yoTi + v3T? + vaM? +v; (7.56)
(670) (03] (07] a3 (67} (0753 Adj R2
0.08362 0.06114 | 0.01679 0.00902 | —0.00228 | —0.15378 | 0.688
(16.80) (8.63) (15.49) (14.01) (—12.31) (—12.52)
70 71 V2 73 Z! Adj. R?
—3.8542 | 46.592 —0.12412 | 0.00406 | 0.00866 0.618
(—10.50) | (30.49) (—6.01) (14.43) (4.76)
J

Note: t-ratios in parentheses.
Source: George and Longstaff (1993). Reprinted with the permission of School of Business Admin-
istration, University of Washington.
Table 7.2 Put bid-ask spread and trading volume regression

PBA; = Bo + B1PDUM; + BoP; + BsPLi + BaTi + PsPR; + u; (7.57)

PL; = 8y + 81PBA; + 6T, + 337-,-2 A 54M,-2 + w; (7.58)

Bo Bi B2 B3 Ba Bs Adj.R?
0.05707 0.03258 | 0.01726 0.00839 —0.00120 —0.08662 | 0.675
(15.19) (5.35) (15.90) (12.56) (=7.13) (=7.15)
) 84 82 83 84 Adj. R?
—2.8932 | 46.460 —0.15151 0.00339 | 0.01347 0.517
(—8.42) (34.06) (=7.74) (12.90) (10.86) /

Note: t-ratios in parentheses.
Source: George and Longstaff (1993). Reprinted with the permission of School of Business Admin-
istration, University of Washington.

be easily modelled, is important in influencing the spread and that this precludes a
higher adjusted R>.

A next step in examining the empirical plausibility of the estimates is to
consider the sizes, signs and significances of the coefticients. In the call and put
spread regressions, respectively, &y and By measure the tick size constraint on the
spread — both are statistically significant and positive. @, and B, measure the effect
of the option price on the spread. As expected, both of these coefficients are again
significant and positive since these are inventory or holding costs. The coefficient
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value of approximately 0.017 implies that a 1 dollar increase in the price of the
option will on average lead to a 1.7 cent increase in the spread. a3 and 3 measure
the effect of trading activity on the spread. Recalling that an inverse trading activity
variable is used in the regressions, again, the coefficients have their correct sign.
That is, as the time between trades increases (that is, as trading activity falls), the
bid—ask spread widens. Furthermore, although the coetticient values are small, they
are statistically significant. In the put spread regression, for example, the coefficient
of approximately 0.009 implies that, even if the time between trades widened from
one minute to one hour, the spread would increase by only 54 cents. a4 and
B4 measure the effect of time to maturity on the spread; both are negative and
statistically significant. The authors argue that this may arise as market making is a
more risky activity for near-maturity options. A possible alternative explanation,
which they dismiss after further investigation, is that the early exercise possibility
becomes more likely for very short-dated options since the loss of time value
would be negligible. Finally, s and 85 measure the effect of risk on the spread; in
both the call and put spread regressions, these coefficients are negative and highly
statistically significant. This seems an odd result, which the authors struggle to
justify, for it seems to suggest that more risky options will command lower spreads.
Turning attention now to the trading activity regressions, y; and §; measure
the effect of the spread size on call and put trading activity, respectively. Both are
positive and statistically significant, indicating that a rise in the spread will increase
the time between trades. The coefficients are such that a 1 cent increase in the
spread would lead to an increase in the average time between call and put trades
of nearly half a minute. y» and 8, give the eftect of an increase in time to maturity,
while y3 and 83 are coefficients attached to the square of time to maturity. For
both the call and put regressions, the coefficient on the level of time to maturity is
negative and significant, while that on the square is positive and significant. As time
to maturity increases, the squared term would dominate, and one could therefore
conclude that the time between trades will show a U-shaped relationship with time
to maturity. Finally, y4 and 8, give the eftect of an increase in the square of money-
ness (i.e. the effect of an option going deeper into the money or deeper out of the
money) on the time between trades. For both the call and put regressions, the coef-
ficients are statistically significant and positive, showing that as the option moves
further from the money in either direction, the time between trades rises. This is
consistent with the authors’ supposition that trade is most active in at-the-money
options, and less active in both out-of-the-money and in-the-money options.

Conclusions

The value of the bid—ask spread on S&P100 index options and the time between
trades (a measure of market liquidity) can be usefully modelled in a simultaneous
system with exogenous variables such as the options’ deltas, time to maturity,
moneyness, etc.

This study represents a nice example of the use of a simultaneous equations
system, but, in this author’s view, it can be criticised on several grounds. First,
there are no diagnostic tests performed. Second, clearly the equations are all
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overidentified, but it is not obvious how the over-identitying restrictions have been
generated. Did they arise from consideration of financial theory? For example, why
do the CL and PL equations not contain the CR and PR variables? Why do the
CBA and PBA equations not contain moneyness or squared maturity variables?
The authors could also have tested for endogeneity of CBA and CL. Finally, the
wrong sign on the highly statistically significant squared deltas is puzzling.

Simultaneous equations modelling using EViews

What is the relationship between inflation and stock returns? Holding stocks is
often thought to provide a good hedge against inflation, since the payments to
equity holders are not fixed in nominal terms and represent a claim on real assets
(unlike the coupons on bonds, for example). However, the majority of empirical
studies that have investigated the sign of this relationship have found it to be
negative. Various explanations of this puzzling empirical phenomenon have been
proposed, including a link through real activity, so that real activity is negatively
related to inflation but positively related to stock returns and therefore stock
returns and inflation vary positively. Clearly, inflation and stock returns ought to
be simultaneously related given that the rate of inflation will affect the discount rate
applied to cashflows and therefore the value of equities, but the performance of
the stock market may also aftect consumer demand and therefore inflation through
its impact on householder wealth (perceived or actual).'

This simple example uses the same macroeconomic data as used previously to
estimate this relationship simultaneously. Suppose (without justification) that we
wish to estimate the following model, which does not allow for dynamic effects
or partial adjustments and does not distinguish between expected and unexpected
inflation

inflation, = oty + a returns; + oy deredit, + o3 dprod, + oy dmoney + uy,

(7.59)
returns, = Bo + Bi dprod, + B> dspread, + Bs inflation, + B4 rterm; + uo,

(7.60)

where ‘returns’ are stock returns and all of the other variables are defined as in the
previous example in chapter 4.

It is evident that there is feedback between the two equations since the inflation
variable appears in the stock returns equation and vice versa. Are the equations
identified? Since there are two equations, each will be identified if one variable
is missing from that equation. Equation (7.59), the inflation equation, omits two
variables. It does not contain the default spread or the term spread, and so is over-
identified. Equation (7.60), the stock returns equation, omits two variables as well
— the consumer credit and money supply variables — and so is over-identified too.
Two-stage least squares (2SLS) is therefore the appropriate technique to use.

! Crucially, good econometric models are based on solid financial theory. This model is clearly
not, but represents a simple way to illustrate the estimation and interpretation of simultaneous
equations models using EViews with freely available datal
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Spedfication | Options

~Equation spedification

Dependent variable followed by list of regressors induding ARMA
and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.

inflation ¢ dprod dcredit dmoney rsandp

~Instrument list
c dcredit dprod rterm dspread dmoney

[#] Indude a constant

~Estimation settings
Method: (TsLs - Two-Stage Least Squares (TSNLS and ARMA) v)
Sample: | 1986m03 2013m04

[ ox J[ concel |

Screenshot 7.1  Estimating the inflation equation

In EViews, to do this we need to specify a list of instruments, which would
be all of the variables from the reduced form equation. In this case, the reduced
form equations would be

inflation = f (constant, dprod, dspread, rterm, deredit, qrev, dmoney) (7.61)

returns = g (constant, dprod, dspread, rterm, dcredit, qrev, dmoney) (7.62)

We can perform both stages of 2SLS in one go, but by default, EViews estimates
each of the two equations in the system separately. To do this, click Quick, Esti-
mate Equation and then select TSLS — Two Stage Least Squares (TSNLS
and ARMA) from the list of estimation methods. Then fill in the dialog box as
in screenshot 7.1 to estimate the inflation equation.

Thus the format of writing out the variables in the first window is as usual,
and the full structural equation for inflation as a dependent variable should be
specified here. In the instrument list, include every variable from the reduced
form equation, including the constant, and click OK. The results would then
appear as in the following table.
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a )
Dependent Variable: INFLATION
Method: Two-Stage Least Squares
Date: 07/06/13 Time: 14:39
Sample (adjusted): 1986M04 2013M04
Included observations: 325 after adjustments
Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY
Coefficient Std. Error t-Statistic Prob.
C 0.195313 0.048012 4.067988 0.0001
DPROD 0.013887 0.064302 0.215958 0.8292
DCREDIT —7.46E-07 3.79E-06 —0.19700 0.8440
DMONEY —0.004408 0.001662 —2.652566 0.0084
RSANDP 0.115471 0.041049 2.813014 0.0052
R-squared —2.571046 Mean dependent var 0.233696
Adjusted R-squared —2.615684 S.D. dependent var 0.324318
S.E. of regression 0.616689 Sum squared resid 121.6975
F-statistic 3.627476 Durbin-Watson stat 1.814403
Prob(F-statistic) 0.006583 Second-Stage SSR 28.56077
J-statistic 0.270084 Instrument Rank 6
Prob(J-statistic) 0.603275
- J

Similarly, the dialog box for the rsandp equation would be specified as in
screenshot 7.2. The output for the returns equation is shown in the following
table.

The results overall show the stock index returns are a positive and significant
determinant of inflation (changes in the money supply negatively affect inflation),
while inflation has a negative effect on the stock market, albeit not significantly so.
The R? and R? values from the inflation equation are also negative, so should be
interpreted with caution. As the EViews User’s Guide warns, this can sometimes
happen even when there is an intercept in the regression. The | -statistic is essen-
tially a transformed version of the residual sum of squares that evaluates the model
fit.

It may also be of relevance to conduct a Hausman test for the endogeneity
of the inflation and stock return variables. To do this, estimate the reduced
form equations and save the residuals. Then create series of fitted values
by constructing new variables which are equal to the actual values minus the
residuals. Call the fitted value series inflation_fit and rsandp_fit. Then estimate
the structural equations (separately), adding the fitted values from the relevant
reduced form equations. The two sets of variables (in EViews format, with the
dependent variables first followed by the lists of independent variables) are as
follows.
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(" )

Dependent Variable: RSANDP

Method: Two-Stage Least Squares

Date: 07/06/13 Time: 22:05

Sample (adjusted): 1986M04 2013M04

Included observations: 325 after adjustments

Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.
C 1.110730 0.927393 1.197691 0.2319
DPROD —0.269418 0.461822 —0.583381 0.5600
DSPREAD —9.615083 4.627064 —2.078009 0.0385
RTERM —0.261785 0.918059 —0.285150 0.7757
INFLATION —2.173678 3.846050 —0.565171 0.5724
R-squared 0.027482 Mean dependent var 0.584671
Adjusted R-squared 0.015325 S.D. dependent var 4.589186
S.E. of regression 4.553886 Sum squared resid 6636.120
F-statistic 2.665537 Durbin-Watson stat 1.935389
Prob(F-statistic) 0.032509 Second-Stage SSR 6602.534
J-statistic 0.929368 Instrument Rank 6
Prob(J-statistic) 0.335027

- J

For the stock returns equation:

rsandp ¢ dprod dspread rterm inflation inflation_fit
and for the inflation equation:

inflation ¢ dprod dcredit dmoney rsandp rsandp_fit

The conclusion is that the inflation fitted value term is not significant in the stock
return equation and so inflation can be considered exogenous for stock returns.
Thus it would be valid to simply estimate this equation (minus the fitted value
term) on its own using OLS. But the fitted stock return term is significant in the
inflation equation, suggesting that stock returns are endogenous.

Vector autoregressive models

Vector autoregressive models (VARs) were popularised in econometrics by Sims
(1980) as a natural generalisation of univariate autoregressive models discussed
in chapter 6. A VAR is a systems regression model (i.e. there is more than one
dependent variable) that can be considered a kind of hybrid between the univariate
time series models considered in chapter 6 and the simultaneous equations models
developed previously in this chapter. VARs have often been advocated as an
alternative to large-scale simultaneous equations structural models.
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| | spedfication | options |
~Equation specification

Dependent variable followed by list of regressors induding ARMA
and PDL terms, OR an explicit equation like Y=c(1) +c(2)*X.

rsandp c dprod dspread rterm inflation

~Instrument list
¢ daredit dprod rterm dspread dmoney

[¥]Indude a constant

~Estimation settings
Sample: \ 1986m03 2013m04

Screenshot 7.2  Estimating the rsandp equation

The simplest case that can be entertained is a bivariate VAR, where there are
only two variables, y;; and y,,, each of whose current values depend on difterent
combinations of the previous k values of both variables, and error terms

yie = Bio+ Biiyi—1 + -+ Bieyi—re T Qi1 y2—1 + -+ Qi yr—p + Uy
(7.63)

y2r = Boo + Borya—1 + -+ Boeyo—r + @21 y1—1 + - A 0o yr—p + Uy
(7.64)

where u;, is a white noise disturbance term with E(u;,) = 0, (i = 1, 2), E(uy,u2,) =
0.

As should already be evident, an important feature of the VAR model is its
flexibility and the ease of generalisation. For example, the model could be extended
to encompass moving average errors, which would be a multivariate version of an
ARMA model, known as a VARMA. Instead of having only two variables, yy,
and y»,, the system could also be expanded to include ¢ variables, yi/, yar, Y315+ - - »
Ygi» €ach of which has an equation.
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Another useful facet of VAR models is the compactness with which the
notation can be expressed. For example, consider the case from above where
k =1, so that each variable depends only upon the immediately previous values
of y1; and yz;, plus an error term. This could be written as

yie = Bio + Biiyii—1 + o1 y2—1 + 1y (7.65)

Yor = B2o + Boi Yar—1 + 021 y1i—1 + U (7.66)

Vit Bio B i Yie—1 Uiy
= 7.67
(YZt> (ﬁzo) * <0521 ,321><Y2r—1> * (uzr) ven
or even more compactly as

e = Bo + By + o
gx1l g¢x1 gxggx1 gxI1
In (7.68), there are ¢ = 2 variables in the system. Extending the model to the case

where there are k lags of each variable in each equation is also easily accomplished
using this notation

o = Bo + Biyi-1 + Boyio + o+ Breyir +ouy
gx1 gx1 gxggxl gxggxl gxggxl gxI1
(7.69)

or

(7.68)

The model could be further extended to the case where the model includes first
difference terms and cointegrating relationships (a vector error correction model
(VECM) — see chapter 8).

Advantages of VAR modelling

VAR models have several advantages compared with univariate time series models
or simultaneous equations structural models:

e The researcher does not need to specify which variables are endogenous or
exogenous — all are endogenous. This is a very important point, since a require-
ment for simultaneous equations structural models to be estimable is that
all equations in the system are identified. Essentially, this requirement boils
down to a condition that some variables are treated as exogenous and that
the equations contain different RHS variables. Ideally, this restriction should
arise naturally from financial or economic theory. However, in practice theory
will be at best vague in its suggestions of which variables should be treated
as exogenous. This leaves the researcher with a great deal of discretion con-
cerning how to classify the variables. Since Hausman-type tests are often not
employed in practice when they should be, the specification of certain vari-
ables as exogenous, required to form identifying restrictions, is likely in many
cases to be invalid. Sims termed these identifying restrictions ‘incredible’. VAR
estimation, on the other hand, requires no such restrictions to be imposed.
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e VARs allow the value of a variable to depend on more than just its own lags or
combinations of white noise terms, so VARs are more flexible than univariate
AR models; the latter can be viewed as a restricted case of VAR models. VAR
models can therefore offer a very rich structure, implying that they may be able
to capture more features of the data.

e Provided that there are no contemporaneous terms on the RHS of the equa-
tions, it is possible to simply use OLS separately on each equation. This arises from
the fact that all variables on the RHS are pre-determined — that is, at time ¢,
they are known. This implies that there is no possibility for feedback from any
of the LHS variables to any of the RHS variables. Pre-determined variables
include all exogenous variables and lagged values of the endogenous variables.

e The forecasts generated by VAR are often better than fraditional structural’ models.
It has been argued in a number of articles (see, for example, Sims, 1980) that
large-scale structural models performed badly in terms of their out-of-sample
forecast accuracy. This could perhaps arise as a result of the ad hoc nature
of the restrictions placed on the structural models to ensure identification
discussed above. McNees (1986) shows that forecasts for some variables (e.g.
the US unemployment rate and real gross national product (GNP), etc.) are
produced more accurately using VARs than from several different structural
specifications.

7.11.2 Problems with VARs

VAR models of course also have drawbacks and limitations relative to other model
classes:

e VARSs are a-theoretical (as are ARMA models), since they use little theoret-
ical information about the relationships between the variables to guide the
specification of the model. On the other hand, valid exclusion restrictions
that ensure identification of equations from a simultaneous structural system
will inform on the structure of the model. An upshot of this is that VARs
are less amenable to theoretical analysis and therefore to policy prescriptions.
There also exists an increased possibility under the VAR approach that a hap-
less researcher could obtain an essentially spurious relationship by mining the
data. It is also often not clear how the VAR coefticient estimates should be
interpreted.

e How should the appropriate lag lengths for the VAR be determined? There are
several approaches available for dealing with this issue, which will be discussed
below.

e  So many parameters! If there are ¢ equations, one for each of ¢ variables and
with k lags of each of the variables in each equation, (g + kg?) parameters will
have to be estimated. For example, if ¢ = 3 and k = 3 there will be thirty
parameters to estimate. For relatively small sample sizes, degrees of freedom
will rapidly be used up, implying large standard errors and therefore wide
confidence intervals for model coefticients.
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e Should all of the components of the VAR be stationary? Obviously, if one wishes
to use hypothesis tests, either singly or jointly, to examine the statistical sig-
nificance of the coefficients, then it is essential that all of the components in
the VAR are stationary. However, many proponents of the VAR approach
recommend that differencing to induce stationarity should not be done. They
would argue that the purpose of VAR estimation is purely to examine the
relationships between the variables, and that differencing will throw informa-
tion on any long-run relationships between the series away. It is also possible
to combine levels and first differenced terms in a VECM — see chapter 8.

Choosing the optimal lag length for a VAR

Often, financial theory will have little to say on what is an appropriate lag length
for a VAR and how long changes in the variables should take to work through
the system. In such instances, there are broadly two methods that could be used
to arrive at the optimal lag length: cross-equation restrictions and information
criteria.

Cross-equation restrictions for VAR lag length selection

A first (but incorrect) response to the question of how to determine the appropriate
lag length would be to use the block F-tests highlighted in section 7.13 below.
These, however, are not appropriate in this case as the F-test would be used
separately for the set of lags in each equation, and what is required here is a
procedure to test the coefficients on a set of lags on all variables for all equations
in the VAR at the same time.

It is worth noting here that in the spirit of VAR estimation (as Sims, for
example, thought that model specification should be conducted), the models
should be as unrestricted as possible. A VAR with different lag lengths for each
equation could be viewed as a restricted VAR. For example, consider a VAR with
three lags of both variables in one equation and four lags of each variable in the
other equation. This could be viewed as a restricted model where the coefticient
on the fourth lags of each variable in the first equation have been set to zero.

An alternative approach would be to specify the same number of lags in each
equation and to determine the model order as follows. Suppose that a VAR
estimated using quarterly data has eight lags of the two variables in each equation,
and it is desired to examine a restriction that the coefficients on lags five—eight are
jointly zero. This can be done using a likelihood ratio test (see chapter 9 for more
general details concerning such tests). Denote the variance—covariance matrix of
residuals (given by #nu), as 3. The likelihood ratio test for this joint hypothesis is
given by

LR = Tllog|%, | — log|%, ] (7.70)
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where |ﬁ]r| is the determinant of the variance—covariance matrix of the residuals
for the restricted model (with four lags), |ﬁ)u| is the determinant of the variance—
covariance matrix of residuals for the unrestricted VAR (with eight lags) and T
is the sample size. The test statistic is asymptotically distributed as a x2 variate
with degrees of freedom equal to the total number of restrictions. In the VAR case
above, four lags of two variables are being restricted in each of the two equations =
atotal of 4 x 2 x 2 = 16 restrictions. In the general case of a VAR with ¢ equations,
to impose the restriction that the last ¢ lags have zero coefticients, there would
be ¢2q restrictions altogether. Intuitively, the test is a multivariate equivalent to
examining the extent to which the RSS rises when a restriction is imposed. If >,
and %, are ‘close together’, the restriction is supported by the data.

Information criteria for VAR lag length selection

The likelihood ratio (LR) test explained above is intuitive and fairly easy to estimate,
but has its limitations. Principally, one of the two VARSs must be a special case
of the other and, more seriously, only pairwise comparisons can be made. In the
above example, if the most appropriate lag length had been seven or even ten, there
is no way that this information could be gleaned from the LR test conducted. One
could achieve this only by starting with a VAR (10), and successively testing one
set of lags at a time.

A further disadvantage of the LR test approach is that the x 2 test will strictly be
valid asymptotically only under the assumption that the errors from each equation
are normally distributed. This assumption is unlikely to be upheld for financial
data. An alternative approach to selecting the appropriate VAR lag length would be
to use an information criterion, as defined in chapter 6 in the context of ARMA
model selection. Information criteria require no such normality assumptions con-
cerning the distributions of the errors. Instead, the criteria trade off a fall in the
RSS of each equation as more lags are added, with an increase in the value of the
penalty term. The univariate criteria could be applied separately to each equation
but, again, it is usually deemed preferable to require the number of lags to be
the same for each equation. This requires the use of multivariate versions of the
information criteria, which can be defined as

MAIC = log 2‘ +2k'/ T (7.71)
N %4
MSBIC = log’ 2‘ + = log(1) (7.72)
2K
MHQIC = log‘ 2‘ + = log(log(T)) (7.73)

where again 3 is the variance—covariance matrix of residuals, T is the number of
observations and k’ is the total number of regressors in all equations, which will
be equal to p?k + p for p equations in the VAR system, each with k lags of the
p variables, plus a constant term in each equation. As previously, the values of the
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information criteria are constructed for 0, 1, ..., k lags (up to some pre-specified
maximum k), and the chosen number of lags is that number minimising the value
of the given information criterion.

Does the VAR include contemporaneous terms?

So far, it has been assumed that the VAR specified is of the form
yie = Bio + Br1yie—1 + o1 ya—1 4+ uyy (7.74)
y2e = Bao + Ba1yz—1 + o1 yi—1 + uzy (7.75)

so that there are no contemporaneous terms on the RHS of (7.74) or (7.75) —i.e.
there is no term in y,, on the RHS of the equation for y;; and no term in y;; on
the RHS of the equation for y,,. But what if the equations had a contemporaneous
feedback term, as in the following case?

Yie = Bio + Biiyie—1 + Qi1 y2—1 + ooy + gy (7.76)
y2r = Boo + Boi y2r—1 + 021 y1—1 + Ay + U (7.77)

Equations (7.76) and (7.77) could also be written by stacking up the terms into
matrices and vectors:

yie\ _ { Bio B o\ yi-1 a0 e Uiy
(Ym) B (/320) * (Ol21 ﬂz1)()’2:—1) * ( 0 azz)(m) * (M)
(7.78)

This would be known as a VAR in primitive form, similar to the structural form for a
simultaneous equations model. Some researchers have argued that the a-theoretical
nature of reduced form VARS leaves them unstructured and their results difficult
to interpret theoretically. They argue that the forms of VAR given previously are
merely reduced forms of a more general structural VAR (such as (7.78)), with the
latter being of more interest.

The contemporaneous terms from (7.78) can be taken over to the LHS and
written as

1 —ap\ [ i Bio Bt air\ [ yi— Uiy
= 7.79
(—0622 1 )()’2;) (,320) * (0521 ,321> ()’2:—1) * (Mzr) v

or
Ayr = Po+ Bryi-r +u (7.80)
If both sides of (7.80) are pre-multiplied by A~!
yi=ATBo+ AT Bryim + AT, (7.81)
or

Vi = Ao+ Aryi—1 e (7.82)
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This is known as a standard form VAR, which is akin to the reduced form from
a set of simultaneous equations. This VAR contains only pre-determined values
on the RHS (i.e. variables whose values are known at time f), and so there is no
contemporaneous feedback term. This VAR can therefore be estimated equation
by equation using OLS.

Equation (7.78), the structural or primitive form VAR, is not identified, since
identical pre-determined (lagged) variables appear on the RHS of both equations.
In order to circumvent this problem, a restriction that one of the coefticients on
the contemporaneous terms is zero must be imposed. In (7.78), either oj» or oz,
must be set to zero to obtain a triangular set of VAR equations that can be validly
estimated. The choice of which of these two restrictions to impose is ideally made
on theoretical grounds. For example, if financial theory suggests that the current
value of yy, should affect the current value of y,, but not the other way around, set
a2 = 0, and so on. Another possibility would be to run separate estimations, first
imposing o1, = 0 and then apy = 0, to determine whether the general features of
the results are much changed. It is also very common to estimate only a reduced
form VAR, which is of course perfectly valid provided that such a formulation
is not at odds with the relationships between variables that financial theory says
should hold.

One fundamental weakness of the VAR approach to modelling is that its
a-theoretical nature and the large number of parameters involved make the
estimated models difficult to interpret. In particular, some lagged variables may
have coetticients which change sign across the lags, and this, together with the
interconnectivity of the equations, could render it difficult to see what effect a
given change in a variable would have upon the future values of the variables
in the system. In order to partially alleviate this problem, three sets of statistics
are usually constructed for an estimated VAR model: block significance tests,
impulse responses and variance decompositions. How important an intuitively
interpretable model is will of course depend on the purpose of constructing the
model. Interpretability may not be an issue at all if the purpose of producing the
VAR is to make forecasts — see box 7.3.

Block significance and causality tests

It is likely that, when a VAR includes many lags of variables, it will be difficult
to see which sets of variables have significant eftects on each dependent variable
and which do not. In order to address this issue, tests are usually conducted that
restrict all of the lags of a particular variable to zero. For illustration, consider the
following bivariate VAR (3)

i) _ [ %o Bir B2\ ([ yie—1 vir Y2\ [ Y-
= + +
Yoi o Bat B )\ y2—1 V21 VY2 )\ Y-
+ 11 Sz Y1t-3 + Uiqe (7.83)
O O )\ y2u-3 Uy
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Box 7.3 Forecasting with VARs ™

One of the main advantages of the VAR approach to modelling and
forecasting is that since only lagged variables are used on the right hand
side, forecasts of the future values of the dependent variables can be
calculated using only information from within the system. We could term
these unconditional forecasts since they are not constructed conditional on a
particular set of assumed values. However, conversely it may be useful to
produce forecasts of the future values of some variables conditional upon
known values of other variables in the system. For example, it may be the
case that the values of some variables become known before the values of
the others. If the known values of the former are employed, we would
anticipate that the forecasts should be more accurate than if estimated values
were used unnecessarily, thus throwing known information away.
Alternatively, conditional forecasts can be employed for counterfactual
analysis based on examining the impact of certain scenarios. For example,
in a trivariate VAR system incorporating monthly stock returns, inflation
and gross domestic product (GDP), we could answer the question: “What is
the likely impact on the stock market over the next 1-6 months of a
2-percentage point increase in inflation and a 1% rise in GDP?’

J

This VAR could be written out to express the individual equations as

Yie = 10 + Briyi—1 + Biayai—1 + Vi1 Yie—2 + V12 Y22

+ 811 y10—3 + S12y2—3 + Uy
(7.84)
yor = 20 + Baryii—1 + Boayau—1 + V21 Yie—2 + Va2 y2u—2

+ 801 y1e—3 + S ya—3 + Uy

One might be interested in testing the hypotheses and their implied restrictions
on the parameter matrices given in table 7.3.

Assuming that all of the variables in the VAR are stationary, the joint hypotheses
can easily be tested within the F-test framework, since each individual set of
restrictions involves parameters drawn from only one equation. The equations
would be estimated separately using OLS to obtain the unrestricted RSS, then the
restrictions imposed and the models re-estimated to obtain the restricted RSS. The
F-statistic would then take the usual form described in chapter 4. Thus, evaluation
of the significance of variables in the context of a VAR almost invariably occurs
on the basis of joint tests on all of the lags of a particular variable in an equation,
rather than by examination of individual coefficient estimates.

In fact, the tests described above could also be referred to as causality tests. Tests
of this form were described by Granger (1969) and a slight variant due to Sims
(1972). Causality tests seek to answer simple questions of the type, ‘Do changes
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Table 7.3 Granger causality tests and implied restrictions on VAR
models
Hypothesis Implied restriction

1 Lags of y1; do not explain current yo; B21 =0and y»1 =0and 821 =0

2 Lags of y1; do not explain current y+; B11=0and y11 =0and 611 =0

3 Lags of yo; do not explain current yq; Biz=0and 2 =0and §12 =0
\4 Lags of y»; do not explain current yo; Boo=0and y»» =0and 6o =0 j

in y; cause changes in y,?° The argument follows that if y; causes y», lags of y;
should be significant in the equation for y,. If this is the case and not vice versa,
it would be said that y; ‘Granger-causes’ y, or that there exists unidirectional
causality from y; to y». On the other hand, if y, causes y;, lags of y, should be
significant in the equation for y;. If both sets of lags were significant, it would
be said that there was ‘bi-directional causality’ or ‘bi-directional feedback’. If y,
is found to Granger-cause y», but not vice versa, it would be said that variable y,
is strongly exogenous (in the equation for y,). If neither set of lags are statistically
significant in the equation for the other variable, it would be said that y; and
y2 are independent. Finally, the word ‘causality’ is somewhat of a misnomer, for
Granger-causality really means only a correlation between the current value of one
variable and the past values of others; it does not mean that movements of one
variable cause movements of another.

VARs with exogenous variables

Consider the following specification for a VAR (1) where X; is a vector of exoge-
nous variables and B is a matrix of coefficients

yi = Ao+ Aryi—-1 + BX; + ¢ (7.85)

The components of the vector X; are known as exogenous variables since their
values are determined outside of the VAR system — in other words, there are
no equations in the VAR with any of the components of X; as dependent vari-
ables. Such a model is sometimes termed a VARX, although it could be viewed
as simply a restricted VAR where there are equations for each of the exoge-
nous variables, but with the coefficients on the RHS in those equations restricted
to zero. Such a restriction may be considered desirable if theoretical considera-
tions suggest it, although it is clearly not in the true spirit of VAR modelling,
which is not to impose any restrictions on the model but rather to ‘let the data

decide’.
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Impulse responses and variance decompositions

Block F-tests and an examination of causality in a VAR will suggest which of the
variables in the model have statistically significant impacts on the future values of
each of the variables in the system. But F-test results will not, by construction,
be able to explain the sign of the relationship or how long these eftects require to
take place. That is, F-test results will not reveal whether changes in the value of a
given variable have a positive or negative effect on other variables in the system, or
how long it would take for the eftect of that variable to work through the system.
Such information will, however, be given by an examination of the VAR’s impulse
responses and variance decompositions.

Impulse responses trace out the responsiveness of the dependent variables in the
VAR to shocks to each of the variables. So, for each variable from each equation
separately, a unit shock is applied to the error, and the eftects upon the VAR
system over time are noted. Thus, if there are ¢ variables in a system, a total of g>
impulse responses could be generated. The way that this is achieved in practice is
by expressing the VAR model as a VMA — that is, the vector autoregressive model
is written as a vector moving average (in the same way as was done for univariate
autoregressive models in chapter 5). Provided that the system is stable, the shock
should gradually die away.

To illustrate how impulse responses operate, consider the following bivariate
VAR (1)

yr = Aryi—1 +uy (7.86)
0.5 0.3
where A, = [0.0 0.2]

The VAR can also be written out using the elements of the matrices and vectors

as
Vit 05 03 Yie—1 + Uy
Yo 0.0 0.2 yar—1 Uoy

Consider the effect at time t = 0, 1, ..., of a unit shock to y;, at time t = 0

(7.87)

| #i0 | _ 1
05 0311 0.5
yi= iy = [0.0 0.2][0] = [ 0 ] (7.89)
0.5 03105 0.25

and so on. It would thus be possible to plot the impulse response functions of yy,
and Yy, to a unit shock in yy,. Notice that the effect on y,; is always zero, since
the variable y;,—1 has a zero coefficient attached to it in the equation for yy;.
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Now consider the effect of a unit shock to y», at time t = 0

[Z5N0) 0
_ _ 791
Y0 |:u20:| |:1:| (7.91)
05 03170 0.3
y =iy = [0.0 0.2}[1} = [0.2] (7.92)

0.5 0.3][0.3 0.21

r2= iy = [0.0 0.2} [0.2] - [0.04} 75
and so on. Although it is probably fairly easy to see what the effects of shocks to
the variables will be in such a simple VAR, the same principles can be applied in
the context of VARs containing more equations or more lags, where it is much
more difficult to see by eye what are the interactions between the equations.

Variance decompositions ofter a slightly different method for examining VAR
system dynamics. They give the proportion of the movements in the dependent
variables that are due to their ‘own’ shocks, versus shocks to the other variables.
A shock to the ith variable will directly affect that variable of course, but it will
also be transmitted to all of the other variables in the system through the dynamic
structure of the VAR. Variance decompositions determine how much of the s-
step-ahead forecast error variance of a given variable is explained by innovations
to each explanatory variable for s =1, 2, ... In practice, it is usually observed that
own series shocks explain most of the (forecast) error variance of the series in a
VAR. To some extent, impulse responses and variance decompositions offer very
similar information.

For calculating impulse responses and variance decompositions, the ordering
of the variables is important. To see why this is the case, recall that the impulse
responses refer to a unit shock to the errors of one VAR equation alone. This
implies that the error terms of all other equations in the VAR system are held
constant. However, this is not realistic since the error terms are likely to be
correlated across equations to some extent. Thus, assuming that they are completely
independent would lead to a misrepresentation of the system dynamics. In practice,
the errors will have a common component that cannot be associated with a single
variable alone.

The usual approach to this difficulty is to generate orthogonalised impulse
responses. In the context of a bivariate VAR, the whole of the common com-
ponent of the errors is attributed somewhat arbitrarily to the first variable in the
VAR. In the general case where there are more than two variables in the VAR, the
calculations are more complex but the interpretation is the same. Such a restriction
in effect implies an ‘ordering’ of variables, so that the equation for y;; would be
estimated first and then that of y,,, a bit like a recursive or triangular system.

Assuming a particular ordering is necessary to compute the impulse responses
and variance decompositions, although the restriction underlying the ordering used
may not be supported by the data. Again, ideally, financial theory should suggest
an ordering (in other words, that movements in some variables are likely to follow,
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rather than precede, others). Failing this, the sensitivity of the results to changes in
the ordering can be observed by assuming one ordering, and then exactly reversing
it and re-computing the impulse responses and variance decompositions. It is also
worth noting that the more highly correlated are the residuals from an estimated
equation, the more the variable ordering will be important. But when the residuals
are almost uncorrelated, the ordering of the variables will make little difference
(see Liitkepohl, 1991, chapter 2 for further details).

Runkle (1987) argues that both impulse responses and variance decomposi-
tions are notoriously difficult to interpret accurately. He argues that confidence
bands around the impulse responses and variance decompositions should always be
constructed. However, he further states that, even then, the confidence intervals
are typically so wide that sharp inferences are impossible.

VAR model example: the interaction between property returns and
the macroeconomy

Background, data and variables

Brooks and Tsolacos (1999) employ a VAR methodology for investigating the
interaction between the UK property market and various macroeconomic vari-
ables. Monthly data, in logarithmic form, are used for the period from December
1985 to January 1998. The selection of the variables for inclusion in the VAR
model is governed by the time series that are commonly included in studies of
stock return predictability. It is assumed that stock returns are related to macroe-
conomic and business conditions, and hence time series which may be able to
capture both current and future directions in the broad economy and the business
environment are used in the investigation.

Broadly, there are two ways to measure the value of property-based assets —
direct measures of property value and equity-based measures. Direct property measures
are based on periodic appraisals or valuations of the actual properties in a port-
folio by surveyors, while equity-based measures evaluate the worth of properties
indirectly by considering the values of stock market traded property companies.
Both sources of data have their drawbacks. Appraisal-based value measures suffer
from valuation biases and inaccuracies. Surveyors are typically prone to ‘smooth’
valuations over time, such that the measured returns are too low during property
market booms and too high during periods of property price falls. Additionally,
not every property in the portfolio that comprises the value measure is appraised
during every period, resulting in some stale valuations entering the aggregate valu-
ation, further increasing the degree of excess smoothness of the recorded property
price series. Indirect property vehicles — property-related companies traded on
stock exchanges — do not suffer from the above problems, but are excessively
influenced by general stock market movements. It has been argued, for example,
that over three-quarters of the variation over time in the value of stock exchange
traded property companies can be attributed to general stock market-wide price
movements. Therefore, the value of equity-based property series reflects much



7.16 VAR model example 339

more the sentiment in the general stock market than the sentiment in the property
market specifically.

Brooks and Tsolacos (1999) elect to use the equity-based FTSE Property
Total Return Index to construct property returns. In order to purge the real estate
return series of its general stock market influences, it is common to regress property
returns on a general stock market index (in this case the FTA All-Share Index is
used), saving the residuals. These residuals are expected to reflect only the variation
in property returns, and thus become the property market return measure used in
subsequent analysis, and are denoted PROPRES.

Hence, the variables included in the VAR are the property returns (with general
stock market effects removed), the rate of unemployment, nominal interest rates,
the spread between the long- and short-term interest rates, unanticipated inflation
and the dividend yield. The motivations for including these particular variables in
the VAR together with the property series, are as follows:

o  The rate of unemployment (denoted UNEM) is included to indicate general
economic conditions. In US research, authors tend to use aggregate consump-
tion, a variable that has been built into asset pricing models and examined as a
determinant of stock returns. Data for this variable and for alternative variables
such as GDP are not available on a monthly basis in the UK. Monthly data are
available for industrial production series but other studies have not shown any
evidence that industrial production affects real estate returns. As a result, this
series was not considered as a potential causal variable.

o  Short-term nominal interest rates (denoted SIR) are assumed to contain infor-
mation about future economic conditions and to capture the state of
investment opportunities. It was found in previous studies that short-term
interest rates have a very significant negative influence on property stock
returns.

o Interest rate spreads (denoted SPREAD), 1.e. the yield curve, are usually mea-
sured as the difference in the returns between long-term Treasury Bonds (of
maturity, say, ten or twenty years), and the one-month or three-month Trea-
sury Bill rate. It has been argued that the yield curve has extra predictive
power, beyond that contained in the short-term interest rate, and can help
predict GDP up to four years ahead. It has also been suggested that the term
structure also affects real estate market returns.

e Inflation rate influences are also considered important in the pricing of stocks.
For example, it has been argued that unanticipated inflation could be a source
of economic risk and as a result, a risk premium will also be added if the stock
of firms has exposure to unanticipated inflation. The unanticipated inflation
variable (denoted UNINFL) is defined as the difference between the realised
inflation rate, computed as the percentage change in the Retail Price Index
(RPI), and an estimated series of expected inflation. The latter series was
produced by fitting an ARMA model to the actual series and making a one-
period(month)-ahead forecast, then rolling the sample forward one period,
and re-estimating the parameters and making another one-step-ahead forecast,
and so on.
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e Dividend yields (denoted DIVY) have been widely used to model stock mar-
ket returns, and also real estate property returns, based on the assumption
that movements in the dividend yield series are related to long-term business
conditions and that they capture some predictable components of returns.

All variables to be included in the VAR are required to be stationary in order to
carry out joint significance tests on the lags of the variables. Hence, all variables
are subjected to augmented Dickey—Fuller (ADF) tests (see chapter 8). Evidence
that the log of the RPI and the log of the unemployment rate both contain a
unit root is observed. Therefore, the first differences of these variables are used
in subsequent analysis. The remaining four variables led to rejection of the null
hypothesis of a unit root in the log-levels, and hence these variables were not first

differenced.

Methodology

A reduced form VAR is employed and therefore each equation can effectively be
estimated using OLS. For a VAR to be unrestricted, it is required that the same
number of lags of all of the variables is used in all equations. Therefore, in order to
determine the appropriate lag lengths, the multivariate generalisation of Akaike’s
information criterion (AIC) is used.

Within the framework of the VAR system of equations, the significance of all
the lags of each of the individual variables is examined jointly with an F-test. Since
several lags of the variables are included in each of the equations of the system,
the coefticients on individual lags may not appear significant for all lags, and may
have signs and degrees of significance that vary with the lag length. However,
F-tests will be able to establish whether all of the lags of a particular variable are
jointly significant. In order to consider further the effect of the macro-economy
on the real estate returns index, the impact multipliers (orthogonalised impulse
responses) are also calculated for the estimated VAR model. Two standard error
bands are calculated using the Monte Carlo integration approach employed by
McCue and Kling (1994), and based on Doan (1994). The forecast error variance
is also decomposed to determine the proportion of the movements in the real
estate series that are a consequence of its own shocks rather than shocks to other
variables.

Results

The number of lags that minimises the value of Akaike’s information criterion is
fourteen, consistent with the fifteen lags used by McCue and Kling (1994). There
are thus (1 + 14 x 6) = 85 variables in each equation, implying fifty-nine degrees
of freedom. F-tests for the null hypothesis that all of the lags of a given variable
are jointly insignificant in a given equation are presented in table 7.4.

In contrast to a number of US studies which have used similar variables, it
is found to be difficult to explain the variation in the UK real estate returns
index using macroeconomic factors, as the last row of table 7.4 shows. Of all the
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Table 7.4 Marginal significance levels associated with joint F-tests

Dependent Lags of variable

variable SIR DIVY SPREAD UNEM UNINFL PROPRES
SIR 0.0000 0.0091 0.0242 0.0327 0.2126 0.0000
DIVY 0.5025 0.0000 0.6212 0.4217 0.5654 0.4033
SPREAD 0.2779 0.1328 0.0000 0.4372 0.6563 0.0007
UNEM 0.3410 0.3026 0.1151 0.0000 0.0758 0.2765
UNINFL 0.3057 0.5146 0.3420 0.4793 0.0004 0.3885
PROPRES 0.5537 0.1614 0.5537 0.8922 0.7222 0.0000 D

The test is that all fourteen lags have no explanatory power for that particular equation in the VAR.
Source: Brooks and Tsolacos (1999).

lagged variables in the real estate equation, only the lags of the real estate returns
themselves are highly significant, and the dividend yield variable is significant only
at the 20% level. No other variables have any significant explanatory power for
the real estate returns. Therefore, based on the F-tests, an initial conclusion is
that the variation in property returns, net of stock market influences, cannot be
explained by any of the main macroeconomic or financial variables used in existing
research. One possible explanation for this might be that, in the UK, these variables
do not convey the information about the macro-economy and business conditions
assumed to determine the intertemporal behaviour of property returns. It is possible
that property returns may reflect property market influences, such as rents, yields
or capitalisation rates, rather than macroeconomic or financial variables. However,
again the use of monthly data limits the set of both macroeconomic and property
market variables that can be used in the quantitative analysis of real estate returns
in the UK.

[t appears, however, that lagged values of the real estate variable have explana-
tory power for some other variables in the system. These results are shown in
the last column of table 7.4. The property sector appears to help in explaining
variations in the term structure and short-term interest rates, and moreover since
these variables are not significant in the property index equation, it is possible
to state further that the property residual series Granger-causes the short-term
interest rate and the term spread. This is a bizarre result. The fact that property
returns are explained by own lagged values — i.e. that is there is interdepen-
dency between neighbouring data points (observations) — may reflect the way
that property market information is produced and reflected in the property return
indices.

Table 7.5 gives variance decompositions for the property returns index equa-
tion of the VAR for one, two, three, four, twelve and twenty-four steps ahead for
the two variable orderings:
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Table 7.5 Variance decompositions for the property sector index residuals

Multivariate models

Explained by innovations in

N

SIR DIVY SPREAD UNEM UNINFL PROPRES
Months
ahead | Il | Il | Il | Il | Il | Il
1 00 | 08| 00 | 3.2 | 0.0 9.1 0.0 | 0.7 0.0 0.2 100.0 | 51.0
2 02 | 0.8 | 0.2 | 35.1 0.2 123 | 04 | 1.4 1.6 2.9 97.5 | 47.5
S 38 | 25| 04 | 294 | 0.2 178 | 1.0 | 15 2.3 3.0 92.3 | 45.8
4 3.7 | 21 53 | 22.3 14 | 185 | 1.6 | 1.1 4.8 4.4 83.3 | 51.5
12 28 | 31 | 155 | 87 | 1563 | 195 | 3.3 | 5.1 17.0 | 135 | 46.1 50.0
24 82 | 6.3 | 6.8 39 | 380 | 36.2 | 55 | 147 | 181 | 16.9 | 234 | 22.0

Source: Brooks and Tsolacos (1999).

Order I: PROPRES, DIVY, UNINFL, UNEM, SPREAD, SIR
Order II: SIR, SPREAD, UNEM, UNINFL, DIVY, PROPRES.

Unfortunately, the ordering of the variables is important in the decomposition.
Thus two orderings are applied, which are the exact opposite of one another,
and the sensitivity of the result is considered. It is clear that by the two-year
forecasting horizon, the variable ordering has become almost irrelevant in most
cases. An interesting feature of the results is that shocks to the term spread and
unexpected inflation together account for over 50% of the variation in the real
estate series. The short-term interest rate and dividend yield shocks account for
only 10-15% of the variance of the property index. One possible explanation for
the difference in results between the F-tests and the variance decomposition is that
the former is a causality test and the latter is effectively an exogeneity test. Hence
the latter implies the stronger restriction that both current and lagged shocks to the
explanatory variables do not influence the current value of the dependent variable
of the property equation. Another way of stating this is that the term structure
and unexpected inflation have a contemporaneous rather than a lagged effect on
the property index, which implies insignificant F-test statistics but explanatory
power in the variance decomposition. Therefore, although the F-tests did not
establish any significant effects, the error variance decompositions show evidence
of a contemporaneous relationship between PROPRES and both SPREAD and
UNINFL. The lack of lagged eftects could be taken to imply speedy adjustment
of the market to changes in these variables.

Figures 7.1 and 7.2 give the impulse responses for PROPRES associated with
separate unit shocks to unexpected inflation and the dividend yield, as examples
(as stated above, a total of thirty-six impulse responses could be calculated since
there are six variables in the system).
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Figure 7.1 Impulse responses and standard error bands for innovations in unexpected
inflation equation errors
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Figure 7.2 Impulse responses and standard error bands for innovations in the dividend
yields

Considering the signs of the responses, innovations to unexpected inflation
(figure 7.1) always have a negative impact on the real estate index, since the
impulse response is negative, and the effect of the shock does not die down,
even after twenty-four months. Increasing stock dividend yields (figure 7.2) have
a negative impact for the first three periods, but beyond that, the shock appears to
have worked its way out of the system.

Conclusions

The conclusion from the VAR methodology adopted in the Brooks and Tsolacos
paper is that overall, UK real estate returns are difficult to explain on the basis of the
information contained in the set of the variables used in existing studies based on
non-UK data. The results are not strongly suggestive of any significant influences
of these variables on the variation of the filtered property returns series. There
is, however, some evidence that the interest rate term structure and unexpected
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Screenshot 7.3 VAR inputs screen

inflation have a contemporaneous effect on property returns, in agreement with
the results of a number of previous studies.

VAR estimation in EViews

By way of illustration, a VAR is estimated in order to examine whether there
are lead—lag relationships for the returns to three exchange rates against the US
dollar — the euro, the British pound and the Japanese yen. The data are daily
and run from 7 July 2002 to 6 June 2013, giving a total of 3,986 observations.
The data are contained in the Excel file ‘currencies.xls’. First Create a new
workfile, called ‘currencies.wfl’, and import the three currency series. Con-
struct a set of continuously compounded percentage returns called ‘reur’, ‘rgbp’
and ‘rjpy’. VAR estimation in EViews can be accomplished by clicking on the
Quick menu and then Estimate VAR. ... The VAR inputs screen appears as in
screenshot 7.3.



Vector Autoregression Estimates

Date: 07/07/13 Time: 12:01

Sample (adjusted): 7/10/2002 6/06/2013
Included observations: 3985 after adjustments
Standard errors in () & t-statistics in [ ]

REUR RGBP RJPY
REUR(-1) 0.200155 —0.042777 0.024186
—0.022710 —0.020790 —0.022510
[8.81447] [-2.05766] [1.07460]
REUR(-2) —0.033413 0.056771 —0.031334
—0.022620 —0.020710 —0.022420
[—1.47722] [2.74149] [-1.39762]
RGBP(-1) —0.061566 0.261643 —0.067979
—0.024110 —0.022070 —0.023890
[-2.55382] [11.8548] [—2.84494]
RGBP(-2) 0.024656 —0.092099 0.032403
—0.024080 —0.022040 —0.023870
[1.02395] [-4.17778] [1.35768]
RJPY(-1) —0.020151 —0.056639 0.150845
—0.016660 —0.015250 —0.016510
[-1.20970] [-8.71393] [9.13617]
RJPY(-2) 0.002628 0.002964 0.000718
—0.016680 —0.015270 —0.016530
[0.15753] [0.19409] [0.04345]
C —0.005836 0.000045 —0.003682
—0.007450 —0.006820 —0.007390
[-0.78299] [0.00665] [—0.49847]
R-squared 0.025479 0.05224 0.024297
Adj. R-squared 0.024009 0.050815 0.022826
Sum sq. resids 879.8663 737.4698 864.4051
S.E. equation 0.470301 0.430566 0.466151
F-statistic 17.33423 36.54742 16.51038
Log likelihood —2644.754 —2292.988 —2609.430
Akaike AIC 1.330868 1.154323 1.313139
Schwarz SC 1.341917 1.165372 1.324189
Mean dependent —0.0006978 0.000162 —0.004320
S.D. dependent 0.476051 0.441941 0.471564
Determinant resid covariance (dof adj.) 0.004189
Determinant resid covariance 0.004167
Log likelihood —6043.540
Akaike information criterion 3.043684
Schwarz criterion 3.076832
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In the Endogenous variables box, type the three variable names, reur rgbp
rjpy. In the Exogenous box, leave the default ‘C’ and in the Lag Interval box,
enter 1 2 to estimate a VAR (2), just as an example. The output appears in a neatly
organised table as shown on the following page, with one column for each equation
in the first and second panels, and a single column of statistics that describes the
system as a whole in the third. So values of the information criteria are given
separately for each equation in the second panel and jointly for the model as a
whole in the third.

We will shortly discuss the interpretation of the output, but the example so
far has assumed that we know the appropriate lag length tfor the VAR. However, in
practice, the first step in the construction of any VAR model, once the variables
that will enter the VAR have been decided, will be to determine the appropriate
lag length. This can be achieved in a variety of ways, but one of the easiest is to
employ a multivariate information criterion. In EViews, this can be done easily
from the EViews VAR output we have by clicking View/Lag Structure/Lag
Length Criteria. . . . You will be invited to specify the maximum number of lags
to entertain including in the model, and for this example, arbitrarily select 10. The
output in the following table would be observed.

EViews presents the values of various information criteria and other methods
for determining the lag order. In this case, the Akaike and Hannan—Quinn criteria
both select a lag length of two as optimal, while Schwarz’s criterion chooses a
VAR(1). Estimate a VAR(1) and examine the results. Does the model look as if
it fits the data well? Why or why not?

Next, run a Granger causality test by clicking View/Lag Structure/
Granger Causality/Block Exogeneity Tests. The table of statistics will appear
immediately as on the following page.

The results show only modest evidence of lead-lag interactions between the
series. Since we have estimated a tri-variate VAR, three panels are displayed, with
one for each dependent variable in the system. There is causality from the pound
to the euro and from the pound to the yen that is significant at the 5% and 1%
levels respectively, but no causality in the opposite direction in the case of the
euro to pound and no causality between the euro—dollar and the yen—dollar in
either direction. These results might be interpreted as suggesting that information
1s incorporated slightly more quickly in the pound—dollar rate than in the euro—
dollar or yen—dollar rates.

It is worth also noting that the term ‘Granger causality’ is something of a
misnomer since a finding of ‘causality’ does not mean that movements in one
variable physically cause movements in another. For example, in the above analysis,
if movements in the euro—dollar market were found to Granger-cause movements
in the pound—dollar market, this would not have meant that the pound—dollar rate
changed as a direct result of, or because of, movements in the euro—dollar market.
Rather, causality simply implies a chronological ordering of movements in the series. It
could validly be stated that movements in the pound—dollar rate appear to lead
those of the euro—dollar rate, and so on.

The EViews manual suggests that block F-test restrictions can be performed
by estimating the VAR equations individually using OLS and then by using the
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VAR Lag Order Selection Criteria
Endogenous variables: REUR RGBP RJPY
Exogenous variables: C

Date: 07/07/13 Time: 12:19

Sample: 7/07/2002 6/06/2013

Included observations: 3977

Lag LogL LR FPE AlC sC HQ
0  —6324.3310 NA 0.004836 3.181962 3.186705  3.183644
1 —6060.2640 527.6036 0.004254 3.053690 3.072664* 3.060418
2 —6034.8720 50.69431 0.004219* 3.045447* 3.078652  3.057221*
3 —6030.9570 7.808927 0.004230 3.048005 3.095440  3.064824
4  —6022.9370 1598760 0.004232 3.048498 3.110163  3.070363
5  —6015.1100 1559165 0.004234 3.049087 3.124983  3.075998
6  —6009.1700 11.82421 0.004241 3.050626 3.140752  3.082583
7 —6000.1710 17.89848" 0.004241 3.050626 3.154983  3.087629
8  —5992.9660 14.31748 0.004245 3.051530 3.170117  3.093578
9  —5988.1330 9.599241 0.004254 3.053625 3.186442  3.100719

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

- J

View then Lag Structure then Lag Exclusion Tests. EViews tests for whether
the parameters for a given lag of all the variables in a particular equation can be
restricted to zero.

To obtain the impulse responses for the estimated model, simply click the
Impulse on the button bar above the VAR object and a new dialog box will
appear as in screenshot 7.4.

By default, EViews will offer to estimate and plot all of the responses to separate
shocks of all of the variables in the order that the variables were listed in the
estimation window, using ten steps and confidence intervals generated using ana-
lytic formulae. If twenty steps ahead had been selected, with ‘combined response
graphs’, you would see the graphs in the format in screenshot 7.5 (obviously they
appear small on the page and the colour has been lost, but the originals are much
clearer). As one would expect given the parameter estimates and the Granger
causality test results, only a few linkages between the series are established here.
The responses to the shocks are very small, except for the response of a variable to
its own shock, and they die down to almost nothing after the first lag. The only
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4 )

VAR Granger Causality/Block Exogeneity Wald Tests
Date: 07/07/13 Time: 14:36

Sample: 7/07/2002 6/06/13

Included observations: 3986

Dependent variable: REUR

Excluded Chi-sq df Prob.
RGBP 5.736328 1 0.0166
RJPY 1.413860 1 0.2344

All 6.844297 2 0.0326

Dependent variable: RGBP

Excluded Chi-sq df Prob.
REUR 1.508416 1 0.2194
RJPY 12.94274 1 0.0003

All 17.61849 2 0.0001

Dependent variable: RIPY

Excluded Chi-sq df Prob.
REUR 0.568845 1 0.4507
RGBP 6.702967 1 0.0096

All 8.551943 2 0.0139

N

exceptions are that the pound (second graph in the screenshot) and the yen (third
graph) both respond to shocks to the euro rate against the dollar.

Plots of the variance decompositions can also be generated by clicking on
View and then Variance Decomposition. ... A similar plot for the variance
decompositions would appear as in screenshot 7.6.

There is little again that can be seen from these variance decomposition graphs
that appear small on a printed page apart from the fact that the behaviour is
observed to settle down to a steady state very quickly. Interestingly, while the
percentage of the errors that is attributable to own shocks is 100% in the case of
the euro rate, for the pound, the euro series explains around 47% of the variation
in returns, and for the yen, the euro series explains around 7% of the variation and
the pound 37%.

We should remember that the ordering of the variables has an effect on the
impulse responses and variance decompositions, and when, as in this case, theory
does not suggest an obvious ordering of the series, some sensitivity analysis should
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be undertaken. This can be achieved by clicking on the ‘Impulse Definition’ tab
when the window that creates the impulses is open. A window entitled ‘Ordering
for Cholesky’ should be apparent, and it would be possible to reverse the order
of variables or to select any other order desired. For the variance decompositions,
the ‘Ordering for Cholesky’ box is observed in the window for creating the
decompositions without having to select another tab.

Key concepts

endogenous variable
simultaneous equations bias
order condition

Hausman test

structural form

indirect least squares

vector autoregression
impulse response

~

The key terms to be able to define and explain from this chapter are

exogenous variable
identified

rank condition

reduced form
instrumental variables
two-stage least squares
Granger causality
variance decomposition
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Self-study questions
1. Consider the following simultaneous equations system
Yie = 0o + a1y + azys + o3 Xy + 0oy Xop + gy (7.94)
v = Bo+ Brys + B2 Xi + B3 X5 + uny (7.95)
Y3 = Yo+ Y1y + 2 Xor + 3 X3 + uy (7.96)

(a) Derive the reduced form equations corresponding to (7.94)—(7.96).

(b) What do you understand by the term ‘identification’? Describe a rule for
determining whether a system of equations is identified. Apply this rule
to (7.94)—(7.96). Does this rule guarantee that estimates of the structural
parameters can be obtained?

(c) Which would you consider the more serious misspecification: treating
exogenous variables as endogenous, or treating endogenous variables as
exogenous? Explain your answer.

(d) Describe a method of obtaining the structural form coefficients
corresponding to an overidentified system.

(e) Using EViews, estimate a VAR model for the interest rate series used in
the principal components example of chapter 4. Use a method for
selecting the lag length in the VAR optimally. Determine whether certain
maturities lead or lag others, by conducting Granger causality tests and
plotting impulse responses and variance decompositions. Is there any
evidence that new information is reflected more quickly in some
maturities than others?

Consider the following system of two equations

Yie = o + a1y + o Xy + a3 Xop 4 1y (7.97)
Y2 = Bo + Biyie + B Xie + uy (7.98)

(a) Explain, with reference to these equations, the undesirable consequences
that would arise if (7.97) and (7.98) were estimated separately using OLS.

(b) What would be the eftect upon your answer to (a) if the variable y;, had
not appeared in (7.98)?

(c) State the order condition for determining whether an equation which is
part of a system is identified. Use this condition to determine whether
(7.97) or (7.98) or both or neither are identified.

(d) Explain whether indirect least squares (ILS) or two-stage least squares
(2SLS) could be used to obtain the parameters of (7.97) and (7.98).
Describe how each of these two procedures (ILS and 2SLS) are used to
calculate the parameters of an equation. Compare and evaluate the
usefulness of ILS, 2SLS and IV.

(e) Explain briefly the Hausman procedure for testing for exogeneity.

Explain, using an example if you consider it appropriate, what you understand

by the equivalent terms ‘recursive equations’ and ‘triangular system’. Can a

triangular system be validly estimated using OLS? Explain your answer.
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4. Consider the following vector autoregressive model

k
yi=Bo+ D Biy—i +u (7.99)
i=1

where y; is 2 p X 1 vector of variables determined by k lags of all p variables

in the system, u, is a p X 1 vector of error terms, By is a p X 1 vector of

constant term coefficients and B; are p X p matrices of coefficients on the

ith lag of y.

(a) If p = 2, and k = 3, write out all the equations of the VAR in full,
carefully defining any new notation you use that is not given in the
question.

(b) Why have VARs become popular for application in economics and
finance, relative to structural models derived from some underlying
theory?

(c) Discuss any weaknesses you perceive in the VAR approach to
econometric modelling.

(d) Two researchers, using the same set of data but working independently,
arrive at different lag lengths for the VAR equation (7.99). Describe and
evaluate two methods for determining which of the lag lengths is more
appropriate.

Define carefully the following terms

e Simultaneous equations system

Exogenous variables

Endogenous variables

Structural form model

Reduced form model.
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In this chapter, you will learn how to

e Highlight the problems that may occur if non-stationary data are used in their
levels form

e Test for unit roots

e Examine whether systems of variables are cointegrated

e Estimate error correction and vector error correction models

e Explain the intuition behind Johansen’s test for cointegration

e Describe how to test hypotheses in the Johansen framework

e Construct models for long-run relationships between variables in EViews

Stationarity and unit root testing
8.1.1  Why are tests for non-stationarity necessary?

There are several reasons why the concept of non-stationarity is important and why
it is essential that variables that are non-stationary be treated differently from those
that are stationary. Two definitions of non-stationarity were presented at the start
of chapter 6. For the purpose of the analysis in this chapter, a stationary series can
be defined as one with a constant mean, constant variance and constant autocovariances
for each given lag. Therefore, the discussion in this chapter relates to the concept of
weak stationarity. An examination of whether a series can be viewed as stationary
or not is essential for the following reasons:

e The stationarity or otherwise of a series can strongly influence its behaviour and
properties. To offer one illustration, the word ‘shock’ is usually used to denote
a change or an unexpected change in a variable or perhaps simply the value of
the error term during a particular time period. For a stationary series, ‘shocks’
to the system will gradually die away. That is, a shock during time ¢ will have
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Figure 8.1  Value of R? for 1,000 sets of regressions of a non-stationary variable on another
independent non-stationary variable

a smaller effect in time ¢ + 1, a smaller effect still in time ¢ + 2, and so on. This
can be contrasted with the case of non-stationary data, where the persistence
of shocks will always be infinite, so that for a non-stationary series, the effect
of a shock during time ¢ will not have a smaller effect in time ¢+ 1, and in
time ¢t + 2, etc.

The use of non-stationary data can lead to spurious regressions. If two stationary
variables are generated as independent random series, when one of those
variables is regressed on the other, the f-ratio on the slope coefficient would
be expected not to be significantly different from zero, and the value of R>
would be expected to be very low. This seems obvious, for the variables are
not related to one another. However, if two variables are trending over time, a
regression of one on the other could have a high R? even if the two are totally
unrelated. So, if standard regression techniques are applied to non-stationary
data, the end result could be a regression that ‘looks’ good under standard
measures (significant coefficient estimates and a high R?), but which is really
valueless. Such a model would be termed a ‘spurious regression’.

To give an illustration of this, two independent sets of non-stationary
variables, y and x, were generated with sample size 500, one regressed on the
other and the R? noted. This was repeated 1,000 times to obtain 1,000 R?
values. A histogram of these values is given in figure 8.1.

As figure 8.1 shows, although one would have expected the R? values
for each regression to be close to zero, since the explained and explanatory
variables in each case are independent of one another, in fact R* takes on
values across the whole range. For one set of data, R* is bigger than 0.9, while
it is bigger than 0.5 over 16% of the time!

If the variables employed in a regression model are not stationary, then it can
be proved that the standard assumptions for asymptotic analysis will not be
valid. In other words, the usual ‘¢-ratios’ will not follow a ¢-distribution, and
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Figure 8.2 Value of t-ratio of slope coefficient for 1,000 sets of regressions of a
non-stationary variable on another independent non-stationary variable

the F-statistic will not follow an F-distribution, and so on. Using the same
simulated data as used to produce figure 8.1, figure 8.2 plots a histogram of
the estimated ¢-ratio on the slope coefticient for each set of data.

In general, if one variable is regressed on another unrelated variable, the
t-ratio on the slope coefticient will follow a t-distribution. For a sample of
size 500, this implies that 95% of the time, the t-ratio will lie between £2. As
figure 8.2 shows quite dramatically, however, the standard t-ratio in a regression
of non-stationary variables can take on enormously large values. In fact, in the
above example, the f-ratio is bigger than 2 in absolute value over 98% of the
time, when it should be bigger than 2 in absolute value only approximately 5%
of the time! Clearly, it is therefore not possible to validly undertake hypothesis
tests about the regression parameters if the data are non-stationary.

Two types of non-stationarity

There are two models that have been frequently used to characterise the non-
stationarity, the random walk model with drift

Yo =M+ yi—1 + uy 8.1

and the trend-stationary process — so-called because it is stationary around a linear
trend

yr =o + Bt + u, 8.2)

where u, is a white noise disturbance term in both cases.
Note that the model (8.1) could be generalised to the case where y, is an
explosive process

Yi =K+ oy +u (8.3)
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where ¢ > 1. Typically, this case is ignored and ¢ = 1 is used to characterise the
non-stationarity because ¢ > 1 does not describe many data series in economics
and finance, but ¢ = 1 has been found to describe accurately many financial and
economic time series. Moreover, ¢ > 1 has an intuitively unappealing property:
shocks to the system are not only persistent through time, they are propagated so
that a given shock will have an increasingly large influence. In other words, the
effect of a shock during time f will have a larger effect in time ¢ 4 1, a larger eftect
still in time f 4 2, and so on. To see this, consider the general case of an AR (1)
with no drift

Vi =@yt (8.4)
Let ¢ take any value for now. Lagging (8.4) one and then two periods

Yiet = @yi—2 F i (8.5)

Yi—2 = @yi—3+ 1, (8.6)
Substituting into (8.4) from (8.5) for y,;—; yields

Yo =Py +ui1) +u 8.7)

Yo =@ yi—2 +duii +u ®.8)
Substituting again for y,_, from (8.6)

yi = *(@yi—s + i) + pui_y +u, ®.9)

Vi = yims + @%uia + Guii +u, ©.10)

T successive substitutions of this type lead to
yo =" ey F umi + Qw2+ @us o+ P Tur+u @1
There are three possible cases:

M ¢p<1=¢" - 0a T— 0
So the shocks to the system gradually die away — this is the stationary case.
2 ¢p=1=¢T=1VT
So shocks persist in the system and never die away. The following is obtained

o0
ve=yo+ Zut as T— 00 8.12)
=0
So the current value of y is just an infinite sum of past shocks plus some starting
value of yy. This is known as the unit root case, for the root of the characteristic
equation would be unity.
(3) ¢ > 1. Now given shocks become more influential as time goes on, since if
¢ >1,¢° > ¢> > ¢, etc. This is the explosive case which, for the reasons listed
above, will not be considered as a plausible description of the data.

Going back to the two characterisations of non-stationarity, the random walk
with drift

Ve = M+ Y1+ ouy 8.13)
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and the trend-stationary process
ye=a+pr+u (8.14)

The two will require different treatments to induce stationarity. The second case is
known as deterministic non-stationarity and de-trending is required. In other words,
if it is believed that only this class of non-stationarity is present, a regression of the
form given in (8.14) would be run, and any subsequent estimation would be done
on the residuals from (8.14), which would have had the linear trend removed.

The first case is known as stochastic non-stationarity, where there is a stochastic
trend in the data. Letting Ay, = y, — y,—1 and Ly, = y,—4 so that (1 — L)y, =
ye — Ly, = y, — yi—1. If (8.13) is taken and y,_; subtracted from both sides

Ve — Vi1 = W+ uy (8.15)
I=L)yy,=p+u (8.16)
A)/t =W+ u, 8.17)

There now exists a new variable Ay,, which will be stationary. It would be said
that stationarity has been induced by ‘differencing once’. It should also be apparent
from the representation given by (8.16) why y, is also known as a unit root process:
i.e. that the root of the characteristic equation (1— z) = 0, will be unity.

Although trend-stationary and difference-stationary series are both ‘trending’
over time, the correct approach needs to be used in each case. If first differences
of a trend-stationary series were taken, it would ‘remove’ the non-stationarity,
but at the expense of introducing an MA(1) structure into the errors. To see this,
consider the trend-stationary model

Vi =o+ Bt +u (8.18)

This model can be expressed for time ¢ — 1, which would be obtained by removing
1 from all of the time subscripts in (8.18)

Yt =+ Bt = 1) 4w,y (8.19)
Subtracting (8.19) from (8.18) gives
Ay, =B+ ur —uy (8.20)

Not only is this a moving average in the errors that has been created, it is a non-
invertible MA (i.e. one that cannot be expressed as an autoregressive process). Thus
the series, Ay, would in this case have some very undesirable properties.

Conversely if one tried to de-trend a series which has stochastic trend, then
the non-stationarity would not be removed. Clearly then, it is not always obvious
which way to proceed. One possibility is to nest both cases in a more general
model and to test that. For example, consider the model

Ay =ag+ait+ —Dy—1 +u, 8.21)

Although again, of course the f-ratios in (8.21) will not follow a t-distribution.
Such a model could allow for both deterministic and stochastic non-stationarity.
However, this book will now concentrate on the stochastic stationarity model
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Figure 8.3 Example of a white noise process

since it is the model that has been found to best describe most non-stationary
financial and economic time series. Consider again the simplest stochastic trend
model

Yi = Yi—1 + u; (8.22)
or

This concept can be generalised to consider the case where the series contains
more than one ‘unit root’. That is, the first difterence operator, A, would need to
be applied more than once to induce stationarity. This situation will be described
later in this chapter.

Arguably the best way to understand the ideas discussed above is to consider
some diagrams showing the typical properties of certain relevant types of processes.
Figure 8.3 plots a white noise (pure random) process, while figures 8.4 and 8.5 plot
a random walk versus a random walk with drift and a deterministic trend process,
respectively.

Comparing these three figures gives a good idea of the differences between the
properties of a stationary, a stochastic trend and a deterministic trend process. In
figure 8.3, a white noise process visibly has no trending behaviour, and it frequently
crosses its mean value of zero. The random walk (thick line) and random walk
with drift (faint line) processes of figure 8.4 exhibit ‘long swings’ away from their
mean value, which they cross very rarely. A comparison of the two lines in this
graph reveals that the positive drift leads to a series that is more likely to rise over
time than to fall; obviously, the effect of the drift on the series becomes greater and
greater the further the two processes are tracked. Finally, the deterministic trend
process of figure 8.5 clearly does not have a constant mean, and exhibits completely
random fluctuations about its upward trend. If the trend were removed from the
series, a plot similar to the white noise process of figure 8.3 would result. In this
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Figure 8.4 Time series plot of a random walk versus a random walk with drift
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Figure 8.5 Time series plot of a deterministic trend process

author’s opinion, more time series in finance and economics look like figure 8.4
than either figure 8.3 or 8.5. Consequently, as stated above, the stochastic trend
model will be the focus of the remainder of this chapter.

Finally, figure 8.6 plots the value of an autoregressive process of order 1 with
different values of the autoregressive coefficient as given by (8.4). Values of ¢ = 0
(i.e. a white noise process), ¢ = 0.8 (i.e. a stationary AR(1)) and ¢ = 1 (i.e. a
random walk) are plotted over time.
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Figure 8.6  Autoregressive processes with differing values of ¢ (0, 0.8, 1)

Some more definitions and terminology

If a non-stationary series, y, must be differenced d times before it becomes station-
ary, then it is said to be integrated of order d. This would be written y, ~ I(d). So
if y, ~ I(d) then A?y, ~ 1(0). This latter piece of terminology states that applying
the difference operator, A, d times, leads to an I(0) process, i.e. a process with no
unit roots. In fact, applying the difference operator more than d times to an I(d)
process will still result in a stationary series (but with an MA error structure). An
I(0) series is a stationary series, while an I(1) series contains one unit root. For
example, consider the random walk

Yi = Yi—1 + g (8.24)

An I(2) series contains two unit roots and so would require differencing twice to
induce stationarity. I(1) and I(2) series can wander a long way from their mean
value and cross this mean value rarely, while I(0) series should cross the mean
frequently. The majority of financial and economic time series contain a single
unit root, although some are stationary and some have been argued to possibly
contain two unit roots (series such as nominal consumer prices and nominal wages).
The efficient markets hypothesis together with rational expectations suggest that
asset prices (or the natural logarithms of asset prices) should follow a random
walk or a random walk with drift, so that their differences are unpredictable (or
only predictable to their long-term average value).

To see what types of data generating process could lead to an I(2) series,
consider the equation

Vi = 2Yi—1 — Yi—2 + u; (8.25)
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taking all of the terms in y over to the left hand side (LHS), and then applying the
lag operator notation

Vi — 2Yi—1 + Yi—2 = u; (8.26)
(1 —=2L+ Ly, = u, (8.27)
1—=L)1—=L)y = u (8.28)

It should be evident now that this process for y; contains two unit roots, and would
require differencing twice to induce stationarity.

‘What would happen if y, in (8.25) were differenced only once? Taking first
differences of (8.25), i.e. subtracting y;_; from both sides

Vi — Yi—1 = Y1 — Yi—2 + 1 (8.29)
Ye — Ye—1 = (¥ — Ye—1)—1 + 1 (8.30)
Ay, = Ay +u, (8.31)
(I =L)Ay, = u, (8.32)

First differencing would therefore have removed one of the unit roots, but there is
still a unit root remaining in the new variable, Ay;.

Testing for a unit root

One immediately obvious (but inappropriate) method that readers may think of
to test for a unit root would be to examine the autocorrelation function of the
series of interest. However, although shocks to a unit root process will remain
in the system indefinitely, the act for a unit root process (a random walk) will
often be seen to decay away very slowly to zero. Thus, such a process may be
mistaken for a highly persistent but stationary process. Hence it is not possible to
use the acf or pacf to determine whether a series is characterised by a unit root or
not. Furthermore, even if the true data generating process for y, contains a unit
root, the results of the tests for a given sample could lead one to believe that the
process is stationary. Therefore, what is required is some kind of formal hypothesis
testing procedure that answers the question, ‘given the sample of data to hand, is
it plausible that the true data generating process for y contains one or more unit
roots?’

The early and pioneering work on testing for a unit root in time series was
done by Dickey and Fuller (Fuller, 1976; Dickey and Fuller, 1979). The basic
objective of the test is to examine the null hypothesis that ¢ = 1 in

Vi =@yi—1 +u, (8.33)

against the one-sided alternative ¢ < 1. Thus the hypotheses of interest are Hy:
series contains a unit root versus Hj: series is stationary.

In practice, the following regression is employed, rather than (8.33), for ease
of computation and interpretation

Ay, =Yy +uy (8.34)

so that a test of ¢ = 1 is equivalent to a test of ¥ = 0 (since ¢ — 1 = ).
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Table 8.1 Critical values for DF tests (Fuller, 1976, p. 373)

Significance level 1%

CV for constant but no trend —-2.57 —2.86 —-3.43
CV for constant and trend -3.12 —-3.41 —3.96

J

Dickey—Fuller (DF) tests are also known as t-tests, and can be conducted
allowing for an intercept, or an intercept and deterministic trend, or neither, in
the test regression. The model for the unit root test in each case is

Vi =@y—1 + 1L+ At +u, (8.35)

The tests can also be written, by subtracting y,_; from each side of the equation,
as

Ay =Yy + 1+ A+, (8.36)

In another paper, Dickey and Fuller (1981) provide a set of additional test
statistics and their critical values for joint tests of the significance of the lagged vy,
and the constant and trend terms. These are not examined further here. The test
statistics for the original DF tests are defined as

v
SE

(8.37)

fest statistic = -
V)

The test statistics do not follow the usual ¢-distribution under the null hypothesis,
since the null is one of non-stationarity, but rather they follow a non-standard dis-
tribution. Critical values are derived from simulations experiments in, for example,
Fuller (1976); see also chapter 13 in this book. Relevant examples of the distri-
bution are shown in table 8.1. A full set of DF critical values is given in the
appendix of statistical tables at the end of this book. A discussion and example of
how such critical values (CV) are derived using simulations methods are presented
in chapter 13.

Comparing these with the standard normal critical values, it can be seen that
the DF critical values are much bigger in absolute terms (i.e. more negative). Thus
more evidence against the null hypothesis is required in the context of unit root
tests than under standard ¢-tests. This arises partly from the inherent instability
of the unit root process, the fatter distribution of the f-ratios in the context of
non-stationary data (see figure 8.2), and the resulting uncertainty in inference. The
null hypothesis of a unit root is rejected in favour of the stationary alternative in
each case if the test statistic is more negative than the critical value.

— >
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The tests above are valid only if u, is white noise. In particular, u, is assumed
not to be autocorrelated, but would be so if there was autocorrelation in the
dependent variable of the regression (Ay;) which has not been modelled. If this
is the case, the test would be ‘oversized’, meaning that the true size of the test
(the proportion of times a correct null hypothesis is incorrectly rejected) would be
higher than the nominal size used (e.g. 5%). The solution is to ‘augment’ the test
using p lags of the dependent variable. The alternative model in case (i) is now
written

p
Ay =Yy + ) by +u, (8.38)

i=1

The lags of Ay, now ‘soak up’ any dynamic structure present in the dependent
variable, to ensure that 1, is not autocorrelated. The test is known as an augmented
Dickey—Fuller (ADF) test and is still conducted on v, and the same critical values
from the DF tables are used as before.

A problem now arises in determining the optimal number of lags of the
dependent variable. Although several ways of choosing p have been proposed,
they are all somewhat arbitrary, and are thus not presented here. Instead, the
following two simple rules of thumb are suggested. First, the frequency of the data
can be used to decide. So, for example, if the data are monthly, use twelve lags,
if the data are quarterly, use four lags, and so on. Clearly, there would not be an
obvious choice for the number of lags to use in a regression containing higher
frequency financial data (e.g. hourly or daily)! Second, an information criterion can
be used to decide. So choose the number of lags that minimises the value of an
information criterion, as outlined in chapter 6.

[t is quite important to attempt to use an optimal number of lags of the
dependent variable in the test regression, and to examine the sensitivity of the
outcome of the test to the laglength chosen. In most cases, hopetully the conclusion
will not be qualitatively altered by small changes in p, but sometimes it will.
Including too few lags will not remove all of the autocorrelation, thus biasing the
results, while using too many will increase the coefficient standard errors. The
latter effect arises since an increase in the number of parameters to estimate uses
up degrees of freedom. Therefore, everything else being equal, the absolute values
of the test statistics will be reduced. This will result in a reduction in the power
of the test, implying that for a stationary process the null hypothesis of a unit root
will be rejected less frequently than would otherwise have been the case.

Testing for higher orders of integration

Consider the simple regression
Aye =Yy +u (8.39)

Ho: ¥ = 0 is tested against Hy: ¢ < 0.
If Hy is rejected, it would simply be concluded that y, does not contain a unit
root. But what should be the conclusion if Hy is not rejected? The series contains
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a unit root, but is that it? No! What if y, ~ 1(2)? The null hypothesis would still
not have been rejected. It is now necessary to perform a test of

Ho : y ~1(2) vs. Hy : y ~1(1)

A%y, (= Ay, — Ay,_1) would now be regressed on Ay,_; (plus lags of A%y, to
augment the test if necessary). Thus, testing Hy: Ay, ~ 1(1) is equivalent to Hy:
y: ~1(2). So in this case, if Hy is not rejected (very unlikely in practice), it would
be concluded that y, is at least I(2). If Hy is rejected, it would be concluded that y,
contains a single unit root. The tests should continue for a further unit root until
Hj is rejected.

Dickey and Pantula (1987) have argued that an ordering of the tests as described
above (i.e. testing for I(1), then 1(2), and so on) is, strictly speaking, invalid. The
theoretically correct approach would be to start by assuming some highest plausible
order of integration (e.g. [(2)), and to test I(2) against I(1). If I(2) is rejected, then
test [(1) against [(0). In practice, however, to the author’s knowledge, no financial
time series contain more than a single unit root, so that this matter is of less concern
in finance.

Phillips—Perron (PP) tests

Phillips and Perron have developed a more comprehensive theory of unit root non-
stationarity. The tests are similar to ADF tests, but they incorporate an automatic
correction to the DF procedure to allow for autocorrelated residuals. The tests
often give the same conclusions as, and suffer from most of the same important
limitations as, the ADF tests.

Criticisms of Dickey-Fuller- and Phillips—Perron-type tests

The most important criticism that has been levelled at unit root tests is that
their power is low if the process is stationary but with a root close to the non-
stationary boundary. So, for example, consider an AR(1) data generating process
with coefficient 0.95. If the true data generating process is

yi = 0.95y; 1 + u, (8.40)

the null hypothesis of a unit root should be rejected. It has been thus argued that
the tests are poor at deciding, for example, whether ¢ = 1 or ¢ = 0.95, especially
with small sample sizes. The source of this problem is that, under the classical
hypothesis-testing framework, the null hypothesis is never accepted, it is simply
stated that it is either rejected or not rejected. This means that a failure to reject the
null hypothesis could occur either because the null was correct, or because there is
insufficient information in the sample to enable rejection. One way to get around
this problem is to use a stationarity test as well as a unit root test, as described in
box 8.1.
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Box 8.1 Stationarity tests ™\

Stationarity tests have stationarity under the null hypothesis, thus reversing
the null and alternatives under the Dickey—Fuller approach. Thus, under
stationarity tests, the data will appear stationary by default if there is little
information in the sample. One such stationarity test is the KPSS test
(Kwaitkowski ef al., 1992). The computation of the test statistic is not
discussed here but the test is available within the EViews software. The results
of these tests can be compared with the ADF/PP procedure to see if the same
conclusion is obtained. The null and alternative hypotheses under each testing
approach are as follows:

ADF/PP KPSS
Hp: y,~1I(1) Hy : y, ~ 1(0)
Hy @y~ 1(0) Hy @y~ I(1)

There are four possible outcomes:

(1) Reject Hy and Do not reject Hy
(2) Do not reject Hy and Reject Hy
(3) Reject Hy and Reject Hy
(4) Do not reject Hy and Do not reject H

For the conclusions to be robust, the results should fall under outcomes 1 or 2,
which would be the case when both tests concluded that the series is stationary
or non-stationary, respectively. Outcomes 3 or 4 imply conflicting results.

The joint use of stationarity and unit root tests is known as confirmatory data
analysis.

N J

sesccccceces @ Tests for unit roots in the presence of structural breaks
8.2.1 Motivation

The standard Dickey-Fuller-type unit root tests presented above do not perform
well if there are one or more structural breaks in the series under investigation,
either in the intercept or the slope of the regression. More specifically, the tests
have low power in such circumstances and they fail to reject the unit root null
hypothesis when it is incorrect as the slope parameter in the regression of y, on
yi—1 1is biased towards unity by an unparameterised structural break. In general,
the larger the break and the smaller the sample, the lower the power of the test.
As Leybourne et al. (1998) have shown, unit root tests are also oversized in the
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presence of structural breaks, so they reject the null hypothesis too frequently when
it is correct.!

Perron’s (1989) work is important since he was able to demonstrate that if we
allow for structural breaks in the testing framework, a whole raft of macroeconomic
series that Nelson and Plosser (1982) had identified as non-stationary may turn out
to be stationary. He argues that most economic time series are best characterised by
broken trend stationary processes, where the data generating process is a deterministic
trend but with a structural break around 1929 that permanently changed the levels
(i.e. the intercepts) of the series.

The Perron (1989) procedure

Recall from above that the flexible framework for unit root testing involves a
regression of the form

p
Ay =Yy +u+r+Y ey +u (8.41)
i=1

where @ is an intercept and At captures the time trend, one or both of which
could be excluded from the regression if they were thought to be unnecessary.

Perron (1989) proposes three test equations differing dependent on the type
of break that was thought to be present. The first he terms a ‘crash’ model that
allows a break in the level (i.e. the intercept) of the series; the second is a ‘changing
growth’ model that allows for a break in the growth rate (i.e. the slope) of the
series; the final model allows for both types of break to occur at the same time,
changing both the intercept and the slope of the trend. If we define the break
point in the data as T, and D, is a dummy variable defined as

0 ift <71,

D; = .
1 ift > 1T,

the general equation for the third type of test (i.e. the most general) is

P
Ay =Yy1+u+oiD +on(t— T)D + A+ Y oAy +u, (842

i=1

For the crash only model, set oy = 0, while for the changing growth only
model, set oy = 0. In all three cases, there is a unit root with a structural break at
T, under the null hypothesis and a series that is a stationary process with a break
under the alternative.

! This material is fairly specialised and thus is not well covered by most of the standard textbooks. But
for any readers wishing to see more detail, there is a useful and accessible chapter by Perron in the
book Cointegration for the Applied Economist edited by B. B. Rao (1994), Macmillan, Basingstoke,
UK. There is also a chapter on structural change in the book Unit Roots, Cointegration and Structural
Change by G. S. Maddala and I-M. Kim (1998), Cambridge University Press.
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While Perron (1989) commences a new literature on testing for unit roots in
the presence of structural breaks, an important limitation of this approach is that it
assumes that the break date is known in advance and the test is constructed using
this information. It is possible, and perhaps even likely, however, that the date will
not be known and must be determined from the data. More seriously, Christiano
(1992) has argued that the critical values employed with the test will presume the
break date to be chosen exogenously, and yet most researchers will select a break
point based on an examination of the data and thus the asymptotic theory assumed
will no longer hold.

As a result, Banerjee et al. (1992) and Zivot and Andrews (1992) introduce an
approach to testing for unit roots in the presence of structural change that allows
the break date to be selected endogenously. Their methods are based on recursive,
rolling and sequential tests. For the recursive and rolling tests, Banerjee et al.
propose four specifications. First, the standard Dickey—Fuller test on the whole
sample, which they term fpr: second, the ADF test is conducted repeatedly on
the sub-samples and the minimal DF statistic, £ is obtained; third, the maximal

DF statistic is obtained from the sub-samples, t}%; finally, the difference between

. R R Adi A At . .
the maximal and minimal statistics, th; =ty — t})F, s taken. For the sequential
test, the whole sample is used each time with the following regression being

run

P
Ay =Yy + 1+ at(td) + M+ YAy +u, (8.43)

i=1

where t,g = 1,/ T. The test is run repeatedly for difterent values of T, over as
much of the data as possible (a ‘trimmed sample’) that excludes the first few and the
last few observations (since it is not possible to reliably detect breaks there). Clearly
it 1 T;(f,eq) that allows for the break, which can either be in the level (where
Ti(tused) = 1 1t > t,g and O otherwise); or the break can be in the deterministic
trend (where 7, (fysed) = t — tused 1if £ > 1,504 and O otherwise). For each specification,
a different set of critical values is required, and these can be found in Banerjee
et al. (1992).

Perron (1997) proposes an extension of the Perron (1989) technique but using
a sequential procedure that estimates the test statistic allowing for a break at any
point during the sample to be determined by the data. This technique is very
similar to that of Zivot and Andrews, except that his is more flexible, and therefore
arguably preferable, since it allows for a break under both the null and alternative
hypotheses, whereas according to Zivot and Andrews’ model it can only arise
under the alternative.

A fturther extension would be to allow for more than one structural break
in the series — for example, Lumsdaine and Papell (1997) enhance the Zivot and
Andrews (1992) approach to allow for two structural breaks. It is also possible to
allow for structural breaks in the cointegrating relationship between series using
an extension of the first step in the Engle-Granger approach — see Gregory and
Hansen (1996).
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Table 8.2 Recursive unit root tests for interest rates allowing for

structural breaks

Recursive statistics Sequential statistics
Maturity toF fimax fmin a W R
Short rate —2.44 —1.33 —-3.29 1.96 —2.99 —4.79
7-days —1.95 —1.33 -3.19 1.86 —2.44 —5.65
1-month —1.82 —1.07 —2.90 1.83 —2.32 —4.78
3-months —1.80 —1.02 —2.75 1.73 —2.28 —4.02
6-months —1.86 —1.00 —2.85 1.85 —2.28 —4.10
1-year —-1.97 -0.74 —2.88 2.14 —2.35 —4.55
Critical values -3.13 —1.66 —3.88 3.21 —4.11 —4.58)

Notes: Source: Brooks and Rew (2002), taken from tables 1, 4 and 5. f’D'”)Q treng deNotes the sequen-
tial test statistic allowing for a break in the trend, while fg,’gmean is the test statistic allowing for a
break in the level. The final row presents the 10% level critical values for each type of test obtained
from Banerjee et al. (1992, p. 278, table 2).

An example: testing for unit roots in EuroSterling interest rates

Section 8.12 discusses the expectations hypothesis of the term structure of interest
rates based on cointegration between the long and short rates. Clearly, key to
this analysis is the question as to whether the interest rates themselves are I(1)
or [(0) processes. Perhaps surprisingly, there is not a consensus in the empirical
literature on whether this is the case. Brooks and Rew (2002) examine whether
EuroSterling interest rates are best viewed as unit root process or not, allowing for
the possibility of structural breaks in the series.” They argue that failure to account
for structural breaks that may be present in the data (caused, for example, by changes
in monetary policy or the removal of exchange rate controls) may lead to incorrect
inferences regarding the validity or otherwise of the expectations hypothesis. Their
sample covers the period 1 January 1981 to 1 September 1997 to total 4,348 data
points.

Brooks and Rew use the standard Dickey—Fuller test, the recursive and sequen-
tial tests of Banerjee ef al. (1992), and their results are presented in table 8.2. They
also employ the rolling test, the Perron (1997) approach and several other tech-
niques that are not shown here due to space limitations.

The findings for the recursive tests are the same as those for the standard DF
test, and show that the unit root null should not be rejected at the 10% level for

2 EuroSterling interest rates are those at which money is loaned/borrowed in British pounds but
outside of the UK.
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any of the maturities examined. For the sequential tests, the results are slightly
more mixed with the break in trend model still showing no signs of rejecting the
null hypothesis, while it is rejected for the short, seven-day and the one-month
rates when a structural break is allowed for in the mean.

Brooks and Rew’s overall conclusion is that the weight of evidence across all
the tests they examine indicates that short term interest rates are best viewed as unit
root processes that have a structural break in their level around the time of ‘Black
Wednesday” (16 September 1992) when the UK dropped out of the European
Exchange Rate Mechanism. The longer term rates, on the other hand, are I(1)
processes with no breaks.

Seasonal unit roots

As we will discuss in detail in chapter 10, many time series exhibit seasonal patterns.
One approach to capturing such characteristics would be to use deterministic
dummy variables at the frequency of the data (e.g., monthly dummy variables if the
data are monthly). However, if the seasonal characteristics of the data are themselves
changing over time so that their mean is not constant, then the use of dummy
variables will be inadequate. Instead, we can entertain the possibility that a series
may contain seasonal unit roots, so that it requires seasonal differencing to induce
stationarity. We would use the notation I(d, D) to denote a series that is integrated
of order d, D and requires differencing d times and seasonal differencing D times
to obtain a stationary process. Osborn (1990) develops a test for seasonal unit roots
based on a natural extension of the Dickey—Fuller approach. Groups of series with
seasonal unit roots may also be seasonally cointegrated. However, Osborn also
shows that only a small proportion of macroeconomic series exhibit seasonal unit
roots; the majority have seasonal patterns that can better be characterised using
dummy variables, which may explain why the concept of seasonal unit roots has
not been widely adopted.’

Testing for unit roots in EViews

This example uses the same data on UK house prices as employed in previous
chapters. Assuming that the data have been loaded, and the variables are defined
as before, double click on the icon next to the name of the series that you want
to perform the unit root test on, so that a spreadsheet appears containing the
observations on that series. Open the raw house price series, ‘hp’ by clicking
on the hp icon. Next, click on the View button on the button bar above the
spreadsheet and then Unit Root Test.... You will then be presented with a
menu containing various options, as in screenshot 8.1.

3 For further reading on this topic, the book by Harris (1995) provides an extremely clear intro-
duction to unit roots and cointegration including a section on seasonal unit roots.



370

Modelling long-run relationships in finance

~Test for unit rootin————  ~Laglength
@) Level J =
@ ist difference & Moot e
© 2nd difference [Sdma'z Info Criterion v]
Maximum : |
-~Indude in test equation lags: | 12
@ Intercept
(@) Trend and intercept :
® () User spedified: | -

Screenshot 8.1 Options menu for unit root tests

From this, choose the following options:

(1) Test Type Augmented Dickey—Fuller
(2) Test for Unit Root in Levels

(3) Include in test equation Intercept

(4) Maximum lags 12

and click OK.

This will obviously perform an ADF test with up to twelve lags of the depen-
dent variable in a regression equation on the raw data series with a constant but
no trend in the test equation. EViews presents a large number of options here —
for example, instead of the Dickey—Fuller series, we could run the Phillips—Perron
or KPSS tests as described above. Or, if we find that the levels of the series are
non-stationary, we could repeat the analysis on the first differences directly from
this menu rather than having to create the first difterenced series separately. We
can also choose between various methods for determining the optimum lag length
in an augmented Dickey—Fuller test, with the Schwarz criterion being the default.
The results for the raw house price series would appear as in the following table.

The value of the test statistic and the relevant critical values given the type
of test equation (e.g. whether there is a constant and/or trend included) and
sample size, are given in the first panel of the output above. Schwarz’s criterion
has in this case chosen to include two lags of the dependent variable in the test
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\
Null Hypothesis: HP has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic based on SIC, MAXLAG=11)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic —0.470202 0.8934
Test critical values: 1% level —3.454812
5% level —2.872203
10% level —2.572525
\_ 4
*MacKinnon (1996) one-sided p-values.
4 I
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(HP)
Method: Least Squares
Date: 07/07/13 Time: 14:59
Sample (adjusted): 1991M04 2013M05
Included observations: 266 after adjustments
Coefficient Std. Error t-Statistic Prob.
HP(-1) —0.000686 0.001459 —0.470202 0.6386
D(HP(-1)) 0.316199 0.058368 5.417290 0.0000
D(HP(-2)) 0.333239 0.058398 5.706296 0.0000
C 234.5155 176.8386 1.326156 0.1859
R-squared 0.308614 Mean dependent var 432.4012
Adjusted R-squared 0.300697 S.D. dependent var 1419.201
S.E. of regression 1186.798 Akaike info criterion 17.01083
Sum squared resid 3.69E+-08 Schwarz criterion 17.06472
Log likelihood —2258.440 Hannan-Quinn criter. 17.03248
F-statistic 38.98292 Durbin-Watson stat 2.006505
Prob(F-statistic) 0.000000
- J

regression. Clearly, the test statistic is not more negative than the critical value,
so the null hypothesis of a unit root in the house price series cannot be rejected.
The remainder of the output presents the estimation results. Since one of the
independent variables in this regression is non-stationary, it is not appropriate to
examine the coefticient standard errors or their ¢-ratios in the test regression.
Now repeat all of the above steps for the first difference of the house price
series (use the ‘First Difference’ option in the unit root testing window rather
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than using the level of the dhp series). The output would appear as in the following

table.
, , )
Null Hypothesis: D(HP) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic based on SIC, MAXLAG=15)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic —5.857817 0.0000
Test critical values: 1% level —3.454812
5% level —2.872203
10% level —2.572525
N\ _J
*MacKinnon (1996) one-sided p-values.
4 )
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(HP,2)
Method: Least Squares
Date: 07/07/13 Time: 21:30
Sample (adjusted): 1991M04 2013M05
Included observations: 266 after adjustments
Coefficient Std. Error t-Statistic Prob.
D(HP(-1)) —0.351258 0.059964 —5.857817 0.0000
D(HP(-1),2) —0.332625 0.058297 —5.705656 0.0000
C 159.6672 76.90883 2.076058 0.0389
R-squared 0.343699 Mean dependent var 11.01290
Adjusted R-squared 0.338708 S.D. dependent var 1457.257
S.E. of regression 1185.039 Akaike info criterion 17.00415
Sum squared resid 3.69E+-08 Schwarz criterion 17.04457
Log likelihood —2258.552 Hannan-Quinn criter. 17.02039
F-statistic 68.86536 Durbin-Watson stat 2.005980
Prob(F-statistic) 0.000000
- J

In this case, as one would expect, the test statistic is more negative than the
critical value and hence the null hypothesis of a unit root in the first differences is
convincingly rejected. For completeness, run a unit root test on the levels of the
dhp series, which are the percentage changes rather than the absolute difterences
in prices. You should find that these are also stationary.
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Finally, run the KPSS test on the hp levels series by selecting it from the “Test
Type’ box in the unit root testing window. You should observe now that the test
statistic exceeds the critical value, even at the 1% level, so that the null hypothesis
of a stationary series is strongly rejected, thus confirming the result of the unit root
test previously conducted on the same series.

Cointegration

In most cases, if two variables that are I(1) are linearly combined, then the com-
bination will also be I(1). More generally, if a set of variables X;, with diftering
orders of integration are combined, the combination will have an order of inte-
gration equal to the largest. If X;, ~ I(d;) fori =1,2,3, ..., k so that there are
k variables each integrated of order d;, and letting

k
2k = Zai Xi (8.44)
i=1

Then z ~ I(max d;). z in this context is simply a linear combination of the k
variables X;. Rearranging (8.44)

k
Xie=Y BiXi+7 (8.45)
i=2
where B; = —%, Z = ;—’1, i =2,...,k. All that has been done is to take one of

the variables, Xj ;, and to rearrange (8.44) to make it the subject. It could also be
said that the equation has been normalised on X ;. But viewed another way, (8.45)
is just a regression equation where 2/ is a disturbance term. These disturbances
would have some very undesirable properties: in general, 2/ will not be stationary
and is autocorrelated if all of the X; are I(1).

As a further illustration, consider the following regression model containing
variables y;, xo;, &3, which are all I(1)

yi = Bi1+ Baxos + Baxsy + uy (8.46)
For the estimated model, the SRF would be written

ye = Bi + Baxa + Bz + il (8.47)
Taking everything except the residuals to the LHS

Y — B — Baxa, — Baxs = il (8.48)

Again, the residuals when expressed in this way can be considered a linear combi-
nation of the variables. Typically, this linear combination of I1(1) variables will itself
be I(1), but it would obviously be desirable to obtain residuals that are 1(0). Under
what circumstances will this be the case? The answer is that a linear combination of
[(1) variables will be 1(0), in other words stationary, if the variables are cointegrated.
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Definition of cointegration (Engle and Granger, 1987)

Let w, be a k X 1 vector of variables, then the components of w, are integrated of

order (d, b) if:

(1) All components of w, are 1(d)
(2) There is at least one vector of coefficients « such that

a'w, ~1(d — b)

In practice, many financial variables contain one unit root, and are thus I(1), so that
the remainder of this chapter will restrict analysis to the case where d = b = 1.
In this context, a set of variables is defined as cointegrated if a linear combination
of them is stationary. Many time series are non-stationary but ‘move together’
over time — that is, there exist some influences on the series (for example, market
torces), which imply that the two series are bound by some relationship in the long
run. A cointegrating relationship may also be seen as a long-term or equilibrium
phenomenon, since it is possible that cointegrating variables may deviate from
their relationship in the short run, but their association would return in the long
run.

Examples of possible cointegrating relationships in finance

Financial theory should suggest where two or more variables would be expected
to hold some long-run relationship with one another. There are many examples
in finance of areas where cointegration might be expected to hold, including:

e Spot and futures prices for a given commodity or asset
e Ratio of relative prices and an exchange rate
e Equity prices and dividends.

In all three cases, market forces arising from no-arbitrage conditions suggest that
there should be an equilibrium relationship between the series concerned. The
easiest way to understand this notion is perhaps to consider what would be the
effect if the series were not cointegrated. If there were no cointegration, there
would be no long-run relationship binding the series together, so that the series
could wander apart without bound. Such an eftect would arise since all linear
combinations of the series would be non-stationary, and hence would not have a
constant mean that would be returned to frequently.

Spot and futures prices may be expected to be cointegrated since they are
obviously prices for the same asset at different points in time, and hence will
be affected in very similar ways by given pieces of information. The long-run
relationship between spot and futures prices would be given by the cost of carry.

Purchasing power parity (PPP) theory states that a given representative basket
of goods and services should cost the same wherever it is bought when converted
into a common currency. Further discussion of PPP occurs in section 8.10, but
for now suffice it to say that PPP implies that the ratio of relative prices in two
countries and the exchange rate between them should be cointegrated. If they
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did not cointegrate, assuming zero transactions costs, it would be profitable to buy
goods in one country, sell them in another, and convert the money obtained back
to the currency of the original country.

Finally, if it is assumed that some stock in a particular company is held to
perpetuity (i.e. for ever), then the only return that would accrue to that investor
would be in the form of an infinite stream of future dividend payments. Hence
the discounted dividend model argues that the appropriate price to pay for a share
today is the present value of all future dividends. Hence, it may be argued that
one would not expect current prices to ‘move out of line” with future anticipated
dividends in the long run, thus implying that share prices and dividends should be
cointegrated.

An interesting question to ask is whether a potentially cointegrating regression
should be estimated using the levels of the variables or the logarithms of the levels
of the variables. Financial theory may provide an answer as to the more appropriate
functional form, but fortunately even if not, Hendry and Juselius (2000) note that
if a set of series is cointegrated in levels, they will also be cointegrated in log
levels.

Equilibrium correction or error correction models

When the concept of non-stationarity was first considered i