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This bestselling and thoroughly classroom-tested textbook is a complete resource for

finance students. A comprehensive and illustrated discussion of the most common

empirical approaches in finance prepares students for using econometrics in practice,

while detailed financial case studies help them understand how the techniques are used

in relevant financial contexts. Worked examples from the latest version of the popular

statistical software EViews guide students to implement their own models and interpret

results. Learning outcomes, key concepts and end-of-chapter review questions (with full

solutions online) highlight the main chapter takeaways and allow students to self-assess

their understanding. Building on the successful data- and problem-driven approach of

previous editions, this third edition has been updated with new data, extensive examples

and additional introductory material on mathematics, making the book more accessible

to students encountering econometrics for the first time. A companion website, with

numerous student and instructor resources, completes the learning package.
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Preface to the third edition

Sales of the first two editions of this book surpassed expectations (at least those
of the author). Almost all of those who have contacted the author seem to like
the book, and while other textbooks have been published since in the broad area
of financial econometrics, none are really at the introductory level. All of the
motivations for the first edition, described below, seem just as important today.
Given that the book seems to have gone down well with readers, I have left the
style largely unaltered but changed the structure slightly and added new material.

The main motivations for writing the first edition of the book were:

● To write a book that focused on using and applying the techniques rather than
deriving proofs and learning formulae.

● To write an accessible textbook that required no prior knowledge of econo-
metrics, but which also covered more recently developed approaches usually
only found in more advanced texts.

● To use examples and terminology from finance rather than economics since
there are many introductory texts in econometrics aimed at students of eco-
nomics but none for students of finance.

● To litter the book with case studies of the use of econometrics in practice
taken from the academic finance literature.

● To include sample instructions, screen dumps and computer output from a
popular econometrics package. This enabled readers to see how the techniques
can be implemented in practice.

● To develop a companion web site containing answers to end of chapter ques-
tions, PowerPoint slides and other supporting materials.

What is new in the third edition

The third edition includes a number of important new features:

(1) Students of finance have enormously varying backgrounds, and in particular
varying levels of training in elementary mathematics and statistics. In order to
make the book more self-contained, the material that was previously buried
in an appendix at the end of the book has now been considerably expanded
and enhanced, and is now placed in a new chapter 2. As a result, all of the
previous chapters 2 to 13 have been shunted forward by a chapter (so the
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previous chapter 2 becomes chapter 3, 3 becomes 4, and so on). What was the
concluding chapter in the second edition, chapter 14, has now been removed
(with some of the content worked into other chapters) so that there are also
fourteen chapters in the third edition.

(2) An extensive glossary has been added at the end of the book to succinctly
explain all of the technical terms used in the text.

(3) As a result of the length of time it took to write the book, to produce the
final product and the time that has elapsed since then, the data and examples
used in the second edition are already several years old. The data, EViews
instructions and screenshots have been fully updated. EViews version 8.0, the
latest available at the time of writing, has been used throughout. The data
continue to be drawn from the same freely available sources as in the previous
edition.

(4) Two of the most important uses of statistical models by students in their
courses tend to be the methodology developed in a series of papers by Fama
and French, and the event study approach. Both of these are now described in
detail with examples in chapter 14.

(5) New material has been added in the appropriate places in the book covering
panel unit root and cointegration tests; measurement error in variables; unit
root testing with structural breaks; and conditional correlation models.

Motivations for the first edition

This book had its genesis in two sets of lectures given annually by the author at
the ICMA Centre (formerly ISMA Centre), Henley Business School, University
of Reading and arose partly from several years of frustration at the lack of an
appropriate textbook. In the past, finance was but a small sub-discipline drawn
from economics and accounting, and therefore it was generally safe to assume
that students of finance were well grounded in economic principles; econometrics
would be taught using economic motivations and examples.

However, finance as a subject has taken on a life of its own in recent years.
Drawn in by perceptions of exciting careers in the financial markets, the number
of students of finance grew phenomenally all around the world. At the same time,
the diversity of educational backgrounds of students taking finance courses has
also expanded. It is not uncommon to find undergraduate students of finance
even without advanced high-school qualifications in mathematics or economics.
Conversely, many with PhDs in physics or engineering are also attracted to study
finance at the Masters level. Unfortunately, authors of textbooks failed to keep pace
with the change in the nature of students. In my opinion, the currently available
textbooks fall short of the requirements of this market in three main regards, which
this book seeks to address:

(1) Books fall into two distinct and non-overlapping categories: the introductory
and the advanced. Introductory textbooks are at the appropriate level for
students with limited backgrounds in mathematics or statistics, but their focus
is too narrow. They often spend too long deriving the most basic results, and
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treatment of important, interesting and relevant topics (such as simulations
methods, VAR modelling, etc.) is covered in only the last few pages, if at all.
The more advanced textbooks, meanwhile, usually require a quantum leap in
the level of mathematical ability assumed of readers, so that such books cannot
be used on courses lasting only one or two semesters, or where students have
differing backgrounds. In this book, I have tried to sweep a broad brush over
a large number of different econometric techniques that are relevant to the
analysis of financial and other data.

(2) Many of the currently available textbooks with broad coverage are too theo-
retical in nature and students can often, after reading such a book, still have
no idea of how to tackle real-world problems themselves, even if they have
mastered the techniques in theory. To this end, in this book, I have tried to
present examples of the use of the techniques in finance, together with anno-
tated computer instructions and sample outputs for an econometrics package
(EViews). This should assist students who wish to learn how to estimate mod-
els for themselves – for example, if they are required to complete a project
or dissertation. Some examples have been developed especially for this book,
while many others are drawn from the academic finance literature. In my opin-
ion, this is an essential but rare feature of a textbook that should help to show
students how econometrics is really applied. It is also hoped that this approach
will encourage some students to delve deeper into the literature, and will give
useful pointers and stimulate ideas for research projects. It should, however, be
stated at the outset that the purpose of including examples from the academic
finance print is not to provide a comprehensive overview of the literature or
to discuss all of the relevant work in those areas, but rather to illustrate the
techniques. Therefore, the literature reviews may be considered deliberately
deficient, with interested readers directed to the suggested readings and the
references therein.

(3) With few exceptions, almost all textbooks that are aimed at the introductory
level draw their motivations and examples from economics, which may be of
limited interest to students of finance or business. To see this, try motivat-
ing regression relationships using an example such as the effect of changes in
income on consumption and watch your audience, who are primarily inter-
ested in business and finance applications, slip away and lose interest in the first
ten minutes of your course.

Who should read this book?

The intended audience is undergraduates or Masters/MBA students who require a
broad knowledge of modern econometric techniques commonly employed in the
finance literature. It is hoped that the book will also be useful for researchers (both
academics and practitioners), who require an introduction to the statistical tools
commonly employed in the area of finance. The book can be used for courses
covering financial time-series analysis or financial econometrics in undergradu-
ate or postgraduate programmes in finance, financial economics, securities and
investments.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-FM CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 3:48

xxiv

•
•
•
•
•
•
•
•
• Preface to the third edition

Although the applications and motivations for model-building given in the
book are drawn from finance, the empirical testing of theories in many other
disciplines, such as management studies, business studies, real estate, economics
and so on, may usefully employ econometric analysis. For this group, the book
may also prove useful.

Finally, while the present text is designed mainly for students at the under-
graduate or Masters level, it could also provide introductory reading in financial
time series modelling for finance doctoral programmes where students have back-
grounds which do not include courses in modern econometric techniques.

Pre-requisites for good understanding of this material

In order to make the book as accessible as possible, no prior knowledge of statistics,
econometrics or algebra is required, although those with a prior exposure to
calculus, algebra (including matrices) and basic statistics will be able to progress
more quickly. The emphasis throughout the book is on a valid application of the
techniques to real data and problems in finance.

In the finance and investment area, it is assumed that the reader has knowledge
of the fundamentals of corporate finance, financial markets and investment. There-
fore, subjects such as portfolio theory, the capital asset pricing model (CAPM) and
Arbitrage Pricing Theory (APT), the efficient markets hypothesis, the pricing of
derivative securities and the term structure of interest rates, which are frequently
referred to throughout the book, are not explained from first principles in this text.
There are very many good books available in corporate finance, in investments
and in futures and options, including those by Brealey and Myers (2013), Bodie,
Kane and Marcus (2011) and Hull (2011) respectively.
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1 Introduction

Learning econometrics is in many ways like learning a new language. To begin with,

nothing makes sense and it is as if it is impossible to see through the fog created by all the

unfamiliar terminology. While the way of writing the models – the notation – may make

the situation appear more complex, in fact it is supposed to achieve the exact opposite.

The ideas themselves are mostly not so complicated, it is just a matter of learning enough

of the language that everything fits into place. So if you have never studied the subject

before, then persevere through this preliminary chapter and you will hopefully be on your

way to being fully fluent in econometrics!

Learning outcomes

In this chapter, you will learn how to

• Compare nominal and real series and convert one to the other

• Distinguish between different types of data

• Describe the key steps involved in building an econometric model

• Calculate asset price returns

• Deflate series to allow for inflation

• Construct a workfile, import data and accomplish simple tasks in EViews

The chapter sets the scene for the book by discussing in broad terms the
questions of what econometrics is, and what are the ‘stylised facts’ describing
financial data that researchers in this area typically try to capture in their models?
Some discussion is presented on the kinds of data we encounter in finance and how
to work with them. Finally, the chapter collects together a number of preliminary
issues relating to the construction of econometric models in finance and introduces
the software that will be used in the remainder of the book for estimating the
models.
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Box 1.1 Examples of the uses of econometrics

(1) Testing whether financial markets are weak-form informationally
efficient

(2) Testing whether the capital asset pricing model (CAPM) or arbitrage
pricing theory (APT) represent superior models for the determination
of returns on risky assets

(3) Measuring and forecasting the volatility of bond returns
(4) Explaining the determinants of bond credit ratings used by the ratings

agencies
(5) Modelling long-term relationships between prices and exchange rates
(6) Determining the optimal hedge ratio for a spot position in oil
(7) Testing technical trading rules to determine which makes the most

money
(8) Testing the hypothesis that earnings or dividend announcements have

no effect on stock prices
(9) Testing whether spot or futures markets react more rapidly to news

(10) Forecasting the correlation between the stock indices of two countries.

• • • • • • • • • • • • • • 1.1 What is econometrics?

The literal meaning of the word econometrics is ‘measurement in economics’.
The first four letters of the word suggest correctly that the origins of econometrics
are rooted in economics. However, the main techniques employed for studying
economic problems are of equal importance in financial applications. As the term
is used in this book, financial econometrics will be defined as the application of
statistical techniques to problems in finance. Financial econometrics can be useful for
testing theories in finance, determining asset prices or returns, testing hypotheses
concerning the relationships between variables, examining the effect on financial
markets of changes in economic conditions, forecasting future values of financial
variables and for financial decision-making. A list of possible examples of where
econometrics may be useful is given in box 1.1.

The list in box 1.1 is of course by no means exhaustive, but it hopefully gives
some flavour of the usefulness of econometric tools in terms of their financial
applicability.

• • • • • • • • • • • • • • 1.2 Is financial econometrics different from ‘economic econometrics’?

As previously stated, the tools commonly used in financial applications are funda-
mentally the same as those used in economic applications, although the emphasis
and the sets of problems that are likely to be encountered when analysing the two
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sets of data are somewhat different. Financial data often differ from macroeconomic
data in terms of their frequency, accuracy, seasonality and other properties.

In economics, a serious problem is often a lack of data at hand for testing the
theory or hypothesis of interest – this is often called a ‘small samples problem’. It
might be, for example, that data are required on government budget deficits, or
population figures, which are measured only on an annual basis. If the methods
used to measure these quantities changed a quarter of a century ago, then only at
most twenty-five of these annual observations are usefully available.

Two other problems that are often encountered in conducting applied econo-
metric work in the arena of economics are those of measurement error and data
revisions. These difficulties are simply that the data may be estimated, or measured
with error, and will often be subject to several vintages of subsequent revisions. For
example, a researcher may estimate an economic model of the effect on national
output of investment in computer technology using a set of published data, only
to find that the data for the last two years have been revised substantially in the
next, updated publication.

These issues are usually of less concern in finance. Financial data come in many
shapes and forms, but in general the prices and other entities that are recorded
are those at which trades actually took place, or which were quoted on the screens
of information providers. There exists, of course, the possibility for typos or for
the data measurement method to change (for example, owing to stock index
re-balancing or re-basing). But in general the measurement error and revisions
problems are far less serious in the financial context.

Similarly, some sets of financial data are observed at much higher frequencies
than macroeconomic data. Asset prices or yields are often available at daily, hourly
or minute-by-minute frequencies. Thus the number of observations available for
analysis can potentially be very large – perhaps thousands or even millions, making
financial data the envy of macro-econometricians! The implication is that more
powerful techniques can often be applied to financial than economic data, and that
researchers may also have more confidence in the results.

Furthermore, the analysis of financial data also brings with it a number of new
problems. While the difficulties associated with handling and processing such a
large amount of data are not usually an issue given recent and continuing advances
in computer power, financial data often have a number of additional characteristics.
For example, financial data are often considered very ‘noisy’, which means that it is
more difficult to separate underlying trends or patterns from random and uninteresting
features. Financial data are also almost always not normally distributed in spite of
the fact that most techniques in econometrics assume that they are. High frequency
data often contain additional ‘patterns’ which are the result of the way that the
market works, or the way that prices are recorded. These features need to be
considered in the model-building process, even if they are not directly of interest
to the researcher.

One of the most rapidly evolving areas of financial application of statistical tools
is in the modelling of market microstructure problems. ‘Market microstructure’
may broadly be defined as the process whereby investors’ preferences and desires are
translated into financial market transactions. It is evident that microstructure effects
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Box 1.2 Time series data

Series Frequency
Industrial production Monthly or quarterly
Government budget deficit Annually
Money supply Weekly
The value of a stock As transactions occur

are important and represent a key difference between financial and other types
of data. These effects can potentially impact on many other areas of finance. For
example, market rigidities or frictions can imply that current asset prices do not
fully reflect future expected cashflows (see the discussion in chapter 10 of this
book). Also, investors are likely to require compensation for holding securities that
are illiquid, and therefore embody a risk that they will be difficult to sell owing to
the relatively high probability of a lack of willing purchasers at the time of desired
sale. Measures such as volume or the time between trades are sometimes used as
proxies for market liquidity.

A comprehensive survey of the literature on market microstructure is given
by Madhavan (2000). He identifies several aspects of the market microstructure
literature, including price formation and price discovery, issues relating to market
structure and design, information and disclosure. There are also relevant books
by O’Hara (1995), Harris (2002) and Hasbrouck (2007). At the same time, there
has been considerable advancement in the sophistication of econometric models
applied to microstructure problems. For example, an important innovation was the
autoregressive conditional duration (ACD) model attributed to Engle and Russell
(1998). An interesting application can be found in Dufour and Engle (2000), who
examine the effect of the time between trades on the price-impact of the trade
and the speed of price adjustment.

• • • • • • • • • • • • • • 1.3 Types of data

There are broadly three types of data that can be employed in quantitative analysis
of financial problems: time series data, cross-sectional data and panel data.

1.3.1 Time series data

Time series data, as the name suggests, are data that have been collected over a
period of time on one or more variables. Time series data have associated with
them a particular frequency of observation or frequency of collection of data
points. The frequency is simply a measure of the interval over, or the regularity with
which, the data are collected or recorded. Box 1.2 shows some examples of time
series data.
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A word on ‘As transactions occur’ is necessary. Much financial data does not
start its life as being regularly spaced. For example, the price of common stock for
a given company might be recorded to have changed whenever there is a new
trade or quotation placed by the financial information recorder. Such recordings
are very unlikely to be evenly distributed over time – for example, there may be
no activity between, say, 5 p.m. when the market closes and 8.30 a.m. the next
day when it reopens; there is also typically less activity around the opening and
closing of the market, and around lunch time. Although there are a number of
ways to deal with this issue, a common and simple approach is simply to select
an appropriate frequency, and use as the observation for that time period the last
prevailing price during the interval.

It is also generally a requirement that all data used in a model be of the same
frequency of observation. So, for example, regressions that seek to estimate an arbitrage
pricing model using monthly observations on macroeconomic factors must also
use monthly observations on stock returns, even if daily or weekly observations
on the latter are available.

The data may be quantitative (e.g. exchange rates, prices, number of shares
outstanding), or qualitative (e.g. the day of the week, a survey of the financial
products purchased by private individuals over a period of time, a credit rating,
etc.).

Problems that could be tackled using time series data:

● How the value of a country’s stock index has varied with that country’s
macroeconomic fundamentals

● How the value of a company’s stock price has varied when it announced the
value of its dividend payment

● The effect on a country’s exchange rate of an increase in its trade deficit.

In all of the above cases, it is clearly the time dimension which is the most
important, and the analysis will be conducted using the values of the variables over
time.

1.3.2 Cross-sectional data

Cross-sectional data are data on one or more variables collected at a single point
in time. For example, the data might be on:

● A poll of usage of internet stockbroking services
● A cross-section of stock returns on the New York Stock Exchange (NYSE)
● A sample of bond credit ratings for UK banks.

Problems that could be tackled using cross-sectional data:

● The relationship between company size and the return to investing in its shares
● The relationship between a country’s GDP level and the probability that the

government will default on its sovereign debt.
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1.3.3 Panel data

Panel data have the dimensions of both time series and cross-sections, e.g. the daily
prices of a number of blue chip stocks over two years. The estimation of panel
regressions is an interesting and developing area, and will be examined in detail in
chapter 11.

Fortunately, virtually all of the standard techniques and analysis in econo-
metrics are equally valid for time series and cross-sectional data. For time series
data, it is usual to denote the individual observation numbers using the index
t , and the total number of observations available for analysis by T. For cross-
sectional data, the individual observation numbers are indicated using the index
i , and the total number of observations available for analysis by N. Note that
there is, in contrast to the time series case, no natural ordering of the observa-
tions in a cross-sectional sample. For example, the observations i might be on the
price of bonds of different firms at a particular point in time, ordered alphabet-
ically by company name. So, in the case of cross-sectional data, there is unlikely
to be any useful information contained in the fact that Barclays follows Banco
Santander in a sample of bank credit ratings, since it is purely by chance that
their names both begin with the letter ‘B’. On the other hand, in a time series
context, the ordering of the data is relevant since the data are usually ordered
chronologically.

In this book, the total number of observations in the sample will be given by T
even in the context of regression equations that could apply either to cross-sectional
or to time series data.

1.3.4 Continuous and discrete data

As well as classifying data as being of the time series or cross-sectional type, we
could also distinguish them as being either continuous or discrete, exactly as their
labels would suggest. Continuous data can take on any value and are not confined
to take specific numbers; their values are limited only by precision. For example,
the rental yield on a property could be 6.2%, 6.24% or 6.238%, and so on. On the
other hand, discrete data can only take on certain values, which are usually integers
(whole numbers), and are often defined to be count numbers.1 For instance, the
number of people in a particular underground carriage or the number of shares
traded during a day. In these cases, having 86.3 passengers in the carriage or 58571/2
shares traded would not make sense. The simplest example of a discrete variable is
a Bernoulli or binary random variable, which can only take the values 0 or 1 – for
example, if we repeatedly tossed a coin, we could denote a head by 0 and a tail
by 1.

1 Discretely measured data do not necessarily have to be integers. For example, until they became
‘decimalised’, many financial asset prices were quoted to the nearest 1/16 or 1/32 of a dollar.
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1.3.5 Cardinal, ordinal and nominal numbers

Another way in which we could classify numbers is according to whether they
are cardinal, ordinal or nominal. Cardinal numbers are those where the actual
numerical values that a particular variable takes have meaning, and where there
is an equal distance between the numerical values. On the other hand, ordinal
numbers can only be interpreted as providing a position or an ordering. Thus,
for cardinal numbers, a figure of 12 implies a measure that is ‘twice as good’ as a
figure of 6. Examples of cardinal numbers would be the price of a share or of a
building, and the number of houses in a street. On the other hand, for an ordinal
scale, a figure of 12 may be viewed as ‘better’ than a figure of 6, but could not be
considered twice as good. Examples of ordinal numbers would be the position of
a runner in a race (e.g. second place is better than fourth place, but it would make
little sense to say it is ‘twice as good’) or the level reached in a computer game.

The final type of data that could be encountered would be where there is no
natural ordering of the values at all, so a figure of 12 is simply different to that of a
figure of 6, but could not be considered to be better or worse in any sense. Such
data often arise when numerical values are arbitrarily assigned, such as telephone
numbers or when codings are assigned to qualitative data (e.g. when describing the
exchange that a US stock is traded on, ‘1’ might be used to denote the NYSE, ‘2’
to denote the NASDAQ and ‘3’ to denote the AMEX). Sometimes, such variables
are called nominal variables. Cardinal, ordinal and nominal variables may require
different modelling approaches or at least different treatments, as should become
evident in the subsequent chapters.

• • • • • • • • • • • • • • 1.4 Returns in financial modelling

In many of the problems of interest in finance, the starting point is a time series
of prices – for example, the prices of shares in Ford, taken at 4 p.m. each day for
200 days. For a number of statistical reasons, it is preferable not to work directly
with the price series, so that raw price series are usually converted into series of
returns. Additionally, returns have the added benefit that they are unit-free. So, for
example, if an annualised return were 10%, then investors know that they would
have got back £110 for a £100 investment, or £1,100 for a £1,000 investment,
and so on.

There are two methods used to calculate returns from a series of prices, and
these involve the formation of simple returns, and continuously compounded
returns, which are achieved as follows:

Simple returns Continuously compounded returns

Rt = pt − pt−1

pt−1
× 100% (1.1) r t = 100% × ln

(
pt

pt−1

)
(1.2)
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Box 1.3 Log returns

(1) Log-returns have the nice property that they can be interpreted as
continuously compounded returns – so that the frequency of compounding
of the return does not matter and thus returns across assets can more
easily be compared.

(2) Continuously compounded returns are time-additive. For example,
suppose that a weekly returns series is required and daily log returns
have been calculated for five days, numbered 1 to 5, representing the
returns on Monday through Friday. It is valid to simply add up the five
daily returns to obtain the return for the whole week:

Monday return r 1 = ln (p1/p0) = ln p1 − ln p0
Tuesday return r 2 = ln (p2/p1) = ln p2 − ln p1
Wednesday return r 3 = ln (p3/p2) = ln p3 − ln p2
Thursday return r 4 = ln (p4/p3) = ln p4 − ln p3
Friday return r 5 = ln (p5/p4) = ln p5 − ln p4

——————————–
Return over the week ln p5 − ln p0 = ln (p5/p0)

where: Rt denotes the simple return at time t , r t denotes the continuously com-
pounded return at time t , pt denotes the asset price at time t and ln denotes the
natural logarithm.

If the asset under consideration is a stock or portfolio of stocks, the total return
to holding it is the sum of the capital gain and any dividends paid during the
holding period. However, researchers often ignore any dividend payments. This is
unfortunate, and will lead to an underestimation of the total returns that accrue
to investors. This is likely to be negligible for very short holding periods, but will
have a severe impact on cumulative returns over investment horizons of several
years. Ignoring dividends will also have a distortionary effect on the cross-section
of stock returns. For example, ignoring dividends will imply that ‘growth’ stocks
with large capital gains will be inappropriately favoured over income stocks (e.g.
utilities and mature industries) that pay high dividends.

Alternatively, it is possible to adjust a stock price time series so that the divi-
dends are added back to generate a total return index. If pt were a total return index,
returns generated using either of the two formulae presented above thus provide
a measure of the total return that would accrue to a holder of the asset during
time t .

The academic finance literature generally employs the log-return formulation
(also known as log-price relatives since they are the log of the ratio of this period’s
price to the previous period’s price). Box 1.3 shows two key reasons for this.

There is, however, also a disadvantage of using the log-returns. The simple
return on a portfolio of assets is a weighted average of the simple returns on the



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-01 CUUK2581/Brooks 978 1 107 03466 2 December 19, 2013 22:39

1.4 Returns in financial modelling

•
•
•
•
•
•
•
•
• 9

individual assets:

Rpt =
N∑

i=1

wi Ri t (1.3)

But this does not work for the continuously compounded returns, so that they
are not additive across a portfolio. The fundamental reason why this is the case is
that the log of a sum is not the same as the sum of a log, since the operation of
taking a log constitutes a non-linear transformation. Calculating portfolio returns in
this context must be conducted by first estimating the value of the portfolio at each
time period and then determining the returns from the aggregate portfolio values.
Or alternatively, if we assume that the asset is purchased at time t − K for price
pt−K and then sold K periods later at price pt , then if we calculate simple returns
for each period, Rt , Rt+1, . . . , RK , the aggregate return over all K periods is

RKt = pt − pt−K

pt−K
= pt

pt−K
− 1 =

[
pt

pt−1
× pt−1

pt−2
× . . . × pt−K+1

pt−K

]
− 1

= [(1 + Rt )(1 + Rt−1) . . . (1 + Rt−K+1)] − 1

(1.4)

In the limit, as the frequency of the sampling of the data is increased so that they
are measured over a smaller and smaller time interval, the simple and continuously
compounded returns will be identical.

1.4.1 Real versus nominal series and deflating nominal series

If a newspaper headline suggests that ‘house prices are growing at their fastest rate
for more than a decade. A typical 3-bedroom house is now selling for £180,000,
whereas in 1990 the figure was £120,000’, it is important to appreciate that this
figure is almost certainly in nominal terms. That is, the article is referring to the
actual prices of houses that existed at those points in time. The general level of
prices in most economies around the world has a general tendency to rise almost
all of the time, so we need to ensure that we compare prices on a like-for-like
basis. We could think of part of the rise in house prices being attributable to an
increase in demand for housing, and part simply arising because the prices of all
goods and services are rising together. It would be useful to be able to separate the
two effects, and to be able to answer the question, ‘how much have house prices
risen when we remove the effects of general inflation?’ or equivalently, ‘how much
are houses worth now if we measure their values in 1990-terms?’ We can do this
by deflating the nominal house price series to create a series of real house prices,
which is then said to be in inflation-adjusted terms or at constant prices.

Deflating a series is very easy indeed to achieve: all that is required (apart from
the series to deflate) is a price deflator series, which is a series measuring general price
levels in the economy. Series like the consumer price index (CPI), producer price
index (PPI) or the GDP Implicit Price Deflator, are often used. A more detailed
discussion of which is the most relevant general price index to use is beyond the
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Table 1.1 How to construct a series in real terms from a nominal
one

Nominal CPI House prices House prices

Year house prices (2004 levels) (2004 levels) (2013) levels

2001 83,450 97.6 85,502 105,681

2002 93,231 98.0 95,134 117,585

2003 117,905 98.7 119,458 147,650

2004 134,806 100.0 134,806 166,620

2005 151,757 101.3 149,810 185,165

2006 158,478 102.1 155,218 191,850

2007 173,225 106.6 162,500 200,850

2008 180,473 109.4 164,966 165,645

2009 150,501 112.3 134,017 173,147

2010 163,481 116.7 140,086 167,162

2011 161,211 119.2 135,244 155,472

2012 162,228 121.1 133,962 165,577

2013 162,245 123.6 131,266 162,245

Notes: All prices in British pounds; house price figures taken in January of each year from Nation-
wide (see appendix 1 for the source). CPI figures are for illustration only.

scope of this book, but suffice to say that if the researcher is only interested in
viewing a broad picture of the real prices rather than a highly accurate one, the
choice of deflator will be of little importance.

The real price series is obtained by taking the nominal series, dividing it by
the price deflator index, and multiplying by 100 (under the assumption that the
deflator has a base value of 100)

real seriest = nominal seriest
deflatort

× 100 (1.5)

It is worth noting that deflation is only a relevant process for series that are
measured in money terms, so it would make no sense to deflate a quantity-based
series such as the number of shares traded or a series expressed as a proportion or
percentage, such as the rate of return on a stock.

Example: Deflating house prices

Let us use for illustration a series of average UK house prices, measured annually
for 2001–13 and taken from Nationwide (see appendix 1 for the full source) given



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-01 CUUK2581/Brooks 978 1 107 03466 2 December 19, 2013 22:39

1.5 Steps involved in formulating an econometric model

•
•
•
•
•
•
•
•
• 11

1a.  Economic or f inancial theory (previous studies)

1b. Formulation of an estimable theoretical model

2. Collection of data

3. Model estimation

4. Is the model statistically adequate?

No Yes

Reformulate model 5. Interpret model

6. Use for analysis

Figure 1.1 Steps involved in forming an econometric model

in column 2 of table 1.1. Some figures for the general level of prices as measured
by the CPI are given in the third column. So first, suppose that we want to convert
the figures into constant (real) prices. Given that 2004 is the ‘base’ year (i.e. it has a
value of 100 for the CPI), the easiest way to do this is simply to divide each house
price at time t by the corresponding CPI figure for time t and then multiply it by
100, as per equation (1.5). This will give the figures in column 4 of the table.

If we wish to convert house prices into a particular year’s figures, we would
apply equation (1.5), but instead of 100 we would have the CPI value that year.
Consider that we wished to express nominal house prices in 2013 terms (which
is of particular interest as this is the last observation in the table). We would thus
base the calculation on a variant of (1.5)

real seriest = nominal seriest
CPIt

CPIreference year (1.6)

So, for example, to get the 2001 figure (i.e. t is 2001) of 105,681 for the
average house price in 2013 terms, we would take the nominal figure of 83,450,
multiply it by the CPI figure for the year that we wish to make the price for (the
reference year, 123.6) and then divide it by the CPI figure for the year 2001 (97.6).
Thus 105,681 = 83450

97.6 × 123.6, etc.

• • • • • • • • • • • • • • 1.5 Steps involved in formulating an econometric model

Although there are of course many different ways to go about the process of model
building, a logical and valid approach would be to follow the steps described in
figure 1.1.
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The steps involved in the model construction process are now listed and
described. Further details on each stage are given in subsequent chapters of this
book.

● Step 1a and 1b: general statement of the problem This will usually involve the
formulation of a theoretical model, or intuition from financial theory that
two or more variables should be related to one another in a certain way. The
model is unlikely to be able to completely capture every relevant real-world
phenomenon, but it should present a sufficiently good approximation that it is
useful for the purpose at hand.

● Step 2: collection of data relevant to the model The data required may be available
electronically through a financial information provider, such as Reuters or
from published government figures. Alternatively, the required data may be
available only via a survey after distributing a set of questionnaires, i.e. primary
data.

● Step 3: choice of estimation method relevant to the model proposed in step 1 For
example, is a single equation or multiple equation technique to be used?

● Step 4: statistical evaluation of the model What assumptions were required to
estimate the parameters of the model optimally? Were these assumptions sat-
isfied by the data or the model? Also, does the model adequately describe the
data? If the answer is ‘yes’, proceed to step 5; if not, go back to steps 1–3 and
either reformulate the model, collect more data, or select a different estimation
technique that has less stringent requirements.

● Step 5: evaluation of the model from a theoretical perspective Are the parameter
estimates of the sizes and signs that the theory or intuition from step 1 sug-
gested? If the answer is ‘yes’, proceed to step 6; if not, again return to stages
1–3.

● Step 6: use of model When a researcher is finally satisfied with the model, it
can then be used for testing the theory specified in step 1, or for formulating
forecasts or suggested courses of action. This suggested course of action might
be for an individual (e.g. ‘if inflation and GDP rise, buy stocks in sector X ’),
or as an input to government policy (e.g. ‘when equity markets fall, program
trading causes excessive volatility and so should be banned’).

It is important to note that the process of building a robust empirical model is an
iterative one, and it is certainly not an exact science. Often, the final preferred
model could be very different from the one originally proposed, and need not be
unique in the sense that another researcher with the same data and the same initial
theory could arrive at a different final specification.

• • • • • • • • • • • • • • 1.6 Points to consider when reading articles in empirical finance

As stated above, one of the defining features of this book relative to others in
the area is in its use of published academic research as examples of the use of
the various techniques. The papers examined have been chosen for a number of
reasons. Above all, they represent (in this author’s opinion) a clear and specific
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Box 1.4 Points to consider when reading a published paper

(1) Does the paper involve the development of a theoretical model or is it
merely a technique looking for an application so that the motivation for
the whole exercise is poor?

(2) Are the data of ‘good quality’? Are they from a reliable source? Is the
size of the sample sufficiently large for the model estimation task at
hand?

(3) Have the techniques been validly applied? Have tests been conducted
for possible violations of any assumptions made in the estimation of the
model?

(4) Have the results been interpreted sensibly? Is the strength of the results
exaggerated? Do the results actually obtained relate to the questions
posed by the author(s)? Can the results be replicated by other
researchers?

(5) Are the conclusions drawn appropriate given the results, or has the
importance of the results of the paper been overstated?

application in finance of the techniques covered in this book. They were also
required to be published in a peer-reviewed journal, and hence to be widely
available.

When I was a student, I used to think that research was a very pure science.
Now, having had first-hand experience of research that academics and practitioners
do, I know that this is not the case. Researchers often cut corners. They have a
tendency to exaggerate the strength of their results, and the importance of their
conclusions. They also have a tendency not to bother with tests of the adequacy of
their models, and to gloss over or omit altogether any results that do not conform
to the point that they wish to make. Therefore, when examining papers from
the academic finance literature, it is important to cast a very critical eye over the
research – rather like a referee who has been asked to comment on the suitability of
a study for a scholarly journal. The questions that are always worth asking oneself
when reading a paper are outlined in box 1.4.

Bear these questions in mind when reading my summaries of the articles used
as examples in this book and, if at all possible, seek out and read the entire articles
for yourself.

• • • • • • • • • • • • • • 1.7 A note on Bayesian versus classical statistics

The philosophical approach to model-building adopted in this entire book, as with
the majority of others, is that of ‘classical statistics’. Under the classical approach, the
researcher postulates a theory and estimates a model to test that theory. Tests of the
theory are conducted using the estimated model within the ‘classical’ hypothesis
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testing framework developed in chapters 2 to 4. Based on the empirical results, the
theory is either refuted or upheld by the data.

There is, however, an entirely different approach available for model construc-
tion, estimation and inference, known as Bayesian statistics. Under a Bayesian
approach, the theory and empirical model work more closely together. The
researcher would start with an assessment of the existing state of knowledge or
beliefs, formulated into a set of probabilities. These prior inputs, or priors, would
then be combined with the observed data via a likelihood function. The beliefs
and the probabilities would then be updated as a result of the model estimation,
resulting in a set of posterior probabilities. Probabilities are thus updated sequentially,
as more data become available. The central mechanism, at the most basic level, for
combining the priors with the likelihood function, is known as Bayes’ theorem.

The Bayesian approach to estimation and inference has found a number of
important recent applications in financial econometrics, in particular in the context
of volatility modelling (see Bauwens and Lubrano, 1998, or Vrontos et al., 2000
and the references therein for some examples), asset allocation (see, for example,
Handa and Tiwari, 2006), portfolio performance evaluation (Baks et al., 2001).

The Bayesian setup is an intuitively appealing one, although the resulting
mathematics is somewhat complex. Many classical statisticians are unhappy with the
Bayesian notion of prior probabilities that are set partially according to judgement.
Thus, if the researcher set very strong priors, an awful lot of evidence against them
would be required for the notion to be refuted. Contrast this with the classical
case, where the data are usually permitted to freely determine whether a theory is
upheld or refuted, irrespective of the researcher’s judgement.

• • • • • • • • • • • • • • 1.8 An introduction to EViews

The number of packages available for econometric modelling is large, and over
time, all packages have improved in breadth of available techniques, and have also
converged in terms of what is available in each package. The programs can usefully
be categorised according to whether they are fully interactive (menu-driven),
command-driven (so that the user has to write mini-programs) or somewhere in
between. Menu-driven packages, which are usually based on a standard Microsoft
Windows graphical user interface, are almost certainly the easiest for novices to
get started with, for they require little knowledge of the structure of the package,
and the menus can usually be negotiated simply. EViews is a package that falls into
this category.

On the other hand, some such packages are often the least flexible, since the
menus of available options are fixed by the developers, and hence if one wishes
to build something slightly more complex or just different, then one is forced
to consider alternatives. EViews, however, has a command-based programming
language as well as a click-and-point interface so that it offers flexibility as well
as user-friendliness. Three reviews that this author has been involved with, that
are relevant for chapter 9 of this text in particular, are Brooks (1997) and Brooks,
Burke and Persand (2001, 2003). As for previous editions of this book, sample
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instructions and output for the EViews package will be given. This software
is employed because it is simple to use, menu-driven and will be sufficient to
estimate most of the models required for this book. The following section gives
an introduction to this software and outlines the key features and how basic tasks
are executed.

1.8.1 Accomplishing simple tasks using EViews

EViews is a simple to use, interactive econometrics software package providing
the tools most frequently used in practical econometrics. EViews is built around
the concept of objects with each object having its own window, its own menu, its
own procedure and its own view of the data. Using menus, it is easy to change
between displays of a spreadsheet, line and bar graphs, regression results, etc. One
of the most important features of EViews that makes it useful for model-building is
the wealth of diagnostic (misspecification) tests, that are automatically computed,
making it possible to test whether the model is econometrically valid or not. You
work your way through EViews using a combination of windows, buttons, menus
and sub-menus. A good way of familiarising yourself with EViews is to learn
about its main menus and their relationships through the examples given in this
and subsequent chapters.

This section assumes that readers have obtained a licensed copy of EViews 8
(the latest version available at the time of writing), and have successfully loaded
it onto an available computer. There now follows a description of the EViews
package, together with instructions to achieve standard tasks and sample output.
Any instructions that must be entered or icons to be clicked are illustrated through-
out this book by bold-faced type. The objective of the treatment in this and
subsequent chapters is not to demonstrate the full functionality of the package,
but rather to get readers started quickly and to explain how the techniques are
implemented and how the results may be interpreted. For further details, readers
should consult the software manuals in the first instance, which are now available
electronically with the software as well as in hard copy.2 Note that EViews is
not case-sensitive, so that it does not matter whether commands are entered as
lower-case or CAPITAL letters.

Opening the software

To load EViews from Windows, click the Start button, then All Programs,
EViews8 and finally, EViews8 again.

Reading in data

EViews provides support to read from or write to various file types, including
‘ASCII’ (text) files, Microsoft Excel ‘.XLS’ and ‘.XLSX’ files (reading from any
named sheet in the Excel workbook), Lotus ‘.WKS1’ and ‘.WKS3’ files. It is usually

2 A student edition of EViews 7 is available at a much lower cost than the full version, but with
restrictions on the number of observations and objects that can be included in each saved workfile.
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Screenshot 1.1 Creating a workfile

easiest to work directly with Excel files, and this will be the case throughout this
book.

Creating a workfile and importing data

The first step when the EViews software is opened is to create a workfile that will
hold the data. To do this, select New from the File menu. Then choose Workfile.
The ‘Workfile Create’ window in screenshot 1.1 will be displayed.

We are going to use as an example a time series of UK average house price
data obtained from Nationwide, which comprises 269 monthly observations from
January 1991 to May 2013.3 The frequency of the data (Monthly) should be set
and the start (1991:01) and end (2013:05) dates should be inputted. Click OK.
An untitled workfile will be created.

Under ‘Workfile structure type’, keep the default option, Dated – regular
frequency. Then, under ‘Date specification’, choose Monthly. Note the format
of date entry for monthly and quarterly data: YYYY:M and YYYY:Q, respectively.
For daily data, a US date format must usually be used depending on how EViews
has been set up: MM/DD/YYYY (e.g. 03/01/1999 would be 1st March 1999,
not 3rd January). Caution therefore needs to be exercised here to ensure that the
date format used is the correct one. Type the start and end dates for the sample

3 Full descriptions of the sources of data used will be given in appendix 1 and on the web site
accompanying this book.
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Screenshot 1.2 Importing Excel data into the workfile – screens 1 to 3

into the boxes: 1991:01 and 2007:05 respectively. Then click OK. The workfile
will now have been created. Note that two pairs of dates are displayed, ‘Range’ and
‘Sample’: the first one is the range of dates contained in the workfile and the second
one (which is the same as above in this case) is for the current workfile sample.
Two objects are also displayed: C (which is a vector that will eventually contain
the parameters of any estimated models) and RESID (a residuals series, which will
currently be empty). See chapter 3 for a discussion of these concepts. All EViews
workfiles will contain these two objects, which are created automatically.

Now that the workfile has been set up, we can import the data from the Excel
file UKHP.XLS. So from the File menu, select Import and Import from File.
You will then be prompted to select the directory and file name. Once you have
found the directory where the file is stored, enter UKHP.XLS in the ‘file name’
box and click Open. You are then faced with a series of three screens where it
is possible to modify the way that the data are imported. Most of the time it is
not necessary to change any of the default options as EViews peeks inside the
data file and identifies the structure of the data, whether there is a header row
containing the names of the series etc. The three screens are shown in panels a to
c of screenshot 1.2. In the third screen, click Rename Series and in the box that
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Screenshot 1.3 The workfile containing loaded data

appears, type AVERAGE HOUSE PRICE HP and this will change the name
of the series to ‘HP’, which is a bit easier to deal with!

Click Finish and the series will be imported. The series will appear as a new
icon in the workfile window, as in screenshot 1.3. Note that EViews has sensibly
not imported the column of dates as if it were an additional variable.

Verifying the data

Double click on the new hp icon that has appeared, and this will open up a
spreadsheet window within EViews containing the monthly house price values.
Make sure that the data file has been correctly imported by checking a few
observations at random.

The next step is to save the workfile: click on the Save As button from the
File menu and select Save Active Workfile and click OK. A save dialog box
will open, prompting you for a workfile name and location. You should enter XX
(where XX is your chosen name for the file), then click OK. EViews will save
the workfile in the specified directory with the name XX.wf1. I have called my
file ‘ukhp.wf1’ You will also be prompted to select whether the data in the file
should be saved in ‘single precision’ or ‘double precision’. The latter is preferable
for obvious reasons unless the file is likely to be very large because of the quantity
of variables and observations it contains (single precision will require less space) so
just click OK.

The saved workfile can be opened later by selecting File/Open/EViews Work-
file . . . from the menu bar.
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Transformations

Variables of interest can be created in EViews by selecting the Genr button from
the workfile toolbar and typing in the relevant formulae. Suppose, for example,
we have a time series called Z. The latter can be modified in the following ways
so as to create variables A, B, C, etc. The mathematical background and simple
explanations of these transformations, including powers, logarithms and exponents,
will be discussed in detail in the following chapter. Some common transformations
are:

A = Z/2 Dividing
B = Z∗2 Multiplication
C = Zˆ2 Squaring
D = LOG(Z) Taking the logarithm
E = EXP(Z) Taking the exponential
F = Z(−1) Lagging the data
G = LOG(Z/Z(−1)) Creating the log-returns

Other functions that can be used in the formulae include: abs, sin, cos, etc. Notice
that no special instruction is necessary; simply type ‘new variable = function of
old variable(s)’. The variables will be displayed in the same workfile window as
the original (imported) series.

In this case, it is of interest to calculate simple percentage changes in the series.
Click Genr and type DHP = 100∗(HP-HP(-1))/HP(-1). It is important to
note that this new series, DHP, will be a series of monthly percentage changes and
will not be annualised.

Computing summary statistics

Descriptive summary statistics of a series can be obtained by selecting
Quick/Series Statistics/Histogram and Stats and typing in the name of the
variable (DHP). The view in screenshot 1.4 will be displayed in the window.

As can be seen, the histogram suggests that the series has a slightly longer
upper tail than lower tail (note the x-axis scale) and is centred slightly above
zero. Summary statistics including the mean, maximum and minimum, standard
deviation, higher moments and a test for whether the series is normally distributed
are all presented. Interpreting these will be discussed in subsequent chapters. Other
useful statistics and transformations can be obtained by selecting the command
Quick/Series Statistics, but these are also covered later in this book.

Plots

EViews supports a wide range of graph types including line graphs, bar graphs,
pie charts, mixed line–bar graphs, high–low graphs and scatterplots. A variety of
options permits the user to select the line types, colour, border characteristics,
headings, shading and scaling, including logarithmic scale and dual scale graphs.
Legends are automatically created (although they can be removed if desired), and
customised graphs can be incorporated into other Windows applications using
copy-and-paste, or by exporting as Windows metafiles.
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Screenshot 1.4 Summary statistics for a series

From the main menu, select Quick/Graph and type in the name of the series
that you want to plot (HP to plot the level of house prices) and click OK. You
will be prompted with the ‘Graph Options’ window where you choose the type
of graph that you want (line, bar, scatter or pie charts, etc.) and also control the
layout and style of the graph (e.g. whether you want a legend, axis labels, etc.).
Choosing a line and symbol graph would produce screenshot 1.5.

It is always useful to plot any series you are working with to get a feel for
the basic features of the data. It is clear that in this case house prices appreciated
quickly to reach a peak in October 2007 before falling sharply until early 2009,
after which a partial recovery began. It is possible to identify any value on the
chart and its timing by simply hovering the mouse over it. Double-clicking on the
graph will revert back to the Graph Options menu.

As an exercise, try plotting the DHP series – you will see that the volatility
of percentage change series makes their graphs much harder to interpret, even
though they are usually the form of the data that we work with in econometrics.

Printing results

Results can be printed at any point by selecting the Print button on the object
window toolbar. The whole current window contents will be printed. Graphs can
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Screenshot 1.5 A line graph

be copied into the clipboard if desired by right clicking on the graph and choosing
Copy to clipboard.

Saving data results and workfile

Data generated in EViews can be exported to other Windows applications, e.g.
Microsoft Excel. From the main menu, select File/Export/Write Text-Lotus-Excel.
You will then be asked to provide a name for the exported file and to select the
appropriate directory. The next window will ask you to select all the series that
you want to export, together with the sample period.

Assuming that the workfile has been saved after the importation of the data
set (as mentioned above), additional work can be saved by just selecting Save from
the File menu. The workfile will be saved including all objects in it – data, graphs,
equations, etc. so long as they have been given a title. Any untitled objects will be lost
upon exiting the program.

Econometric tools available in EViews

Box 1.5 describes the features available in EViews, following the format of the
user guides for version 8, with material discussed in this book indicated by italics.
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Box 1.5 Features of EViews

The EViews User Guide is split into two volumes. Volume I contains four
parts as described below, while Volume II contains six parts.

PART I (INTRODUCTION)

● Chapters 1–4 contain introductory material describing the basics of Win-
dows and EViews, how workfiles are constructed and how to deal with objects.

● Chapters 5 and 6 document the basics of working with data. Importing data
into EViews, using EViews to manipulate and manage data and exporting from
EViews into spreadsheets, text files and other Windows applications are
discussed.

● Chapters 7–10 describe the EViews database and other advanced data and
workfile handling features.

PART II (BASIC DATA ANALYSIS)

● Chapter 11 describes the series object. Series are the basic unit of data in
EViews and are the basis for all univariate analysis. This chapter documents
the basic graphing and data analysis features associated with series.

● Chapter 12 documents the group object. Groups are collections of series
that form the basis for a variety of multivariate graphing and data analyses.

● Chapters 13 and 14 provide detailed documentation for the production of
various types of graphs.

PART III (CUSTOMISING OUTPUT)

● Chapters 15 to 17 continue to describe the creation and customisation of
more advanced tables and graphs.

PART IV (EXTENDING EVIEWS)

● Chapter 18 describes in detail how to write programs using the EViews program-
ming language.

PART V (BASIC SINGLE EQUATION ANALYSIS)

● Chapter 19 outlines the basics of ordinary least squares (OLS) estimation in
EViews.

● Chapter 20 discusses the weighted least squares, two-stage least squares and
non-linear least squares estimation techniques.

● Chapter 21 covers approaches to dealing with simultaneous equations
including two-stage least squares.

● Chapter 22 describes single equation regression techniques for the analysis of
time series data: testing for serial correlation, estimation of ARMA models, using
polynomial distributed lags and unit root tests for non-stationary time series.
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● Chapter 23 describes the fundamentals of using EViews to forecast from
estimated equations.

● Chapter 24 describes the specification testing procedures available in EViews.

PART VI (ADVANCED SINGLE EQUATION ANALYSIS)

● Chapter 25 discusses ARCH and GARCH estimation and outlines the
EViews tools for modelling the conditional variance of a variable.

● Chapter 26 covers singe-equation models for cointegrated variables.
● Chapter 27 documents EViews functions for estimating qualitative and limited

dependent variable models. EViews provides estimation routines for binary or
ordered (e.g. probit and logit), censored or truncated (tobit, etc.) and integer valued
(count) data.

● Chapters 28 to 31 discuss more sophisticated modelling approaches for
single equations, including robust estimation, allowing for structural breaks and
switching regressions.

● Chapter 32 discusses the topic of the estimation of quantile regressions.
● Chapter 33 shows how to deal with the log-likelihood object, and how to

solve problems with non-linear estimation.

PART VII (ADVANCED UNIVARIATE ANALYSIS)

● Chapter 34 discusses various univariate analysis that can be undertaken,
including unit root testing, panel unit root testing and use of the BDS test.

PART VIII (MULTIPLE EQUATION ANALYSIS)

● Chapters 35–6 describe estimation techniques for systems of equations including
VAR and VEC models.

● Chapter 37 presents state space models and their estimation via the Kalman
filter.

● Chapter 38 offers a more general discussion of how to set up and estimate
various types of models in EViews.

PART IX (PANEL AND POOLED DATA)

● Chapter 39 outlines tools for working with pooled time series, cross-section data
and estimating standard equation specifications that account for the pooled
structure of the data.

● Chapter 40 describes how to structure a panel of data and how to analyse
it, while chapter 41 extends the analysis to look at panel regression model
estimation; panel cointegration is considered in Chapter 42 and other panel
issues in Chapter 43.

PART X (ADVANCED MULTIVARIATE ANALYSIS)

● Chapters 44 and 45, the final chapters of the manual, explain how to
conduct cointegration and factor analysis in EViews.
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• • • • • • • • • • • • • • 1.9 Further reading

EViews 8 User’s Guides I and II – IHS Global (2013), Irvine, CA.
EViews 8 Command Reference – IHS Global (2013), Irvine, CA.
Startz, R. EViews Illustrated for Version 8 IHS Global (2013), Irvine, CA.

• • • • • • • • • • • • • • 1.10 Outline of the remainder of this book

Chapter 2

This covers the key mathematical and statistical techniques that readers will need
some familiarity with to be able to get the most out of the remainder of this
book. It starts with a simple discussion of functions, and powers, exponents and
logarithms of numbers. It then proceeds to explain the basics of differentiation
and matrix algebra, which is illustrated via the construction of optimal portfolio
weights. The chapter then moves on to present an introduction to descriptive
statistics and probability distributions.

Chapter 3

This introduces the classical linear regression model (CLRM). The ordinary least
squares (OLS) estimator is derived and its interpretation discussed. The conditions
for OLS optimality are stated and explained. A hypothesis testing framework is
developed and examined in the context of the linear model. Examples employed
include Jensen’s classic study of mutual fund performance measurement and tests
of the ‘overreaction hypothesis’ in the context of the UK stock market.

Chapter 4

This continues and develops the material of chapter 3 by generalising the bivariate
model to multiple regression – i.e. models with many variables. The framework
for testing multiple hypotheses is outlined, and measures of how well the model
fits the data are described. Case studies include modelling rental values and an
application of principal components analysis to interest rate modelling.

Chapter 5

Chapter 5 examines the important but often neglected topic of diagnostic testing.
The consequences of violations of the CLRM assumptions are described, along
with plausible remedial steps. Model-building philosophies are discussed, with
particular reference to the general-to-specific approach. Applications covered in
this chapter include the determination of sovereign credit ratings.

Chapter 6

This presents an introduction to time series models, including their motivation
and a description of the characteristics of financial data that they can and cannot
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capture. The chapter commences with a presentation of the features of some
standard models of stochastic (white noise, moving average, autoregressive and
mixed ARMA) processes. The chapter continues by showing how the appropriate
model can be chosen for a set of actual data, how the model is estimated and
how model adequacy checks are performed. The generation of forecasts from such
models is discussed, as are the criteria by which these forecasts can be evaluated.
Examples include model-building for UK house prices, and tests of the exchange
rate covered and uncovered interest parity hypotheses.

Chapter 7

This extends the analysis from univariate to multivariate models. Multivariate mod-
els are motivated by way of explanation of the possible existence of bi-directional
causality in financial relationships, and the simultaneous equations bias that results
if this is ignored. Estimation techniques for simultaneous equations models are
outlined. Vector auto-regressive (VAR) models, which have become extremely
popular in the empirical finance literature, are also covered. The interpretation
of VARs is explained by way of joint tests of restrictions, causality tests, impulse
responses and variance decompositions. Relevant examples discussed in this chap-
ter are the simultaneous relationship between bid–ask spreads and trading volume
in the context of options pricing, and the relationship between property returns
and macroeconomic variables.

Chapter 8

The first section of the chapter discusses unit root processes and presents tests
for non-stationarity in time series. The concept of and tests for cointegration,
and the formulation of error correction models, are then discussed in the context
of both the single equation framework of Engle–Granger, and the multivariate
framework of Johansen. Applications studied in chapter 8 include spot and futures
markets, tests for cointegration between international bond markets and tests of
the purchasing power parity hypothesis and of the expectations hypothesis of the
term structure of interest rates.

Chapter 9

This covers the important topic of volatility and correlation modelling and fore-
casting. This chapter starts by discussing in general terms the issue of non-linearity
in financial time series. The class of ARCH (autoregressive conditionally het-
eroscedasticity) models and the motivation for this formulation are then discussed.
Other models are also presented, including extensions of the basic model such as
GARCH, GARCH-M, EGARCH and GJR formulations. Examples of the huge
number of applications are discussed, with particular reference to stock returns.
Multivariate GARCH and conditional correlation models are described, and appli-
cations to the estimation of conditional betas and time-varying hedge ratios, and
to financial risk measurement, are given.
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Chapter 10

This discusses testing for and modelling regime shifts or switches of behaviour in
financial series that can arise from changes in government policy, market trading
conditions or microstructure, among other causes. This chapter introduces the
Markov switching approach to dealing with regime shifts. Threshold autoregression
is also discussed, along with issues relating to the estimation of such models.
Examples include the modelling of exchange rates within a managed floating
environment, modelling and forecasting the gilt–equity yield ratio and models of
movements of the difference between spot and futures prices.

Chapter 11

This chapter focuses on how to deal appropriately with longitudinal data – that
is, data having both time series and cross-sectional dimensions. Fixed effect and
random effect models are explained and illustrated by way of examples on banking
competition in the UK and on credit stability in Central and Eastern Europe.
Entity fixed and time-fixed effects models are elucidated and distinguished.

Chapter 12

This chapter describes various models that are appropriate for situations where
the dependent variable is not continuous. Readers will learn how to construct,
estimate and interpret such models, and to distinguish and select between alterna-
tive specifications. Examples used include a test of the pecking order hypothesis in
corporate finance and the modelling of unsolicited credit ratings.

Chapter 13

This presents an introduction to the use of simulations in econometrics and finance.
Motivations are given for the use of repeated sampling, and a distinction is drawn
between Monte Carlo simulation and bootstrapping. The reader is shown how to
set up a simulation, and examples are given in options pricing and financial risk
management to demonstrate the usefulness of these techniques.

Chapter 14

This offers suggestions related to conducting a project or dissertation in empirical
finance. It introduces the sources of financial and economic data available on the
internet and elsewhere, and recommends relevant online information and literature
on research in financial markets and financial time series. The chapter also suggests
ideas for what might constitute a good structure for a dissertation on this subject,
how to generate ideas for a suitable topic, what format the report could take, and
some common pitfalls. Detailed illustrations of how to conduct an event study and
how to use the Fama-French approach are presented.
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Key concepts

The key terms to be able to define and explain from this chapter are

• cardinal, ordinal and nominal numbers • covariance and correlation

• skewness and kurtosis • continuously compounded

• financial econometrics returns

• time series • cross-sectional data

• panel data • pooled data

• continuous data • discrete data

• real • deflator

• geometric mean

Self-study questions

1. Explain the difference between the following terms:
(a) Continuous and discrete data
(b) Ordinal and nominal data
(c) Time series and panel data
(d) Noisy and clean data
(e) Simple and continuously compounded returns
(f) Nominal and real series
(g) Bayesian and classical statistics

2. Present and explain a problem that can be approached using a time series
regression, another one using cross-sectional regression, and another using
panel data.

3. What are the key features of asset return time series?
4. The following table gives annual, end of year prices of a bond and of the

consumer prices index
Year Bond value CPI value
2006 36.9 108.0
2007 39.8 110.3
2008 42.4 113.6
2009 38.1 116.1
2010 36.4 118.4
2011 39.2 120.9
2012 44.6 123.2
2013 45.1 125.4

(a) Calculate the simple returns
(b) Calculate the continuously compounded returns
(c) Calculate the prices of the bond each year in 2013 terms
(d) Calculate the real returns
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2 Mathematical and statistical
foundations

Learning outcomes

In this chapter, you will learn how to

• Work with powers, exponents and logarithms

• Use sigma(�) and pi(�) notation

• Apply simple rules to differentiate functions

• Work with matrices

• Calculate the trace, inverse and eigenvalues of a matrix

• Construct minimum variance and mean-variance efficient portfolios

• Compute summary statistics for a data series

• Manipulate expressions using the expectations, variance and covariance

operators

This chapter covers the mathematical and statistical building blocks that are
essential for a good understanding of the rest of the book. Those with some prior
background in algebra and introductory statistics may skip this chapter without
loss of continuity, but hopefully the material will also constitute a useful refresher
for those who have studied mathematics but a long time ago!

• • • • • • • • • • • • • • 2.1 Functions

2.1.1 Straight lines

The ultimate objective of econometrics is usually to build a model, which may be
thought of as a simplified version of the true relationship between two or more
variables that can be described by a function. A function is simply a mapping or
relationship between an input or set of inputs, and an output. We usually write
that y, the output, is a function f of x, the input: y = f (x). y could be a linear
function of x, where the relationship can be expressed as a straight line on a graph,
or y could be a non-linear function of x, in which case the relationship between
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Table 2.1 Sample data on hours of study and grades

Hours of study (x) Grade-point average in % (y)

0 25

100 30

400 45

800 65

1000 75

1200 85

the two variables would be represented graphically as a curve. If the relationship is
linear, we could write the equation for this straight line as

y = a + b x (2.1)

y and x are called variables, while a and b are parameters; a is termed the intercept
and b is the slope or gradient of the line. The intercept is the point at which the line
crosses the y-axis, while the slope measures the steepness of the line.

To illustrate, suppose we were trying to model the relationship between a
student’s grade point average y (expressed as a percentage), and the number of hours
that they studied throughout the year, x. Suppose further that the relationship can
be written as a linear function with y = 25 + 0.05x. Clearly it is unrealistic to
assume that the link between grades and hours of study follows a straight line, but
let us keep this assumption for now. So the intercept of the line, a , is 25, and the
slope, b , is 0.05. What does this equation mean? It means that a student spending
no time studying at all (x = 0) could expect to earn a 25% average grade, and
for every hour of study time, their average grade should improve by 0.05% – in
other words, an extra 100 hours of study through the year would lead to a 5%
increase in the grade. We could construct a table with several values of x and
the corresponding value of y as in table 2.1 and then plot them onto a graph
(figure 2.1).

We can see that the gradient of this line is positive (i.e. it slopes upwards from
left to right). But more generally, in other situations it is also possible for the
gradient to be zero or negative. Note that for a straight line, the slope is the same
along the whole line; this slope can be calculated from a graph by taking any two
points on the line and dividing the change in the value of y by the change in the
value of x between the two points. In general, a capital delta, �, is used to denote
a change in a variable. For example, suppose that we want to take the two points
x = 100, y = 30 and x = 1000, y = 75. We could write these two points using
a coordinate notation (x,y) and so (100,30) and (1000,75) in this example. We
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Figure 2.1 A plot of hours studied (x) against grade-point average (y)
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Figure 2.2 Examples of different straight line graphs

would calculate the slope of the line as

�y
�x

= 75 − 30
1000 − 100

= 0.05 (2.2)

So indeed, we have confirmed that the slope is 0.05 (although in this case we
knew that from the start). Two other examples of straight line graphs are given in
figure 2.2. The gradient of the line can be zero or negative instead of positive. If
the gradient is zero, the resulting plot will be a flat (horizontal) straight line. If there
is a specific change in x, �x, and we want to calculate the corresponding change
in y, we would simply multiply the change in x by the slope, so �y = b�x.
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y = x2 + 6x + 9

y = –x2 + 9
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Figure 2.3 Examples of quadratic functions

As a final point, note that we stated above that the point at which a function
crosses the y-axis is termed the intercept. The point at which the function crosses
the x-axis is called its root. In the example above, if we take the function y =
25 + 0.05x, set y to zero and rearrange the equation, we would find that the root
would be x = −500. The equation for a straight line has one root (except for a
horizontal straight line such as y = 4).

2.1.2 Quadratic functions

A linear function is often not sufficiently flexible to be able to accurately describe
the relationship between two variables, and so a quadratic function may be used
instead. We could write the general expression for a quadratic function as

y = a + b x + c x2 (2.3)

where x and y are the variables again and a , b , c are the parameters that describe
the shape of the function. Note that a linear function only has two parameters
(the intercept, a and the slope, b ), but a quadratic has three and hence it is able
to adapt to a broader range of relationships between y and x. The linear function
is a special case of the quadratic where c is zero. As before, a is the intercept and
defines where the function crosses the y-axis; the parameters b and c determine
the shape. Quadratic equations can be either ∪-shaped or ∩-shaped. As x becomes
very large and positive or very large and negative, the x2 term will dominate the
behaviour of y and it is thus c that determines which of these shapes will apply.
Figure 2.3 shows two examples of quadratic functions – in the first case c is positive
and so the curve is ∪-shaped, while in the second c is negative so the curve is
∩-shaped. Box 2.1 discusses the features of the roots of a quadratic equation and
shows how to calculate them.
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Box 2.1 The roots of a quadratic equation

● A quadratic equation has two roots.
● The roots may be distinct (i.e. different from one another), or they may

be the same (repeated roots); they may be real numbers (e.g. 1.7,
−2.357, 4, etc.) or what are known as complex numbers.

● The roots can be obtained either by factorising the equation – i.e.
contracting it into parentheses, by ‘completing the square’ or by using
the formula

x = −b ± √
b 2 − 4a c

2c
(2.4)

● If b 2 > 4a c , the function will have two unique roots and it will cross
the x-axis in two separate places; if b 2 = 4a c , the function will have
two equal roots and it will only cross the x-axis in one place; if
b 2 < 4a c , the function will have no real roots (only complex roots), it
will not cross the x-axis at all and thus the function will always be
above the x-axis.

Example 2.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Determine the roots of the following quadratic equations

1. y = x2 + x − 6
2. y = 6x2 + 5x + 2
3. y = x2 − 3x + 1
4. y = x2 − 4
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Solution

We would solve these equations by setting them in turn to zero. We could then
use the quadratic formula from equation (2.4) in each case, although it is usually
quicker to determine first whether they factorise.

1. x2 + x − 6 = 0 factorises to (x − 2)(x + 3) = 0 and thus the roots are 2 and
−3, which are the values of x that set the function to zero. In other words,
the function will cross the x-axis at x = 2 and x = −3.

2. 9x2 + 6x + 1 = 0 factorises to (3x + 1)(3x + 1) = 0 and thus the roots are
− 1

3 and − 1
3 . This is known as repeated roots – since this is a quadratic equation

there will always be two roots but in this case they are both the same.
3. x2 − 3x + 1 = 0 does not factorise and so the formula must be used with

a = 1, b = −3, c = 1 and the roots are 0.38 and 2.62 to two decimal places.
4. x2 − 4 = 0 factorises to x(x − 4) = 0 and so the roots are 0 and 4.
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Box 2.2 Manipulating powers and their indices

● Any number or variable raised to the power one is simply that number
or variable, e.g. 31 = 3, x1 = x, and so on.

● Any number or variable raised to the power zero is one, e.g. 50 = 1,
x0 = 1, etc., except that 00 is not defined (i.e. it does not exist).

● If the index is a negative number, this means that we divide one by that
number – for example, x−3 = 1

x3 = 1
x×x×x .

● If we want to multiply together a given number raised to more than
one power, we would add the corresponding indices together – for
example, x2 × x3 = x2x3 = x2+3 = x5.

● If we want to calculate the power of a variable raised to a power (i.e.
the power of a power), we would multiply the indices together – for
example, x23 = x2×3 = x6.

● If we want to divide a variable raised to a power by the same variable
raised to another power, we subtract the second index from the first –
for example, x3

x2 = x3−2 = x.
● If we want to divide a variable raised to a power by a different variable

raised to the same power, the following result applies(
x
y

)n

= xn

yn

● The power of a product is equal to each component raised to that
power – for example, (x × y)3 = x3 × y3.

● It is important to note that the indices for powers do not have to be
integers. For example, x

1
2 is the notation we would use for taking the

square root of x, sometimes written
√

x. Other, non-integer powers
are also possible, but are harder to calculate by hand (e.g. x0.76, x−0.27,
etc.) In general, x1/n = n

√
x.

Note that all of these equations have two real roots. If we had an equation such as
y = 3x2 − 2x + 4, this would not factorise and would have complex roots since
b 2 − 4a c < 0 in the quadratic formula.

2.1.3 Powers of numbers or of variables

A number or variable raised to a power is simply a way of writing repeated
multiplication. So for example, raising x to the power 2 means squaring it (i.e.
x2 = x × x); raising it to the power 3 means cubing it (x3 = x × x × x), and so
on. The number that we are raising the number or variable to is called the index,
so for x3, 3 would be the index. There are a few rules for manipulating powers
and their indices given in box 2.2.
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y
y = ex

x

1

Figure 2.4 A plot of an exponential function

2.1.4 The exponential function

It is sometimes the case that the relationship between two variables is best described
by an exponential function – for example, when a variable grows (or reduces) at a
rate in proportion to its current value, in which case we would write y = e x. e is a
simply number: 2.71828. . . . This function has several useful properties, including
that it is its own derivative (see section 2.2.1 below) and thus the gradient of the
function e x at any point is also e x; it is also useful for capturing the increase in
value of an amount of money that is subject to compound interest. The exponential
function can never be negative, so when x is negative, y is close to zero but positive.
It crosses the y-axis at one and the slope increases at an increasing rate from left to
right, as shown in figure 2.4.

2.1.5 Logarithms

Logarithms were invented to simplify cumbersome calculations, since exponents
can then be added or subtracted, which is easier than multiplying or dividing the
original numbers. While making logarithmic transformations for computational
ease is no longer necessary, they still have important uses in algebra and in data
analysis. For the latter, there are at least three reasons why log transforms may be
useful. First, taking a logarithm can often help to rescale the data so that their
variance is more constant, which overcomes a common statistical problem known
as heteroscedasticity, discussed in detail in chapter 5. Second, logarithmic transforms
can help to make a positively skewed distribution closer to a normal distribution.
Third, taking logarithms can also be a way to make a non-linear, multiplicative
relationship between variables into a linear, additive one. These issues will also be
discussed in some detail in chapter 5.
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y

1 x

y = ln(x)

Figure 2.5 A plot of a logarithmic function

Box 2.3 The laws of logs

For variables x and y:

● ln (x y) = ln (x) + ln (y)
● ln (x/y) = ln (x) − ln (y)
● ln (yc ) = c ln (y)
● ln (1) = 0
● ln (1/y) = ln (1) − ln (y) = −ln (y).
● ln(e x) = e ln(x) = x

To motivate how logs work, consider the power relationship 23 = 8. Using
logarithms, we would write this as l o g 28 = 3, or ‘the log to the base 2 of 8 is 3’.
Hence we could say that a logarithm is defined as the power to which the base
must be raised to obtain the given number. More generally, if a b = c , then we
can also write l o g a c = b . If we plot a log function, y = l o g (x), it would cross the
x-axis at one, as in figure 2.5. It can be seen that as x increases, y increases at a
slower rate, which is the opposite to an exponential function where y increases at
a faster rate as x increases.

Natural logarithms, also known as logs to base e , are more commonly used
and more useful mathematically than logs to any other base. A log to base e is
known as a natural or Naperian logarithm, denoted interchangeably by ln(y) or
log(y). Taking a natural logarithm is the inverse of a taking an exponential, so
sometimes the exponential function is called the antilog. The log of a number
less than one will be negative, e.g. l n(0.5) ≈ −0.69. We cannot take the log of
a negative number (so l n(−0.6), for example, does not exist). The properties of
logarithmic functions or ‘laws of logs’ describe the way that we can work with
logs or manipulate expressions using them. These are presented in box 2.3.
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2.1.6 Sigma notation

If we wish to add together several numbers (or observations from variables), the
sigma or summation operator can be very useful. � means ‘add up all of the
following elements’. For example, �(1 + 2 + 3) = 6. In the context of adding the
observations on a variable, it is helpful to add ‘limits’ to the summation (although
note that the limits are not always written out if the meaning is obvious without
them). So, for instance, we might write

∑4
i=1 xi , where the i subscript is again

called an index, 1 is the lower limit and 4 is the upper limit of the sum. This
would mean adding all of the values of x from x1 to x4. It might be the case that
one or both of the limits is not a specific number – for instance,

∑n
i=1 xi , which

would mean x1 + x2 + . . . + xn , or sometimes we simply write
∑

i xi to denote
a sum over all the values of the index i . It is also possible to construct a sum of a
more complex combination of variables, such as

∑n
i=1 xi zi , where xi and zi are

two separate random variables.
It is important to be aware of a few properties of the sigma operator. For exam-

ple, the sum of the observations on a variable x plus the sum of the observations
on another variable z is equivalent to the sum of the observations on x and z first
added together individually

n∑
i=1

xi +
n∑

i=1

zi =
n∑

i=1

(xi + zi ) (2.5)

The sum of the observations on a variable x each multiplied by a constant c is
equivalent to the constant multiplied by the sum

n∑
i=1

c xi = c
n∑

i=1

xi . (2.6)

But the sum of the products of two variables is not the same as the product of
the sums

n∑
i=1

xi zi �=
n∑

i=1

xi

n∑
i=1

zi (2.7)

We can write the left hand side of equation (2.7) as

n∑
i=1

xi zi = x1z1 + x2z2 + . . . + xnzn (2.8)

whereas the right hand side of equation (2.7) is

n∑
i=1

xi

n∑
i=1

zi = (x1 + x2 + . . . + xn )(z1 + z2 + . . . + zn ) (2.9)

We can see that (2.8) and (2.9) are different since the latter contains many ‘cross-
product’ terms such as x1z2, x3z6, x9z2, etc., whereas the former does not.
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If we sum n identical elements (i.e. we add a given number to itself n times),
we obtain n times that number

n∑
i=1

x = x + x + . . . + x = nx (2.10)

Suppose that we sum all of the n observations on a series, xi – for example,
the xi could be the daily returns on a stock (which are not all the same), we would
obtain

n∑
i=1

xi = x1 + x2 + . . . + xn = nx. (2.11)

So the sum of all of the observations is, from the definition of the mean, equal
to the number of observations multiplied by the mean of the series, x. Notice that
the difference between this situation in (2.11) and the previous one in (2.10) is
that now the xi are different from one another whereas before they were all the
same (and hence no i subscript was necessary).

Finally, note that it is possible to have multiple summations, which can be
conducted in any order, so for example

n∑
i=1

m∑
j=1

xi j

would mean sum over all of the i and j subscripts, but we could either sum over
the j ’s first for each i or sum over the i ’s first for each j . Usually, the inner sum
(in this case the one that runs over j from one to m would be conducted first –
i.e. separately for each value of i ).

2.1.7 Pi notation

Similar to the use of sigma to denote sums, the pi operator (�) is an operator that
is used to denote repeated multiplications. For example

n∏
i=1

xi = x1x2 . . . xn (2.12)

means ‘multiply together all of the xi for each value of i between the lower and
upper limits.’ It also follows that

∏n
i=1(c xi ) = c n ∏n

i=1 xi .

• • • • • • • • • • • • • • 2.2 Differential calculus

The effect of the rate of change of one variable on the rate of change of another is measured
by a mathematical derivative. If the relationship between the two variables can be
represented by a curve, the gradient of the curve will be this rate of change.
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Consider a variable y that is some function f of another variable x, i.e. y = f (x).
The derivative of y with respect to x is written

d y
d x

= d f (x)
d x

or sometimes f ′(x). This term measures the instantaneous rate of change of y with
respect to x, or in other words, the impact of an infinitesimally small change in x.
Notice the difference between the notations �y and d y – the former refers to a
change in y of any size, whereas the latter refers specifically to an infinitesimally
small change.

2.2.1 Differentiation: the fundamentals

The basic rules of differentiation are as follows:

1. The derivative of a constant is zero

e.g. if y = 10,
d y
d x

= 0.

This is because y = 10 would be represented as a horizontal straight line on a
graph of y against x, and therefore the gradient of this function is zero.

2. The derivative of a linear function is simply its slope

e.g. if y = 3x + 2,
d y
d x

= 3.

But non-linear functions will have different gradients at each point along the
curve. In effect, the gradient at each point is equal to the gradient of the
tangent at that point – see figure 2.6. Notice that the gradient will be zero at
the point where the curve changes direction from positive to negative or from
negative to positive – this is known as a turning point.

3. The derivative of a power function n of x

i.e. y = c xn is given by
d y
d x

= c nxn−1.

For example

y = 4x3,
d y
d x

= (4 × 3)x2 = 12x2

y = 3
x

= 3x−1,
d y
d x

= (3 × −1)x−2 = −3x−2 = −3
x2

.

4. The derivative of a sum is equal to the sum of the derivatives of the individual
parts. Similarly, the derivative of a difference is equal to the difference of the
derivatives of the individual parts

e.g. if y = f (x) + g (x),
d y
d x

= f ′(x) + g ′(x)
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x

y

Figure 2.6 The tangent to a curve

while

if y = f (x) − g (x),
d y
d x

= f ′(x) − g ′(x).

5. The derivative of the log of x is given by 1/x

i.e.
d (log(x))

d x
= 1

x
.

6. The derivative of the log of a function of x is the derivative of the function
divided by the function

i.e.
d (log( f (x)))

d x
= f ′(x)

f (x)
.

For example, the derivative of log(x3 + 2x − 1) is given by

3x2 + 2
x3 + 2x − 1

.

7. The derivative of e x is e x. The derivative of e f (x) is given by f ′(x)e f (x). For
example, if y = e 3x2

, d y
d x = 6xe 3x2

.

2.2.2 Higher order derivatives

It is possible to differentiate a function more than once to calculate the second
order, third order, . . ., nth order derivatives. The notation for the second order
derivative (which is usually just termed the second derivative, and which is the
highest order derivative that we will need in this book) is

d 2y
d x2

= f ′′(x) = d ( d y
d x )

d x
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To calculate second order derivatives, we simply differentiate the function with
respect to x and then we differentiate it again. For example, suppose that we have
the function

y = 4x5 + 3x3 + 2x + 6

The first order derivative is

d y
d x

= d (4x5 + 3x3 + 2x + 6)
d x

= f ′(x) = 20x4 + 9x2 + 2.

The second order derivative is

d 2y
d x2

= f ′′(x) = d ( d (4x5+3x3+2x+6)
d x )

d x
= d (20x4 + 9x2 + 2)

d x
= 80x3 + 18x.

The second order derivative can be interpreted as the gradient of the gradient of
a function – i.e. the rate of change of the gradient.

We said above that at the turning point of a function its gradient will be zero.
How can we tell, then, whether a particular turning point is a maximum or a
minimum? The answer is that to do this we would look at the second derivative.
When a function reaches a maximum, its second derivative is negative, while it is
positive for a minimum.

For example, consider the quadratic function y = 5x2 + 3x − 6. We already
know that since the squared term in the equation has a positive sign (i.e. it is 5
rather than, say, −5), the function will have a ∪-shape rather than an ∩-shape, and
thus it will have a minimum rather than a maximum. But let us also demonstrate
this using differentiation

d y
d x

= 10x + 3,
d 2y
d x2

= 10.

Since the second derivative is positive, the function indeed has a minimum.
To find where this minimum is located, take the first derivative, set it to zero
and solve it for x. So we have 10x + 3 = 0, and thus x = − 3

10 = −0.3. If
x = −0.3, the corresponding value of y is found by substituting −0.3 into the
original function y = 5x2 + 3x − 6 = 5 × (−0.3)2 + (3 × −0.3) − 6 = −6.45.
Therefore, the minimum of this function is found at (−0.3, −6.45).

2.2.3 Partial differentiation

In the case where y is a function of more than one variable (e.g. y =
f (x1, x2, . . . , xn )), it may be of interest to determine the effect that changes in
each of the individual x variables would have on y. The differentiation of y with
respect to only one of the variables, holding the others constant, is known as partial
differentiation. The partial derivative of y with respect to a variable x1 is usually
denoted

∂y
∂x1

.
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All of the rules for differentiation explained above still apply and there will be
one (first order) partial derivative for each variable on the right hand side of the
equation. We calculate these partial derivatives one at a time, treating all of the
other variables as if they were constants. To give an illustration, suppose y = 3x3

1+ 4x1 − 2x4
2 + 2x2

2 . The partial derivative of y with respect to x1 would be

∂y
∂x1

= 9x2
1 + 4

while the partial derivative of y with respect to x2 would be

∂y
∂x2

= −8x3
2 + 4x2

As we will see in chapter 3, the ordinary least squares (OLS) estimator gives
formulae for the values of the parameters that minimise the residual sum of
squares, given by L = ∑

t (yt − α̂ − β̂xt )2. The minimum of L (the residual sum
of squares) is found by partially differentiating this function with respect to α̂ and
β̂ and setting these partial derivatives to zero. Therefore, partial differentiation has
a key role in deriving the main approach to parameter estimation that we use in
econometrics – see appendix 3.1 for a demonstration of this application.

2.2.4 Integration

Integration is the opposite of differentiation, so that if we integrate a function
and then differentiate the result, we get back the original function. Recall that
derivatives give functions for calculating the slope of a curve; integration, on the
other hand, is used to calculate the area under a curve (between two specific
points). Further details on the rules for integration are beyond the scope of this
book since the mathematical technique is not needed for any of the approaches
we will employ, but it will be useful to be familiar with the general concept.

• • • • • • • • • • • • • • 2.3 Matrices

Before we can work with matrices, we need to define some terminology
● A scalar is simply a single number (although it need not be a whole number –

e.g. 3, −5, 0.5 are all scalars)
● A vector is a one-dimensional array of numbers (see below for examples)
● A matrix is a two-dimensional collection or array of numbers. The size of a matrix

is given by its numbers of rows and columns.

Matrices are very useful and important ways for organising sets of data together,
which make manipulating and transforming them much easier than it would be
to work with each constituent of the matrix separately. Matrices are widely used
in econometrics and finance for solving systems of linear equations, for deriving
key results and for expressing formulae in a succinct way. Sometimes bold-faced
type is used to denote a vector or matrix (e.g. A), although in this book we will
not do so – hopefully it should be obvious whether an object is a scalar, vector
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or matrix from the context or this will be clearly stated. Some useful features of
matrices and explanations of how to work with them are described below.

● The dimensions of a matrix are quoted as R × C, which is the number of rows
by the number of columns.

● Each element in a matrix is referred to using subscripts. For example, suppose a
matrix M has two rows and four columns. The element in the second row and
the third column of this matrix would be denoted m 23, so that more generally
mi j refers to the element in the i th row and the j th column. Thus a 2 × 4
matrix would have elements(

m 11 m 12 m 13 m 14
m 21 m 22 m 23 m 24

)
● If a matrix has only one row, it is known as a row vector, which will be of

dimension 1 × C, where C is the number of columns

e.g. (2.7 3.0 − 1.5 0.3)

● A matrix having only one column is known as a column vector, which will be
of dimension R× 1, where R is the number of rows

e.g.

⎛
⎝ 1.3

−0.1
0.0

⎞
⎠

● When the number of rows and columns is equal (i.e. R = C), it would be said
that the matrix is square as is the following 2 × 2 matrix(

0.3 0.6
−0.1 0.7

)
● A matrix in which all the elements are zero is known as a zero matrix

e.g.
(

0 0 0
0 0 0

)
● A symmetric matrix is a special type of square matrix that is symmetric about

the leading diagonal (the diagonal line running through the matrix from the
top left to the bottom right), so that mi j = m j i ∀ i, j

e.g.

⎛
⎜⎝

1 2 4 7
2 −3 6 9
4 6 2 −8
7 9 −8 0

⎞
⎟⎠

● A diagonal matrix is a square matrix which has non-zero terms on the leading
diagonal and zeros everywhere else

e.g.

⎛
⎜⎝

−3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 −1

⎞
⎟⎠
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● A diagonal matrix with 1 in all places on the leading diagonal and zero every-
where else is known as the identity matrix, denoted by I . By definition, an
identity matrix must be symmetric (and therefore also square)

e.g.

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

● The identity matrix is essentially the matrix equivalent of the number
one. Multiplying any matrix by the identity matrix of the appropriate size
results in the original matrix being left unchanged. So for any matrix
M

MI = I M = M

2.3.1 Operations with matrices

In order to perform operations with matrices (e.g. addition, subtraction or multi-
plication), the matrices concerned must be conformable. The dimensions of matrices
required for them to be conformable depend on the operation.

● Addition and subtraction of matrices requires the matrices concerned to be of
the same order (i.e. to have the same number of rows and the same number
of columns as one another). The operations are then performed element by
element

e.g. if A =
(

0.3 0.6
−0.1 0.7

)
and B =

(
0.2 −0.1
0 0.3

)

A + B =
(

0.3 + 0.2 0.6 − 0.1
−0.1 + 0 0.7 + 0.3

)
=

(
0.5 0.5

−0.1 1.0

)

A − B =
(

0.3 − 0.2 0.6 − −0.1
−0.1 − 0 0.7 − 0.3

)
=

(
0.1 0.7

−0.1 0.4

)

● Multiplying or dividing a matrix by a scalar (that is, a single number), implies
that every element of the matrix is multiplied by that number

e.g. 2A = 2
(

0.3 0.6
−0.1 0.7

)
=

(
0.6 1.2

−0.2 1.4

)
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● More generally, for two matrices A and B of the same order and for c a scalar,
the following results hold

A + B = B + A

A + 0 = 0 + A = A

c A = A c

c (A + B) = c A + c B

A0 = 0A = 0

● Multiplying two matrices together requires the number of columns of the first
matrix to be equal to the number of rows of the second matrix. Note also that
the ordering of the matrices is important when multiplying them, so that in
general, AB �= BA. When the matrices are multiplied together, the resulting
matrix will be of size (number of rows of first matrix × number of columns of
second matrix), e.g. (3 × 2) × (2 × 4) = (3 × 4). In terms of determining the
dimensions of the matrix, it is as if the number of columns of the first matrix
and the number of rows of the second cancel out.1 This rule also follows more
generally, so that (a × b ) × (b × c ) × (c × d ) × (d × e ) = (a × e ), etc.

● The actual multiplication of the elements of the two matrices is done by
multiplying along the rows of the first matrix and down the columns of the
second

e.g.
(

1 2
7 3
1 6

)(
0 2 4 9
6 3 0 2

)
(3 × 2) (2 × 4)

=
(

((1 × 0) + (2 × 6)) ((1 × 2) + (2 × 3)) ((1 × 4) + (2 × 0)) ((1 × 9) + (2 × 2))
((7 × 0) + (3 × 6)) ((7 × 2) + (3 × 3)) ((7 × 4) + (3 × 0)) ((7 × 9) + (3 × 2))
((1 × 0) + (6 × 6)) ((1 × 2) + (6 × 3)) ((1 × 4) + (6 × 0)) ((1 × 9) + (6 × 2))

)

(3 × 4)

=
(

12 8 4 13
18 23 28 69
36 20 4 21

)
(3 × 4)

In general, matrices cannot be divided by one another. Instead, we multiply
by the inverse – see below.

● The transpose of a matrix, written A′ or AT is the matrix obtained by trans-
posing (switching) the rows and columns of a matrix

e.g. if A =
( 1 2

7 3
1 6

)
then A′ =

(
1 7 1
2 3 6

)
If A is of dimensions R × C, A′ will be C × R.

1 Of course, the actual elements of the matrix themselves do not cancel out – this is just a simple
rule of thumb for calculating the dimensions of the matrix resulting from a multiplication.
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2.3.2 The rank of a matrix

The rank of a matrix A is given by the maximum number of linearly independent
rows (or columns) contained in the matrix. For example,

rank
(

3 4
7 9

)
= 2

since both rows and columns are (linearly) independent of one another, but

rank
(

3 6
2 4

)
= 1

as the second column is not independent of the first (the second column is simply
twice the first). A matrix with a rank equal to its dimension, as in the first of these
two cases, is known as a matrix of full rank. A matrix that is less than of full rank
is known as a short rank matrix, and such a matrix is also termed singular. Three
important results concerning the rank of a matrix are:

● Rank(A) = Rank(A′)
● Rank(AB) ≤ min(Rank(A), Rank(B))
● Rank(A′ A) = Rank(AA′) = Rank(A)

2.3.3 The inverse of a matrix

The inverse of a matrix A, where defined, is denoted A−1. It is that matrix which,
when pre-multiplied or post-multiplied by A, will result in the identity matrix

i.e. AA−1 = A−1 A = I .

The inverse of a matrix exists only when the matrix is square and non-singular –
that is, when it is of full rank. The inverse of a 2 × 2 non-singular matrix whose
elements are(

a b
c d

)

will be given by

1

a d − b c

(
d −b

−c a

)

The expression in the denominator above to the left of the matrix (a d − b c ) is
the determinant of the matrix, and will be a scalar. If this determinant is zero, the
matrix is singular, and thus not of full rank so that its inverse does not exist.

Example 2.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

If the matrix is(
2 1
4 6

)
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the inverse will be

1
8

(
6 −1

−4 2

)
=

( 3
4 − 1

8

− 1
2

1
4

)

As a check, multiply the two matrices together and it should give the identity matrix –
the matrix equivalent of one (analogous to 1

3 × 3 = 1)(
2 1
4 6

)
× 1

8

(
6 −1

−4 2

)
= 1

8

(
8 0
0 8

)
=

(
1 0
0 1

)
= I , as required.

The calculation of the inverse of an N × N matrix for N > 2 is more complex and
beyond the scope of this text. Properties of the inverse of a matrix include:

● I −1 = I
● (A−1)−1 = A
● (A′)−1 = (A−1)′

● (AB)−1 = B−1 A−1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2.3.4 The trace of a matrix

The trace of a square matrix is the sum of the terms on its leading diagonal. For
example, the trace of the matrix

A =
(

3 4
7 9

)
written Tr(A), is 3 + 9 = 12. Some important properties of the trace of a matrix
are:

● Tr(c A) = c Tr(A)
● Tr(A′) = Tr(A)
● Tr(A + B) = Tr(A) + Tr(B)
● Tr(IN) = N

2.3.5 The eigenvalues of a matrix

The concept of the eigenvalues of a matrix is necessary for testing for long-run
relationships between series using what is known as the Johansen cointegration
test used in chapter 8. Let � denote a p × p square matrix, c denote a p × 1
non-zero vector, and λ denote a set of scalars. λ is called a characteristic root or set
of roots of the matrix � if it is possible to write

�c = λc

p × p p × 1 p × 1

This equation can also be written as

�c = λI p c
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where I p is an identity matrix, and hence

(� − λI p )c = 0

Since c �= 0 by definition, then for this system to have a non-zero solution, the
matrix (� − λI p ) is required to be singular (i.e. to have a zero determinant)

|� − λI p | = 0

For example, let � be the 2 × 2 matrix

� =
[

5 1
2 4

]

Then the characteristic equation is

|� − λI p |

=
∣∣∣∣
[

5 1
2 4

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0

=
∣∣∣∣5 − λ 1

2 4 − λ

∣∣∣∣ = (5 − λ)(4 − λ) − 2 = λ2 − 9λ + 18

This gives the solutions λ = 6 and λ = 3. The characteristic roots are also known
as eigenvalues. The eigenvectors would be the values of c corresponding to the
eigenvalues. Some properties of the eigenvalues of any square matrix A are:

● the sum of the eigenvalues is the trace of the matrix
● the product of the eigenvalues is the determinant
● the number of non-zero eigenvalues is the rank.

For a further illustration of the last of these properties, consider the matrix

� =
[

0.5 0.25
0.7 0.35

]

Its characteristic equation is∣∣∣∣
[

0.5 0.25
0.7 0.35

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0

which implies that∣∣∣∣0.5 − λ 0.25
0.7 0.35 − λ

∣∣∣∣ = 0

This determinant can also be written (0.5 − λ)(0.35 − λ) − (0.7 × 0.25) = 0 or

0.175 − 0.85λ + λ2 − 0.175 = 0
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or

λ2 − 0.85λ = 0

which can be factorised to λ (λ − 0.85) = 0.
The characteristic roots are therefore 0 and 0.85. Since one of these eigenvalues

is zero, it is obvious that the matrix � cannot be of full rank. In fact, this is also
obvious from just looking at �, since the second column is exactly half the first.

2.3.6 Portfolio theory and matrix algebra

Probably the most important application of matrix algebra in finance is to solving
portfolio allocation problems. Although these can be solved in a perfectly satisfac-
tory fashion with sigma notation rather than matrix algebra, use of the latter does
considerably simplify the expressions and makes it easier to solve them when the
portfolio includes more than two assets. This book is not the place to learn about
portfolio theory per se – interested readers are referred to Bodie, Kane and Marcus
(2011) or the many other investment textbooks that exist – rather, the purpose of
this section is to demonstrate how matrix algebra is used in practice.

So to start, suppose that we have a set of N stocks that are included in a
portfolio P with weights w1, w2, . . . , wN and suppose that their expected returns
are written as E(r 1), E(r 2), . . . , E(r N). We could write the N × 1 vectors of
weights, w, and of expected returns, E(r ), as

w =

⎛
⎜⎝

w1
w2
. . .

wN

⎞
⎟⎠ E(r ) =

⎛
⎜⎝

E(r 1)
E(r 2)
. . .

E(r N)

⎞
⎟⎠

So, for instance, w3 and E(r 3) are the weight attached to stock three and its
expected return respectively. The expected return on the portfolio, E(r P ) can be
calculated as E(r )′w – that is, we multiply the transpose of the expected return
vector by the weights vector.

We then need to set up what is called the variance-covariance matrix of the
returns, denoted V. This matrix includes all of the variances of the components of
the portfolio returns on the leading diagonal and the covariances between them as
the off-diagonal elements. We will also discuss such a matrix extensively in chapter
4 in the context of the parameters from regression models. The variance-covariance
matrix of the returns may be written

V =

⎛
⎜⎜⎝

σ11 σ12 σ13 . . . σ1N
σ21 σ22 σ23 . . . σ2N
...

...
σN1 σN2 σN3 . . . σNN

⎞
⎟⎟⎠

The elements on the leading diagonal of V are the variances of each of the
component stocks’ returns - so, for example, σ11 is the variance of the returns
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on stock one, σ22 is the variance of returns on stock two and so on. The off-
diagonal elements are the corresponding covariances – so, for example, σ12 is the
covariance between the returns on stock one and those on stock two, σ58 is the
covariance between the returns on stock five and those on stock eight, and so
on. Note that this matrix will be symmetrical about the leading diagonal since
Cov(a , b ) = Cov(b , a ) where a and b are random variables and hence it is possible
to write σ12 = σ21 and so forth.

In order to construct a variance-covariance matrix, we would need to first
set up a matrix containing observations on the actual returns (not the expected
returns) for each stock where the mean, r i (i = 1, . . . , N), has been subtracted
away from each series i . If we call this matrix R, we would write

R =

⎛
⎜⎜⎝

r 11 − r̄ 1 r 21 − r̄ 2 r 31 − r̄ 3 . . . r N1 − r̄ N
r 12 − r̄ 1 r 22 − r̄ 2 r 32 − r̄ 3 . . . r N2 − r̄ N

...
...

r 1T − r̄ 1 r 2T − r̄ 2 r 3T − r̄ 3 . . . r NT − r̄ N

⎞
⎟⎟⎠

So each column in this matrix represents the deviations of the returns on
individual stocks from their means and each row represents the mean-adjusted
return observations on all stocks at a particular point in time. The general entry,
r i j , is the j th time series observation on the i th stock. The variance-covariance
matrix would then simply be calculated as V = (R′R)/(T − 1) where T is the
total number of time series observations available for each series.

Suppose that we wanted to calculate the variance of returns on the portfolio
P (a scalar which we might call VP ). We would do this by calculating

VP = w′Vw (2.13)

Checking the dimension of VP , w′ is (1 × N), V is (N × N) and w is (N × 1) so
VP is (1 × N × N × N × N × 1), which is (1 × 1) as required.

We could also define a correlation matrix of returns, C, which would be

C =

⎛
⎜⎜⎝

1 C12 C13 . . . C1N
C21 1 C23 . . . C2N

...
...

CN1 CN2 CN3 . . . 1

⎞
⎟⎟⎠

This matrix would have ones everywhere on the leading diagonal (since the
correlation of something with itself is always one) and the off-diagonal elements
would give the correlations between each pair of returns – for example, C35 would
be the correlation between the returns on stock three and those on stock five.
Note again that, as for the variance-covariance matrix, the correlation matrix will
always be symmetrical about the leading diagonal so that C31 = C13 etc. Using the
correlation instead of the variance-covariance matrix, the portfolio variance given
in equation (2.13) would be:

VP = w′SCSw (2.14)



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-02 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:20

50

•
•
•
•
•
•
•
•
• Mathematical and statistical foundations

where C is the correlation matrix, w is again the vector of portfolio weights, and
S is a diagonal matrix with each element containing the standard deviations of the
portfolio returns.

Selecting weights for the minimum variance portfolio

Although in theory investors can do better by selecting the optimal portfolio on
the efficient frontier, in practice a variance minimising portfolio often performs
well when used out-of-sample. Thus we might want to select the portfolio weights
w that minimised the portfolio variance, VP . In matrix notation, we would write

min
w

w′Vw

We also need to be slightly careful to impose at least the restriction that all of the
wealth has to be invested (

∑N
i=1 wi = 1), otherwise this minimisation problem can

be trivially solved by setting all of the weights to zero to yield a zero portfolio
variance. This restriction that the weights must sum to one is written using matrix
algebra as w′· 1N = 1, where 1N is a column vector of ones of length N.2

The minimisation problem can be solved to

wMV P = 1N· V−1

1N· V−1· 1′
N

(2.15)

where MV P stands for minimum variance portfolio.

Selecting optimal portfolio weights

In order to trace out the mean-variance efficient frontier, we would repeatedly
solve this minimisation problem but in each case set the portfolio’s expected return
equal to a different target value, R̄. So, for example, we set R̄ to 0.1 and find
the portfolio weights that minimise VP , then set R̄ to 0.2 and find the portfolio
weights that minimise VP , and so on. We would write this as

min
w

w′Vw subject to w′· 1N = 1, w′E(r ) = R̄

This problem is sometimes called the Markowitz portfolio allocation problem, and
can be solved analytically as expressed above. That is, we can derive an exact
solution using matrix algebra. However, it is often the case that we want to place
additional constraints on the optimisation – for instance we might want to restrict
the portfolio weights so that none are greater than 10% of the overall wealth
invested in the portfolio, or we might want to restrict them to all be positive (i.e.
long positions only with no short selling allowed). In such cases the Markowitz
portfolio allocation problem cannot be solved analytically and thus a numerical
procedure must be used such as the Solver function in Microsoft Excel.

2 Note that w′· 1N will be 1 × 1 – i.e. a scalar.
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Note that it is also possible to write the Markowitz problem the other way
around – that is, where we select the portfolio weights that maximise the expected
portfolio return subject to a target maximum variance level.

If the procedure above is followed repeatedly for different return targets, it
will trace out the efficient frontier. In order to find the tangency point where the
efficient frontier touches the capital market line, we need to solve the following
problem

max
w

w′E(r ) − r f

(w′Vw)
1
2

subject to w′· 1N = 1

If no additional constraints are required on the stock weights, this can be solved
fairly simply as

w = V−1[E(r ) − r f · 1N]

1′
NV−1[E(r ) − r f · 1N]

(2.16)

2.3.7 The mean-variance efficient frontier in Excel

This section will now describe how to construct an efficient frontier and draw the
capital market line using a three stock portfolio with Microsoft Excel. Although
EViews is used for conducting the empirical work throughout the rest of the book,
it is more natural to tackle these sorts of problems within a standard spreadsheet
environment. It is assumed that the reader knows the standard functions of Excel –
for those who need a refresher, see the excellent book by Benninga (2011).

The spreadsheet ‘efficient.xls’ contains the finished product – the plots of the
efficient frontier and capital market line. However, I suggest starting with a blank
spreadsheet, copying across the raw data and starting to reconstruct the
formulae again to get a better of idea of how it is done.

The first step is to construct the returns. The raw prices and T-bill yields are
in columns two to six of the sheet. These series are identical to those used in the
example in the following chapter on estimating the CAPM. We will not need to
use the S&P index or Oracle share prices since we are going to assume a three
asset portfolio. However, all of the principles outlined below could be very easily
and intuitively extended to situations where there were more assets employed.

Since we are dealing with portfolios, it is probably preferable to employ simple
rather than continuously compounded returns. So start by constructing three
sets of returns for the Ford, General Electric and Microsoft share prices in
columns H to J, and head these columns ‘FORDRET’, ‘GERET’ and ‘MSOFT-
RET’ respectively. Column K will comprise the weights on a portfolio containing
all three stocks but with varying weights. The way we achieve this is to set up
three cells that will contain the weights. To start with, we fix these arbitrarily but
later will allow the Solver to choose them optimally. So write 0.33, 0.33 and
0.34 in cells N12 to N14 respectively. In cell N15, calculate the sum of
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Screenshot 2.1 Setting up a variance-covariance matrix in Excel

the weights as a check that this is always one so that the all wealth is invested
among the three stocks. We are now in a position to construct the (equally
weighted) portfolio returns (call them ‘PORTRET’) in column K. In cell K2,
write =H3∗$N$12+I3∗$N$13+J3∗$N$14 and then copy this formula down
the whole of column K until row 137.

The next stage is to construct the variance-covariance matrix, which we
termed V in the description above. So first, click on Data and Data Analysis
and then select Covariance from the menu. Complete the Window so that it
appears as in screenshot 2.1 with input range $H$3:$J$137 and output range
$M$3:$P$6 and click OK.

The next stage is to copy the covariances so that they are also in the upper
right triangle of the matrix, and also replace ‘Column 1’ etc. with the names
of the three stocks in the column and row headers.

We now want to calculate the average returns for each of the individual stocks
(we already have their variances on the leading diagonal of the variance-covariance
matrix). To do this, in cells M9 to O9, write =AVERAGE(H3:H137),
=AVERAGE(I3:I137) and =AVERAGE(I3:I137).

Next, we can construct summary statistics for the portfolio returns. There are
several ways to do this. One way would be to calculate the mean, variance and
standard deviation of the returns directly from the monthly portfolio returns in
column K. However, to see how we would do this using matrix algebra in Excel,
for calculating the average portfolio return in cell N18, enter the formula
=MMULT(M9:O9,N12:N14) which will multiply the returns vector (what we
called E(r )′) in M9 to O9 by the weights vector w in N12 to N14.

In cell N19, we want the formula for the portfolio variance, which
is given by w′Vw and in Excel this is calculated using the formula
=MMULT(MMULT(Q13:S13, N4:P6),N12:N14).



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-02 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:20

2.3 Matrices

•
•
•
•
•
•
•
•
• 53

Screenshot 2.2 The spreadsheet for constructing the efficient frontier

Effectively, we are conducting the multiplication in two stages. First, the inter-
nal MMUL is multiplying the transposed weights vector, w′ in Q13 to S13 by the
variance-covariance matrix V in N4 to P6. We then multiply the resulting product
by the weights vector w in N12 to N14. Finally, calculate the standard devia-
tion of the portfolio returns in N19 as the square root of the variance in
N18.

Take a couple of minutes to examine the summary statistics and the variance-
covariance matrix. It is clear that Ford is by far the most volatile stock with an
annual variance of 239, while Microsoft is the least at 50. The equally weighted
portfolio has a variance of 73.8. Ford also has the highest average return. We
now have all of the components needed to construct the mean-variance effi-
cient frontier and the right-hand side of your spreadsheet should appear as in
screenshot 2.2.

First, let us calculate the minimum variance portfolio. To do this, click on
cell N19, which is the one containing the portfolio variance formula. Then click
on the Data tab and then on Solver. A window will appear which should
be completed as in screenshot 2.3. So we want to minimise cell $N$19 by
changing the weights $N$12:$N$14 subject to the constraint that the weights sum
to one ($N$15 = 1). Then click Solve. Solver will tell you it has found a solution,
so click OK again.

Note that strictly it is not necessary to use Solver to evaluate this problem when
no additional constraints are placed, but if we want to incorporate non-negativity
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Screenshot 2.3 Completing the Solver window

or other constraints on the weights, we could not calculate the weights analytically
and Solver would have to be used. The weights in cells N12 to N14 automatically
update, as do the portfolio summary statistics in N18 to N20. So the weights that
minimise the portfolio variance are with no allocation to Ford, 37% in General
Electric and 63% in Microsoft. This achieves a variance of 41 (standard deviation
of 6.41%) per month and an average return of 0.33% per month.

So we now have one point on the efficient frontier (the one on the far left),
and we repeat this procedure to obtain other points on the frontier. We set a target
variance and find the weights that maximise the return subject to this variance.
In cells N25 to N40, we specify the target standard deviations from 6.5
to 17, increasing in units of 0.5. These figures are somewhat arbitrary, but
as a rule of thumb, to get a nice looking frontier, we should have the maximum
standard deviation (17) about three times the minimum (6.5). We know not to set
any number less than 6.41 since this was the minimum possible standard deviation
with these three stocks.

We click on the cell N18 and then select Solver again from the Data tab.
Then we use all of the entries as before, except that we want to choose Max
(to maximise the return subject to a standard deviation constraint) and then add
an additional constraint that $N$20 = $N$25, so that the portfolio standard
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Screenshot 2.4 A plot of the completed efficient frontier

deviation will be equal to the value we want, which is 6.5 in cell N25. Click
Solve and the new solution will be found. The weights are now 4% in Ford, 30%
in GE, 66% in Microsoft, giving a mean return of 0.38% and a standard deviation
of 6.5(%). Repeat this again for the other standard deviation values from
6.5 through to 17, each time noting the corresponding mean value (and if you
wish, also noting the weights). You will see that if you try to find a portfolio with a
standard deviation of 17.5, Solver will not be able to find a solution because there
are no combinations of the three stocks that will give such a high value. In fact,
the upper left point on the efficient frontier will be the maximum return portfolio
which will always be 100% invested in the stock with the highest return (in this
case Ford).

We can now plot the efficient frontier – i.e. the mean return on the y-axis
against the standard deviation on the x-axis. If we also want the lower part of
the mean-variance opportunity set (the part where the curve folds back on itself
at the bottom), we repeat the procedure above – i.e. targeting the standard
deviation of 6.5, 7., . . . , but this time we minimise the return rather than
maximising it. The minimum return is 0.24 when the portfolio is 100% invested
in GE. The plot will appear as in screenshot 2.4. The line is somewhat wiggly,
but this arises because the points are insufficiently close together. If we had used
standard deviations from 6.5 to 17 in increments of 0.2, say, rather than 0.5 then
the plot would have been much smoother.

The final step in the process is to superimpose the capital market line (CML)
onto the plot. To do this, we need to find the tangency point, which will be the
point at which the Sharpe ratio of the portfolio is maximised. So first we need
to calculate the average of the T-bill series (dividing it by twelve to get the
monthly rate for comparability with the stock returns, which are monthly), putting
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Screenshot 2.5 The capital market line and efficient frontier

this in cell N55. We then calculate the risk premium in N56, which is the
risky portfolio return from N18 less the risk-free rate in N56. Finally, the Sharpe
ratio in N57 is the risk premium from N56 divided by the portfolio standard
deviation (N20). We then get Solver to maximise the value of N57 subject to
the weights adding to one (no other constraints are needed).

The tangency point is with mean return of exactly 1% per month (by coinci-
dence), standard deviation 12.41% and weights of 66%, 0% and 34% in Ford, GE
and MSoft respectively. We then need a set of points on the CML to plot –
one will be the point on the y-axis where the risk is zero and the return is the
average risk-free rate (0.14% per month). Another will be the tangency point we
just derived. To get the others, recall that the CML is a straight line with equation
return = Rf + Sharpe ratio × std dev. So all we need to do is to use a run of stan-
dard deviations and then calculate the corresponding returns – we know
that Rf = 0.14 and Sharpe ratio = 0.0694. The minimum variance opportunity
set and the CML on the same graph will appear as in screenshot 2.5.

• • • • • • • • • • • • • • 2.4 Probability and probability distributions

This section discusses and presents the theoretical expressions for the mean and
variance of a random variable. A random variable is one that can take on any value
from a given set and where this value is determined at least in part by chance.
By their very nature, random variables are not perfectly predictable. Most data
series in economics and finance are best considered random variables, although
there might be some measurable structure underlying them as well so they are not
purely random. It is often helpful to think of such series as being made up of a
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fixed part (which we can model and forecast) and a purely random part, which we
cannot forecast.

The mean of a random variable y is also known as its expected value, written
E(y). The properties of expected values are used widely in econometrics, and are
listed below, referring to a random variable y

● The expected value of a constant (or a variable that is non-stochastic) is the
constant, e.g. E(c ) = c .

● The expected value of a constant multiplied by a random variable is equal to
the constant multiplied by the expected value of the variable: E(c y) = c E(y).
It can also be stated that E(c y + d ) = (c E(y)) + d , where d is also a constant.

● For two independent random variables, y1 and y2, E(y1y2) = E(y1) E(y2).

The variance of a random variable y is usually written var(y). The properties of
the ‘variance operator’, var(·), are

● The variance of a random variable y is given by var(y) = E[y − E(y)]2

● The variance of a constant is zero: var(c ) = 0
● For c and d constants, var(c y + d ) = c 2 var(y)
● For two independent random variables, y1 and y2, var(c y1 + d y2) =

c 2var(y1) + d 2var(y2).

The covariance between two random variables, y1 and y2 may be expressed as
cov(y1, y2). The properties of the covariance operator are

● cov(y1, y2) = E[(y1 − E(y1))(y2 − E(y2))]
● For two independent random variables, y1 and y2, cov(y1, y2) = 0
● For four constants, c , d , e , and f , cov(c + d y1, e + f y2) = d f cov(y1, y2).

The data that we use in building econometric models either come from
experiments or, more commonly, are observed in the ‘real world’. The outcomes
from an experiment can often only take on certain specific values – i.e. they are
discrete random variables. For example, the sum of the scores from following two
dice could only be a number between two (if we throw two ones) and twelve
(if we throw two sixes). We could calculate the probability of each possible sum
occurring and plot it on a diagram, such as figure 2.7. This would be known as a
probability distribution function. A probability is defined to lie between zero and one,
with a probability of zero indicating an impossibility and one indicating a certainty.
Notice that the sum of the probabilities in the figure is, as always, one.

Most of the time in finance we work with continuous rather than discrete
variables, in which case the plot above would be probability density function (pdf).
The most commonly used distribution to characterise a random variable is a normal
or Gaussian (these terms are equivalent) distribution. The normal distribution is
easy to work with since it is symmetric, and the only pieces of information required
to completely specify the distribution are its mean and variance, as discussed in
chapter 5. The normal distribution is particularly useful because many naturally
occurring series follow it – for example, the heights, weights and IQ-levels of
people in a given sample.
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Figure 2.7 The probability distribution function for the sum of two dice

The normal distribution also has several useful mathematical properties. For
example, any linear transformation of a normally distributed random variable will
still be normally distributed. So, if y ∼ N(μ, σ 2), that is, y is normally distributed
with mean μ and variance σ 2, then a + b y ∼ N(bμ + a , b 2σ 2) where a and b are
scalars. Furthermore, any linear combination of independent normally distributed
random variables is itself normally distributed.

Suppose that we have a normally distributed random variable with mean μ

and variance σ 2. Its probability density function is given by f (y) in the following
expression

f (y) = 1√
2πσ

e−(y−μ)2/2σ 2
(2.17)

Entering values of y into this expression would trace out the familiar ‘bell-shape’
of the normal distribution described in figure 2.8.

A standard normally distributed random variable can be obtained from this by
subtracting the mean and dividing by the standard deviation (the square root of
the variance). The standard normally distributed random variable would then be
written

Z = y − μ

σ
∼ N(0, 1)

It is usually easier to work with the normal distribution in its standardised form.
We can use the pdf to calculate the probability that the random variable lies

within a certain range – e.g. what is the probability that y lies between 0.2 and
0.3? To obtain this, we would plug y = 0.2 and then y = 0.3 into the equation
(2.17) above and calculate the corresponding value of f (y) in each case. Then the
difference between these two values of f (y) would give us the answer.
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f (x)

xμ

Figure 2.8 The pdf for a normal distribution

Note that for a continuous random variable, the probability that it is exactly
equal to a particular number is always zero by definition. This is because the
variable could take on any value – for example it could be exactly 1 or 0.99999 or
1.01 or 1.0000001, etc.

More often, rather than wanting to determine the probability that a random
variable lies within a range, we instead want to know the probability that the
variable is below a certain value (or above a certain value). So, for example, what is
the probability that y is less than 0.4? Effectively, we want to know the probability
that y lies between −∞ and 0.4. This information is given by the cumulative density
function (cdf), which is written F (y). Thus the probability that y is less than (or
equal to) some specific value of y, y0, is equal to the cdf of y evaluated where
y = y0

P (y ≤ y0) = F (y0)

The cdf for a normally distributed random variable has a sigmoid shape as in
figure 2.9. Table A2.1 in appendix 2 at the back of this book presents what are
known as the critical values for the normal distribution. Effectively, if we plotted
the values on the first row, α against the values in the second row, Zα, then we
would trace out the cdf. Looking at the table, if α = 0.1, Zα = 1.2816. So 10%
(0.1 in proportion terms) of the normal distribution lies to the right of 1.2816. In
other words, the probability that a standard normal random variable takes a value
greater than 1.2816 is 10%. Similarly, the probability that it takes a value greater
than 3.0902 is 0.1% (i.e. 0.001). We know that the standard normal distribution
is symmetric about zero so if P (Z ≥ 1.2816) = 0.1, P (Z ≤ −1.2816) = 0.1 as
well. Note that there are also alternative versions of the normal distribution table
that present the information the other way around, so that they show many values
of Zα and the corresponding values of α – i.e. for a given value of Z, say 1.5,
they show the probability of a standard normally distributed random variable being
bigger than this.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-02 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:20

60

•
•
•
•
•
•
•
•
• Mathematical and statistical foundations

0
–3 0

0.5

3 z

1

Figure 2.9 The cdf for a normal distribution

2.4.1 The central limit theorem

If a random sample of size N : y1, y2, y3, . . . , yN is drawn from a population that
is normally distributed with mean μ and variance σ 2, the sample mean, ȳ is also
normally distributed with mean μ and variance σ 2/N. In fact, an important rule
in statistics known as the central limit theorem states that the sampling distribution
of the mean of any random sample of observations will tend towards the normal
distribution with mean equal to the population mean, μ, as the sample size tends
to infinity. This theorem is a very powerful result because it states that the sam-
ple mean, ȳ, will follow a normal distribution even if the original observations
(y1, y2, . . . , yN) did not. This means that we can use the normal distribution as a
kind of benchmark when testing hypotheses, as discussed more fully in the next
chapter.

2.4.2 Other statistical distributions

There are many statistical distributions, including the binomial, Poisson, log nor-
mal, normal, exponential, t, chi-squared and F, and each has its own characteristic
pdf. Different kinds of random variables will be best modelled with different dis-
tributions. Many of the statistical distributions are also related to one another,
and most (except the normal) have one or more degrees of freedom parameters that
determine the location and shape of the distribution. For example, the chi-squared
(denoted χ2) distribution can be obtained by taking the sum of the squares of inde-
pendent normally distributed random variables. If we sum n independent squared
normals, the result will be a χ2 with n degrees of freedom. Since it comprises the
sum of squares, the chi-squared distribution can only take positive values. Unlike
the normal distribution, the chi-squared is not symmetric about its mean value.

The F -distribution, which has two degrees of freedom parameters, is the
ratio of independent chi-squared distributions, each divided by their degrees of
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freedom. Suppose that y1 ∼ χ2(n1) and y2 ∼ χ2(n2) are two independent chi-
squared distributions with n1 and n2 degrees of freedom respectively. Then the
ratio will follow an F distribution with (n1, n2) degrees of freedom

y1/n1

y2/n2
∼ F (n1, n2)

The final, and arguably most important, distribution used in econometrics
is the t-distribution. The normal distribution is a special case of the t . The t-
distribution can also be obtained by taking a standard normally distributed random
variable, Z, and dividing it by the square root of an independent chi-squared
distributed random variable (suppose that the latter is called y1), itself divided by
its degrees of freedom, n1

Z√
y1/n1

∼ t (n)

The t-distribution is symmetric about zero and looks similar to the normal distri-
bution except that it is flatter and wider. It will be discussed in considerable detail
in chapter 3 onwards.

• • • • • • • • • • • • • • 2.5 Descriptive statistics

When analysing a series containing many observations, it is useful to be able to
describe the most important characteristics of the series using a small number of
summary measures. This section discusses the quantities that are most commonly
used to describe financial and economic series, which are known as summary
statistics or descriptive statistics. Descriptive statistics are calculated from a sample of
data rather than assigned based on theory. Before describing the most important
summary statistics used in work with finance data, we define the terms population
and sample, which have precise meanings in statistics in box 2.4.

2.5.1 Measures of central tendency

The average value of a series is sometimes known as its measure of location or measure
of central tendency. The average value is usually thought to measure the ‘typical’
value of a series. There are a number of methods that can be used for calculating
averages. The most well-known of these is the arithmetic mean (usually just termed
‘the mean’), denoted r̄ A for a series r i of length N, which is simply calculated as
the sum of all values in the series divided by the number of values

r̄ A = 1
N

N∑
i=1

r i (2.18)

The two other methods for calculating the average of a series are the mode and
the median. The mode measures the most frequently occurring value in a series,
which is sometimes regarded as a more representative measure of the average than
the mean. Finally, the median is the middle value in a series when the elements
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Box 2.4 The population and the sample

● The population is the total collection of all objects to be studied. For
example, in the context of determining the relationship between risk
and return for UK stocks, the population of interest would be all time
series observations on all stocks traded on the London Stock Exchange
(LSE).

● The population may be either finite or infinite, while a sample is a
selection of just some items from the population. A population is finite
if it contains a fixed number of elements. In general, either all of the
observations for the entire population will not be available, or they may
be so many in number that it is infeasible to work with them, in which
case a sample of data is taken for analysis.

● The sample is usually random, and it should be representative of the
population of interest. A random sample is one in which each
individual item in the population is equally likely to be drawn.

● A stratified sample is obtained when the population is split into layers or
strata and the number of observations in each layer of the sample is set
to try to match the corresponding number of elements in those layers
of the population.

● The size of the sample is the number of observations that are available, or
that the researcher decides to use, in estimating the parameters of the
model.

are arranged in an ascending order.3 If there is an even number of values in a
series, then strictly there are two medians. For example, consider a variable that
has taken the values listed in order: {3, 7, 11, 15, 22, 24}, the medians are 11 and
15. Sometimes we take the mean of the two medians, so that the median would
be (11 + 15)/2 = 13.

Each of these measures of average has its relative merits and demerits. The
mean is the most familiar method to most researchers, but can be unduly affected
by extreme values, and in such cases, it may not be representative of most of the
data. The mode is arguably the easiest to obtain, but is not suitable for continuous,
non-integer data (e.g. returns or yields) or for distributions that incorporate two
or more peaks (known as bimodal and multi-modal distributions respectively).
The median is often considered to be a useful representation of the ‘typical’ value
of a series, but has the drawback that its calculation is based essentially on one
observation. Thus if, for example, we had a series containing ten observations and
we were to double the values of the top three data points, the median would be
unchanged.

3 A more precise and complete definition of the median is surprisingly complex but is not necessary
for our purposes.
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The geometric mean

There also exists another method that can be used to estimate the average of a
series, known as the geometric mean. It involves calculating the Nth root of the
product of N numbers. In other words, if we want to find the geometric mean
of six numbers, we multiply them together and take the sixth root (i.e. raise the
product to the power of 1

6 ).
In finance, we usually deal with returns or percentage changes rather than

prices or actual values, and the method for calculating the geometric mean just
described cannot handle negative numbers. Therefore, we use a slightly different
approach in such cases. To calculate the geometric mean of a set of N returns, we
express them as proportions (i.e. on a (−1, 1) scale) rather than percentages (on a
(−100, 100) scale), and we would use the formula

RG = [(1 + r 1)(1 + r 2) . . . (1 + r N)]1/N − 1 (2.19)

where r 1, r 2, . . . , r N are the returns and RG is the calculated value of the geometric
mean. Hence what we would do would be to add one to each return, then multiply
the resulting expressions together, raise this product to the power 1/N and then
subtract one right at the end.

So which method for calculating the mean should we use? The answer is, as
usual, that ‘it depends’. Geometric returns give the fixed return on the asset or
portfolio that would have been required to match the actual performance, which
is not the case for the arithmetic mean. Thus, if you assumed that the arithmetic
mean return had been earned on the asset every year, you would not reach the
correct value of the asset or portfolio at the end.

But it could be shown that the geometric return is always less than or equal
to the arithmetic return, and so the geometric return is a downward-biased pre-
dictor of future performance. Hence, if the objective is to summarise historical
performance, the geometric mean is more appropriate, but if we want to forecast
future returns, the arithmetic mean is the one to use. Finally, it is worth noting that
the geometric mean is evidently less intuitive and less commonly used than the
arithmetic mean, but it is less affected by extreme outliers than the latter. There
is an approximate relationship which holds between the arithmetic and geometric
mean, calculated using the same set of returns

RG ≈ r A − 1
2
σ 2 (2.20)

where RG and r A are the geometric and arithmetic means respectively and σ 2 is
the variance of the returns.

2.5.2 Measures of spread

Usually, the average value of a series will be insufficient to adequately characterise
a data series, since two series may have the same mean but very different profiles
because the observations on one of the series may be much more widely spread
about the mean than the other. Hence, another important feature of a series is how



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-02 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:20

64

•
•
•
•
•
•
•
•
• Mathematical and statistical foundations

dispersed its values are. In finance theory, for example, the more widely spread are
returns around their mean value, the more risky the asset is usually considered to
be.

The simplest measure of spread is arguably the range, which is calculated by
subtracting the smallest observation from the largest. While the range has some
uses, it is fatally flawed as a measure of dispersion by its extreme sensitivity to an
outlying observation since it is effectively based only on the very lowest and very
highest values in a series.

A more reliable measure of spread, although it is not widely employed by
quantitative analysts, is the semi-interquartile range, sometimes known as the quartile
deviation. Calculating this measure involves first ordering the data and then splitting
the sample into four parts (quartiles) with equal numbers of observations.4 The
second quartile will be exactly at the half way point, and is the median, as described
above. But the semi-interquartile range focuses on the first and third quartiles,
which will be at the quarter and three-quarter points in the ordered series, and
which can be calculated respectively by the following

Q1 =
(

N + 1
4

)th
value (2.21)

and

Q3 = 3
4

(N + 1)th value (2.22)

The semi-interquartile range is then given by the difference between the two

I QR = Q3 − Q1 (2.23)

This measure of spread is usually considered superior to the range since it is
not so heavily influenced by one or two extreme outliers that by definition would
be right at the end of an ordered series and so would affect the range. However,
the semi-interquartile range still only incorporates two of the observations in the
entire sample, and thus another more familiar measure of spread, the variance, is very
widely used. It is interpreted as the average squared deviation of each data point
about its mean value, and is calculated using the usual formula for the variance of
a sample from a variable y

σ 2 =
∑

(yi − y)2

N − 1
(2.24)

Another measure of spread, the standard deviation, is calculated by taking the
square root of the variance formula given in the previous equation

σ =
√∑

(yi − y)2

N − 1
. (2.25)

4 Note that there are several slightly different formulae that can be used for calculating quartiles,
each of which may provide slightly different answers.
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The squares of the deviations from the mean are taken rather than the deviations
themselves to ensure that positive and negative deviations (for points above and
below the average respectively) do not cancel each other out.

While there is little to choose between the variance and the standard deviation
in terms of which is the best measure, the latter is sometimes preferred since it
will have the same units as the variable whose spread is being measured, whereas
the variance will have units of the square of the variable. Both measures share
the advantage that they encapsulate information from all the available data points,
unlike the range and quartile deviation, although they can also be heavily influ-
enced by outliers (but to a lesser degree than the range). The quartile deviation is
an appropriate measure of spread if the median is used to define the average value
of the series, while the variance or standard deviation will be appropriate if the
arithmetic mean constitutes the measure of central tendency adopted.

Before moving on, it is worth discussing why the denominator in the formulae
for the variance and standard deviation includes N − 1 rather than N, the sample
size. Subtracting one from the number of available data points is known as a degrees
of freedom correction, and this is necessary since the spread is being calculated about
the mean of the series, and this mean has had to be estimated as well. Thus the
spread measures described above are known as the sample variance and the sample
standard deviation. Had we been observing the entire population of data rather
than a mere sample from it, then the formulae would not need a degrees of freedom
correction and we would divide by N rather than N − 1.

A further measure of dispersion is the negative semi-variance, which also gives
rise to the negative semi-standard deviation. These measures use identical formulae to
those described above for the variance and standard deviation, but when calculating
their values, only those observations for which yi < y are used in the sum, and N
now denotes the number of such observations. This measure is sometimes useful if
the observations are not symmetric about their mean value (i.e. if the distribution
is skewed – see the next section).5

A final statistic that has some uses for measuring dispersion is the coefficient of
variation, CV. This is obtained by dividing the standard deviation by the arithmetic
mean of the series:

CV = σ

y
(2.26)

CV is useful where we want to make comparisons across series. Since the standard
deviation has units of the series under investigation, it will scale with that series.
Thus, if we wanted to compare the spread of monthly apartment rental values
in London with those in Reading, say, using the standard deviation would be
misleading as the average rental value in London will be much bigger. By normalising
the standard deviation, the coefficient of variation is a unit-free (dimensionless)
measure of spread and so could be used more appropriately to compare the series.

5 Of course, we could also define the positive semi-variance where only observations such that
yi > y are included in the sum.
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2.5.3 Higher moments

If the observations for a given set of data follow a normal distribution, then the
mean and variance are sufficient to entirely describe the series. In other words, it
is impossible to have two different normal distributions with the same mean and
variance. However, most samples of data do not follow a normal distribution, and
therefore we also need what are known as the higher moments of a series to fully
characterise it. The mean and the variance are the first and second moments of
a distribution respectively, and the (standardised) third and fourth moments are
known as the skewness and kurtosis respectively. Skewness defines the shape of the
distribution, and measures the extent to which it is not symmetric about its mean
value. When the distribution of data is symmetric and unimodal (i.e. it only has one
peak rather than many), the three methods for calculating the average (mean, mode
and median) of the sample will be equal. If the distribution is positively skewed
(where there is a long right hand tail and most of the data are bunched over to
the left), the ordering will be mean > median > mode, whereas if the distribution
is negatively skewed (a long left hand tail and most of the data bunched on the
right), the ordering will be the opposite. A normally distributed series has zero
skewness (i.e. it is symmetric).

Kurtosis measures the fatness of the tails of the distribution and how peaked
at the mean the series is. A normal distribution is defined to have a coefficient
of kurtosis equal to 3. It is possible to define a coefficient of excess kurtosis,
equal to the coefficient of kurtosis minus 3; a normal distribution will thus have a
coefficient of excess kurtosis of zero. A normal distribution is said to be mesokurtic.
Denoting the observations on a series by yi and their variance by σ 2, it can be
shown that the coefficients of skewness and kurtosis can be calculated respectively
as

skew =
1

N−1

∑
(yi − y)3

(σ 2)3/2 (2.27)

and

kurt =
1

N−1

∑
(yi − y)4

(σ 2)2
(2.28)

The kurtosis of the normal distribution is 3 so its excess kurtosis (kur t − 3) is
zero.6

To give some illustrations of what a series having specific departures from
normality may look like, consider figures 2.10 and 2.11. A normal distribution

6 There are a number of ways to calculate skewness (and kurtosis); the one given in the formula is
sometimes known as the moment coefficient of skewness, but it could also be measured using the
standardised difference between the mean and the median, or by using the quartiles of the data.
Unfortunately, this implies that different software packages will give slightly different values for the
skewness and kurtosis coefficients. Also, some packages make a ‘degrees of freedom correction’
as we do in the equations here, while others do not, so that the divisor in such cases would be N
rather than N − 1 in the equations.
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Figure 2.10 A normal versus a skewed distribution
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Figure 2.11 A normal versus a leptokurtic distribution

is symmetric about its mean, while a skewed distribution will not be, but will
have one tail longer than the other. A leptokurtic distribution is one which has
fatter tails and is more peaked at the mean than a normally distributed random
variable with the same mean and variance, while a platykurtic distribution will be
less peaked in the mean, will have thinner tails, and more of the distribution in the
shoulders than a normal. In practice, a leptokurtic distribution is more likely to
characterise real estate (and economic) time series, and to characterise the residuals
from a time series model. In figure 2.10, the leptokurtic distribution is shown by
the bold line, with the normal by the faint line. There is a formal test for normality,
and this will be described and discussed in chapter 5.
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Screenshot 2.6 Sample summary statistics in EViews

Calculating summary statistics in EViews

We will now re-use the house price data from chapter 1 to examine the summary
statistics of the returns (the percentage changes in the logs of the house prices).
So re-open the house price EViews workfile and click on the DHP series
to bring up the spreadsheet view. Then click View/Descriptive Statistics &
Tests/Stats Table to see screenshot 2.6 containing some simple summary statis-
tics. We can see that the mean house price is around 0.44% per month while the
median is slightly larger at 0.49%. The highest monthly price increase was 3.8%,
while the biggest fall was 3.4%. The standard deviation is 1.2%, which is quite
small compared with stocks (see the next chapter) and reflects the smoothness of
house prices over time. The series has a negative skew so it has a slightly longer
lower tail than the upper tail. The series is also leptokurtic and so has fatter tails
than a normal distribution with the same mean and variance; there are a total of
268 return observations. EViews also tells us whether the series shows significant
departures from normality which in this case it does not (more on this in chapter 5).

If we wanted to calculate less well known statistics including the interquartile
range, coefficient of variation and so on, it would be easier to do this using
the functions built into Excel. For example, to get the interquartile range of the
percentage returns we would first need to construct a column of returns
and then use the QUARTILE function twice to get the third and first quartiles.
We would write =QUARTILE(C3:C270,3)-QUARTILE(C3:C270,1) if the
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returns data were in column C. Similarly, we could easily calculate the coefficient
of variation using the standard deviation of returns divided by their mean using the
formula =STDEV(C3:C270)/AVERAGE(C3:C270). If we calculated these for
the house price returns we would get I QR = 0.685 and CV = 2.78.

2.5.4 Measures of association

The summary measures we have examined so far have looked at each series in
isolation. However, it is also very often of interest to consider the links between
variables. There are two key descriptive statistics that are used for measuring the
relationships between series: the covariance and the correlation.

Covariance

The covariance is a measure of linear association between two variables and repre-
sents the simplest and most common way to enumerate the relationship between
them. It measures whether they on average move in the same direction (positive
covariance), in opposite directions (negative covariance), or have no association
(zero covariance). The formula for calculating the covariance, σx,y , between two
series, x and y is given by

σx,y =
∑

(xi − x)(yi − y)
(N − 1)

(2.29)

Correlation

A fundamental weakness of the covariance as a measure of association is that it scales
with the standard deviations of the two series, so it has units of x × y. Thus, for
example, multiplying all of the values of series y by ten will increase the covariance
tenfold, but it will not really increase the true association between the series since
they will be no more strongly related than they were before the rescaling. The
implication is that the particular numerical value that the covariance takes has no
useful interpretation on its own and hence is not particularly useful. Therefore,
the correlation takes the covariance and standardises or normalises it so that it is unit
free. The result of this standardisation is that the correlation is bounded to lie on
the (–1,1) interval. A correlation of 1 (–1) indicates a perfect positive (negative)
association between the series. The correlation measure, usually known as the
correlation coefficient, is often denoted ρx,y , and is calculated as

ρx,y =
∑

(xi − x)(yi − y)
(N − 1)σxσy

= σx,y

σxσy
(2.30)

where σx and σy are the standard deviations of x and y respectively. This measure
is more strictly known as Pearson’s product moment correlation.
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Copulas

Covariance and correlation provide simple measures of association between series.
However, as is well known, they are very limited measures in the sense that
they are linear and are not sufficiently flexible to provide full descriptions of the
relationship between financial series in reality. In particular, new types of assets and
structures in finance have led to increasingly complex dependencies that cannot
be satisfactorily modelled in this simple framework. Copulas provide an alternative
way to link together the individual (marginal) distributions of series to model their
joint distribution. One attractive feature of copulas is that they can be applied to
link together any marginal distributions that are proposed for the individual series.
The most commonly used copulas are the Gaussian and Clayton copulas. They
are particularly useful for modelling the relationships between the tails of series,
and find applications in stress testing and simulation analysis. For introductions to
this area and applications in finance and risk management, see Nelsen (2006) and
Embrechts et al. (2003).

Key concepts

The key terms to be able to define and explain from this chapter are

• functions • roots

• turning points • derivatives

• sigma notation • logarithm

• quadratic equation • conformable matrix

• inverse of a matrix • rank of a matrix

• eigenvalues • eigenvectors

• mean • variance

• skewness • kurtosis

• covariance • correlation

• population • sample

Self-study questions

1. (a) If f (x) = 3x2 − 4x + 2, find f (0), f (2), f (−1)
(b) If f (x) = 4x2 + 2x − 3, find f (0), f (3), f (a ), f (3 + a )
(c) Considering your answers to the previous question part, in general does

f (a ) + f (b ) = f (a + b )? Explain.
2. Simplify the following as much as possible

(a) 4x5 × 6x3

(b) 3x2 × 4y2 × 8x4 × −2y4

(c) (4p2q 3)3

(d) 6x5 ÷ 3x2
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(e) 7y2 ÷ 2y5

(f ) 3(xy)3×6(xz)4

2(xy)2x3

(g) (xy)3 ÷ x3y3

(h) (xy)3 − x3y3

3. Solve the following
(a) 1251/3

(b) 641/3

(c) 641/4

(d) 93/2

(e) 92/3

(f ) 811/2 + 641/2 + 641/3

4. Write each of the following as a prime number raised to a power
(a) 9
(b) 625
(c) 125−1

5. Solve the following equations
(a) 3x − 6 = 6x − 12
(b) 2x − 304x + 8 = x + 9 − 3x + 4
(c) x+3

2 = 2x−6
3

6. Write out all of the terms in the following and evaluate them
(a)

∑3
j=1 j with j = 4

(b)
∑5

j=2( j 2 + j + 3) with j = −2
(c)

∑n
i=1 with n = 4 and x = 3

(d)
∏3

j=1 x with x = 2

(e)
∏6

i=3 i with i = −0.5
7. Write the equations for each of the following lines

(a) Gradient = 3, intercept = −1
(b) Gradient = −2, intercept = 4
(c) Gradient = 1

2 , crosses y-axis at 3

(d) Gradient = 1
2 , crosses x-axis at 3

(e) Intercept 2 and passing through (3,1)
(f ) Gradient 4 and passing through (−2,−2)
(g) Passes through x = 4,y = 2 and x = −2,y = 6

8. Differentiate the following functions twice with respect to x
(a) y = 6x
(b) y = 3x2 + 2
(c) y = 4x3 + 10
(d) y = 1

x
(e) y = x
(f ) y = 7
(g) y = 6x−3 + 6

x3

(h) y = 3 ln x
(i) y = ln(3x2)

(j) y = 3x4−6x2−x−4
x3
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9. Differentiate the following functions partially with respect to x and
(separately) partially with respect to y
(a) z = 10x3 + 6y2 − 7y
(b) z = 10xy2 − 6
(c) z = 6x
(d) z = 4

10. Factorise the following expressions
(a) x2 − 7x − 8
(b) 5x − 2x2

(c) 2x2 − x − 3
(d) 6 + 5x − 4x2

(e) 54 − 15x − 25x2

11. Express the following in logarithmic form
(a) 53 = 125
(b) 112 = 121
(c) 64 = 1296

12. Evaluate the following (without using a calculator)
(a) log10 10000
(b) log2 16
(c) log10 0.01
(d) log5 125
(e) loge e 2

13. Express the following logarithms using powers
(a) log5 3125 = 5
(b) log49 7 = 1

2
(c) log0.5 8 = −3

14. Write the following as simply as possible as sums of logs of prime numbers
(a) log 60
(b) log 300

15. Simplify the following as far as possible
(a) log 27 − log 9 + log 81
(b) log 8 − log 4 + log 32

16. Solve the following
(a) log x4 − log x3 = log 5x − log 2x
(b) log(x − 1) + log(x + 1) = 2 log(x + 2)
(c) log10 x = 4

17. Use the result that ln(8) is approximately 2.1 to estimate the following
(without using a calculator):
(a) ln(16)
(b) ln(64)
(c) ln(4)

18. Solve the following using logs and a calculator
(a) 4x = 6
(b) 42x = 3
(c) 32x−1 = 8
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19. Find the minima of the following functions. In each case, state the value of x
that makes the function a minimum
(a) y = 6x2 − 10x − 8
(b) y = (6x2 − 10x − 8)2

20. Construct an example not used elsewhere in this book to demonstrate that
for two conformable matrices A and B, (AB)−1 = B−1 A−1.

21. Suppose that we have the following four matrices

A =
[

1 6
−2 4

]
, B =

[−3 −8
6 4

]
, C =

[
1 2 3
4 5 6

]
, D =

[6 −2
0 −1
3 0

]

(a) Which pairs of matrices can be validly multiplied together? For these
pairs, perform the multiplications.

(b) Calculate 2A, 3B, 1
2 D

(c) Calculate Tr(A), Tr(B), Tr(A + B) and verify that Tr(A) + Tr(B) =
Tr(A + B)

(d) What is the rank of the matrix A?
(e) Find the eigenvalues of the matrix B
(f ) What will be the trace of the identity matrix of order 12?

22. (a) Add[
2 −1

−7 4

]
to

[−3 0
7 −4

]

(b) Subtract[−3 0
7 −4

]
from

[
2 −1

−7 4

]

(c) Calculate the inverse of[
3 −1

−4 2

]

(d) Does the inverse of the following matrix exist? Explain your answer[
3 2
3 2

]

23. Expand the parentheses as far as possible for the following expressions
(a) E(a x + b y) for x,y variables and a ,b scalars
(b) E(a xy) for x,y independent variables and a a scalar
(c) E(a xy) for x,y correlated variables and a a scalar
(a) Explain the difference between a pdf and a cdf
(b) What shapes are the pdf and cdf for a normally distributed random

variable?
24. What is the central limit theorem and why is it important in statistics?
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25. Explain the differences between the mean, mode and median. Which is the
most useful measure of an average and why?

26. Which is a more useful measure of central tendency for stock returns – the
arithmetic mean or the geometric mean? Explain your answer.

27. The covariance between two variables is 0.99. Are they strongly related?
Explain your answer.
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linear regression model

Learning outcomes

In this chapter, you will learn how to

• Derive the OLS formulae for estimating parameters and their standard errors

• Explain the desirable properties that a good estimator should have

• Discuss the factors that affect the sizes of standard errors

• Test hypotheses using the test of significance and confidence interval

approaches

• Interpret p-values

• Estimate regression models and test single hypotheses in EViews

• • • • • • • • • • • • • • 3.1 What is a regression model?

Regression analysis is almost certainly the most important tool at the econome-
trician’s disposal. But what is regression analysis? In very general terms, regression
is concerned with describing and evaluating the relationship between a given vari-
able and one or more other variables. More specifically, regression is an attempt to
explain movements in a variable by reference to movements in one or more other
variables.

To make this more concrete, denote the variable whose movements the regres-
sion seeks to explain by y and the variables which are used to explain those vari-
ations by x1, x2, . . . , xk. Hence, in this relatively simple setup, it would be said
that variations in k variables (the xs) cause changes in some other variable, y. This
chapter will be limited to the case where the model seeks to explain changes in
only one variable y (although this restriction will be removed in chapter 7).

There are various completely interchangeable names for y and the xs, and all
of these terms will be used synonymously in this book (see box 3.1).
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Box 3.1 Names for y and xs in regression models

Names for y Names for the xs
Dependent variable Independent variables
Regressand Regressors
Effect variable Causal variables
Explained variable Explanatory variables

• • • • • • • • • • • • • • 3.2 Regression versus correlation

As discussed in chapter 2, the correlation between two variables measures the
degree of linear association between them. If it is stated that y and x are correlated,
it means that y and x are being treated in a completely symmetrical way. Thus,
it is not implied that changes in x cause changes in y, or indeed that changes in
y cause changes in x. Rather, it is simply stated that there is evidence for a linear
relationship between the two variables, and that movements in the two are on
average related to an extent given by the correlation coefficient.

In regression, the dependent variable (y) and the independent variable(s) (xs)
are treated very differently. The y variable is assumed to be random or ‘stochastic’
in some way, i.e. to have a probability distribution. The x variables are, however,
assumed to have fixed (‘non-stochastic’) values in repeated samples.1 Regression
as a tool is more flexible and more powerful than correlation.

• • • • • • • • • • • • • • 3.3 Simple regression

For simplicity, suppose for now that it is believed that y depends on only one x
variable. Again, this is of course a severely restricted case, but the case of more
explanatory variables will be considered in the next chapter. Three examples of
the kind of relationship that may be of interest include:

● How asset returns vary with their level of market risk
● Measuring the long-term relationship between stock prices and dividends
● Constructing an optimal hedge ratio.

Suppose that a researcher has some idea that there should be a relationship between
two variables y and x, and that financial theory suggests that an increase in x will
lead to an increase in y. A sensible first stage to testing whether there is indeed an
association between the variables would be to form a scatter plot of them. Suppose
that the outcome of this plot is figure 3.1.

In this case, it appears that there is an approximate positive linear relationship
between x and y which means that increases in x are usually accompanied by

1 Strictly, the assumption that the xs are non-stochastic is stronger than required, an issue that will
be discussed in more detail in chapter 5.
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Figure 3.1 Scatter plot of two variables, y and x

increases in y, and that the relationship between them can be described approxi-
mately by a straight line. It would be possible to draw by hand onto the graph a
line that appears to fit the data. The intercept and slope of the line fitted by eye
could then be measured from the graph. However, in practice such a method is
likely to be laborious and inaccurate.

It would therefore be of interest to determine to what extent this relationship
can be described by an equation that can be estimated using a defined procedure.
It is possible to use the general equation for a straight line

y = α + βx (3.1)

to get the line that best ‘fits’ the data. The researcher would then be seeking to
find the values of the parameters or coefficients, α and β, which would place the
line as close as possible to all of the data points taken together.

However, this equation (y = α + βx) is an exact one. Assuming that this
equation is appropriate, if the values of α and β had been calculated, then given a
value of x, it would be possible to determine with certainty what the value of y
would be. Imagine – a model which says with complete certainty what the value
of one variable will be given any value of the other!

Clearly this model is not realistic. Statistically, it would correspond to the case
where the model fitted the data perfectly – that is, all of the data points lay exactly
on a straight line. To make the model more realistic, a random disturbance term,
denoted by u , is added to the equation, thus

yt = α + βxt + ut (3.2)

where the subscript t (= 1, 2, 3, . . .) denotes the observation number. The distur-
bance term can capture a number of features (see box 3.2).
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Box 3.2 Reasons for the inclusion of the disturbance term

● Even in the general case where there is more than one explanatory
variable, some determinants of yt will always in practice be omitted
from the model. This might, for example, arise because the number of
influences on y is too large to place in a single model, or because some
determinants of y may be unobservable or not measurable.

● There may be errors in the way that y is measured which cannot be
modelled.

● There are bound to be random outside influences on y that again
cannot be modelled. For example, a terrorist attack, a hurricane or a
computer failure could all affect financial asset returns in a way that
cannot be captured in a model and cannot be forecast reliably. Similarly,
many researchers would argue that human behaviour has an inherent
randomness and unpredictability!

So how are the appropriate values of α and β determined? α and β are chosen
so that the (vertical) distances from the data points to the fitted lines are minimised
(so that the line fits the data as closely as possible). The parameters are thus chosen
to minimise collectively the (vertical) distances from the data points to the fitted
line. This could be done by ‘eye-balling’ the data and, for each set of variables y
and x, one could form a scatter plot and draw on a line that looks as if it fits the
data well by hand, as in figure 3.2.

Note that the vertical distances are usually minimised rather than the horizontal
distances or those taken perpendicular to the line. This arises as a result of the
assumption that x is fixed in repeated samples, so that the problem becomes one of
determining the appropriate model for y given (or conditional upon) the observed
values of x.

This ‘eye-balling’ procedure may be acceptable if only indicative results are
required, but of course this method, as well as being tedious, is likely to be
imprecise. The most common method used to fit a line to the data is known as
ordinary least squares (OLS). This approach forms the workhorse of econometric
model estimation, and will be discussed in detail in this and subsequent chapters.

Two alternative estimation methods (for determining the appropriate values
of the coefficients α and β) are the method of moments and the method of
maximum likelihood. A generalised version of the method of moments, due to
Hansen (1982), is popular, but beyond the scope of this book. The method of
maximum likelihood is also widely employed, and will be discussed in detail in
chapter 9.

Suppose now, for ease of exposition, that the sample of data contains only
five observations. The method of OLS entails taking each vertical distance from
the point to the line, squaring it and then minimising the total sum of the areas
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Figure 3.2 Scatter plot of two variables with a line of best fit chosen by eye
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Figure 3.3 Method of OLS fitting a line to the data by minimising the sum of squared
residuals

of squares (hence ‘least squares’), as shown in figure 3.3. This can be viewed as
equivalent to minimising the sum of the areas of the squares drawn from the points
to the line.

Tightening up the notation, let yt denote the actual data point for observation
t and let ŷt denote the fitted value from the regression line – in other words, for
the given value of x of this observation t , ŷt is the value for y which the model
would have predicted. Note that a hat (ˆ) over a variable or parameter is used to
denote a value estimated by a model. Finally, let û t denote the residual, which is
the difference between the actual value of y and the value fitted by the model
for this data point – i.e. (yt − ŷt ). This is shown for just one observation t in
figure 3.4.
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Figure 3.4 Plot of a single observation, together with the line of best fit, the residual and
the fitted value

What is done is to minimise the sum of the û2
t . The reason that the sum of the

squared distances is minimised rather than, for example, finding the sum of û t that
is as close to zero as possible, is that in the latter case some points will lie above the
line while others lie below it. Then, when the sum to be made as close to zero as
possible is formed, the points above the line would count as positive values, while
those below would count as negatives. So these distances will in large part cancel
each other out, which would mean that one could fit virtually any line to the data,
so long as the sum of the distances of the points above the line and the sum of the
distances of the points below the line were the same. In that case, there would not
be a unique solution for the estimated coefficients. In fact, any fitted line that goes
through the mean of the observations (i.e. x̄, ȳ) would set the sum of the û t to
zero. However, taking the squared distances ensures that all deviations that enter
the calculation are positive and therefore do not cancel out.

So minimising the sum of squared distances is given by minimising (û2
1 + û2

2 +
û2

3 + û2
4 + û2

5), or minimising(
5∑

t=1

û2
t

)

This sum is known as the residual sum of squares (RSS) or the sum of squared
residuals. But what is û t ? Again, it is the difference between the actual point and
the line, yt − ŷt . So minimising

∑
t û2

t is equivalent to minimising
∑

t (yt − ŷt )2.
Letting α̂ and β̂ denote the values of α and β selected by minimising the RSS,

respectively, the equation for the fitted line is given by ŷt = α̂ + β̂xt . Now let
L denote the RSS, which is also known as a loss function. Take the summation
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over all of the observations, i.e. from t = 1 to T, where T is the number of
observations

L =
T∑

t=1

(yt − ŷt )2 =
T∑

t=1

(yt − α̂ − β̂xt )2. (3.3)

L is minimised with respect to (w.r.t.) α̂ and β̂, to find the values of α and β

which minimise the residual sum of squares to give the line that is closest to the
data. So L is differentiated w.r.t. α̂ and β̂, setting the first derivatives to zero.
A derivation of the OLS estimator is given in the appendix to this chapter. The
coefficient estimators for the slope and the intercept are given by

β̂ =
∑

xt yt − Txy∑
x2

t − Tx̄2
(3.4) α̂ = ȳ − β̂ x̄ (3.5)

Equations (3.4) and (3.5) state that, given only the sets of observations xt and
yt , it is always possible to calculate the values of the two parameters, α̂ and β̂, that
best fit the set of data. Equation (3.4) is the easiest formula to use to calculate the
slope estimate, but the formula can also be written, more intuitively, as

β̂ =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

(3.6)

which is equivalent to the sample covariance between x and y divided by the
sample variance of x.

To reiterate, this method of finding the optimum is known as OLS. It is also
worth noting that it is obvious from the equation for α̂ that the regression line
will go through the mean of the observations – i.e. that the point (x̄, ȳ) lies on the
regression line.

Example 3.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that some data have been collected on the excess returns on a fund
manager’s portfolio (‘fund XXX’) together with the excess returns on a market index as
shown in table 3.1.

The fund manager has some intuition that the beta (in the CAPM framework) on
this fund is positive, and she therefore wants to find whether there appears to be a
relationship between x and y given the data. Again, the first stage could be to form a
scatter plot of the two variables (figure 3.5).

Clearly, there appears to be a positive, approximately linear relationship between
x and y, although there is not much data on which to base this conclusion! Plugging the
five observations in to make up the formulae given in (3.4) and (3.5) would lead to the
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Table 3.1 Sample data on fund XXX to motivate OLS estimation

Excess return on Excess return on

Year, t fund XXX = rX X X ,t − r ft market index = rmt − r ft

1 17.8 13.7

2 39.0 23.2

3 12.8 6.9

4 24.2 16.8

5 17.2 12.3
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Figure 3.5 Scatter plot of excess returns on fund XXX versus excess returns on the market
portfolio

estimates α̂ = −1.74 and β̂ = 1.64. The fitted line would be written as

ŷt = −1.74 + 1.64xt (3.7)

where xt is the excess return of the market portfolio over the risk free rate (i.e. rm − rf ),
also known as the market risk premium.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3.3.1 What are α̂ and β̂ used for?

This question is probably best answered by posing another question. If an analyst
tells you that she expects the market to yield a return 20% higher than the risk-free
rate next year, what would you expect the return on fund XXX to be?
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The expected value of y = ‘−1.74 + 1.64 × value of x’, so plug x = 20
into (3.7)

ŷt = −1.74 + 1.64 × 20 = 31.06 (3.8)

Thus, for a given expected market risk premium of 20%, and given its riskiness,
fund XXX would be expected to earn an excess over the risk-free rate of approx-
imately 31%. In this setup, the regression beta is also the CAPM beta, so that fund
XXX has an estimated beta of 1.64, suggesting that the fund is rather risky. In this
case, the residual sum of squares reaches its minimum value of 30.33 with these
OLS coefficient values.

Although it may be obvious, it is worth stating that it is not advisable to conduct
a regression analysis using only five observations! Thus the results presented here
can be considered indicative and for illustration of the technique only. Some
further discussions on appropriate sample sizes for regression analysis are given in
chapter 5.

The coefficient estimate of 1.64 for β is interpreted as saying that, ‘if x increases
by 1 unit, y will be expected, everything else being equal, to increase by 1.64 units’.
Of course, if β̂ had been negative, a rise in x would on average cause a fall in
y. α̂, the intercept coefficient estimate, is interpreted as the value that would be
taken by the dependent variable y if the independent variable x took a value of
zero. ‘Units’ here refer to the units of measurement of xt and yt . So, for example,
suppose that β̂ = 1.64, x is measured in per cent and y is measured in thousands
of US dollars. Then it would be said that if x rises by 1%, y will be expected to
rise on average by $1.64 thousand (or $1,640). Note that changing the scale of y
or x will make no difference to the overall results since the coefficient estimates
will change by an off-setting factor to leave the overall relationship between y and
x unchanged (see Gujarati, 2003, pp. 169–73 for a proof). Thus, if the units of
measurement of y were hundreds of dollars instead of thousands, and everything
else remains unchanged, the slope coefficient estimate would be 16.4, so that a
1% increase in x would lead to an increase in y of $16.4 hundreds (or $1,640) as
before. All other properties of the OLS estimator discussed below are also invariant
to changes in the scaling of the data.

A word of caution is, however, in order concerning the reliability of estimates
of the constant term. Although the strict interpretation of the intercept is indeed
as stated above, in practice, it is often the case that there are no values of x close
to zero in the sample. In such instances, estimates of the value of the intercept will
be unreliable. For example, consider figure 3.6, which demonstrates a situation
where no points are close to the y-axis.

In such cases, one could not expect to obtain robust estimates of the value of
y when x is zero as all of the information in the sample pertains to the case where
x is considerably larger than zero.

A similar caution should be exercised when producing predictions for y using
values of x that are a long way outside the range of values in the sample. In example
3.1, x takes values between 7% and 23% in the available data. So, it would not be
advisable to use this model to determine the expected excess return on the fund if
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x

y

0

Figure 3.6 No observations close to the y-axis

the expected excess return on the market were, say 1% or 30%, or −5% (i.e. the
market was expected to fall).

• • • • • • • • • • • • • • 3.4 Some further terminology

3.4.1 The data generating process, the population regression function and
the sample regression function

The population regression function (PRF) is a description of the model that is
thought to be generating the actual data and it represents the true relationship
between the variables. The population regression function is also known as the data
generating process (DGP). The PRF embodies the true values of α and β, and is
expressed as

yt = α + βxt + ut (3.9)

Note that there is a disturbance term in this equation, so that even if one had at one’s
disposal the entire population of observations on x and y, it would still in general
not be possible to obtain a perfect fit of the line to the data. In some textbooks, a
distinction is drawn between the PRF (the underlying true relationship between y
and x) and the DGP (the process describing the way that the actual observations on
y come about), although in this book, the two terms will be used synonymously.

The sample regression function (SRF) is the relationship that has been esti-
mated using the sample observations, and is often written as

ŷt = α̂ + β̂xt (3.10)
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Notice that there is no error or residual term in (3.10); all this equation states is
that given a particular value of x, multiplying it by β̂ and adding α̂ will give the
model fitted or expected value for y, denoted ŷ. It is also possible to write

yt = α̂ + β̂xt + û t (3.11)

Equation (3.11) splits the observed value of y into two components: the fitted
value from the model, and a residual term.

The SRF is used to infer likely values of the PRF. That is, the estimates α̂ and
β̂ are constructed, for the sample of data at hand, but what is really of interest
is the true relationship between x and y – in other words, the PRF is what is
really wanted, but all that is ever available is the SRF. However, what can be said
is how likely it is, given the figures calculated for α̂ and β̂, that the corresponding
population parameters take on certain values.

3.4.2 Linearity and possible forms for the regression function

In order to use OLS, a model that is linear is required. This means that, in the
simple bivariate case, the relationship between x and y must be capable of being
expressed diagramatically using a straight line. More specifically, the model must be
linear in the parameters (α and β), but it does not necessarily have to be linear in
the variables (y and x). By ‘linear in the parameters’, it is meant that the parameters
are not multiplied together, divided, squared or cubed, etc.

Models that are not linear in the variables can often be made to take a linear
form by applying a suitable transformation or manipulation. For example, consider
the following exponential regression model

Yt = AXβ
t e ut (3.12)

Taking logarithms of both sides, applying the laws of logs and rearranging the
right-hand side (RHS)

ln Yt = ln(A) + β ln Xt + ut (3.13)

where A and β are parameters to be estimated. Now let α = ln(A), yt = ln Yt and
xt = ln Xt

yt = α + βxt + ut (3.14)

This is known as an exponential regression model since Y varies according to some
exponent (power) function of X. In fact, when a regression equation is expressed
in ‘double logarithmic form’, which means that both the dependent and the inde-
pendent variables are natural logarithms, the coefficient estimates are interpreted as
elasticities (strictly, they are unit changes on a logarithmic scale). Thus a coefficient
estimate of 1.2 for β̂ in (3.13) or (3.14) is interpreted as stating that ‘a rise in X of
1% will lead on average, everything else being equal, to a rise in Y of 1.2%’. Con-
versely, for y and x in levels (e.g. (3.9)) rather than logarithmic form, the coeffi-
cients denote unit changes as described above.
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Similarly, if theory suggests that x should be inversely related to y according
to a model of the form

yt = α + β

xt
+ ut (3.15)

the regression can be estimated using OLS by setting

zt = 1
xt

and regressing y on a constant and z. Clearly, then, a surprisingly varied array
of models can be estimated using OLS by making suitable transformations to the
variables. On the other hand, some models are intrinsically non-linear, e.g.

yt = α + βxγ
t + ut (3.16)

Such models cannot be estimated using OLS, but might be estimable using a
non-linear estimation method (see chapter 9).

3.4.3 Estimator or estimate?

Estimators are the formulae used to calculate the coefficients – for example, the
expressions given in (3.4) and (3.5) above, while the estimates, on the other hand,
are the actual numerical values for the coefficients that are obtained from the sample.

• • • • • • • • • • • • • • 3.5 Simple linear regression in EViews – estimation of an optimal hedge ratio

This section shows how to run a bivariate regression using EViews. The example
considers the situation where an investor wishes to hedge a long position in the
S&P500 (or its constituent stocks) using a short position in futures contracts. Many
academic studies assume that the objective of hedging is to minimise the variance
of the hedged portfolio returns. If this is the case, then the appropriate hedge ratio
(the number of units of the futures asset to sell per unit of the spot asset held)
will be the slope estimate (i.e. β̂) in a regression where the dependent variable is a
time series of spot returns and the independent variable is a time series of futures
returns.2

This regression will be run using the file ‘SandPhedge.xls’, which contains
monthly returns for the S&P500 index (in column 2) and S&P500 futures (in
column 3). As described in chapter 1, the first step is to open an appropriately
dimensioned workfile. Open EViews and click on File/New/Workfile; choose
Dated – regular frequency and Monthly frequency data. The start date is
2002:02 and the end date is 2013:04. Then import the Excel file by clicking
File/Import and Import from file. As for the previous example in chapter 1,
the first column contains only dates which we do not need to read in so click Next
twice. You will then be prompted with another screen as shown in screenshot 3.1

2 See chapter 9 for a detailed discussion of why this is the appropriate hedge ratio.
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Screenshot 3.1 How to deal with dated observations in EViews

that invites you to decide how to deal with the dates – it is possible either to read
the dates from the file or to use the date range specified when the workfile was
set up. Since there are no missing data points in this case the two would give the
same outcome so just click on Finish. The two imported series will now appear
as objects in the workfile (the column of dates has not been imported) and can
be verified by checking a couple of entries at random against the original Excel
file.

The first step in the analysis is to transform the levels of the two series into
percentage returns. It is common in academic research to use continuously com-
pounded returns rather than simple returns. To achieve this (i.e. to produce con-
tinuously compounded returns), click on Genr and in the ‘Enter Equation’ dialog
box, enter rfutures=100∗dlog(futures). Then click Genr again and do the same
for the spot series: rspot=100∗dlog(spot). Do not forget to Save the workfile –
call it ‘hedge’ and EViews will add the suffix ‘.wf1’ to denote that it is an EViews
workfile. Continue to re-save it at regular intervals to ensure that no work is
lost.

Before proceeding to estimate the regression, now that we have imported
more than one series, we can examine a number of descriptive statistics together
and measures of association between the series. For example, click Quick and
Group Statistics. From there you will see that it is possible to calculate the
covariances or correlations between series and a number of other measures that
will be discussed later in the book. For now, click on Descriptive Statistics and
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Screenshot 3.2 Summary statistics for spot and futures

Common Sample.3 In the dialog box that appears, type rspot rfutures and click
OK. Some summary statistics for the spot and futures are presented, as displayed
in screenshot 3.2, and these are quite similar across the two series, as one would
expect.

Note that the number of observations has reduced from 135 for the levels of
the series to 134 when we computed the returns (as one observation is ‘lost’ in
constructing the t − 1 value of the prices in the returns formula). If you want
to save the summary statistics, you must name them by clicking Name and then
choose a name, e.g. Descstats. The default name is ‘group01’, which could have
also been used. Click OK.

We can now proceed to estimate the regression. There are several ways to do
this, but the easiest is to select Quick and then Estimate Equation. You will be
presented with a dialog box, which, when it has been completed, will look like
screenshot 3.3.

In the ‘Equation Specification’ window, you insert the list of variables to be
used, with the dependent variable (y) first, and including a constant (c), so type

3 ‘Common sample’ will use only the part of the sample that is available for all the series selected,
whereas ‘Individual sample’ will use all available observations for each individual series. In this
case, the number of observations is the same for both series and so identical results would be
observed for both options.
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Screenshot 3.3 Equation estimation window

rspot c rfutures. Note that it would have been possible to write this in an
equation format as rspot = c(1) + c(2)∗rfutures, but this is more cumbersome.

In the ‘Estimation settings’ box, the default estimation method is OLS and the
default sample is the whole sample, and these need not be modified. Click OK
and the regression results will appear, as in screenshot 3.4.

The parameter estimates for the intercept (α̂) and slope (β̂) are 0.00064 and
1.007 respectively. Name the regression results returnreg, and it will now appear
as a new object in the list. A large number of other statistics are also presented in
the regression output – the purpose and interpretation of these will be discussed
later in this and subsequent chapters.

Now estimate a regression for the levels of the series rather than the
returns (i.e. run a regression of spot on a constant and futures) and examine
the parameter estimates. The return regression slope parameter estimated above
measures the optimal hedge ratio and also measures the short run relationship
between the two series. By contrast, the slope parameter in a regression using the
raw spot and futures indices (or the log of the spot series and the log of the futures
series) can be interpreted as measuring the long run relationship between them.
This issue of the long and short runs will be discussed in detail in chapter 5. For
now, click Quick/Estimate Equation and enter the variables spot c futures
in the Equation Specification dialog box, click OK, then name the regression
results ‘levelreg’. The intercept estimate (α̂) in this regression is 5.4943 and



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-03 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:20

90

•
•
•
•
•
•
•
•
• A brief overview of classical linear regression

Screenshot 3.4 Estimation results

the slope estimate (β̂) is 0.9956. The intercept can be considered to approximate
the cost of carry, while as expected, the long-term relationship between spot and
futures prices is almost 1:1 – see chapter 9 for further discussion of the estimation
and interpretation of this equilibrium. Finally, click the Save button to save the
whole workfile.

• • • • • • • • • • • • • • 3.6 The assumptions underlying the classical linear regression model

The model yt = α + βxt + ut that has been derived above, together with the
assumptions listed below, is known as the classical linear regression model (CLRM).
Data for xt is observable, but since yt also depends on ut , it is necessary to be
specific about how the ut are generated. The set of assumptions shown in box 3.3
are usually made concerning the ut s, the unobservable error or disturbance terms.
Note that no assumptions are made concerning their observable counterparts, the
estimated model’s residuals.

As long as assumption 1 holds, assumption 4 can be equivalently written
E(xt ut ) = 0. Both formulations imply that the regressor is orthogonal to (i.e. unre-
lated to) the error term. An alternative assumption to 4, which is slightly stronger,
is that the xt are non-stochastic or fixed in repeated samples. This means that there
is no sampling variation in xt , and that its value is determined outside the model.
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Box 3.3 Assumptions concerning disturbance terms and
their interpretation

Technical notation Interpretation
(1) E(ut ) = 0 The errors have zero mean
(2) var(ut ) = σ 2 < ∞ The variance of the errors is constant and

finite over all values of xt
(3) cov(ui , u j ) = 0 The errors are linearly independent of

one another
(4) cov(ut , xt ) = 0 There is no relationship between the error

and corresponding x variate
(5) ut ∼ N(0, σ 2) – i.e. that ut is normally distributed.

A fifth assumption is required to make valid inferences about the population
parameters (the actual α and β) from the sample parameters (α̂ and β̂) estimated
using a finite amount of data

• • • • • • • • • • • • • • 3.7 Properties of the OLS estimator

If assumptions 1–4 hold, then the estimators α̂ and β̂ determined by OLS will have
a number of desirable properties, and are known as best linear unbiased estimators
(BLUE). What does this acronym stand for?

● ‘Estimator’ – α̂ and β̂ are estimators of the true value of α and β

● ‘Linear’ – α̂ and β̂ are linear estimators – that means that the formulae
for α̂ and β̂ are linear combinations of the random variables (in this case,
y)

● ‘Unbiased’ – on average, the actual values of α̂ and β̂ will be equal to their
true values

● ‘Best’ – means that the OLS estimator β̂ has minimum variance among the
class of linear unbiased estimators; the Gauss–Markov theorem proves that the
OLS estimator is best by examining an arbitrary alternative linear unbiased
estimator and showing in all cases that it must have a variance no smaller than
the OLS estimator.

Under assumptions 1–4 listed above, the OLS estimator can be shown to
have the desirable properties that it is consistent, unbiased and efficient. Unbi-
asedness and efficiency have already been discussed above, and consistency is an
additional desirable property. These three characteristics will now be discussed in
turn.
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3.7.1 Consistency

The least squares estimators α̂ and β̂ are consistent. One way to state this alge-
braically for β̂ (with the obvious modifications made for α̂) is

lim
T→∞

Pr [|β̂ − β| > δ] = 0 ∀ δ > 0 (3.17)

This is a technical way of stating that the probability (Pr) that β̂ is more than some
arbitrary fixed distance δ away from its true value tends to zero as the sample size
tends to infinity, for all positive values of δ. Thus β is the probability limit of β̂.
In the limit (i.e. for an infinite number of observations), the probability of the
estimator being different from the true value is zero. That is, the estimates will
converge to their true values as the sample size increases to infinity. Consistency
is thus a large sample, or asymptotic property. If an estimator is inconsistent, then
even if we had an infinite amount of data, we could not be sure that the estimated
value of a parameter will be close to its true value. So consistency is sometimes
argued to be the most important property of an estimator. The assumptions that
E(xt ut ) = 0 and E(ut ) = 0 are sufficient to derive the consistency of the OLS
estimator.

3.7.2 Unbiasedness

The least squares estimates of α̂ and β̂ are unbiased. That is

E(α̂) = α (3.18)

and

E(β̂) = β (3.19)

Thus, on average, the estimated values for the coefficients will be equal to their
true values. That is, there is no systematic overestimation or underestimation of the
true coefficients. To prove this also requires the assumption that cov(ut , xt ) = 0.
Clearly, unbiasedness is a stronger condition than consistency, since it holds for
small as well as large samples (i.e. for all sample sizes). Clearly, an estimator that is
consistent may still be biased for small samples, but are all unbiased estimators also
consistent? The answer is in fact no. An unbiased estimator will also be consistent
if its variance falls as the sample size increases.

3.7.3 Efficiency

An estimator β̂ of a parameter β is said to be efficient if no other estimator has a
smaller variance. Broadly speaking, if the estimator is efficient, it will be minimising
the probability that it is a long way off from the true value of β. In other words, if
the estimator is ‘best’, the uncertainty associated with estimation will be minimised
for the class of linear unbiased estimators. A technical way to state this would be to
say that an efficient estimator would have a probability distribution that is narrowly
dispersed around the true value.
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• • • • • • • • • • • • • • 3.8 Precision and standard errors

Any set of regression estimates α̂ and β̂ are specific to the sample used in their
estimation. In other words, if a different sample of data was selected from within
the population, the data points (the xt and yt ) will be different, leading to different
values of the OLS estimates.

Recall that the OLS estimators (α̂ and β̂) are given by (3.4) and (3.5). It would
be desirable to have an idea of how ‘good’ these estimates of α and β are in the
sense of having some measure of the reliability or precision of the estimators (α̂ and
β̂). It is thus useful to know whether one can have confidence in the estimates,
and whether they are likely to vary much from one sample to another sample
within the given population. An idea of the sampling variability and hence of the
precision of the estimates can be calculated using only the sample of data available.
This estimate is given by its standard error. Given assumptions 1–4 above, valid
estimators of the standard errors can be shown to be given by

SE(α̂) = s

√√√√√
∑

x2
t

T
∑

(xt − x̄)2
= s

√√√√√
∑

x2
t

T
((∑

x2
t

)
− Tx̄2

) (3.20)

SE(β̂) = s

√√√√ 1∑
(xt − x̄)2

= s

√√√√ 1∑
x2

t − Tx̄2
(3.21)

where s is the estimated standard deviation of the residuals (see below). These
formulae are derived in the appendix to this chapter.

It is worth noting that the standard errors give only a general indication of the
likely accuracy of the regression parameters. They do not show how accurate a
particular set of coefficient estimates is. If the standard errors are small, it shows that
the coefficients are likely to be precise on average, not how precise they are for this
particular sample. Thus standard errors give a measure of the degree of uncertainty
in the estimated values for the coefficients. It can be seen that they are a function
of the actual observations on the explanatory variable, x, the sample size, T, and
another term, s . The last of these is an estimate of the variance of the disturbance
term. The actual variance of the disturbance term is usually denoted by σ 2. How
can an estimate of σ 2 be obtained?

3.8.1 Estimating the variance of the error term (σ 2)

From elementary statistics, the variance of a random variable ut is given by

var(ut ) = E[(ut ) − E(ut )]2 (3.22)
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Assumption 1 of the CLRM was that the expected or average value of the errors
is zero. Under this assumption, (3.22) above reduces to

var(ut ) = E
[
u2

t

]
(3.23)

So what is required is an estimate of the average value of u2
t , which could be

calculated as

s 2 = 1
T

∑
u2

t (3.24)

Unfortunately (3.24) is not workable since ut is a series of population disturbances,
which is not observable. Thus the sample counterpart to ut , which is û t , is used

s 2 = 1
T

∑
û2

t (3.25)

But this estimator is a biased estimator of σ 2. An unbiased estimator, s 2, would
be given by the following equation instead of the previous one

s 2 =
∑

û2
t

T − 2
(3.26)

where
∑

û2
t is the residual sum of squares, so that the quantity of relevance for the

standard error formulae is the square root of (3.26)

s =

√√√√∑
û2

t

T − 2
(3.27)

s is also known as the standard error of the regression or the standard error of the
estimate. It is sometimes used as a broad measure of the fit of the regression
equation. Everything else being equal, the smaller this quantity is, the closer is the
fit of the line to the actual data.

3.8.2 Some comments on the standard error estimators

It is possible, of course, to derive the formulae for the standard errors of the
coefficient estimates from first principles using some algebra, and this is left to
the appendix to this chapter. Some general intuition is now given as to why the
formulae for the standard errors given by (3.20) and (3.21) contain the terms that
they do and in the form that they do. The presentation offered in box 3.4 loosely
follows that of Hill, Griffiths and Judge (1997), which is the clearest that this author
has seen.
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Box 3.4 Standard error estimators

(1) The larger the sample size, T, the smaller will be the coefficient standard
errors. Tappears explicitly in SE(α̂) and implicitly in SE(β̂). T appears
implicitly since the sum

∑
(xt − x̄)2 is from t = 1 to T. The reason for

this is simply that, at least for now, it is assumed that every observation on
a series represents a piece of useful information which can be used to help
determine the coefficient estimates. So the larger the size of the sample, the
more information will have been used in estimation of the parameters, and
hence the more confidence will be placed in those estimates.

(2) Both SE(α̂) and SE(β̂) depend on s 2 (or s ). Recall from above that s 2

is the estimate of the error variance. The larger this quantity is, the more
dispersed are the residuals, and so the greater is the uncertainty in the model.
If s 2 is large, the data points are collectively a long way away from the line.

(3) The sum of the squares of the xt about their mean appears in both formulae –
since

∑
(xt − x̄)2 appears in the denominators. The larger the sum of

squares, the smaller the coefficient variances. Consider what happens if∑
(xt − x̄)2 is small or large, as shown in figures 3.7 and 3.8, respectively.

y

x

_
y

x
_

0

Figure 3.7 Effect on the standard errors of the coefficient estimates when (xt − x̄)
are narrowly dispersed

In figure 3.7, the data are close together so that
∑

(xt − x̄)2 is small. In
this first case, it is more difficult to determine with any degree of certainty
exactly where the line should be. On the other hand, in figure 3.8, the
points are widely dispersed across a long section of the line, so that one
could hold more confidence in the estimates in this case.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-03 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:20

96

•
•
•
•
•
•
•
•
• A brief overview of classical linear regression

y

x0

_
y

x
_

Figure 3.8 Effect on the standard errors of the coefficient estimates when (xt − x̄)
are widely dispersed

(4) The term
∑

x2
t affects only the intercept standard error and not the slope

standard error. The reason is that
∑

x2
t measures how far the points are

away from the y-axis. Consider figures 3.9 and 3.10.
In figure 3.9, all of the points are bunched a long way from the y-axis,

which makes it more difficult to accurately estimate the point at which
the estimated line crosses the y-axis (the intercept). In figure 3.10, the points

x

y

0

Figure 3.9 Effect on the standard errors of x2
t large
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x

y

0

Figure 3.10 Effect on the standard errors of x2
t small

collectively are closer to the y-axis and hence it will be easier to determine
where the line actually crosses the axis. Note that this intuition will work
only in the case where all of the xt are positive!

Example 3.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Assume that the following data have been calculated from a regression of y on a
single variable x and a constant over twenty-two observations∑

xt yt = 830102, T = 22, x̄ = 416.5, ȳ = 86.65,

∑
x2

t = 3919654, RSS = 130.6

Determine the appropriate values of the coefficient estimates and their standard errors.
This question can simply be answered by plugging the appropriate numbers into

the formulae given above. The calculations are

β̂ = 830102 − (22 × 416.5 × 86.65)
3919654 − 22 × (416.5)2

= 0.35

α̂ = 86.65 − 0.35 × 416.5 = −59.12

The sample regression function would be written as

ŷt = α̂ + β̂xt

ŷt = −59.12 + 0.35xt
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Now, turning to the standard error calculations, it is necessary to obtain an estimate, s ,
of the error variance

SE(regression), s =
√ ∑

û2
t

T − 2
=

√
130.6

20
= 2.55

SE(α̂) = 2.55 ×
√

3919654
22 × (3919654 − 22 × 416.52)

= 3.35

SE(β̂) = 2.55 ×
√

1
3919654 − 22 × 416.52

= 0.0079

With the standard errors calculated, the results are written as

ŷt = −59.12 + 0.35xt

(3.35) (0.0079)
(3.28)

The standard error estimates are usually placed in parentheses under the relevant
coefficient estimates.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 3.9 An introduction to statistical inference

Often, financial theory will suggest that certain coefficients should take on par-
ticular values, or values within a given range. It is thus of interest to determine
whether the relationships expected from financial theory are upheld by the data to
hand or not. Estimates of α and β have been obtained from the sample, but these
values are not of any particular interest; the population values that describe the
true relationship between the variables would be of more interest, but are never
available. Instead, inferences are made concerning the likely population values
from the regression parameters that have been estimated from the sample of data
to hand. In doing this, the aim is to determine whether the differences between
the coefficient estimates that are actually obtained, and expectations arising from
financial theory, are a long way from one another in a statistical sense.

Example 3.3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose the following regression results have been calculated:

ŷt = 20.3 + 0.5091xt

(14.38) (0.2561)
(3.29)

β̂ = 0.5091 is a single (point) estimate of the unknown population parameter, β . As
stated above, the reliability of the point estimate is measured by the coefficient’s
standard error. The information from one or more of the sample coefficients and their
standard errors can be used to make inferences about the population parameters. So
the estimate of the slope coefficient is β̂ = 0.5091, but it is obvious that this number is
likely to vary to some degree from one sample to the next. It might be of interest to
answer the question, ‘Is it plausible, given this estimate, that the true population
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parameter, β , could be 0.5? Is it plausible that β could be 1?’, etc. Answers to these
questions can be obtained through hypothesis testing.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3.9.1 Hypothesis testing: some concepts

In the hypothesis testing framework, there are always two hypotheses that go
together, known as the null hypothesis (denoted H0 or occasionally HN) and the
alternative hypothesis (denoted H1 or occasionally HA). The null hypothesis is the
statement or the statistical hypothesis that is actually being tested. The alternative
hypothesis represents the remaining outcomes of interest.

For example, suppose that given the regression results above, it is of interest to
test the hypothesis that the true value of β is in fact 0.5. The following notation
would be used.

H0 : β = 0.5

H1 : β �= 0.5

This states that the hypothesis that the true but unknown value of β could be 0.5
is being tested against an alternative hypothesis where β is not 0.5. This would be
known as a two-sided test, since the outcomes of both β < 0.5 and β > 0.5 are
subsumed under the alternative hypothesis.

Sometimes, some prior information may be available, suggesting for example
that β > 0.5 would be expected rather than β < 0.5. In this case, β < 0.5 is no
longer of interest to us, and hence a one-sided test would be conducted:

H0 : β = 0.5

H1 : β > 0.5

Here the null hypothesis that the true value of β is 0.5 is being tested against a
one-sided alternative that β is more than 0.5.

On the other hand, one could envisage a situation where there is prior infor-
mation that β < 0.5 is expected. For example, suppose that an investment bank
bought a piece of new risk management software that is intended to better track
the riskiness inherent in its traders’ books and that β is some measure of the risk
that previously took the value 0.5. Clearly, it would not make sense to expect the
risk to have risen, and so β > 0.5, corresponding to an increase in risk, is not of
interest. In this case, the null and alternative hypotheses would be specified as

H0 : β = 0.5

H1 : β < 0.5

This prior information should come from the financial theory of the problem
under consideration, and not from an examination of the estimated value of the
coefficient. Note that there is always an equality under the null hypothesis. So, for
example, β < 0.5 would not be specified under the null hypothesis.
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There are two ways to conduct a hypothesis test: via the test of significance
approach or via the confidence interval approach. Both methods centre on a statistical
comparison of the estimated value of the coefficient, and its value under the null
hypothesis. In very general terms, if the estimated value is a long way away from
the hypothesised value, the null hypothesis is likely to be rejected; if the value
under the null hypothesis and the estimated value are close to one another, the
null hypothesis is less likely to be rejected. For example, consider β̂ = 0.5091 as
above. A hypothesis that the true value of β is 5 is more likely to be rejected than
a null hypothesis that the true value of β is 0.5. What is required now is a statistical
decision rule that will permit the formal testing of such hypotheses.

3.9.2 The probability distribution of the least squares estimators

In order to test hypotheses, assumption 5 of the CLRM must be used, namely
that ut ∼ N(0, σ 2) – i.e. that the error term is normally distributed. The normal
distribution is a convenient one to use for it involves only two parameters (its mean
and variance). This makes the algebra involved in statistical inference considerably
simpler than it otherwise would have been. Since yt depends partially on ut , it can
be stated that if ut is normally distributed, yt will also be normally distributed.

Further, since the least squares estimators are linear combinations of the random
variables, i.e. β̂ = ∑

wt yt , where wt are effectively weights, and since the weighted
sum of normal random variables is also normally distributed, it can be said that the
coefficient estimates will also be normally distributed. Thus

α̂ ∼ N(α, var(α̂)) and β̂ ∼ N(β, var(β̂))

Will the coefficient estimates still follow a normal distribution if the errors do not
follow a normal distribution? Well, briefly, the answer is usually ‘yes’, provided
that the other assumptions of the CLRM hold, and the sample size is sufficiently
large. The issue of non-normality, how to test for it, and its consequences, will be
further discussed in chapter 4.

Standard normal variables can be constructed from α̂ and β̂ by subtracting the
mean and dividing by the square root of the variance

α̂ − α√
var(α̂)

∼ N(0, 1) and
β̂ − β√
var(β̂)

∼ N(0, 1)

The square roots of the coefficient variances are the standard errors. Unfortunately,
the standard errors of the true coefficient values under the PRF are never known –
all that is available are their sample counterparts, the calculated standard errors of
the coefficient estimates, SE(α̂) and SE(β̂).4

4 Strictly, these are the estimated standard errors conditional on the parameter estimates, and so
should be denoted SÊ(α̂) and SÊ(β̂), but the additional layer of hats will be omitted here since
the meaning should be obvious from the context.
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normal distribution

t-distribution

xμ

f (x)

Figure 3.11 The t-distribution versus the normal

Replacing the true values of the standard errors with the sample estimated
versions induces another source of uncertainty, and also means that the standardised
statistics follow a t-distribution with T − 2 degrees of freedom (defined below)
rather than a normal distribution, so

α̂ − α

SE(α̂)
∼ tT−2 and

β̂ − β

SE(β̂)
∼ tT−2

This result is not formally proved here. For a formal proof, see Hill, Griffiths
and Judge (1997, pp. 88–90).

3.9.3 A note on the t and the normal distributions

The normal distribution pdf was shown in shown in figure 2.7 with its characteristic
‘bell’ shape and its symmetry around the mean (of zero for a standard normal
distribution). Any normal variate can be scaled to have zero mean and unit variance
by subtracting its mean and dividing by its standard deviation. There is a specific
relationship between the t- and the standard normal distribution, and the t-
distribution has another parameter, its degrees of freedom.

What does the t-distribution look like? It looks similar to a normal distribution,
but with fatter tails, and a smaller peak at the mean, as shown in figure 3.11.

Some examples of the percentiles from the normal and t-distributions taken
from the statistical tables are given in table 3.2. When used in the context of a
hypothesis test, these percentiles become critical values. The values presented in
table 3.2 would be those critical values appropriate for a one-sided test of the given
significance level.
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Table 3.2 Critical values from the standard normal versus
t-distribution

Significance level (%) N(0,1) t40 t4

50 0 0 0

5 1.64 1.68 2.13

2.5 1.96 2.02 2.78

0.5 2.57 2.70 4.60

It can be seen that as the number of degrees of freedom for the t-distribution
increases from 4 to 40, the critical values fall substantially. In figure 3.11, this is
represented by a gradual increase in the height of the distribution at the centre and
a reduction in the fatness of the tails as the number of degrees of freedom increases.
In the limit, a t-distribution with an infinite number of degrees of freedom is a
standard normal, i.e. t∞ = N(0, 1), so the normal distribution can be viewed as a
special case of the t.

Putting the limit case, t∞, aside, the critical values for the t-distribution are
larger in absolute value than those from the standard normal. This arises from
the increased uncertainty associated with the situation where the error variance
must be estimated. So now the t-distribution is used, and for a given statistic to
constitute the same amount of reliable evidence against the null, it has to be bigger
in absolute value than in circumstances where the normal is applicable.

There are broadly two approaches to testing hypotheses under regression anal-
ysis: the test of significance approach and the confidence interval approach. Each
of these will now be considered in turn.

3.9.4 The test of significance approach

Assume the regression equation is given by yt = α + βxt + ut , t = 1, 2, . . . , T.
The steps involved in doing a test of significance are shown in box 3.5.

Steps 2–7 require further comment. In step 2, the estimated value of β is
compared with the value that is subject to test under the null hypothesis, but
this difference is ‘normalised’ or scaled by the standard error of the coefficient
estimate. The standard error is a measure of how confident one is in the coefficient
estimate obtained in the first stage. If a standard error is small, the value of the test
statistic will be large relative to the case where the standard error is large. For a
small standard error, it would not require the estimated and hypothesised values to
be far away from one another for the null hypothesis to be rejected. Dividing by
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Box 3.5 Conducting a test of significance

(1) Estimate α̂, β̂ and SE(α̂), SE(β̂) in the usual way.
(2) Calculate the test statistic. This is given by the formula

test statistic = β̂ − β∗

SE(β̂)
(3.30)

where β∗ is the value of β under the null hypothesis. The null hypothesis is
H0 : β = β∗ and the alternative hypothesis is H1 : β �= β∗ (for a two-sided
test).

(3) A tabulated distribution with which to compare the estimated test statistics
is required. Test statistics derived in this way can be shown to follow a
t-distribution with T − 2 degrees of freedom.

(4) Choose a ‘significance level’, often denoted α (not the same as the regression
intercept coefficient). It is conventional to use a significance level of 5%.

(5) Given a significance level, a rejection region and non-rejection region can be
determined. If a 5% significance level is employed, this means that 5% of
the total distribution (5% of the area under the curve) will be in the rejection
region. That rejection region can either be split in half (for a two-sided test)
or it can all fall on one side of the y-axis, as is the case for a one-sided test.

For a two-sided test, the 5% rejection region is split equally between
the two tails, as shown in figure 3.12.

For a one-sided test, the 5% rejection region is located solely in one
tail of the distribution, as shown in figures 3.13 and 3.14, for a test where
the alternative is of the ‘less than’ form, and where the alternative is of the
‘greater than’ form, respectively.

x

95% non-rejection region2.5%
rejection region

2.5%
rejection region

f (x)

Figure 3.12 Rejection regions for a two-sided 5% hypothesis test
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x

95% non-rejection region5%
rejection region

f (x)

Figure 3.13 Rejection region for a one-sided hypothesis test of the form
H0 : β = β∗, H1 : β < β∗

x

95% non-rejection region

f (x)

5%
rejection region

Figure 3.14 Rejection region for a one-sided hypothesis test of the form
H0 : β = β∗, H1 : β > β∗

(6) Use the t-tables to obtain a critical value or values with which to compare
the test statistic. The critical value will be that value of x that puts 5% into
the rejection region.

(7) Finally perform the test. If the test statistic lies in the rejection region then
reject the null hypothesis (H0), else do not reject H0.
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the standard error also ensures that, under the five CLRM assumptions, the test
statistic follows a tabulated distribution.

In this context, the number of degrees of freedom can be interpreted as the
number of pieces of additional information beyond the minimum requirement. If
two parameters are estimated (α and β – the intercept and the slope of the line,
respectively), a minimum of two observations is required to fit this line to the data.
As the number of degrees of freedom increases, the critical values in the tables
decrease in absolute terms, since less caution is required and one can be more
confident that the results are appropriate.

The significance level is also sometimes called the size of the test (note that this
is completely different from the size of the sample) and it determines the region
where the null hypothesis under test will be rejected or not rejected. Remember
that the distributions in figures 3.13–3.15 are for a random variable. Purely by
chance, a random variable will take on extreme values (either large and positive
values or large and negative values) occasionally. More specifically, a significance
level of 5% means that a result as extreme as this or more extreme would be
expected only 5% of the time as a consequence of chance alone. To give one
illustration, if the 5% critical value for a one-sided test is 1.68, this implies that
the test statistic would be expected to be greater than this only 5% of the time
by chance alone. There is nothing magical about the test – all that is done is to
specify an arbitrary cutoff value for the test statistic that determines whether the
null hypothesis would be rejected or not. It is conventional to use a 5% size of test,
but 10% and 1% are also commonly used.

However, one potential problem with the use of a fixed (e.g. 5%) size of
test is that if the sample size is sufficiently large, any null hypothesis can be
rejected. This is particularly worrisome in finance, where tens of thousands of
observations or more are often available. What happens is that the standard errors
reduce as the sample size increases, thus leading to an increase in the value of
all t-test statistics. This problem is frequently overlooked in empirical work, but
some econometricians have suggested that a lower size of test (e.g. 1%) should be
used for large samples (see, for example, Leamer, 1978, for a discussion of these
issues).

Note also the use of terminology in connection with hypothesis tests: it is said
that the null hypothesis is either rejected or not rejected. It is incorrect to state that if
the null hypothesis is not rejected, it is ‘accepted’ (although this error is frequently
made in practice), and it is never said that the alternative hypothesis is accepted
or rejected. One reason why it is not sensible to say that the null hypothesis is
‘accepted’ is that it is impossible to know whether the null is actually true or not!
In any given situation, many null hypotheses will not be rejected. For example,
suppose that H0 : β = 0.5 and H0 : β = 1 are separately tested against the relevant
two-sided alternatives and neither null is rejected. Clearly then it would not make
sense to say that ‘H0 : β = 0.5 is accepted’ and ‘H0 : β = 1 is accepted’, since
the true (but unknown) value of β cannot be both 0.5 and 1. So, to summarise,
the null hypothesis is either rejected or not rejected on the basis of the available
evidence.
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Box 3.6 Carrying out a hypothesis test using confidence
intervals

(1) Calculate α̂, β̂ and SE(α̂), SE(β̂) as before.
(2) Choose a significance level, α (again the convention is 5%). This is

equivalent to choosing a (1 − α)∗100% confidence interval

i.e. 5% significance level = 95% confidence interval.

(3) Use the t-tables to find the appropriate critical value, which will again
have T−2 degrees of freedom.

(4) The confidence interval for β is given by

(β̂ − tcrit · SE(β̂), β̂ + tcrit · SE(β̂))

Note that a centre dot (·) is sometimes used instead of a cross (×) to
denote when two quantities are multiplied together.

(5) Perform the test: if the hypothesised value of β (i.e. β∗) lies outside
the confidence interval, then reject the null hypothesis that β = β∗,
otherwise do not reject the null.

3.9.5 The confidence interval approach to hypothesis testing (box 3.6)

To give an example of its usage, one might estimate a parameter, say β̂, to be
0.93, and a ‘95% confidence interval’ to be (0.77, 1.09). This means that in many
repeated samples, 95% of the time, the true value of β will be contained within
this interval. Confidence intervals are almost invariably estimated in a two-sided
form, although in theory a one-sided interval can be constructed. Constructing a
95% confidence interval is equivalent to using the 5% level in a test of significance.

3.9.6 The test of significance and confidence interval approaches always
give the same conclusion

Under the test of significance approach, the null hypothesis that β = β∗ will not be
rejected if the test statistic lies within the non-rejection region, i.e. if the following
condition holds

−tcrit ≤ β̂ − β∗

SE(β̂)
≤ + tcrit

Rearranging, the null hypothesis would not be rejected if

−tcrit · SE(β̂) ≤ β̂ − β∗ ≤ + tcrit · SE(β̂)
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Box 3.7 The test of significance and confidence interval
approaches compared

Test of significance approach Confidence interval approach

test stat = β̂ − β∗

SE(β̂)

= 0.5091 − 1

0.2561
= −1.917

Find tcrit = t20;5% = ±2.086

Find tcrit = t20;5% = ±2.086
β̂ ± tcrit · SE(β̂)
= 0.5091 ± 2.086 · 0.2561
= (−0.0251, 1.0433)

Do not reject H0 since test statistic Do not reject H0 since 1 lies
lies within non-rejection region within the confidence interval

i.e. one would not reject if

β̂ − tcrit · SE(β̂) ≤ β∗ ≤ β̂ + tcrit · SE(β̂)

But this is just the rule for non-rejection under the confidence interval
approach. So it will always be the case that, for a given significance level, the
test of significance and confidence interval approaches will provide the same con-
clusion by construction. One testing approach is simply an algebraic rearrangement
of the other.

Example 3.4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Given the regression results above

ŷt = 20.3 + 0.5091xt
, T = 22

(14.38) (0.2561)
(3.31)

Using both the test of significance and confidence interval approaches, test the
hypothesis that β = 1 against a two-sided alternative. This hypothesis might be of
interest, for a unit coefficient on the explanatory variable implies a 1:1 relationship
between movements in x and movements in y.

The null and alternative hypotheses are respectively:

H0 : β = 1

H1 : β �= 1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The results of the test according to each approach are shown in box 3.7.
A couple of comments are in order. First, the critical value from the t-

distribution that is required is for twenty degrees of freedom and at the 5% level.
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–2.086 +2.086 x

95% non-rejection region2.5%
rejection region

2.5%
rejection region

f (x)

Figure 3.15 Critical values and rejection regions for a t20;5%

This means that 5% of the total distribution will be in the rejection region, and
since this is a two-sided test, 2.5% of the distribution is required to be contained in
each tail. From the symmetry of the t-distribution around zero, the critical values
in the upper and lower tail will be equal in magnitude, but opposite in sign, as
shown in figure 3.15.

What if instead the researcher wanted to test H0 : β = 0 or H0 : β = 2? In
order to test these hypotheses using the test of significance approach, the test
statistic would have to be reconstructed in each case, although the critical value
would be the same. On the other hand, no additional work would be required
if the confidence interval approach had been adopted, since it effectively permits
the testing of an infinite number of hypotheses. So for example, suppose that the
researcher wanted to test

H0 : β = 0

versus

H1 : β �= 0

and

H0 : β = 2

versus

H1 : β �= 2

In the first case, the null hypothesis (that β = 0) would not be rejected since
0 lies within the 95% confidence interval. By the same argument, the second
null hypothesis (that β =2) would be rejected since 2 lies outside the estimated
confidence interval.
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On the other hand, note that this book has so far considered only the results
under a 5% size of test. In marginal cases (e.g. H0 : β = 1, where the test statistic
and critical value are close together), a completely different answer may arise if a
different size of test was used. This is where the test of significance approach is
preferable to the construction of a confidence interval.

For example, suppose that now a 10% size of test is used for the null hypothesis
given in example 3.4. Using the test of significance approach,

test statistic = β̂ − β∗

SE(β̂)

= 0.5091 − 1
0.2561

= −1.917

as above. The only thing that changes is the critical t-value. At the 10% level (so
that 5% of the total distribution is placed in each of the tails for this two-sided
test), the required critical value is t20;10% = ±1.725. So now, as the test statistic lies
in the rejection region, H0 would be rejected. In order to use a 10% test under
the confidence interval approach, the interval itself would have to have been re-
estimated since the critical value is embedded in the calculation of the confidence
interval.

So the test of significance and confidence interval approaches both have their
relative merits. The testing of a number of different hypotheses is easier under the
confidence interval approach, while a consideration of the effect of the size of the
test on the conclusion is easier to address under the test of significance approach.

Caution should therefore be used when placing emphasis on or making deci-
sions in the context of marginal cases (i.e. in cases where the null is only just
rejected or not rejected). In this situation, the appropriate conclusion to draw is
that the results are marginal and that no strong inference can be made one way or
the other. A thorough empirical analysis should involve conducting a sensitivity
analysis on the results to determine whether using a different size of test alters the
conclusions. It is worth stating again that it is conventional to consider sizes of test
of 10%, 5% and 1%. If the conclusion (i.e. ‘reject’ or ‘do not reject’) is robust to
changes in the size of the test, then one can be more confident that the conclusions
are appropriate. If the outcome of the test is qualitatively altered when the size of
the test is modified, the conclusion must be that there is no conclusion one way
or the other!

It is also worth noting that if a given null hypothesis is rejected using a 1%
significance level, it will also automatically be rejected at the 5% level, so that
there is no need to actually state the latter. Dougherty (1992, p. 100), gives the
analogy of a high jumper. If the high jumper can clear 2 metres, it is obvious
that the jumper could also clear 1.5 metres. The 1% significance level is a higher
hurdle than the 5% significance level. Similarly, if the null is not rejected at the 5%
level of significance, it will automatically not be rejected at any stronger level of
significance (e.g. 1%). In this case, if the jumper cannot clear 1.5 metres, there is
no way s/he will be able to clear 2 metres.
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Table 3.3 Classifying hypothesis testing errors and correct
conclusions

Reality

H0 is true H0 is false

Significant Type I error = α
√

Result of test (reject H0)

Insignificant
√

Type II error = β

(do not reject H0)

3.9.7 Some more terminology

If the null hypothesis is rejected at the 5% level, it would be said that the result of
the test is ‘statistically significant’. If the null hypothesis is not rejected, it would
be said that the result of the test is ‘not significant’, or that it is ‘insignificant’.
Finally, if the null hypothesis is rejected at the 1% level, the result is termed ‘highly
statistically significant’.

Note that a statistically significant result may be of no practical significance. For
example, if the estimated beta for a stock under a CAPM regression is 1.05, and
a null hypothesis that β = 1 is rejected, the result will be statistically significant.
But it may be the case that a slightly higher beta will make no difference to an
investor’s choice as to whether to buy the stock or not. In that case, one would say
that the result of the test was statistically significant but financially or practically
insignificant.

3.9.8 Classifying the errors that can be made using hypothesis tests

H0 is usually rejected if the test statistic is statistically significant at a chosen
significance level. There are two possible errors that could be made:

(1) Rejecting H0 when it was really true; this is called a type I error.
(2) Not rejecting H0 when it was in fact false; this is called a type II error.

The possible scenarios can be summarised in table 3.3. The probability of a type I
error is just α, the significance level or size of test chosen. To see this, recall what is
meant by ‘significance’ at the 5% level: it is only 5% likely that a result as or more
extreme as this could have occurred purely by chance. Or, to put this another way,
it is only 5% likely that this null would be rejected when it was in fact true.

Note that there is no chance for a free lunch (i.e. a cost-less gain) here! What
happens if the size of the test is reduced (e.g. from a 5% test to a 1% test)? The
chances of making a type I error would be reduced . . . but so would the probability
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Box 3.8 Type I and type II errors

Less likely Lower
to falsely → chance of

Reduce size → More strict → Reject null ↗ reject type I error
of test (e.g. criterion for hypothesis ↘
5% to 1%) rejection less often More likely to Higher

incorrectly → chance of
not reject type II error

that the null hypothesis would be rejected at all, so increasing the probability of
a type II error. The two competing effects of reducing the size of the test can be
shown in box 3.8.

So there always exists, therefore, a direct trade-off between type I and type II
errors when choosing a significance level. The only way to reduce the chances of
both is to increase the sample size or to select a sample with more variation, thus
increasing the amount of information upon which the results of the hypothesis
test are based. In practice, up to a certain level, type I errors are usually considered
more serious and hence a small size of test is usually chosen (5% or 1% are the
most common).

The probability of a type I error is the probability of incorrectly rejecting a
correct null hypothesis, which is also the size of the test. Another important piece
of terminology in this area is the power of a test. The power of a test is defined as the
probability of (appropriately) rejecting an incorrect null hypothesis. The power of
the test is also equal to one minus the probability of a type II error.

An optimal test would be one with an actual test size that matched the nominal
size and which had as high a power as possible. Such a test would imply, for example,
that using a 5% significance level would result in the null being rejected exactly
5% of the time by chance alone, and that an incorrect null hypothesis would be
rejected close to 100% of the time.

• • • • • • • • • • • • • • 3.10 A special type of hypothesis test: the t-ratio

Recall that the formula under a test of significance approach to hypothesis testing
using a t-test for the slope parameter was

test statistic = β̂ − β∗

SE
(
β̂
) (3.32)

with the obvious adjustments to test a hypothesis about the intercept. If the test is

H0 : β = 0

H1 : β �= 0
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i.e. a test that the population parameter is zero against a two-sided alternative, this
is known as a t-ratio test. Since β∗ = 0, the expression in (3.32) collapses to

test statistic = β̂

SE(β̂)
(3.33)

Thus the ratio of the coefficient to its standard error, given by this expression,
is known as the t-ratio or t-statistic.

Example 3.5 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that we have calculated the estimates for the intercept and the slope (1.10
and −19.88 respectively) and their corresponding standard errors (1.35 and 1.98
respectively). The t -ratios associated with each of the intercept and slope coefficients
would be given by

α̂ β̂

Coefficient 1.10 −19.88
SE 1.35 1.98
t -ratio 0.81 −10.04

Note that if a coefficient is negative, its t -ratio will also be negative. In order to test
(separately) the null hypotheses that α = 0 and β = 0, the test statistics would be
compared with the appropriate critical value from a t -distribution. In this case, the
number of degrees of freedom, given by T − k, is equal to 15 − 2 = 13. The 5%
critical value for this two-sided test (remember, 2.5% in each tail for a 5% test) is 2.160,
while the 1% two-sided critical value (0.5% in each tail) is 3.01. Given these t -ratios and
critical values, would the following null hypotheses be rejected?

H0 : α = 0? (No)

H0 : β = 0? (Yes)

If H0 is rejected, it would be said that the test statistic is significant. If the variable is not
‘significant’, it means that while the estimated value of the coefficient is not exactly zero
(e.g. 1.10 in the example above), the coefficient is indistinguishable statistically from
zero. If a zero were placed in the fitted equation instead of the estimated value, this
would mean that whatever happened to the value of that explanatory variable, the
dependent variable would be unaffected. This would then be taken to mean that the
variable is not helping to explain variations in y, and that it could therefore be
removed from the regression equation. For example, if the t -ratio associated with x
had been −1.04 rather than −10.04 (assuming that the standard error stayed the
same), the variable would be classed as insignificant (i.e. not statistically different from
zero). The only insignificant term in the above regression is the intercept. There are
good statistical reasons for always retaining the constant, even if it is not significant; see
chapter 5.

It is worth noting that, for degrees of freedom greater than around 25, the 5%
two-sided critical value is approximately ±2. So, as a rule of thumb (i.e. a rough guide),
the null hypothesis would be rejected if the t -statistic exceeds 2 in absolute value.
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Table 3.4 Summary statistics for the estimated regression
results for (3.34)

Extremal values

Item Mean value Median value Minimum Maximum

α̂ −0.011 −0.009 −0.080 0.058

β̂ 0.840 0.848 0.219 1.405

Sample size 17 19 10 20

Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers.

Some authors place the t -ratios in parentheses below the corresponding
coefficient estimates rather than the standard errors. One thus needs to check which
convention is being used in each particular application, and also to state this clearly
when presenting estimation results.

There will now follow two finance case studies that involve only the estimation of
bivariate linear regression models and the construction and interpretation of t -ratios.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 3.11 An example of a simple t-test of a theory in finance: can US mutual funds
beat the market?

Jensen (1968) was the first to systematically test the performance of mutual funds,
and in particular examine whether any ‘beat the market’. He used a sample of
annual returns on the portfolios of 115 mutual funds from 1945–64. Each of the
115 funds was subjected to a separate OLS time series regression of the form

Rjt − Rft = α j + β j (Rmt − Rft) + u jt (3.34)

where Rjt is the return on portfolio j at time t, Rft is the return on a risk-free
proxy (a one-year government bond), Rmt is the return on a market portfolio
proxy, u jt is an error term, and α j , β j are parameters to be estimated. The quantity
of interest is the significance of α j , since this parameter defines whether the fund
outperforms or underperforms the market index. Thus the null hypothesis is given
by: H0 : α j = 0. A positive and significant α j for a given fund would suggest
that the fund is able to earn significant abnormal returns in excess of the market-
required return for a fund of this given riskiness. This coefficient has become
known as ‘Jensen’s alpha’. Some summary statistics across the 115 funds for the
estimated regression results for (3.34) are given in table 3.4.

As table 3.4 shows, the average (defined as either the mean or the median)
fund was unable to ‘beat the market’, recording a negative alpha in both cases.
There were, however, some funds that did manage to perform significantly better
than expected given their level of risk, with the best fund of all yielding an alpha of
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Figure 3.16 Frequency distribution of t-ratios of mutual fund alphas (gross of transactions
costs)
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Figure 3.17 Frequency distribution of t-ratios of mutual fund alphas (net of transactions
costs)

0.058. Interestingly, the average fund had a beta estimate of around 0.85, indicating
that, in the CAPM context, most funds were less risky than the market index. This
result may be attributable to the funds investing predominantly in (mature) blue
chip stocks rather than small caps.

The most visual method of presenting the results was obtained by plotting the
number of mutual funds in each t-ratio category for the alpha coefficient, first gross
and then net of transactions costs, as in figure 3.16 and figure 3.17, respectively.

The appropriate critical value for a two-sided test of α j = 0 is approxi-
mately 3.10 (assuming twenty years of annual data leading to eighteen degrees of
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Table 3.5 Summary statistics for unit trust returns, January
1979–May 2000

Mean Minimum Maximum Median

(%) (%) (%) (%)

Average monthly

return, 1979–2000 1.0 0.6 1.4 1.0

Standard deviation of

returns over time 5.1 4.3 6.9 5.0

freedom). As can be seen, only five funds have estimated t-ratios greater than 2
and are therefore implied to have been able to outperform the market before trans-
actions costs are taken into account. Interestingly, five firms have also significantly
underperformed the market, with t-ratios of –2 or less.

When transactions costs are taken into account (figure 3.17), only one fund
out of 115 is able to significantly outperform the market, while 14 significantly
underperform it. Given that a nominal 5% two-sided size of test is being used,
one would expect two or three funds to ‘significantly beat the market’ by chance
alone. It would thus be concluded that, during the sample period studied, US fund
managers appeared unable to systematically generate positive abnormal returns.

• • • • • • • • • • • • • • 3.12 Can UK unit trust managers beat the market?

Jensen’s study has proved pivotal in suggesting a method for conducting empirical
tests of the performance of fund managers. However, it has been criticised on sev-
eral grounds. One of the most important of these in the context of this book is that
only between ten and twenty annual observations were used for each regression.
Such a small number of observations is really insufficient for the asymptotic theory
underlying the testing procedure to be validly invoked.

A variant on Jensen’s test is now estimated in the context of the UK market, by
considering monthly returns on seventy-six equity unit trusts. The data cover the
period January 1979–May 2000 (257 observations for each fund). Some summary
statistics for the funds are presented in table 3.5.

From these summary statistics, the average continuously compounded return
is 1% per month, although the most interesting feature is the wide variation in the
performances of the funds. The worst-performing fund yields an average return of
0.6% per month over the twenty-year period, while the best would give 1.4% per
month. This variability is further demonstrated in figure 3.18, which plots over
time the value of £100 invested in each of the funds in January 1979.

A regression of the form (3.34) is applied to the UK data, and the summary
results presented in table 3.6. A number of features of the regression results are
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Table 3.6 CAPM regression results for unit trust returns, January
1979–May 2000

Estimates of Mean Minimum Maximum Median

α(%) −0.02 −0.54 0.33 −0.03

β 0.91 0.56 1.09 0.91

t-ratio on α −0.07 −2.44 3.11 −0.25
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Figure 3.18 Performance of UK unit trusts, 1979–2000

worthy of further comment. First, most of the funds have estimated betas less than
one again, perhaps suggesting that the fund managers have historically been risk-
averse or investing disproportionately in blue chip companies in mature sectors.
Second, gross of transactions costs, nine funds of the sample of seventy-six were able
to significantly outperform the market by providing a significant positive alpha,
while seven funds yielded significant negative alphas. The average fund (where
‘average’ is measured using either the mean or the median) is not able to earn any
excess return over the required rate given its level of risk.

• • • • • • • • • • • • • • 3.13 The overreaction hypothesis and the UK stock market

3.13.1 Motivation

Two studies by DeBondt and Thaler (1985, 1987) showed that stocks experiencing
a poor performance over a three–five-year period subsequently tend to outperform
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Box 3.9 Reasons for stock market overreactions

(1) That the ‘overreaction effect’ is just another manifestation of the ‘size effect’.
The size effect is the tendency of small firms to generate on average,
superior returns to large firms. The argument would follow that the
losers were small firms and that these small firms would subsequently
outperform the large firms. DeBondt and Thaler did not believe this a
sufficient explanation, but Zarowin (1990) found that allowing for firm
size did reduce the subsequent return on the losers.

(2) That the reversals of fortune reflect changes in equilibrium required returns. The
losers are argued to be likely to have considerably higher CAPM betas,
reflecting investors’ perceptions that they are more risky. Of course,
betas can change over time, and a substantial fall in the firms’ share
prices (for the losers) would lead to a rise in their leverage ratios,
leading in all likelihood to an increase in their perceived riskiness.
Therefore, the required rate of return on the losers will be larger, and
their ex post performance better. Ball and Kothari (1989) find the
CAPM betas of losers to be considerably higher than those of winners.

stocks that had previously performed relatively well. This implies that, on average,
stocks which are ‘losers’ in terms of their returns subsequently become ‘winners’,
and vice versa. This chapter now examines a paper by Clare and Thomas (1995)
that conducts a similar study using monthly UK stock returns from January 1955
to 1990 (thirty-six years) on all firms traded on the London Stock exchange.

This phenomenon seems at first blush to be inconsistent with the effi-
cient markets hypothesis, and Clare and Thomas propose two explanations (see
box 3.9). Zarowin (1990) also finds that 80% of the extra return available from
holding the losers accrues to investors in January, so that almost all of the ‘overre-
action effect’ seems to occur at the start of the calendar year.

3.13.2 Methodology

Clare and Thomas take a random sample of 1,000 firms and, for each, they calculate
the monthly excess return of the stock for the market over a twelve-, twenty-four-
or thirty-six-month period for each stock i

Uit = Rit − Rmt t = 1, . . . , n; i = 1, . . . , 1000;

n = 12, 24 or 36 (3.35)
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Box 3.10 Ranking stocks and forming portfolios

Portfolio Ranking
Portfolio 1 Best performing 20% of firms
Portfolio 2 Next 20%
Portfolio 3 Next 20%
Portfolio 4 Next 20%
Portfolio 5 Worst performing 20% of firms

Box 3.11 Portfolio monitoring

Estimate R̄i for year 1
Monitor portfolios for year 2
Estimate R̄i for year 3
...
Monitor portfolios for year 36

Then the average monthly return over each stock i for the first twelve-, twenty-
four-, or thirty-six-month period is calculated:

R̄i = 1
n

n∑
t=1

Uit (3.36)

The stocks are then ranked from highest average return to lowest and from these
five portfolios are formed and returns are calculated assuming an equal weighting
of stocks in each portfolio (box 3.10).

The same sample length n is used to monitor the performance of each portfolio.
Thus, for example, if the portfolio formation period is one, two or three years,
the subsequent portfolio tracking period will also be one, two or three years,
respectively. Then another portfolio formation period follows and so on until the
sample period has been exhausted. How many samples of length n will there be?
n = 1, 2 or 3 years. First, suppose n = 1 year. The procedure adopted would be
as shown in box 3.11.

So if n = 1, there are eighteen independent (non-overlapping) observation
periods and eighteen independent tracking periods. By similar arguments, n =
2 gives nine independent periods and n = 3 gives six independent periods. The
mean return for each month over the 18, 9, or 6 periods for the winner and
loser portfolios (the top 20% and bottom 20% of firms in the portfolio formation
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Table 3.7 Is there an overreaction effect in the UK stock market?

Panel A: all months

n = 12 n = 24 n = 36

Return on loser 0.0033 0.0011 0.0129

Return on winner 0.0036 −0.0003 0.0115

Implied annualised return difference −0.37% 1.68% 1.56%

Coefficient for (3.37): α̂1 −0.00031 0.0014∗∗ 0.0013

(0.29) (2.01) (1.55)

Coefficients for (3.38): α̂2 −0.00034 0.00147∗∗ 0.0013∗

(−0.30) (2.01) (1.41)

Coefficients for (3.38): β̂ −0.022 0.010 −0.0025

(−0.25) (0.21) (−0.06)

Panel B: all months except January

Coefficient for (3.37): α̂1 −0.0007 0.0012∗ 0.0009

(−0.72) (1.63) (1.05)

Notes: t-ratios in parentheses; ∗ and ∗∗ denote significance at the 10% and 5% levels, respectively.
Source: Clare and Thomas (1995). Reprinted with the permission of Blackwell Publishers.

period) are denoted by R̄W
pt and R̄L

pt , respectively. Define the difference between
these as R̄Dt = R̄L

pt − R̄W
pt .

The first regression to be performed is of the excess return of the losers over
the winners on a constant only

R̄Dt = α1 + ηt (3.37)

where ηt is an error term. The test is of whether α1 is significant and positive.
However, a significant and positive α1 is not a sufficient condition for the overre-
action effect to be confirmed because it could be owing to higher returns being
required on loser stocks owing to loser stocks being more risky. The solution, Clare
and Thomas (1995) argue, is to allow for risk differences by regressing against the
market risk premium

R̄Dt = α2 + β(Rmt − Rf t ) + ηt (3.38)

where Rmt is the return on the FTA All-share, and Rf t is the return on a UK gov-
ernment three-month Treasury Bill. The results for each of these two regressions
are presented in table 3.7.
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As can be seen by comparing the returns on the winners and losers in the
first two rows of table 3.7, twelve months is not a sufficiently long time for losers
to become winners. By the two-year tracking horizon, however, the losers have
become winners, and similarly for the three-year samples. This translates into an
average 1.68% higher return on the losers than the winners at the two-year horizon,
and 1.56% higher return at the three-year horizon. Recall that the estimated value
of the coefficient in a regression of a variable on a constant only is equal to the
average value of that variable. It can also be seen that the estimated coefficients on
the constant terms for each horizon are exactly equal to the differences between
the returns of the losers and the winners. This coefficient is statistically significant
at the two-year horizon, and marginally significant at the three-year horizon.

In the second test regression, β̂ represents the difference between the market
betas of the winner and loser portfolios. None of the beta coefficient estimates are
even close to being significant, and the inclusion of the risk term makes virtually
no difference to the coefficient values or significances of the intercept terms.

Removal of the January returns from the samples reduces the subsequent
degree of overperformance of the loser portfolios, and the significances of the
α̂1 terms is somewhat reduced. It is concluded, therefore, that only a part of the
overreaction phenomenon occurs in January. Clare and Thomas then proceed to
examine whether the overreaction effect is related to firm size, although the results
are not presented here.

3.13.3 Conclusions

The main conclusions from Clare and Thomas’ study are:

(1) There appears to be evidence of overreactions in UK stock returns, as found
in previous US studies.

(2) These overreactions are unrelated to the CAPM beta.
(3) Losers that subsequently become winners tend to be small, so that most of the

overreaction in the UK can be attributed to the size effect.

• • • • • • • • • • • • • • 3.14 The exact significance level

The exact significance level is also commonly known as the p-value. It gives the
marginal significance level where one would be indifferent between rejecting and not
rejecting the null hypothesis. If the test statistic is ‘large’ in absolute value, the
p-value will be small, and vice versa. For example, consider a test statistic that is
distributed as a t62 and takes a value of 1.47. Would the null hypothesis be rejected?
It would depend on the size of the test. Now, suppose that the p-value for this test
is calculated to be 0.12:

● Is the null rejected at the 5% level? No
● Is the null rejected at the 10% level? No
● Is the null rejected at the 20% level? Yes
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Table 3.8 Part of the EViews regression output revisited

Coefficient Std. error t-Statistic Prob.

C 0.000640 0.026625 0.024032 0.9809

RFUTURES 1.007291 0.005865 171.7341 0.0000

In fact, the null would have been rejected at the 12% level or higher. To see this,
consider conducting a series of tests with size 0.1%, 0.2%, 0.3%, 0.4%, . . . 1%, . . . ,
5%, . . . 10%, . . . Eventually, the critical value and test statistic will meet and this
will be the p-value. p-values are almost always provided automatically by software
packages. Note how useful they are! They provide all of the information required to
conduct a hypothesis test without requiring of the researcher the need to calculate
a test statistic or to find a critical value from a table – both of these steps have
already been taken by the package in producing the p-value. The p-value is also
useful since it avoids the requirement of specifying an arbitrary significance level
(α). Sensitivity analysis of the effect of the significance level on the conclusion
occurs automatically.

Informally, the p-value is also often referred to as the probability of being
wrong when the null hypothesis is rejected. Thus, for example, if a p-value of
0.05 or less leads the researcher to reject the null (equivalent to a 5% significance
level), this is equivalent to saying that if the probability of incorrectly rejecting
the null is more than 5%, do not reject it. The p-value has also been termed the
‘plausibility’ of the null hypothesis; so, the smaller is the p-value, the less plausible
is the null hypothesis.

• • • • • • • • • • • • • • 3.15 Hypothesis testing in EViews – example 1: hedging revisited

Reload the ‘hedge.wf1’ EViews work file that was created above. If we
re-examine the results table from the returns regression (screenshot 3.4), it can be
seen that as well as the parameter estimates, EViews automatically calculates the
standard errors, the t-ratios and the p-values associated with a two-sided test of
the null hypothesis that the true value of a parameter is zero. Part of the results
table for the returns regression is replicated again here (table 3.8) for ease of
interpretation.

The third column presents the t-ratios, which are the test statistics for testing
the null hypothesis that the true values of these parameters are zero against a two
sided alternative – i.e. these statistics test H0 : α = 0 versus H1 : α �= 0 in the first
row of numbers and H0 : β = 0 versus H1 : β �= 0 in the second. The fact that
the first of these test statistics is very small is indicative that the corresponding
null hypotheses is likely not to be rejected but it probably will be rejected for the
slope. This suggestion is confirmed by the p-values given in the final column. The
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Wald test:
Equation: RETURNREG

Test statistic Value df Probability

t-statistic 1.243066 132 0.2160
F-statistic 1.545212 (1, 132) 0.2160
Chi-square 1.545212 1 0.2138

Null hypothesis: C(2) = 1

Null hypothesis summary:

Normalised restriction (= 0) Value Std. err.

−1 + C(2) 0.007291 0.005865

Restrictions are linear in coefficients.

intercept p-value is considerably larger than 0.1, indicating that the corresponding
test statistic is not even significant at the 10% level; for the slope coefficient,
however, it is zero to four decimal places so the null hypothesis is decisively
rejected.

Suppose now that we wanted to test the null hypothesis that H0 : β = 1 rather
than H0 : β = 0. We could test this, or any other hypothesis about the coef-
ficients, by hand, using the information we already have. But it is easier to let
EViews do the work by typing View and then Coefficient Diagnostics/Wald
Test – Coefficient Restrictions . . . . EViews defines all of the parameters in
a vector C, so that C(1) will be the intercept and C(2) will be the slope. Type
C(2)=1 and click OK. Note that using this software, it is possible to test multiple
hypotheses, which will be discussed in chapter 4, and also non-linear restric-
tions, which cannot be tested using the standard procedure for inference described
above.

The test is performed in three different ways, but results suggest that the null
hypothesis should clearly not be rejected as the p-value for the test is considerably
greater than 0.05 in each case. Note that, since we are testing a single restriction,
the t and F and Chi-squared versions of the test will give the same conclusions –
more on this in the next chapter. EViews also reports the ‘normalised restriction’,
although this can be ignored for the time being since it merely reports the regression
slope parameter (in a different form) and its standard error.

Now go back to the regression in levels (i.e. with the raw prices rather than
the returns) and test the null hypothesis that β = 1 in this regression. You should
find in this case that the null hypothesis is strongly rejected (table below).
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Wald test:
Equation: LEVELREG

Test statistic Value df Probability

t-statistic −2.329050 133 0.0214
F-statistic 5.424474 (1, 133) 0.0214
Chi-square 5.424474 1 0.0199

Null hypothesis: C(2)=1

Null hypothesis summary:

Normalised restriction (= 0) Value Std. err.

−1 + C(2) −0.004368 0.001876

Restrictions are linear in coefficients.

• • • • • • • • • • • • • • 3.16 Hypothesis testing in EViews – example 2: the CAPM

This exercise will estimate and test some hypotheses about the CAPM beta for
several US stocks. First, Open a new workfile to accommodate monthly data
commencing in January 2002 and ending in April 2013. Note that it is standard
to employ five years of monthly data for estimating betas but let us use all of the
observations (over ten years) for now. Then import the Excel file ‘capm.xls’.
The file is organised by observation and contains six columns of numbers plus
the dates in the first column – you should be able to just click through with
the default options. The monthly stock prices of four companies (Ford, General
Electric, Microsoft and Oracle) will appear as objects, along with index values for
the S&P500 (‘sandp’) and three-month US-Treasury bills (‘ustb3m’). Save the
EViews workfile as ‘capm.wk1’.

In order to estimate a CAPM equation for the Ford stock, for example, we
need to first transform the price series into returns and then the excess returns over
the risk free rate. To transform the series, click on the Generate button (Genr) in
the workfile window. In the new window, type

RSANDP=100∗LOG(SANDP/SANDP(−1))

This will create a new series named RSANDP that will contain the returns of
the S&P500. The operator (−1) is used to instruct EViews to use the one-period
lagged observation of the series. To estimate percentage returns on the Ford stock,
press the Genr button again and type
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RFORD=100∗LOG(FORD/FORD(−1))

This will yield a new series named RFORD that will contain the returns of
the Ford stock. EViews allows various kinds of transformations to the series. For
example

X2=X/2 creates a new variable called X2 that is half
of X

XSQ=Xˆ2 creates a new variable XSQ that is X squared
LX=LOG(X) creates a new variable LX that is the

log of X
LAGX=X(−1) creates a new variable LAGX containing X

lagged by one period
LAGX2=X(−2) creates a new variable LAGX2 containing X

lagged by two periods

Other functions include:

d(X) first difference of X
d(X,n) nth order difference of X
dlog(X) first difference of the logarithm of X
dlog(X,n) nth order difference of the logarithm of X
abs(X) absolute value of X

If, in the transformation, the new series is given the same name as the old series,
then the old series will be overwritten. Note that the returns for the S&P index
could have been constructed using a simpler command in the ‘Genr’ window such
as

RSANDP=100∗DLOG(SANDP)

as we used previously but it is instructive to see how the ‘dlog’ formula is working.
Before we can transform the returns into excess returns, we need to be slightly
careful because the stock returns are monthly, but the Treasury bill yields are
annualised. We could run the whole analysis using monthly data or using annualised
data and it should not matter which we use, but the two series must be measured
consistently. So, to turn the T-bill yields into monthly figures and to write over
the original series, press the Genr button again and type

USTB3M=USTB3M/12

Now, to compute the excess returns, click Genr again and type

ERSANDP=RSANDP-USTB3M

where ‘ERSANDP’ will be used to denote the excess returns, so that the original
raw returns series will remain in the workfile. The Ford returns can similarly be
transformed into a set of excess returns.

Now that the excess returns have been obtained for the two series, before
running the regression, plot the data to examine visually whether the series appear
to move together. To do this, create a new object by clicking on the Object/New
Object menu on the menu bar. Select Graph, provide a name (call the graph
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Screenshot 3.5 Plot of two series

Graph1) and then in the new window provide the names of the series to plot. In
this new window, type

ERSANDP ERFORD

Then press OK and screenshot 3.5 will appear. It is evident that the Ford series is
far more volatile than the index as a whole, especially during the 2008–9 period,
although on average the two series seem to move in the same direction at most
points in time.

This is a time series plot of the two variables, but a scatter plot may be more
informative. To examine a scatter plot, Click Options, choose the Graph Type
tab, then select Scatter from the list and click OK. There appears to be a weak
positive association between ERFTAS and ERFORD. Close the window of the
graph and return to the workfile window.

To estimate the CAPM equation, click on Object/New Object . . . . In
the new window, select Equation (the first option in the list) and name the
object CAPM. Click on OK. In the window, specify the regression equation.
The regression equation takes the form

(RFord − r f )t = α + β(RM − r f )t + ut
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Since the data have already been transformed to obtain the excess returns, in order
to specify this regression equation, in the equation window type

ERFORD C ERSANDP
To use all the observations in the sample and to estimate the regression using LS –
Least Squares (NLS and ARMA), click on OK. The results screen appears as in
the following table. Make sure that you save the Workfile again to include the
transformed series and regression results.

Dependent Variable: ERFORD
Method: Least Squares
Date: 07/02/13 Time: 10:55
Sample (adjusted): 2002M02 2013M04
Included observations: 135 after adjustments

Coefficient Std. error t-Statistic Prob.

C −0.319863 1.086409 −0.294423 0.7689
ERSANDP 2.026213 0.237743 8.522711 0.0000

R-squared 0.353228 Mean dependent var −0.078204
Adjusted R-squared 0.348365 S.D. dependent var 15.63184
S.E. of regression 12.61863 Akaike info criterion 7.922930
Sum squared resid 21177.56 Schwarz criterion 7.965971
Log likelihood −532.7977 Hannan-Quinn criter. 7.940420
F-statistic 72.63660 Durbin-Watson stat 2.588482
Prob(F-statistic) 0.000000

Take a couple of minutes to examine the results of the regression. What is the
slope coefficient estimate and what does it signify? Is this coefficient statistically
significant? The beta coefficient (the slope coefficient) estimate is 2.026. The p-
value of the t-ratio is 0.0000, signifying that the excess return on the market proxy
has highly significant explanatory power for the variability of the excess returns of
Ford stock. What is the interpretation of the intercept estimate? Is it statistically
significant?

In fact, there is a considerably quicker method for using transformed variables
in regression equations, and that is to write the transformation directly into the
equation window. In the CAPM example above, this could be done by typing

(100∗DLOG(FORD))-(USTB3M/12) C (100∗DLOG(SANDP))-(USTB3M/12)

into the equation window. As well as being quicker, an advantage of this approach
is that the output will show more clearly the regression that has actually been
conducted, so that any errors in making the transformations can be seen more
clearly.

How could the hypothesis that the value of the population coefficient is equal
to 1 be tested? The answer is to click on View/Coefficient Diagnostics/Wald
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Test – Coefficient Restrictions. . . and then in the box that appears, Type
C(2)=1. The conclusion here is that the null hypothesis that the CAPM beta of
Ford stock is 1 is convincingly rejected and hence the estimated beta of 2.026 is
significantly different from 1.5

Key concepts

The key terms to be able to define and explain from this chapter are

• regression model • disturbance term

• population • sample

• linear model • consistency

• unbiasedness • efficiency

• standard error • statistical inference

• null hypothesis • alternative hypothesis

• t-distribution • confidence interval

• test statistic • rejection region

• type I error • type II error

• size of a test • power of a test

• p-value • data mining

• asymptotic

Appendix Mathematical derivations of CLRM results

3A.1 Derivation of the OLS coefficient estimator in the bivariate case

L =
T∑

t=1

(yt − ŷt )2 =
T∑

t=1

(yt − α̂ − β̂xt )2 (3A.1)

It is necessary to minimise L w.r.t. α̂ and β̂, to find the values of α and β that give
the line that is closest to the data. So L is differentiated w.r.t. α̂ and β̂, and the first
derivatives are set to zero. The first derivatives are given by

∂L
∂α̂

= −2
∑

t

(yt − α̂ − β̂xt ) = 0 (3A.2)

∂L

∂β̂
= −2

∑
t

xt (yt − α̂ − β̂xt ) = 0 (3A.3)

5 This is hardly surprising given the distance between 1 and 2.026. However, it is sometimes the
case, especially if the sample size is quite small and this leads to large standard errors, that many
different hypotheses will all result in non-rejection – for example, both H0 : β = 0 and H0 : β = 1
not rejected.
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The next step is to rearrange (3A.2) and (3A.3) in order to obtain expressions for
α̂ and β̂. From (3A.2)∑

t

(yt − α̂ − β̂xt ) = 0 (3A.4)

Expanding the parentheses and recalling that the sum runs from 1 to T so that
there will be T terms in α̂∑

yt − Tα̂ − β̂
∑

xt = 0 (3A.5)

But
∑

yt = Tȳ and
∑

xt = Tx̄, so it is possible to write (3A.5) as

Tȳ − Tα̂ − Tβ̂ x̄ = 0 (3A.6)

or

ȳ − α̂ − β̂ x̄ = 0 (3A.7)

From (3A.3)∑
t

xt (yt − α̂ − β̂xt ) = 0 (3A.8)

From (3A.7)

α̂ = ȳ − β̂ x̄ (3A.9)

Substituting into (3A.8) for α̂ from (3A.9)∑
t

xt (yt − ȳ + β̂ x̄ − β̂xt ) = 0 (3A.10)

∑
t

xt yt − ȳ
∑

xt + β̂ x̄
∑

xt − β̂
∑

x2
t = 0 (3A.11)

∑
t

xt yt − Tx̄ ȳ + β̂Tx̄2 − β̂
∑

x2
t = 0 (3A.12)

Rearranging for β̂,

β̂
(

Tx̄2 −
∑

x2
t

)
= Txy −

∑
xt yt (3A.13)

Dividing both sides of (3A.13) by
(
Tx̄2 − ∑

x2
t

)
gives

β̂ =
∑

xt yt − Txy∑
x2

t − Tx̄2
a nd α̂ = ȳ − β̂ x̄ (3A.14)



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-03 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:20

Appendix: Mathematical derivations of CLRM

•
•
•
•
•
•
•
•
• 129

3A.2 Derivation of the OLS standard error estimators for the intercept and
slope in the bivariate case

Recall that the variance of the random variable α̂ can be written as

var(α̂) = E(α̂ − E(α̂))2 (3A.15)

and since the OLS estimator is unbiased

var(α̂) = E(α̂ − α)2 (3A.16)

By similar arguments, the variance of the slope estimator can be written as

var(β̂) = E(β̂ − β)2 (3A.17)

Working first with (3A.17), replacing β̂ with the formula for it given by the OLS
estimator

var(β̂) = E

⎛
⎝

∑
(xt − x̄)(yt − ȳ)∑

(xt − x̄)2
− β

⎞
⎠

2

(3A.18)

Replacing yt with α + βxt + ut , and replacing ȳ with α + β x̄ in (3A.18)

var(β̂) = E

⎛
⎝

∑
(xt − x̄)(α + βxt + ut − α − β x̄)∑

(xt − x̄)2
− β

⎞
⎠

2

(3A.19)

Cancelling α and multiplying the last β term in (3A.19) by

∑
(xt − x̄)2∑
(xt − x̄)2

var(β̂) = E

⎛
⎝

∑
(xt − x̄)(βxt + ut − β x̄) − β

∑
(xt − x̄)2∑

(xt − x̄)2

⎞
⎠

2

(3A.20)

Rearranging

var(β̂) = E

⎛
⎝

∑
(xt − x̄)β(xt − x̄) +

∑
ut (xt − x̄) − β

∑
(xt − x̄)2∑

(xt − x̄)2

⎞
⎠

2

(3A.21)

var(β̂) = E

⎛
⎝β

∑
(xt − x̄)2 +

∑
ut (xt − x̄) − β

∑
(xt − x̄)2∑

(xt − x̄)2

⎞
⎠

2

(3A.22)

Now the β terms in (3A.22) will cancel to give

var(β̂) = E

⎛
⎝

∑
ut (xt − x̄)∑
(xt − x̄)2

⎞
⎠

2

(3A.23)
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Now let x∗
t denote the mean-adjusted observation for xt , i.e. (xt − x̄ ). Equation

(3A.23) can be written

var(β̂) = E

⎛
⎝

∑
ut x∗

t∑
x∗2

t

⎞
⎠

2

(3A.24)

The denominator of (3A.24) can be taken through the expectations operator under
the assumption that x is fixed or non-stochastic

var(β̂) = 1(∑
x∗2

t

)2 E
(∑

ut x∗
t

)2
(3A.25)

Writing the terms out in the last summation of (3A.25)

var(β̂) = 1(∑
x∗2

t

)2 E
(
u1x∗

1 + u2x∗
2 + · · · + uTx∗

T

)2
(3A.26)

Now expanding the brackets of the squared term in the expectations operator of
(3A.26)

var(β̂) = 1(∑
x∗2

t

)2 E
(
u2

1x∗2
1 + u2

2x∗2
2 + · · · + u2

Tx∗2
T + cross-products

)

(3A.27)

where ‘cross-products’ in (3A.27) denotes all of the terms ui x∗
i u j x∗

j (i �= j ). These
cross-products can be written as ui u j x∗

i x∗
j (i �= j ) and their expectation will be

zero under the assumption that the error terms are uncorrelated with one another.
Thus, the ‘cross-products’ term in (3A.27) will drop out. Recall also from the chapter
text that E(u2

t ) is the error variance, which is estimated using s 2

var(β̂) = 1(∑
x∗2

t

)2

(
s 2x∗2

1 + s 2x∗2
2 + · · · + s 2x∗2

T

)
(3A.28)

which can also be written

var(β̂) = s 2(∑
x∗2

t

)2

(
x∗2

1 + x∗2
2 + · · · + x∗2

T

) =
s 2

∑
x∗2

t(∑
x∗2

t

)2 (3A.29)

A term in
∑

x∗2
t can be cancelled from the numerator and denominator of (3A.29),

and recalling that x∗
t = (xt − x̄ ), this gives the variance of the slope coefficient as

var(β̂) = s 2∑
(xt − x̄)2

(3A.30)
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so that the standard error can be obtained by taking the square root of (3A.30)

SE(β̂) = s

√√√√ 1∑
(xt − x̄)2

(3A.31)

Turning now to the derivation of the intercept standard error, this is in fact much
more difficult than that of the slope standard error. In fact, both are very much
easier using matrix algebra as shown below. Therefore, this derivation will be
offered in summary form. It is possible to express α̂ as a function of the true α and
of the disturbances, ut

α̂ = α +
∑

ut

[∑
x2

t − xt

∑
xt

]
[

T
∑

x2
t −

(∑
xt

)2
] (3A.32)

Denoting all of the elements in square brackets as g t , (3A.32) can be written

α̂ − α =
∑

ut g t (3A.33)

From (3A.15), the intercept variance would be written

var(α̂) = E
(∑

ut g t

)2
=

∑
g 2

t E
(
u2

t

) = s 2
∑

g 2
t (3A.34)

Writing (3A.34) out in full for g 2
t and expanding the brackets

var(α̂) =
s 2

[
T

(∑
x2

t

)2
− 2

∑
xt

(∑
x2

t

)∑
xt + (∑

x2
t

) (∑
xt
)2
]

[
T

∑
x2

t −
(∑

xt

)2
]2

(3A.35)

This looks rather complex, but fortunately, if we take
∑

x2
t outside the square

brackets in the numerator, the remaining numerator cancels with a term in the
denominator to leave the required result

SE(α̂) = s

√√√√√
∑

x2
t

T
∑

(xt − x̄)2
(3A.36)

Self-study questions

1. (a) Why does OLS estimation involve taking vertical deviations of the points
to the line rather than horizontal distances?

(b) Why are the vertical distances squared before being added together?
(c) Why are the squares of the vertical distances taken rather than the

absolute values?
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2. Explain, with the use of equations, the difference between the sample
regression function and the population regression function.

3. What is an estimator? Is the OLS estimator superior to all other estimators?
Why or why not?

4. What five assumptions are usually made about the unobservable error terms
in the classical linear regression model (CLRM)? Briefly explain the meaning
of each. Why are these assumptions made?

5. Which of the following models can be estimated (following a suitable
rearrangement if necessary) using ordinary least squares (OLS), where X, y,
Z are variables and α, β, γ are parameters to be estimated? (Hint: the models
need to be linear in the parameters.)

yt = α + βxt + ut (3.39)

yt = eαxβ
t e ut (3.40)

yt = α + βγ xt + ut (3.41)

ln(yt ) = α + β ln(xt ) + ut (3.42)

yt = α + βxt zt + ut (3.43)

6. The capital asset pricing model (CAPM) can be written as

E(Ri ) = Rf + βi [E(Rm ) − Rf ] (3.44)

using the standard notation.
The first step in using the CAPM is to estimate the stock’s beta using the

market model. The market model can be written as

Rit = αi + βi Rmt + u it (3.45)

where Rit is the excess return for security i at time t , Rmt is the excess return
on a proxy for the market portfolio at time t , and ut is an iid random
disturbance term. The cofficient beta in this case is also the CAPM beta for
security i .

Suppose that you had estimated (3.45) and found that the estimated value
of beta for a stock, β̂ was 1.147. The standard error associated with this
coefficient SE(β̂) is estimated to be 0.0548.

A city analyst has told you that this security closely follows the market,
but that it is no more risky, on average, than the market. This can be tested
by the null hypotheses that the value of beta is one. The model is estimated
over sixty-two daily observations. Test this hypothesis against a one-sided
alternative that the security is more risky than the market, at the 5% level.
Write down the null and alternative hypothesis. What do you conclude? Are
the analyst’s claims empirically verified?

7. The analyst also tells you that shares in Chris Mining plc have no systematic
risk, in other words that the returns on its shares are completely unrelated to
movements in the market. The value of beta and its standard error are
calculated to be 0.214 and 0.186, respectively. The model is estimated over
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thirty-eight quarterly observations. Write down the null and alternative
hypotheses. Test this null hypothesis against a two-sided alternative.

8. Form and interpret a 95% and a 99% confidence interval for beta using the
figures given in question 7.

9. Are hypotheses tested concerning the actual values of the coefficients (i.e. β)
or their estimated values (i.e. β̂) and why?

10. Using EViews, select one of the other stock series from the ‘capm.wk1’ file
and estimate a CAPM beta for that stock. Test the null hypothesis that the
true beta is one and also test the null hypothesis that the true alpha (intercept)
is zero. What are your conclusions?
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4 Further development and
analysis of the classical linear
regression model

Learning outcomes

In this chapter, you will learn how to

• Construct models with more than one explanatory variable

• Test multiple hypotheses using an F -test

• Determine how well a model fits the data

• Form a restricted regression

• Derive the ordinary least squares (OLS) parameter and standard error

estimators using matrix algebra

• Estimate multiple regression models and test multiple hypotheses in EViews

• Construct and interpret quantile regression models

• • • • • • • • • • • • • • 4.1 Generalising the simple model to multiple linear regression

Previously, a model of the following form has been used

yt = α + βxt + ut t = 1, 2, . . . , T (4.1)

Equation (4.1) is a simple bivariate regression model. That is, changes in the
dependent variable are explained by reference to changes in one single explanatory
variable x. But what if the financial theory or idea that is sought to be tested
suggests that the dependent variable is influenced by more than one independent
variable? For example, simple estimation and tests of the capital asset pricing model
(CAPM) can be conducted using an equation of the form of (4.1), but arbitrage
pricing theory does not pre-suppose that there is only a single factor affecting stock
returns. So, to give one illustration, stock returns might be purported to depend
on their sensitivity to unexpected changes in:

(1) inflation
(2) the differences in returns on short- and long-dated bonds
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(3) industrial production
(4) default risks.

Having just one independent variable would be no good in this case. It would
of course be possible to use each of the four proposed explanatory factors in
separate regressions. But it is of greater interest and it is more valid to have more
than one explanatory variable in the regression equation at the same time, and
therefore to examine the effect of all of the explanatory variables together on the
explained variable.

It is very easy to generalise the simple model to one with k regressors (inde-
pendent variables). Equation (4.1) becomes

yt = β1 + β2x2t + β3x3t + · · · + βkxkt + ut , t = 1, 2, . . . , T (4.2)

So the variables x2t , x3t , . . . , xkt are a set of k − 1 explanatory variables which
are thought to influence y, and the coefficient estimates β1, β2, . . . , βk are the
parameters which quantify the effect of each of these explanatory variables on y.
The coefficient interpretations are slightly altered in the multiple regression con-
text. Each coefficient is now known as a partial regression coefficient, interpreted
as representing the partial effect of the given explanatory variable on the explained
variable, after holding constant, or eliminating the effect of, all other explanatory
variables. For example, β̂2 measures the effect of x2 on y after eliminating the
effects of x3, x4, . . . , xk. Stating this in other words, each coefficient measures
the average change in the dependent variable per unit change in a given inde-
pendent variable, holding all other independent variables constant at their average
values.

• • • • • • • • • • • • • • 4.2 The constant term

In (4.2) above, astute readers will have noticed that the explanatory variables
are numbered x2, x3, . . . i.e. the list starts with x2 and not x1. So, where is
x1? In fact, it is the constant term, usually represented by a column of ones of
length T:

x1 =

⎡
⎢⎢⎢⎢⎣

1
1
·
·
·
1

⎤
⎥⎥⎥⎥⎦ (4.3)

Thus there is a variable implicitly hiding next to β1, which is a column vector
of ones, the length of which is the number of observations in the sample. The
x1 in the regression equation is not usually written, in the same way that one
unit of p and two units of q would be written as ‘p + 2q ’ and not ‘1p + 2q ’.
β1 is the coefficient attached to the constant term (which was called α in the
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previous chapter). This coefficient can still be referred to as the intercept, which can
be interpreted as the average value which y would take if all of the explanatory
variables took a value of zero.

A tighter definition of k, the number of explanatory variables, is probably
now necessary. Throughout this book, k is defined as the number of ‘explanatory
variables’ or ‘regressors’ including the constant term. This is equivalent to the
number of parameters that are estimated in the regression equation. Strictly speak-
ing, it is not sensible to call the constant an explanatory variable, since it does not
explain anything and it always takes the same values. However, this definition of k
will be employed for notational convenience.

Equation (4.2) can be expressed even more compactly by writing it in matrix
form

y = Xβ + u (4.4)

where: y is of dimension T × 1

X is of dimension T × k

β is of dimension k × 1

u is of dimension T × 1

The difference between (4.2) and (4.4) is that all of the time observations have
been stacked up in a vector, and also that all of the different explanatory variables
have been squashed together so that there is a column for each in the X matrix.
Such a notation may seem unnecessarily complex, but in fact, the matrix notation
is usually more compact and convenient. So, for example, if k is 2, i.e. there are
two regressors, one of which is the constant term (equivalent to a simple bivariate
regression yt = α + βxt + ut ), it is possible to write

⎡
⎢⎢⎣

y1
y2
...

yT

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x21
1 x22
...

...
1 x2T

⎤
⎥⎥⎦

[
β1
β2

]
+

⎡
⎢⎢⎣

u1
u2
...

uT

⎤
⎥⎥⎦ (4.5)

T × 1 T × 2 2 × 1 T × 1

so that the xi j element of the matrix X represents the j th time observation on the
i th variable. Notice that the matrices written in this way are conformable – in other
words, there is a valid matrix multiplication and addition on the right hand side
(RHS).

The above presentation is the standard way to express matrices in the time
series econometrics literature, although the ordering of the indices is different to
that used in the mathematics of matrix algebra (as presented in chapter 2 of this
book). In the latter case, xi j would represent the element in row i and column
j , although in the notation used in the body of this book it is the other way
around.
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• • • • • • • • • • • • • • 4.3 How are the parameters (the elements of the β vector) calculated in the
generalised case?

Previously, the residual sum of squares,
∑

û2
i was minimised with respect to α

and β. In the multiple regression context, in order to obtain estimates of the
parameters, β1, β2, . . . , βk, the RSS would be minimised with respect to all the
elements of β. Now, the residuals can be stacked in a vector:

û =

⎡
⎢⎢⎣

û1
û2
...

ûT

⎤
⎥⎥⎦ (4.6)

The RSS is still the relevant loss function, and would be given in a matrix notation
by

L = û ′û = [û1û2 · · · ûT]

⎡
⎢⎢⎣

û1
û2
...

ûT

⎤
⎥⎥⎦ = û2

1 + û2
2 + · · · + û2

T =
∑

û2
t (4.7)

Using a similar procedure to that employed in the bivariate regression case, i.e.
substituting into (4.7), and denoting the vector of estimated parameters as β̂, it
can be shown (see the appendix to this chapter) that the coefficient estimates will
be given by the elements of the expression

β̂ =

⎡
⎢⎢⎣

β̂1

β̂2...
β̂k

⎤
⎥⎥⎦ = (X′X)−1 X′y (4.8)

If one were to check the dimensions of the RHS of (4.8), it would be observed
to be k × 1. This is as required since there are k parameters to be estimated by the
formula for β̂.

But how are the standard errors of the coefficient estimates calculated? Previ-
ously, to estimate the variance of the errors, σ 2, an estimator denoted by s 2 was
used

s 2 =
∑

û2
t

T − 2
(4.9)

The denominator of (4.9) is given by T − 2, which is the number of degrees
of freedom for the bivariate regression model (i.e. the number of observations
minus two). This essentially applies since two observations are effectively ‘lost’ in
estimating the two model parameters (i.e. in deriving estimates for α and β). In
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the case where there is more than one explanatory variable plus a constant, and
using the matrix notation, (4.9) would be modified to

s 2 = û ′û
T − k

(4.10)

where k = number of regressors including a constant. In this case, k observations
are ‘lost’ as k parameters are estimated, leaving T − k degrees of freedom. It can also
be shown (see the appendix to this chapter) that the parameter variance–covariance
matrix is given by

var(β̂) = s 2(X′X)−1 (4.11)

The leading diagonal terms give the coefficient variances while the off-diagonal
terms give the covariances between the parameter estimates, so that the variance
of β̂1 is the first diagonal element, the variance of β̂2 is the second element on
the leading diagonal, and the variance of β̂k is the kth diagonal element. The
coefficient standard errors are thus simply given by taking the square roots of each
of the terms on the leading diagonal.

Example 4.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The following model with three regressors (including the constant) is estimated over
fifteen observations

y = β1 + β2x2 + β3x3 + u (4.12)

and the following data have been calculated from the original xs

(X′X)−1 =

⎡
⎢⎣

2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3

⎤
⎥⎦ , (X′y) =

⎡
⎢⎣

−3.0

2.2

0.6

⎤
⎥⎦ , û ′û = 10.96

Calculate the coefficient estimates and their standard errors.

β̂ =

⎡
⎢⎢⎢⎣

β̂1

β̂2
...

β̂k

⎤
⎥⎥⎥⎦ = (X′X)−1 X′y =

⎡
⎣ 2.0 3.5 −1.0

3.5 1.0 6.5
−1.0 6.5 4.3

⎤
⎦

×
⎡
⎣−3.0

2.2
0.6

⎤
⎦ =

⎡
⎣ 1.10

−4.40
19.88

⎤
⎦ (4.13)

To calculate the standard errors, an estimate of σ 2 is required

s 2 = RSS
T − k

= 10.96
15 − 3

= 0.91 (4.14)
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The variance–covariance matrix of β̂ is given by

s 2(X′X)−1 = 0.91(X′X)−1 =
⎡
⎣ 1.82 3.19 −0.91

3.19 0.91 5.92
−0.91 5.92 3.91

⎤
⎦ (4.15)

The coefficient variances are on the diagonals, and the standard errors are found
by taking the square roots of each of the coefficient variances

var(β̂1) = 1.82 SE(β̂1) = 1.35 (4.16)

var(β̂2) = 0.91 ⇔ SE(β̂2) = 0.95 (4.17)

var(β̂3) = 3.91 SE(β̂3) = 1.98 (4.18)

The estimated equation would be written

ŷ = 1.10 − 4.40x2 + 19.88x3

(1.35) (0.95) (1.98)
(4.19)

Fortunately, in practice all econometrics software packages will estimate the cofficient
values and their standard errors. Clearly, though, it is still useful to understand where
these estimates came from.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 4.4 Testing multiple hypotheses: the F -test

The t-test was used to test single hypotheses, i.e. hypotheses involving only one
coefficient. But what if it is of interest to test more than one coefficient simultane-
ously? For example, what if a researcher wanted to determine whether a restriction
that the coefficient values for β2 and β3 are both unity could be imposed, so that
an increase in either one of the two variables x2 or x3 would cause y to rise by
one unit? The t-testing framework is not sufficiently general to cope with this
sort of hypothesis test. Instead, a more general framework is employed, centring
on an F -test. Under the F -test framework, two regressions are required, known
as the unrestricted and the restricted regressions. The unrestricted regression is
the one in which the coefficients are freely determined by the data, as has been
constructed previously. The restricted regression is the one in which the coeffi-
cients are restricted, i.e. the restrictions are imposed on some βs. Thus the F -test
approach to hypothesis testing is also termed restricted least squares, for obvious
reasons.

The residual sums of squares from each regression are determined, and the two
residual sums of squares are ‘compared’ in the test statistic. The F -test statistic for
testing multiple hypotheses about the coefficient estimates is given by

test statistic = RRSS − URSS
URSS

× T − k
m

(4.20)
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where the following notation applies:

URSS = residual sum of squares from unrestricted regression

RRSS = residual sum of squares from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

The most important part of the test statistic to understand is the numerator
expression RRSS − URSS. To see why the test centres around a comparison of
the residual sums of squares from the restricted and unrestricted regressions, recall
that OLS estimation involved choosing the model that minimised the residual
sum of squares, with no constraints imposed. Now if, after imposing constraints
on the model, a residual sum of squares results that is not much higher than the
unconstrained model’s residual sum of squares, it would be concluded that the
restrictions were supported by the data. On the other hand, if the residual sum
of squares increased considerably after the restrictions were imposed, it would be
concluded that the restrictions were not supported by the data and therefore that
the hypothesis should be rejected.

It can be further stated that RRSS ≥ URSS. Only under a particular set of
very extreme circumstances will the residual sums of squares for the restricted and
unrestricted models be exactly equal. This would be the case when the restriction
was already present in the data, so that it is not really a restriction at all (it would
be said that the restriction is ‘not binding’, i.e. it does not make any difference to
the parameter estimates). So, for example, if the null hypothesis is H0: β2 = 1 and
β3 = 1, then RRSS = URSS only in the case where the coefficient estimates for
the unrestricted regression had been β̂2 = 1 and β̂3 = 1. Of course, such an event
is extremely unlikely to occur in practice.

Example 4.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Dropping the time subscripts for simplicity, suppose that the general regression is

y = β1 + β2x2 + β3x3 + β4x4 + u (4.21)

and that the restriction β3 + β4 = 1 is under test (there exists some hypothesis from
theory which suggests that this would be an interesting hypothesis to study). The
unrestricted regression is (4.21) above, but what is the restricted regression? It could be
expressed as

y = β1 + β2x2 + β3x3 + β4x4 + u s.t. (subject to) β3 + β4 = 1 (4.22)

The restriction (β3 + β4 = 1) is substituted into the regression so that it is automatically
imposed on the data. The way that this would be achieved would be to make either
β3 or β4 the subject of (4.22), e.g.

β3 + β4 = 1 ⇒ β4 = 1 − β3 (4.23)
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and then substitute into (4.21) for β4

y = β1 + β2x2 + β3x3 + (1 − β3)x4 + u (4.24)

Equation (4.24) is already a restricted form of the regression, but it is not yet in the form
that is required to estimate it using a computer package. In order to be able to
estimate a model using OLS, software packages usually require each RHS variable to
be multiplied by one coefficient only. Therefore, a little more algebraic manipulation is
required. First, expanding the brackets around (1 − β3)

y = β1 + β2x2 + β3x3 + x4 − β3x4 + u (4.25)

Then, gathering all of the terms in each βi together and rearranging

(y − x4) = β1 + β2x2 + β3(x3 − x4) + u (4.26)

Note that any variables without coefficients attached (e.g. x4 in (4.25)) are taken over to
the LHS and are then combined with y. Equation (4.26) is the restricted regression. It is
actually estimated by creating two new variables – call them, say, P and Q, where
P = y − x4 and Q = x3 − x4 – so the regression that is actually estimated is

P = β1 + β2x2 + β3 Q + u (4.27)

What would have happened if instead β3 had been made the subject of (4.23) and β3

had therefore been removed from the equation? Although the equation that would
have been estimated would have been different from (4.27), the value of the residual
sum of squares for these two models (both of which have imposed upon them the
same restriction) would be the same.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The test statistic follows the F -distribution under the null hypothesis. The F -
distribution has two degrees of freedom parameters (recall that the t-distribution
had only one degree of freedom parameter, equal to T − k). The value of the
degrees of freedom parameters for the F -test are m , the number of restrictions
imposed on the model, and (T − k), the number of observations less the number
of regressors for the unrestricted regression, respectively. Note that the order of
the degree of freedom parameters is important. The appropriate critical value will
be in column m , row (T − k) of the F -distribution tables.

4.4.1 The relationship between the t - and the F -distributions

Any hypothesis that could be tested with a t-test could also have been tested using
an F -test, but not the other way around. So, single hypotheses involving one
coefficient can be tested using a t- or an F -test, but multiple hypotheses can be
tested only using an F -test. For example, consider the hypothesis

H0 : β2 = 0.5

H1 : β2 �= 0.5
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This hypothesis could have been tested using the usual t-test

test stat = β̂2 − 0.5

SE(β̂2)
(4.28)

or it could be tested in the framework above for the F -test. Note that the two
tests always give the same conclusion since the t-distribution is just a special case
of the F -distribution. For example, consider any random variable Z that follows
a t-distribution with T − k degrees of freedom, and square it. The square of the
t is equivalent to a particular form of the F -distribution

Z2 ∼ t 2 (T − k) then also Z2 ∼ F (1, T − k)

Thus the square of a t-distributed random variable with T − k degrees of free-
dom also follows an F -distribution with 1 and T − k degrees of freedom. This
relationship between the t and the F -distributions will always hold – take some
examples from the statistical tables and try it!

The F -distribution has only positive values and is not symmetrical. Therefore,
the null is rejected only if the test statistic exceeds the critical F -value, although
the test is a two-sided one in the sense that rejection will occur if β̂2 is significantly
bigger or significantly smaller than 0.5.

4.4.2 Determining the number of restrictions, m

How is the appropriate value of m decided in each case? Informally, the number of
restrictions can be seen as ‘the number of equality signs under the null hypothesis’.
To give some examples

H0 : hypothesis No. of restrictions, m
β1 + β2 = 2 1
β2 = 1 and β3 = −1 2
β2 = 0, β3 = 0 and β4 = 0 3

At first glance, you may have thought that in the first of these cases, the number
of restrictions was two. In fact, there is only one restriction that involves two
coefficients. The number of restrictions in the second two examples is obvious, as
they involve two and three separate component restrictions, respectively.

The last of these three examples is particularly important. If the model is

y = β1 + β2x2 + β3x3 + β4x4 + u (4.29)

then the null hypothesis of

H0 : β2 = 0 and β3 = 0 and β4 = 0

is tested by ‘THE’ regression F -statistic. It tests the null hypothesis that all of the
coefficients except the intercept coefficient are zero. This test is sometimes called a
test for ‘junk regressions’, since if this null hypothesis cannot be rejected, it would
imply that none of the independent variables in the model was able to explain
variations in y.
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Note the form of the alternative hypothesis for all tests when more than one
restriction is involved

H1 : β2 �= 0 or β3 �= 0 or β4 �= 0

In other words, ‘and’ occurs under the null hypothesis and ‘or’ under the alterna-
tive, so that it takes only one part of a joint null hypothesis to be wrong for the
null hypothesis as a whole to be rejected.

4.4.3 Hypotheses that cannot be tested with either an F - or a t -test

It is not possible to test hypotheses that are not linear or that are multiplicative
using this framework – for example, H0 : β2β3 = 2, or H0 : β2

2 = 1 cannot be
tested.

Example 4.3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that a researcher wants to test whether the returns on a company stock (y)
show unit sensitivity to two factors (factor x2 and factor x3) among three considered.
The regression is carried out on 144 monthly observations. The regression is

y = β1 + β2x2 + β3x3 + β4x4 + u (4.30)

(1) What are the restricted and unrestricted regressions?
(2) If the two RSS are 436.1 and 397.2, respectively, perform the test.

Unit sensitivity to factors x2 and x3 implies the restriction that the coefficients on these
two variables should be unity, so H0: β2 = 1 and β3 = 1. The unrestricted regression
will be the one given by (4.30) above. To derive the restricted regression, first impose
the restriction:

y = β1 + β2x2 + β3x3 + β4x4 + u s.t. β2 = 1 and β3 = 1 (4.31)

Replacing β2 and β3 by their values under the null hypothesis

y = β1 + x2 + x3 + β4x4 + u (4.32)

Rearranging

y − x2 − x3 = β1 + β4x4 + u (4.33)

Defining z = y − x2 − x3, the restricted regression is one of z on a constant and x4

z = β1 + β4x4 + u (4.34)

The formula for the F -test statistic is given in (4.20) above. For this application, the
following inputs to the formula are available: T = 144, k = 4, m = 2, RRSS = 436.1,
URSS = 397.2. Plugging these into the formula gives an F -test statistic value of 6.86.
This statistic should be compared with an F (m , T − k), which in this case is an
F (2, 140). The critical values are 4.07 at the 5% level and 4.79 at the 1% level. The test
statistic clearly exceeds the critical values at both the 5% and 1% levels, and hence the
null hypothesis is rejected. It would thus be concluded that the restriction is not
supported by the data.
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The following sections will now re-examine the CAPM model as an illustration of
how to conduct multiple hypothesis tests using EViews.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 4.5 Sample EViews output for multiple hypothesis tests

Reload the ‘capm.wk1’ workfile constructed in the previous chapter. As a
reminder, the results are included again below.

Dependent Variable: ERFORD
Method: Least Squares
Date: 07/02/13 Time: 10:55
Sample (adjusted): 2002M02 2013M04
Included observations: 135 after adjustments

Coefficient Std. error t-Statistic Prob.

C −0.319863 1.086409 −0.294423 0.7689
ERSANDP 2.026213 0.237743 8.522711 0.0000

R-squared 0.353228 Mean dependent var −0.078204
Adjusted R-squared 0.348365 S.D. dependent var 15.63184
S.E. of regression 12.61863 Akaike info criterion 7.922930
Sum squared resid 21177.56 Schwarz criterion 7.965971
Log likelihood −532.7977 Hannan-Quinn criter. 7.940420
F-statistic 72.63660 Durbin-Watson stat 2.588482
Prob(F-statistic) 0.000000

If we examine the regression F -test, this also shows that the regression slope
coefficient is very significantly different from zero, which in this case is exactly
the same result as the t-test for the beta coefficient (since there is only one slope
coefficient). Thus, in this instance, the F -test statistic is equal to the square of the
slope t-ratio.

Now suppose that we wish to conduct a joint test that both the intercept
and slope parameters are 1. We would perform this test exactly as for a test
involving only one coefficient. Select View/Coefficient Diagnostics/Wald
Test – Coefficient Restrictions. . . and then in the box that appears, type
C(1)=1, C(2)=1. There are two versions of the test given: an F -version and a
χ2-version. The F -version is adjusted for small sample bias and should be used
when the regression is estimated using a small sample (see chapter 5). Both statistics
asymptotically yield the same result, and in this case the p-values are very similar.
The conclusion is that the joint null hypothesis, H0 : β1 = 1 and β2 = 1, is strongly
rejected.
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• • • • • • • • • • • • • • 4.6 Multiple regression in EViews using an APT-style model

In the spirit of arbitrage pricing theory (APT), the following example will examine
regressions that seek to determine whether the monthly returns on Microsoft stock
can be explained by reference to unexpected changes in a set of macroeconomic
and financial variables. Open a new EViews workfile to store the data. There
are 254 monthly observations in the file ‘macro.xls’, starting in March 1986 and
ending in April 2013. There are thirteen series in total plus a column of dates.
The series in the Excel file are the Microsoft stock price, the S&P500 index value,
the consumer price index, an industrial production index, Treasury bill yields for
the following maturities: three months, six months, one year, three years, five years
and ten years, a measure of ‘narrow’ money supply, a consumer credit series, and
a ‘credit spread’ series. The latter is defined as the difference in annualised average
yields between a portfolio of bonds rated AAA and a portfolio of bonds rated
BAA.

Import the data from the Excel file and save the resulting workfile as
‘macro.wf1’.

The first stage is to generate a set of changes or differences for each of the variables,
since the APT posits that the stock returns can be explained by reference to the
unexpected changes in the macroeconomic variables rather than their levels. The
unexpected value of a variable can be defined as the difference between the actual
(realised) value of the variable and its expected value. The question then arises
about how we believe that investors might have formed their expectations, and
while there are many ways to construct measures of expectations, the easiest is
to assume that investors have naive expectations that the next period value of the
variable is equal to the current value. This being the case, the entire change in the
variable from one period to the next is the unexpected change (because investors
are assumed to expect no change).1

Transforming the variables can be done as described above. Press Genr and
then enter the following in the ‘Enter equation’ box:

dspread = baa aaa spread – baa aaa spread(-1)

Repeat these steps to conduct all of the following transformations:

dcredit = consumer credit – consumer credit(-1)
dprod = industrial production – industrial production(-1)
rmsoft = 100∗dlog(microsoft)
rsandp = 100∗dlog(sandp)
dmoney = m1money supply – m1money supply(-1)

1 It is an interesting question as to whether the differences should be taken on the levels of the
variables or their logarithms. If the former, we have absolute changes in the variables, whereas
the latter would lead to proportionate changes. The choice between the two is essentially an
empirical one, and this example assumes that the former is chosen, apart from for the stock price
series themselves and the consumer price series.
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inflation = 100∗dlog(cpi)
term = ustb10y – ustb3m

and then click OK. Next, we need to apply further transformations to some of
the transformed series, so repeat the above steps to generate

dinflation = inflation – inflation(-1)
mustb3m = ustb3m/12
rterm = term – term(-1)
ermsoft = rmsoft – mustb3m
ersandp = rsandp – mustb3m

The final two of these calculate excess returns for the stock and for the index.
We can now run the regression. So click Object/New Object/Equation

and name the object ‘msoftreg’. Type the following variables in the Equation
specification window

ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION
DMONEY DSPREAD RTERM

and use Least Squares over the whole sample period. The table of results will
appear as follows.

Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/02/13 Time: 12:23
Sample (adjusted): 1986M05 2013M04
Included observations: 324 after adjustments

Coefficient Std. error t-Statistic Prob.

C −0.151409 0.904787 −0167342 0.8672
ERSANDP 1.360448 0.156615 8.686592 0.0000

DPROD −1.425779 1.324467 −1.076493 0.2825
DCREDIT −4.05E-05 7.64E-05 −0.530496 0.5961

DINFLATION 2.959910 2.166209 1.366401 0.1728
DMONEY −0.011087 0.035175 −0.315184 0.7528
DSPREAD 5.366629 6.913915 0.776207 0.4382

RTERM 4.315813 2.515179 1.715907 0.0872

R-squared 0.206805 Mean dependent var −0.311466
Adjusted R-squared 0.189234 S.D. dependent var 14.05871
S.E. of regression 12.65882 Akaike info criterion 7.938967
Sum squared resid 50637.65 Schwarz criterion 8.032319
Log likelihood −1278.113 Hannan-Quinn criter. 7.976228
F-statistic 11.76981 Durbin-Watson stat 2.165384
Prob(F-statistic) 0.000000
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Take a few minutes to examine the main regression results. Which of the
variables has a statistically significant impact on the Microsoft excess returns? Using
your knowledge of the effects of the financial and macro-economic environment
on stock returns, examine whether the coefficients have their expected signs and
whether the sizes of the parameters are plausible.

The regression F-statistic takes a value 11.77. Remember that this tests the
null hypothesis that all of the slope parameters are jointly zero. The p-value of
zero attached to the test statistic shows that this null hypothesis should be rejected.
However, there are a number of parameter estimates that are not significantly
different from zero – specifically those on the DPROD, DCREDIT, DINFLA-
TION, DMONEY and DSPREAD variables. Let us test the null hypothesis that
the parameters on these three variables are jointly zero using an F -test. To test this,
Click on View/Coefficient Diagnostics/Wald Test – Coefficient Restric-
tions . . . and in the box that appears type C(3)=0, C(4)=0, C(5)=0, C(6)=0,
C(7)=0 and click OK. The resulting F -test statistic follows an F (5, 316) distri-
bution as there are five restrictions, 324 usable observations and eight parameters to
estimate in the unrestricted regression. The F -statistic value is 0.853 with p-value
0.51, suggesting that the null hypothesis cannot be rejected. The parameter on
RTERM is significant at the 10% level and so the parameter is not included in this
F -test and the variable is retained.

Stepwise regression

There is a procedure known as a stepwise regression that is available in EViews.
Stepwise regression is an automatic variable selection procedure which chooses
the jointly most ‘important’ (variously defined) explanatory variables from a set of
candidate variables. There are a number of different stepwise regression procedures,
but the simplest is the uni-directional forwards method. This starts with no variables
in the regression (or only those variables that are always required by the researcher
to be in the regression) and then it selects first the variable with the lowest p-
value (largest t-ratio) if it were included, then the variable with the second lowest
p-value conditional upon the first variable already being included, and so on.
The procedure continues until the next lowest p-value relative to those already
included variables is larger than some specified threshold value, then the selection
stops, with no more variables being incorporated into the model.

To conduct a stepwise regression which will automatically select from among
these variables the most important ones for explaining the variations in Microsoft
stock returns, click Object/New Object and then keep the default option
Equation. Name the equation Msoftstepwise and then in the ‘Estimation set-
tings/Method’ box, change LS – Least Squares (NLS and ARMA) to STEPLS –
Stepwise Least Squares and then in the top box that appears, ‘Dependent variable
followed by list of always included regressors’, enter

ERMSOFT C

This shows that the dependent variable will be the excess returns on Microsoft stock
and that an intercept will always be included in the regression. If the researcher had
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a strong prior view that a particular explanatory variable must always be included
in the regression, it should be listed in this first box. In the second box, ‘List
of search regressors’, type the list of all of the explanatory variables used above:
ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD
RTERM. The window will appear as in screenshot 4.1.

Clicking on the ‘Options’ tab gives a number of ways to conduct the regres-
sion as shown in screenshot 4.2. For example, ‘Forwards’ will start with the list
of required regressors (the intercept only in this case) and will sequentially add
to them, while ‘Backwards’ will start by including all of the variables and will
sequentially delete variables from the regression. The default criterion is to include
variables if the p-value is less than 0.5, but this seems high and could potentially
result in the inclusion of some very insignificant variables, so modify this to 0.2
and then click OK to see the results.

Dependent Variable: ERMSOFT
Method: Stepwise Regression
Date: 08/27/07 Time: 10:21
Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments
Number of always included regressors: 1
Number of search regressors: 7
Selection method: Stepwise forwards
Stopping criterion: p-value forwards/backwards = 0.2/0.2

Coefficient Std. error t-Statistic Prob.∗

C −0.687341 0.702716 −0.978120 0.3288

ERSANDP 1.338211 0.153056 8.743299 0.0000
RTERM 4.369891 2.497110 1.749979 0.0811

DINFLATION 2.876958 2.069933 1.389880 0.1655

R-squared 0.200924 Mean dependent var −0.311466
Adjusted R-squared 0.193432 S.D. dependent var 14.05871
S.E. of regression 12.62600 Akaike info criterion 7.921663
Sum squared resid 51013.10 Schwarz criterion 7.968338
Log likelihood −1379.309 Hannan-Quinn criter. 7.940293
F-statistic 26.82081 Durbin-Watson stat 2.144133
Prob(F-statistic) 0.000000

Selection Summary

Added ERSANDP
Added RTERM

Added DINFLATION

∗Note: p-values and subsequent tests do not account for stepwise selection.
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As can be seen, the excess market return, the term structure, and unexpected
inflation variables have been included, while the money supply, default spread and
credit variables have been omitted.

Stepwise procedures have been strongly criticised by statistical purists. At the
most basic level, they are sometimes argued to be no better than automated
procedures for data mining, in particular if the list of potential candidate variables
is long and results from a ‘fishing trip’ rather than a strong prior financial theory.
More subtly, the iterative nature of the variable selection process implies that the
size of the tests on parameters attached to variables in the final model will not
be the nominal values (e.g. 5%) that would have applied had this model been the
only one estimated. Thus the p-values for tests involving parameters in the final
regression should really be modified to take into account that the model results
from a sequential procedure, although they are usually not in statistical packages
such as EViews.

4.6.1 A note on sample sizes and asymptotic theory

A question that is often asked by those new to econometrics is ‘what is an appro-
priate sample size for model estimation?’ While there is no definitive answer to
this question, it should be noted that most testing procedures in econometrics rely
on asymptotic theory. That is, the results in theory hold only if there are an infinite
number of observations. In practice, an infinite number of observations will never
be available and fortunately, an infinite number of observations are not usually
required to invoke the asymptotic theory. An approximation to the asymptotic
behaviour of the test statistics can be obtained using finite samples, provided that
they are large enough. In general, as many observations as possible should be used
(although there are important caveats to this statement relating to ‘structural stabil-
ity’, discussed in chapter 5). The reason is that all the researcher has at his disposal
is a sample of data from which to estimate parameter values and to infer their likely
population counterparts. A sample may fail to deliver something close to the exact
population values owing to sampling error. Even if the sample is randomly drawn
from the population, some samples will be more representative of the behaviour
of the population than others, purely owing to ‘luck of the draw’. Sampling error
is minimised by increasing the size of the sample, since the larger the sample, the
less likely it is that all of the data drawn will be unrepresentative of the population.

• • • • • • • • • • • • • • 4.7 Data mining and the true size of the test

Recall that the probability of rejecting a correct null hypothesis is equal to the size
of the test, denoted α. The possibility of rejecting a correct null hypothesis arises
from the fact that test statistics are assumed to follow a random distribution and
hence they will take on extreme values that fall in the rejection region some of the
time by chance alone. A consequence of this is that it will almost always be possible
to find significant relationships between variables if enough variables are examined.
For example, suppose that a dependent variable yt and twenty explanatory variables
x2t , . . . , x21t (excluding a constant term) are generated separately as independent
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normally distributed random variables. Then y is regressed separately on each
of the twenty explanatory variables plus a constant, and the significance of each
explanatory variable in the regressions is examined. If this experiment is repeated
many times, on average one of the twenty regressions will have a slope coefficient
that is significant at the 5% level for each experiment. The implication is that for
any regression, if enough explanatory variables are employed in a regression, often
one or more will be significant by chance alone. More concretely, it could be
stated that if an α% size of test is used, on average one in every (100/α) regressions
will have a significant slope coefficient by chance alone.

Trying many variables in a regression without basing the selection of the
candidate variables on a financial or economic theory is known as ‘data mining’
or ‘data snooping’. The result in such cases is that the true significance level
will be considerably greater than the nominal significance level assumed. For
example, suppose that twenty separate regressions are conducted, of which three
contain a significant regressor, and a 5% nominal significance level is assumed,
then the true significance level would be much higher (e.g. 25%). Therefore, if
the researcher then shows only the results for the regression containing the final
three equations and states that they are significant at the 5% level, inappropriate
conclusions concerning the significance of the variables would result.

As well as ensuring that the selection of candidate regressors for inclusion in a
model is made on the basis of financial or economic theory, another way to avoid
data mining is by examining the forecast performance of the model in an ‘out-of-
sample’ data set (see chapter 6). The idea is essentially that a proportion of the data
is not used in model estimation, but is retained for model testing. A relationship
observed in the estimation period that is purely the result of data mining, and is
therefore spurious, is very unlikely to be repeated for the out-of-sample period.
Therefore, models that are the product of data mining are likely to fit very poorly
and to give very inaccurate forecasts for the out-of-sample period.

• • • • • • • • • • • • • • 4.8 Goodness of fit statistics

4.8.1 R2

It is desirable to have some measure of how well the regression model actually fits
the data. In other words, it is desirable to have an answer to the question, ‘how well
does the model containing the explanatory variables that was proposed actually
explain variations in the dependent variable?’ Quantities known as goodness of fit
statistics are available to test how well the sample regression function (SRF) fits
the data – that is, how ‘close’ the fitted regression line is to all of the data points
taken together. Note that it is not possible to say how well the sample regression
function fits the population regression function – i.e. how the estimated model
compares with the true relationship between the variables, since the latter is never
known.

But what measures might make plausible candidates to be goodness of fit
statistics? A first response to this might be to look at the residual sum of squares
(RSS). Recall that OLS selected the coefficient estimates that minimised this
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quantity, so the lower was the minimised value of the RSS, the better the model
fitted the data. Consideration of the RSS is certainly one possibility, but RSS is
unbounded from above (strictly, RSS is bounded from above by the total sum of
squares – see below) – i.e. it can take any (non-negative) value. So, for example,
if the value of the RSS under OLS estimation was 136.4, what does this actually
mean? It would therefore be very difficult, by looking at this number alone, to
tell whether the regression line fitted the data closely or not. The value of RSS
depends to a great extent on the scale of the dependent variable. Thus, one
way to pointlessly reduce the RSS would be to divide all of the observations
on y by 10!

In fact, a scaled version of the residual sum of squares is usually employed. The
most common goodness of fit statistic is known as R2. One way to define R2 is
to say that it is the square of the correlation coefficient between y and ŷ – that
is, the square of the correlation between the values of the dependent variable and
the corresponding fitted values from the model. A correlation coefficient must lie
between −1 and +1 by definition. Since R2 defined in this way is the square of a
correlation coefficient, it must lie between 0 and 1. If this correlation is high, the
model fits the data well, while if the correlation is low (close to zero), the model
is not providing a good fit to the data.

Another definition of R2 requires a consideration of what the model is attempt-
ing to explain. What the model is trying to do in effect is to explain variability of
y about its mean value, ȳ. This quantity, ȳ, which is more specifically known as
the unconditional mean of y, acts like a benchmark since, if the researcher had no
model for y, he could do no worse than to regress y on a constant only. In fact,
the coefficient estimate for this regression would be the mean of y. So, from the
regression

yt = β1 + ut (4.35)

the coefficient estimate β̂1, will be the mean of y, i.e. ȳ. The total variation across
all observations of the dependent variable about its mean value is known as the
total sum of squares, TSS, which is given by:

TSS =
∑

t

(yt − ȳ)2 (4.36)

The TSS can be split into two parts: the part that has been explained by the model
(known as the explained sum of squares, ESS) and the part that the model was not
able to explain (the RSS). That is

TSS = ESS + RSS (4.37)

∑
t

(yt − ȳ)2 =
∑

t

(ŷt − ȳ)2 +
∑

t

û2
t (4.38)

Recall also that the residual sum of squares can also be expressed as∑
t

(yt − ŷt )2
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y–

xt

yt

Figure 4.1 R2 = 0 demonstrated by a flat estimated line, i.e. a zero slope coefficient

since a residual for observation t is defined as the difference between the actual
and fitted values for that observation. The goodness of fit statistic is given by the
ratio of the explained sum of squares to the total sum of squares:

R2 = ESS
TSS

(4.39)

but since TSS = ESS + RSS, it is also possible to write

R2 = ESS
TSS

= TSS − RSS
TSS

= 1 − RSS
TSS

(4.40)

R2 must always lie between zero and one (provided that there is a constant term
in the regression). This is intuitive from the correlation interpretation of R2 given
above, but for another explanation, consider two extreme cases

RSS = TSS i.e. ESS = 0 so R2 = ESS/TSS = 0
ESS = TSS i.e. RSS = 0 so R2 = ESS/TSS = 1

In the first case, the model has not succeeded in explaining any of the variability of
y about its mean value, and hence the residual and total sums of squares are equal.
This would happen only where the estimated values of all of the coefficients were
exactly zero. In the second case, the model has explained all of the variability of y
about its mean value, which implies that the residual sum of squares will be zero.
This would happen only in the case where all of the observation points lie exactly
on the fitted line. Neither of these two extremes is likely in practice, of course,
but they do show that R2 is bounded to lie between zero and one, with a higher
R2 implying, everything else being equal, that the model fits the data better.

To sum up, a simple way (but crude, as explained next) to tell whether the
regression line fits the data well is to look at the value of R2. A value of R2

close to 1 indicates that the model explains nearly all of the variability of the
dependent variable about its mean value, while a value close to zero indicates that
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yt

xt

Figure 4.2 R2 = 1 when all data points lie exactly on the estimated line

the model fits the data poorly. The two extreme cases, where R2 = 0 and R2 = 1,
are indicated in figures 4.1 and 4.2 in the context of a simple bivariate regression.

4.8.2 Problems with R2 as a goodness of fit measure

R2 is simple to calculate, intuitive to understand, and provides a broad indication
of the fit of the model to the data. However, there are a number of problems with
R2 as a goodness of fit measure:

(1) R2 is defined in terms of variation about the mean of y so that if a model
is reparameterised (rearranged) and the dependent variable changes, R2 will
change, even if the second model was a simple rearrangement of the first, with
identical RSS. Thus it is not sensible to compare the value of R2 across models
with different dependent variables.

(2) R2 never falls if more regressors are added to the regression. For example,
consider the following two models:

Regression 1: y = β1 + β2x2 + β3x3 + u (4.41)

Regression 2: y = β1 + β2x2 + β3x3 + β4x4 + u (4.42)

R2 will always be at least as high for regression 2 relative to regression 1. The
R2 from regression 2 would be exactly the same as that for regression 1 only
if the estimated value of the coefficient on the new variable were exactly zero,
i.e. β̂4 = 0. In practice, β̂4 will always be non-zero, even if not significantly
so, and thus in practice R2 always rises as more variables are added to a model.
This feature of R2 essentially makes it impossible to use as a determinant of
whether a given variable should be present in the model or not.
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(3) R2 can take values of 0.9 or higher for time series regressions, and hence it is
not good at discriminating between models, since a wide array of models will
frequently have broadly similar (and high) values of R2.

4.8.3 Adjusted R2

In order to get around the second of these three problems, a modification to R2

is often made which takes into account the loss of degrees of freedom associated
with adding extra variables. This is known as R̄2, or adjusted R2, which is defined
as

R̄2 = 1 −
[

T − 1
T − k

(1 − R2)
]

(4.43)

So if an extra regressor (variable) is added to the model, k increases and unless R2

increases by a more than off-setting amount, R̄2 will actually fall. Hence R̄2 can
be used as a decision-making tool for determining whether a given variable should
be included in a regression model or not, with the rule being: include the variable
if R̄2 rises and do not include it if R̄2 falls.

However, there are still problems with the maximisation of R̄2 as criterion for
model selection, and principal among these is that it is a ‘soft’ rule, implying that
by following it, the researcher will typically end up with a large model, containing
a lot of marginally significant or insignificant variables. Also, while R2 must be at
least zero if an intercept is included in the regression, its adjusted counterpart may
take negative values, even with an intercept in the regression, if the model fits the
data very poorly.

Now reconsider the results from the previous exercises using EViews in the
previous chapter and earlier in this chapter. If we first consider the hedging model
from chapter 3, the R2 value for the returns regression was 0.9955, indicat-
ing that almost all of the variation in spot returns is explained by the futures
returns.

The fit is not so good for the Ford stock CAPM regression described in
chapter 3, where the R2 is around 35%. The conclusion here would be that for
this stock and this sample period, around a third of the monthly movement in
the excess returns can be attributed to movements in the market as a whole, as
measured by the S&P500.

Finally, if we look at the results from the recently conducted regressions for
Microsoft, we again find a reasonable fit. It is of interest to compare the model
fit for the original regression that included all of the variables with the results
of the stepwise procedure. We can see that the raw R2 is slightly higher for the
original regression containing all of the possible explanatory variables (0.207 versus
0.201 for the stepwise regression, to three decimal places), exactly as we would
expect. Since the original regression contains more variables, the R2-value must
be at least as high. But comparing the R̄2s, the stepwise regression value (0.193)
is slightly higher than for the full regression (0.189), indicating that the additional
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regressors in the full regression do not justify their presence, at least according to
this criterion.

There now follows another case study of the application of the OLS method
of regression estimation, including interpretation of t-ratios and R2.

• • • • • • • • • • • • • • 4.9 Hedonic pricing models

One application of econometric techniques where the coefficients have a particu-
larly intuitively appealing interpretation is in the area of hedonic pricing models.
Hedonic models are used to value real assets, especially housing, and view the asset
as representing a bundle of characteristics, each of which gives either utility or
disutility to its consumer. Hedonic models are often used to produce appraisals or
valuations of properties, given their characteristics (e.g. size of dwelling, number
of bedrooms, location, number of bathrooms, etc). In these models, the coefficient
estimates represent ‘prices of the characteristics’.

One such application of a hedonic pricing model is given by Des Rosiers and
Thériault (1996), who consider the effect of various amenities on rental values for
buildings and apartments in five sub-markets in the Quebec area of Canada. After
accounting for the effect of ‘contract-specific’ features which will affect rental
values (such as whether furnishings, lighting, or hot water are included in the
rental price), they arrive at a model where the rental value in Canadian dollars per
month (the dependent variable) is a function of nine–fourteen variables (depending
on the area under consideration). The paper employs 1990 data for the Quebec
City region, and there are 13,378 observations. The twelve explanatory variables
are:

LnAGE log of the apparent age of the property
NBROOMS number of bedrooms
AREABYRM area per room (in square metres)
ELEVATOR a dummy variable = 1 if the building has an

elevator; 0 otherwise
BASEMENT a dummy variable = 1 if the unit is located in a

basement; 0 otherwise
OUTPARK number of outdoor parking spaces
INDPARK number of indoor parking spaces
NOLEASE a dummy variable = 1 if the unit has no lease

attached to it; 0 otherwise
LnDISTCBD log of the distance in kilometres to the central

business district (CBD)
SINGLPAR percentage of single parent families in the area

where the building stands
DSHOPCNTR distance in kilometres to the nearest shopping

centre
VACDIFF1 vacancy difference between the building and the

census figure
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Table 4.1 Hedonic model of rental values in Quebec City, 1990.
Dependent variable: Canadian dollars per month

Variable Coefficient t-ratio sign expected A priori

Intercept 282.21 56.09 +
LnAGE −53.10 −59.71 −
NBROOMS 48.47 104.81 +
AREABYRM 3.97 29.99 +
ELEVATOR 88.51 45.04 +
BASEMENT −15.90 −11.32 −
OUTPARK 7.17 7.07 +
INDPARK 73.76 31.25 +
NOLEASE −16.99 −7.62 −
LnDISTCBD 5.84 4.60 −
SINGLPAR −4.27 −38.88 −
DSHOPCNTR −10.04 −5.97 −
VACDIFF1 0.29 5.98 −

Notes: Adjusted R2 = 0.651; regression F-statistic = 2082.27.
Source: Des Rosiers and Thériault (1996). Reprinted with permission of American Real Estate
Society.

This list includes several variables that are dummy variables. Dummy variables are
also known as qualitative variables because they are often used to numerically repre-
sent a qualitative entity. Dummy variables are usually specified to take on one of a
narrow range of integer values, and in most instances only zero and one are used.

Dummy variables can be used in the context of cross-sectional or time series
regressions. The latter case will be discussed extensively below. Examples of the use
of dummy variables as cross-sectional regressors would be for sex in the context
of starting salaries for new traders (e.g. male = 0, female = 1) or in the context
of sovereign credit ratings (e.g. developing country = 0, developed country =
1), and so on. In each case, the dummy variables are used in the same way as
other explanatory variables and the coefficients on the dummy variables can be
interpreted as the average differences in the values of the dependent variable for
each category, given all of the other factors in the model.

Des Rosiers and Thériault (1996) report several specifications for five different
regions, and they present results for the model with variables as discussed here in
their exhibit 4, which is adapted and reported here as table 4.1.

The adjusted R2 value indicates that 65% of the total variability of rental prices
about their mean value is explained by the model. For a cross-sectional regression,
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Box 4.1 The relationship between the regression F -statistic and R2

There is a particular relationship between a regression’s R2 value and the
regression F -statistic. Recall that the regression F -statistic tests the null
hypothesis that all of the regression slope parameters are simultaneously zero.
Let us call the residual sum of squares for the unrestricted regression including
all of the explanatory variables RSS, while the restricted regression will simply
be one of yt on a constant

yt = β1 + ut (4.44)

Since there are no slope parameters in this model, none of the variability of yt
about its mean value would have been explained. Thus the residual sum of
squares for equation (4.44) will actually be the total sum of squares of yt , TSS.
We could write the usual F -statistic formula for testing this null that all of the
slope parameters are jointly zero as

F − stat = TSS − RSS
RSS

× T − k
k − 1

(4.45)

In this case, the number of restrictions (‘m ’) is equal to the number of slope
parameters, k − 1. Recall that TSS − RSS = ESS and dividing the numerator
and denominator of equation (4.45) by TSS, we obtain

F − stat = ESS/TSS
RSS/TSS

× T − k
k − 1

(4.46)

Now the numerator of equation (4.46) is R2, while the denominator is
1 − R2, so that the F -statistic can be written

F − stat = R2(T − k)

1 − R2(k − 1)
(4.47)

This relationship between the F -statistic and R2 holds only for a test of this
null hypothesis and not for any others.

this is quite high. Also, all variables are significant at the 0.01% level or lower
and consequently, the regression F-statistic rejects very strongly the null hypothesis
that all coefficient values on explanatory variables are zero. Note that there is a
relationship between the regression F -statistic and R2, as shown in box 4.1.

As stated above, one way to evaluate an econometric model is to determine
whether it is consistent with theory. In this instance, no real theory is available,
but instead there is a notion that each variable will affect rental values in a given
direction. The actual signs of the coefficients can be compared with their expected
values, given in the last column of table 4.1 (as determined by this author). It can
be seen that all coefficients except two (the log of the distance to the CBD and
the vacancy differential) have their predicted signs. It is argued by Des Rosiers and
Thériault that the ‘distance to the CBD’ coefficient may be expected to have a
positive sign since, while it is usually viewed as desirable to live close to a town
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centre, everything else being equal, in this instance most of the least desirable
neighbourhoods are located towards the centre.

The coefficient estimates themselves show the Canadian dollar rental price per
month of each feature of the dwelling. To offer a few illustrations, the NBROOMS
value of 48 (rounded) shows that, everything else being equal, one additional
bedroom will lead to an average increase in the rental price of the property by $48
per month at 1990 prices. A basement coefficient of −16 suggests that an apartment
located in a basement commands a rental $16 less than an identical apartment above
ground. Finally the coefficients for parking suggest that on average each outdoor
parking space adds $7 to the rent while each indoor parking space adds $74,
and so on. The intercept shows, in theory, the rental that would be required of
a property that had zero values on all the attributes. This case demonstrates, as
stated previously, that the coefficient on the constant term often has little useful
interpretation, as it would refer to a dwelling that has just been built, has no
bedrooms each of zero size, no parking spaces, no lease, right in the CBD and
shopping centre, etc.

One limitation of such studies that is worth mentioning at this stage is their
assumption that the implicit price of each characteristic is identical across types of
property, and that these characteristics do not become saturated. In other words, it
is implicitly assumed that if more and more bedrooms or allocated parking spaces
are added to a dwelling indefinitely, the monthly rental price will rise each time by
$48 and $7, respectively. This assumption is very unlikely to be upheld in practice,
and will result in the estimated model being appropriate for only an ‘average’
dwelling. For example, an additional indoor parking space is likely to add far more
value to a luxury apartment than a basic one. Similarly, the marginal value of an
additional bedroom is likely to be bigger if the dwelling currently has one bedroom
than if it already has ten. One potential remedy for this would be to use dummy
variables with fixed effects in the regressions; see, for example, chapter 10 for an
explanation of these.

• • • • • • • • • • • • • • 4.10 Tests of non-nested hypotheses

All of the hypothesis tests conducted thus far in this book have been in the context
of ‘nested’ models. This means that, in each case, the test involved imposing
restrictions on the original model to arrive at a restricted formulation that would
be a sub-set of, or nested within, the original specification.

However, it is sometimes of interest to compare between non-nested models.
For example, suppose that there are two researchers working independently, each
with a separate financial theory for explaining the variation in some variable, yt .
The models selected by the researchers respectively could be

yt = α1 + α2x2t + ut (4.48)

yt = β1 + β2x3t + vt (4.49)

where ut and vt are iid error terms. Model (4.48) includes variable x2 but not
x3, while model (4.49) includes x3 but not x2. In this case, neither model can be
viewed as a restriction of the other, so how then can the two models be compared
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Box 4.2 Selecting between models

(1) γ2 is statistically significant but γ3 is not. In this case, (4.50) collapses to
(4.48), and the latter is the preferred model.

(2) γ3 is statistically significant but γ2 is not. In this case, (4.50) collapses to
(4.49), and the latter is the preferred model.

(3) γ2 and γ3 are both statistically significant. This would imply that both
x2 and x3 have incremental explanatory power for y, in which case
both variables should be retained. Models (4.48) and (4.49) are both
ditched and (4.50) is the preferred model.

(4) Neither γ2 nor γ3 are statistically significant. In this case, none of the
models can be dropped, and some other method for choosing between
them must be employed.

as to which better represents the data, yt ? Given the discussion in section 4.8, an
obvious answer would be to compare the values of R2 or adjusted R2 between the
models. Either would be equally applicable in this case since the two specifications
have the same number of RHS variables. Adjusted R2 could be used even in cases
where the number of variables was different across the two models, since it employs
a penalty term that makes an allowance for the number of explanatory variables.
However, adjusted R2 is based upon a particular penalty function (that is, T − k
appears in a specific way in the formula). This form of penalty term may not
necessarily be optimal. Also, given the statement above that adjusted R2 is a soft
rule, it is likely on balance that use of it to choose between models will imply that
models with more explanatory variables are favoured. Several other similar rules
are available, each having more or less strict penalty terms; these are collectively
known as ‘information criteria’. These are explained in some detail in chapter 5,
but suffice to say for now that a different strictness of the penalty term will in
many cases lead to a different preferred model.

An alternative approach to comparing between non-nested models would be
to estimate an encompassing or hybrid model. In the case of (4.48) and (4.49), the
relevant encompassing model would be

yt = γ1 + γ2x2t + γ3x3t + wt (4.50)

where wt is an error term. Formulation (4.50) contains both (4.48) and (4.49) as
special cases when γ3 and γ2 are zero, respectively. Therefore, a test for the best
model would be conducted via an examination of the significances of γ2 and γ3
in model (4.50). There will be four possible outcomes (box 4.2).

However, there are several limitations to the use of encompassing regressions
to select between non-nested models. Most importantly, even if models (4.48) and
(4.49) have a strong theoretical basis for including the RHS variables that they
do, the hybrid model may be meaningless. For example, it could be the case that
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financial theory suggests that y could either follow model (4.48) or model (4.49),
but model (4.50) is implausible.

Also, if the competing explanatory variables x2 and x3 are highly related
(i.e. they are near collinear), it could be the case that if they are both included,
neither γ2 nor γ3 are statistically significant, while each is significant in their
separate regressions (4.48) and (4.49); see the section on multicollinearity in
chapter 4.

An alternative approach is via the J -encompassing test due to Davidson and
MacKinnon (1981). Interested readers are referred to their work or to Gujarati
(2003, pp. 533–6) for further details.

• • • • • • • • • • • • • • 4.11 Quantile regression

4.11.1 Background and motivation

Standard regression approaches effectively model the (conditional) mean of the
dependent variable – that is, they capture the average value of y given the
average values of all of the explanatory variables. We could of course calculate
from the fitted regression line the value that y would take for any values of
the explanatory variables, but this would essentially be an extrapolation of the
behaviour of the relationship between y and x at the mean to the remainder of the
data.

As a motivational example of why this approach will often be sub-optimal,
suppose that it is of interest to capture the cross-sectional relationship across coun-
tries between the degree of regulation of banks and gross domestic product (GDP).
Starting from a very low level of regulation (or no regulation), an increase in reg-
ulation is likely to encourage a rise in economic activity as the banking system
functions better as a result of more trust and stability in the financial environment.
However, there is likely to come a point where further increasing the amount of
regulation may impede economic growth by stifling innovation and the respon-
siveness of the banking sector to the needs of the industries it serves. Thus we
may think of there being a non-linear (∩-shaped) relationship between regulation
and GDP growth, and estimating a standard linear regression model may lead to
seriously misleading estimates of this relationship as it will ‘average’ the positive
and negative effects from very low and very high regulation.

Of course, in this situation it would be possible to include non-linear (i.e.
polynomial) terms in the regression model (for example, squared, cubic, . . . terms
of regulation in the equation). But quantile regressions, developed by Koenker and
Bassett (1978), represent a more natural and flexible way to capture the complex-
ities inherent in the relationship by estimating models for the conditional quantile
functions. Quantile regressions can be conducted in both time series and cross-
sectional contexts, although the latter are more common. It is usually assumed that
the dependent variable, often called the response variable in the literature on quan-
tile regressions, is independently distributed and homoscedastic; these assumptions
can of course be relaxed but at the cost of additional complexity. Quantile regres-
sions represent a comprehensive way to analyse the relationships between a set
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of variables, and are far more robust to outliers and non-normality than OLS
regressions in the same fashion that the median is often a better measure of aver-
age or ‘typical’ behaviour than the mean when the distribution is considerably
skewed by a few large outliers. Quantile regression is a non-parametric tech-
nique since no distributional assumptions are required to optimally estimate the
parameters.

The notation and approaches commonly used in quantile regression modelling
are different to those that we are familiar with in financial econometrics, and this
probably limited the early take up of the technique, which was historically more
widely used in other disciplines. Numerous applications in labour economics were
developed for example. However, the more recent availability of the techniques
in econometric software packages and increased interest in modelling the ‘tail
behaviour’ of series have spurred applications of quantile regression in finance.
The most common use of the technique here is to value at risk modelling. This
seems natural given that the models are based on estimating the quantile of a
distribution of possible losses – see, for example, the study by Chernozhukov
and Umanstev (2001) and the development of the CaViaR model by Engle and
Manganelli (2004).2

Quantiles, denoted τ , refer to the position where an observation falls within
an ordered series for y – for example, the median is the observation in the very
middle; the (lower) tenth percentile is the value that places 10% of observations
below it (and therefore 90% of observations above), and so on. More precisely,
we can define the τ -th quantile, Q(τ ), of a random variable y having cumulative
distribution F (y) as

Q(τ ) = inf y : F (y) ≥ τ (4.51)

where inf refers to the infimum, or the ‘greatest lower bound’ which is the smallest
value of y satisfying the inequality. By definition, quantiles must lie between zero
and one.

Quantile regressions take the concept of quantiles a stage further and effectively
model the entire conditional distribution of y given the explanatory variables
(rather than only the mean as is the case for OLS) – thus they examine their
impact on not only the location and scale of the distribution of y, but also on
the shape of the distribution as well. So we can determine how the explanatory
variables affect the fifth or ninetieth percentiles of the distribution of y or its
median and so on.

4.11.2 Estimation of quantile functions

In the same fashion as the ordinary least squares estimator finds the mean value that
minimises the sum of the squared residuals, minimising the sum of the absolute
values of the residuals will yield the median value. By definition, the absolute

2 For further reading on quantile regression, Koenker and Hallock (2001) represents a very accessible,
albeit brief, introduction to quantile regressions and their applications. A more thorough treatment
is given in the book by Koenker (2005).
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value function is symmetrical so that the median always has the same number of
data points above it as below it. But if instead the absolute residuals are weighted
differently depending on whether they are positive or negative, we can calculate the
quantiles of the distribution. To estimate the τ -th quantile, we would set the weight
on positive observations to τ , which is the quantile of interest, and that on negative
observations to 1 − τ . We can select the quantiles of interest (or the software might
do this for us), but common choices would be 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95.
The fit is not always good for values of τ too close to its limits of 0 and 1, so it is
advisable to avoid such values.

We could write the minimisation problem for a set of quantile regression
parameters β̂τ , each element of which is a k × 1 vector, as

β̂τ = argminβ

⎛
⎝ ∑

i :yi >βxi

τ |yi − βxi | +
∑

i :yi <βxi

(1 − τ )|yi − βxi |
⎞
⎠ (4.52)

This equation makes it clear where the weighting enters into the optimisation. As
above, for the median, τ = 0.5 and the weights are symmetric, but for all other
quantiles they will be asymmetric. This optimisation problem can be solved using
a linear programming representation via the simplex algorithm or it can be cast
within the generalised method of moments framework.

As an alternative to quantile regression, it would be tempting to think of
partitioning the data and running separate regressions on each of them – for
example, dropping the top 90% of the observations on y and the corresponding
data points for the xs, and running a regression on the remainder. However,
this process, tantamount to truncating the dependent variable, would be wholly
inappropriate and could lead to potentially severe sample selection biases of the
sort discussed in chapter 12 here and highlighted by Heckman (1979). In fact,
quantile regression does not partition the data – all observations are used in the
estimation of the parameters for every quantile.

It is quite useful to plot each of the estimated parameters, β̂i,τ (for i =
1, . . . , k), against the quantile, τ (from 0 to 1) so that we can see whether the
estimates vary across the quantiles or are roughly constant. Sometimes ±2 standard
error bars are also included on the plot, and these tend to widen as the limits of τ are
approached. Producing these standard errors for the quantile regression parameters
is unfortunately more complex conceptually than estimating the parameters them-
selves and thus a discussion of these is beyond the scope of this book. Under some
assumptions, Koenker (2005) demonstrates that the quantile regression parameters
are asymptotically normally distributed. A number of approaches have been pro-
posed for estimating the variance-covariance matrix of the parameters, including
one based on a bootstrap – see chapter 13 for a discussion of this.

4.11.3 An application of quantile regression: evaluating fund performance

A study by Bassett and Chen (2001) performs a style attribution analysis for a
mutual fund and, for comparison, the S&P500 index. In order to examine how a
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portfolio’s exposure to various styles varies with performance, they use a quantile
regression approach.

Effectively evaluating the performance of mutual fund managers is made dif-
ficult by the observation that certain investment styles – notably, value and small
cap – yield higher returns on average than the equity market as a whole. In response
to this, factor models such as those of Fama and French (1993) have been employed
to remove the impact of these characteristics – see chapter 14 for a detailed pre-
sentation of these models. The use of such models also ensures that fund manager
skill in picking highly performing stocks is not confused with randomly investing
within value and small cap styles that will outperform the market in the long run.
For example, if a manager invests in a relatively high proportion of his portfolio
in small firms, we would expect to observe higher returns than average from this
manager because of the firm size effect alone.

Bassett and Chen (2001) conduct a style analysis in this spirit by regressing
the returns of a fund on the returns of a large growth portfolio, the returns of
a large value portfolio, the returns of a small growth portfolio, and the returns
of a small value portfolio. These style portfolio returns are based on the Russell
style indices. In this way, the parameter estimates on each of these style-mimicking
portfolio returns will measure the extent to which the fund is exposed to that style.
Thus we can determine the actual investment style of a fund without knowing
anything about its holdings purely based on an analysis of its returns ex post and
their relationships with the returns of style indices. Table 4.2 presents the results
from a standard OLS regression and quintile regressions for τ = 0.1, 0.3, 0.5 (i.e.
the median), 0.7 and 0.9. The data are observed over the five years to December
1997 and the standard errors are based on a bootstrapping procedure.

Notice that the sum of the style parameters for a given regression is always
one (except for rounding errors). To conserve space, I only present the results for
the Magellan active fund and not those for the S&P – the latter exhibit very little
variation in the estimates across the quantiles. The OLS results (column 2) show
that the mean return has by far its biggest exposure to large value stocks (and
this parameter estimate is also statistically significant), but it also exposed to small
growth and, to a lesser extent, large growth stocks. It is of interest to compare
the mean (OLS) results with those for the median, Q(0.5). The latter show much
higher exposure to large value, less to small growth and none at all to large
growth.

It is also of interest to examine the factor tilts as we move through the quantiles
from left (Q(0.1)) to right (Q(0.9)). We can see that the loading on large growth
monotonically falls from 0.31 at Q(0.1) to 0.01 at Q(0.9) while the loadings on
large value and small growth substantially increase. The loading on small value
falls from 0.31 at Q(0.1) to -0.51 at Q(0.9). A way to interpret (mine, not the
authors’) these results is to say that when the fund has historically performed
poorly, this has resulted in equal amounts from its overweight exposure to large
value and growth, and small growth. On the other hand, when it has historically
performed well, this is a result of its exposure to large value and small growth
but it was underweight small value stocks. Finally, it is obvious that the intercept
(coefficient on the constant) estimates should be monotonically increasing from
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Table 4.2 OLS and quantile regression results for the
Magellan fund

OLS Q (0.1) Q (0.3) Q (0.5) Q (0.7) Q (0.9)

Large growth 0.14 0.35 0.19 0.01 0.12 0.01

(0.15) (0.31) (0.22) (0.16) (0.20) (0.22)

Large value 0.69 0.31 0.75 0.83 0.85 0.82

(0.20) (0.38) (0.30) (0.25) (0.30) (0.36)

Small growth 0.21 −0.01 0.10 0.14 0.27 0.53

(0.11) (0.15) (0.16) (0.17) (0.17) (0.15)

Small value −0.03 0.31 0.08 0.07 −0.31 −0.51

(0.20) (0.31) (0.27) (0.29) (0.32) (0.35)

Constant −0.05 −1.90 −1.11 −0.30 0.89 2.31

(0.25) (0.39) (0.27) (0.38) (0.40) (0.57)

Notes: Standard errors in parentheses.
Source: Bassett and Chen (2001). Reprinted with the permission of Springer-Verlag.

left to right since the quantile regression effectively sorts on average performance
and the intercept can be interpreted as the performance expected if the fund had
zero exposure to all of the styles.

4.11.4 Quantile regression in EViews

To illustrate how to run quantile regressions using EViews, we will now
employ the simple CAPM beta estimation conducted previously. So Re-open
the ‘CAPM.wf1’ workfile constructed previously. Click on Quick/Estimate
Equation. . . , and change Method in Estimation settings to QREG - Quantile
regression (including LAD) and screenshot 4.3 will appear. Write ‘erford c
ersandp’ in the Equation specification window. As usual, there is an Options tab
that allows the user to control various aspects of the estimation technique, but these
can be left at the default so just click OK and the quantile regression results for
the median will appear. EViews will estimate the median (0.5 quantile) by default,
but any value of τ between 0 and 1 can be chosen. Rather than estimate each
quantile separately and obtain a full statistical output in each case, after estimating
a single quantile, click View/Quantile Process/Process Coefficients. EViews
will then open a window that permits the simultaneous estimation of a number
of quantiles. The default here is to estimate quantiles for the data split into ten
segments (τ = 0.1, 0.2, . . . , 0.9). The quantile estimates can be displayed in a table
or in a graph for all of the coefficients (the default) or for specific coefficients. Just
click OK and the following table will appear.
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Screenshot 4.3 Quantile regression estimation window

As for the Magellan example, the monotonic fall in the intercept coefficients as
the quantiles increase is to be expected since the data on y have been arranged that
way. But the slope estimates are very revealing – they show that the beta estimate
is much higher in the lower tail than in the rest of the distribution of ordered
data. Thus the relationship between the excess returns on Ford stock and those
of the S&P500 is much stronger when Ford share prices are falling most sharply.
This is worrying, for it shows that the ‘tail systematic risk’ of the stock is greater
than for the distribution as a whole. This is related to the observation that when
stock prices fall, they tend to all fall at the same time, and thus the benefits of
diversification that would be expected from examining only a standard regression
of y on x could be much overstated.

Several diagnostic and specification tests for quantile regressions may be com-
puted, and one of particular interest is whether the coefficients for each quantile
can be restricted to be the same. To compute this test following estimation of
a quantile regression, click View/Quantile Process/Slope Equality Test. . . .
Again, several options are possible. Run the test for 10 quantiles and click OK.
Output is then shown first as a test of whether the corresponding slope coefficients
are identical, followed by a pairwise comparison of one quantile with the next one
(e.g. 0.1 with 0.2). The results in this case show that none of the statistics are
significant, indicating that, despite the beta estimates differing across the quantiles
by an economically large magnitude, they are not statistically significantly different.
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Quantile Process Estimates
Equation: UNTITLED
Specification: ERFORD C ERSANDP
Estimated equation quantile tau = 0.5
Number of process quantiles
Display all coefficients

Quantile Coefficient Std. error t-Statistic

C 0.100 −12.42521 1.550047 −8.016025
0.200 −8.294803 1.088524 −7.620228
0.300 −5.592712 0.964050 −5.801266
0.400 −4.294994 0.994117 −4.320411
0.500 −1.626581 1.006131 −1.616669
0.600 1.039469 1.104484 0.941135
0.700 2.739059 1.143703 2.394904
0.800 7.115613 1.503729 4.731978
0.900 14.43761 2.947024 4.899046

ERSANDP 0.100 2.399342 0.514023 4.667776
0.200 1.845833 0.461919 3.996006
0.300 1.599782 0.341128 4.689681
0.400 1.670868 0.341534 4.892246
0.500 1.659274 0.303687 5.463766
0.600 1.767672 0.314817 5.614920
0.700 1.652457 0.311495 5.304915
0.800 1.970517 0.310818 6.339783
0.900 1.615321 0.614305 2.629509

A further test can be conducted for whether the quantiles are symmetric – that is,
the estimates for τ = 0.1 and τ = 0.9 are identical for instance. Again, if we run
this test for the CAPM example here we would find that the null hypothesis is not
rejected.

Key concepts

The key terms to be able to define and explain from this chapter are

• multiple regression model • variance-covariance matrix

• restricted regression • F -distribution

• residual sum of squares • total sum of squares

• multiple hypothesis test • non-nested hypotheses

• R2 • R̄2

• hedonic model • encompassing regression

• data mining • quantile regression
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Appendix 4.1 Mathematical derivations of CLRM results

Derivation of the OLS coefficient estimator in the multiple
regression context

In the multiple regression context, in order to obtain the parameter estimates,
β1, β2, . . . , βk, the RSS would be minimised with respect to all the elements of
β. Now the residuals are expressed in a vector:

û =

⎡
⎢⎢⎣

û1
û2
...

ûT

⎤
⎥⎥⎦ (4A.1)

The RSS is still the relevant loss function, and would be given in a matrix notation
by expression (4A.2)

L = û ′û = [û1û2 . . . ûT]

⎡
⎢⎢⎣

û1
û2
...

ûT

⎤
⎥⎥⎦ = û2

1 + û2
2 + · · · + û2

T =
∑

û2
t (4A.2)

Denoting the vector of estimated parameters as β̂, it is also possible to write

L = û ′û = (y − Xβ̂)′(y − Xβ̂) = y ′y − β̂
′
X′y − y ′Xβ̂ + β̂

′
X′Xβ̂ (4A.3)

It turns out that β̂
′
X′y is (1 × k) × (k × T) × (T × 1) = 1 × 1, and also that

y ′Xβ̂ is (1 × T) × (T × k) × (k × 1) = 1 × 1, so in fact β̂
′
X′y = y ′Xβ̂. Thus

(4A.3) can be written

L = û ′û = (y − Xβ̂)′(y − Xβ̂) = y ′y − 2β̂
′
X′y + β̂

′
X′Xβ̂ (4A.4)

Differentiating this expression with respect to β̂ and setting it to zero in order to
find the parameter values that minimise the residual sum of squares would yield

∂L

∂β̂
= −2X′y + 2X′Xβ̂ = 0 (4A.5)

This expression arises since the derivative of y ′y is zero with respect to β̂, and
β̂

′
X′Xβ̂ acts like a square of Xβ̂, which is differentiated to 2X′Xβ̂. Rearranging

(4A.5)

2X′y = 2X′Xβ̂ (4A.6)

X′y = X′Xβ̂ (4A.7)

Pre-multiplying both sides of (4A.7) by the inverse of X′X

β̂ = (X′X)−1 X′y (4A.8)
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Thus, the vector of OLS coefficient estimates for a set of k parameters is given
by

β̂ =

⎡
⎢⎢⎣

β̂1

β̂2...
β̂k

⎤
⎥⎥⎦ = (X′X)−1 X′y (4A.9)

Derivation of the OLS standard error estimator in the multiple
regression context

The variance of a vector of random variables β̂ is given by the formula E[(β̂ −
β)(β̂ − β)′]. Since y = Xβ + u, it can also be stated, given (4A.9), that

β̂ = (X′X)−1 X′(Xβ + u) (4A.10)

Expanding the parentheses

β̂ = (X′X)−1 X′Xβ + (X′X)−1 X′u (4A.11)

β̂ = β + (X′X)−1 X′u (4A.12)

Thus, it is possible to express the variance of β̂ as

E[(β̂ − β)(β̂ − β)′] = E[(β + (X′X)−1 X′u − β)(β + (X′X)−1 X′u − β)′]

(4A.13)

Cancelling the β terms in each set of parentheses

E[(β̂ − β)(β̂ − β)′] = E[((X′X)−1 X′u)((X′X)−1 X′u)′] (4A.14)

Expanding the parentheses on the RHS of (4A.14) gives

E[(β̂ − β)(β̂ − β)′] = E[(X′X)−1 X′uu ′X(X′X)−1] (4A.15)

E[(β̂ − β)(β̂ − β)′] = (X′X)−1 X′E[uu ′]X(X′X)−1 (4A.16)

Now E[uu ′] is estimated by s 2 I , so that

E[(β̂ − β)(β̂ − β)′] = (X′X)−1 X′s 2 I X(X′X)−1 (4A.17)

where I is a k × k identity matrix. Rearranging further,

E[(β̂ − β)(β̂ − β)′] = s 2(X′X)−1 X′X(X′X)−1 (4A.18)

The X′X and the last (X′X)−1 term cancel out to leave

var(β̂) = s 2(X′X)−1 (4A.19)

as the expression for the parameter variance–covariance matrix. This quan-
tity, s 2(X′X)−1, is known as the estimated variance–covariance matrix of the
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coefficients. The leading diagonal terms give the estimated coefficient variances
while the off-diagonal terms give the estimated covariances between the parameter
estimates. The variance of β̂1 is the first diagonal element, the variance of β̂2 is
the second element on the leading diagonal, . . . , and the variance of β̂k is the kth
diagonal element, etc. as discussed in the body of the chapter.

Appendix 4.2 A brief introduction to factor models and principal components analysis

Factor models are employed primarily as dimensionality reduction techniques in
situations where we have a large number of closely related variables and where
we wish to allow for the most important influences from all of these variables
at the same time. Factor models decompose the structure of a set of series into
factors that are common to all series and a proportion that is specific to each series
(idiosyncratic variation). There are broadly two types of such models, which can be
loosely characterised as either macroeconomic or mathematical factor models. The
key distinction between the two is that the factors are observable for the former
but are latent (unobservable) for the latter. Observable factor models include
the APT model of Ross (1976). The most common mathematical factor model
is principal components analysis (PCA). PCA is a technique that may be useful
where explanatory variables are closely related – for example, in the context of near
multicollinearity. Specifically, if there are k explanatory variables in the regression
model, PCA will transform them into k uncorrelated new variables. To elucidate,
suppose that the original explanatory variables are denoted x1, x2, . . . , xk, and
denote the principal components by p1, p2, . . . , pk. These principal components
are independent linear combinations of the original data

p1 = α11x1 + α12x2 + · · · + α1kxk

p2 = α21x1 + α22x2 + · · · + α2kxk (4A.20)

. . . . . . . . . . . .

pk = αk1x1 + αk2x2 + · · · + αkkxk

where αi j are coefficients to be calculated, representing the coefficient on the j th
explanatory variable in the i th principal component. These coefficients are also
known as factor loadings. Note that there will be T observations on each principal
component if there were T observations on each explanatory variable.

It is also required that the sum of the squares of the coefficients for each
component is one, i.e.

α2
11 + α2

12 + · · · + α2
1k = 1

...
... (4A.21)

α2
k1 + α2

k2 + · · · + α2
kk = 1
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This requirement could also be expressed using sigma notation

k∑
j=1

α2
i j = 1 ∀ i = 1, . . . , k (4A.22)

Constructing the components is a purely mathematical exercise in constrained
optimisation, and thus no assumption is made concerning the structure, distribu-
tion, or other properties of the variables.

The principal components are derived in such a way that they are in descending
order of importance. Although there are k principal components, the same as the
number of explanatory variables, if there is some collinearity between these original
explanatory variables, it is likely that some of the (last few) principal components
will account for so little of the variation that they can be discarded. However, if
all of the original explanatory variables were already essentially uncorrelated, all
of the components would be required, although in such a case there would have
been little motivation for using PCA in the first place.

The principal components can also be understood as the eigenvalues of (X′X),
where X is the matrix of observations on the original variables. Thus the number
of eigenvalues will be equal to the number of variables, k. If the ordered eigenvalues
are denoted λi (i = 1, . . . , k), the ratio

φi = λi

k∑
i=1

λi

gives the proportion of the total variation in the original data explained by the
principal component i . Suppose that only the first r (0 < r < k) principal compo-
nents are deemed sufficiently useful in explaining the variation of (X′X), and that
they are to be retained, with the remaining k − r components being discarded.
The regression finally estimated, after the principal components have been formed,
would be one of y on the r principal components

yt = γ0 + γ1 p1t + · · · + γr pr t + ut (4A.23)

In this way, the principal components are argued to keep most of the important
information contained in the original explanatory variables, but are orthogonal.
This may be particularly useful for independent variables that are very closely
related. The principal component estimates (γ̂i , i = 1, . . . , r ) will be biased esti-
mates, although they will be more efficient than the OLS estimators since redun-
dant information has been removed. In fact, if the OLS estimator for the original
regression of y on x is denoted β̂, it can be shown that

γ̂r = P ′
r β̂ (4A.24)

where γ̂r are the coefficient estimates for the principal components, and Pr
is a matrix of the first r principal components. The principal component
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coefficient estimates are thus simply linear combinations of the original OLS
estimates.

An application of principal components to interest rates

Many economic and financial models make use of interest rates in some form or
another as independent variables. Researchers may wish to include interest rates
on a large number of different assets in order to reflect the variety of investment
opportunities open to investors. However, market interest rates could be argued
to be not sufficiently independent of one another to make the inclusion of several
interest rate series in an econometric model statistically sensible. One approach to
examining this issue would be to use PCA on several related interest rate series
to determine whether they did move independently of one another over some
historical time period or not.

Fase (1973) conducted such a study in the context of monthly Dutch market
interest rates from January 1962 until December 1970 (108 months). Fase exam-
ined both ‘money market’ and ‘capital market’ rates, although only the money
market results will be discussed here in the interests of brevity. The money market
instruments investigated were:

● Call money
● Three-month Treasury paper
● One-year Treasury paper
● Two-year Treasury paper
● Three-year Treasury paper
● Five-year Treasury paper
● Loans to local authorities: three-month
● Loans to local authorities: one-year
● Eurodollar deposits
● Netherlands Bank official discount rate.

Prior to analysis, each series was standardised to have zero mean and unit variance
by subtracting the mean and dividing by the standard deviation in each case. The
three largest of the ten eigenvalues are given in table 4A.1.

The results in table 4A.1 are presented for the whole period using the monthly
data, for two monthly sub-samples, and for the whole period using data sampled
quarterly instead of monthly. The results show clearly that the first principal
component is sufficient to describe the common variation in these Dutch interest
rate series. The first component is able to explain over 90% of the variation
in all four cases, as given in the last row of table 4A.1. Clearly, the estimated
eigenvalues are fairly stable across the sample periods and are relatively invariant to
the frequency of sampling of the data. The factor loadings (coefficient estimates)
for the first two ordered components are given in table 4A.2.

As table 4A.2 shows, the loadings on each factor making up the first principal
component are all positive. Since each series has been standardised to have zero
mean and unit variance, the coefficients α j1 and α j2 can be interpreted as the
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Table 4A.1 Principal component ordered eigenvalues for Dutch
interest rates, 1962–70

Monthly data Quarterly data

Jan 62–Dec 70 Jan 62–Jun 66 Jul 66–Dec 70 Jan 62–Dec 70

λ1 9.57 9.31 9.32 9.67

λ2 0.20 0.31 0.40 0.16

λ3 0.09 0.20 0.17 0.07

φ1 95.7% 93.1% 93.2% 96.7%

Source: Fase (1973). Reprinted with the permission of Elsevier.

correlations between the interest rate j and the first and second principal com-
ponents, respectively. The factor loadings for each interest rate series on the first
component are all very close to one. Fase (1973) therefore argues that the first
component can be interpreted simply as an equally weighted combination of all of
the market interest rates. The second component, which explains much less of the
variability of the rates, shows a factor loading pattern of positive coefficients for
the Treasury paper series and negative or almost zero values for the other series.
Fase (1973) argues that this is owing to the characteristics of the Dutch Treasury
instruments that they rarely change hands and have low transactions costs, and
therefore have less sensitivity to general interest rate movements. Also, they are
not subject to default risks in the same way as, for example Eurodollar deposits.
Therefore, the second principal component is broadly interpreted as relating to
default risk and transactions costs.

Principal components can be useful in some circumstances, although the tech-
nique has limited applicability for the following reasons:

● A change in the units of measurement of x will change the principal compo-
nents. It is thus usual to transform all of the variables to have zero mean and
unit variance prior to applying PCA.

● The principal components usually have no theoretical motivation or interpre-
tation whatsoever.

● The r principal components retained from the original k are the ones that
explain most of the variation in x, but these components might not be the
most useful as explanations for y.

Calculating principal components in EViews

In order to calculate the principal components of a set of series with EViews,
the first stage is to compile the series concerned into a group. Re-open the
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Table 4A.2 Factor loadings of the first and second principal
components for Dutch interest rates, 1962–70

j Debt instrument αj 1 αj 2

1 Call money 0.95 −0.22

2 3-month Treasury paper 0.98 0.12

3 1-year Treasury paper 0.99 0.15

4 2-year Treasury paper 0.99 0.13

5 3-year Treasury paper 0.99 0.11

6 5-year Treasury paper 0.99 0.09

7 Loans to local authorities: 3-month 0.99 −0.08

8 Loans to local authorities: 1-year 0.99 −0.04

9 Eurodollar deposits 0.96 −0.26

10 Netherlands Bank official discount rate 0.96 −0.03

Eigenvalue, λi 9.57 0.20

Proportion of variability explained by 95.7 2.0

eigenvalue i , φi (%)

Source: Fase (1973). Reprinted with the permission of Elsevier.

‘macro.wf1’ file which contains US Treasury bill and bond series of various
maturities. Select Object/New Object and change ‘Equation’ to ‘Group’ but do
not name the object and click OK. When EViews prompts you to give a ‘List of
series, groups and/or series expressions’, enter

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

and click OK. You will then see a spreadsheet containing all six of the series.
Name the group Interest by clicking the Name tab. From within this window,
click View/Principal Components. . . . Screenshot 4.4 will appear.

There are many features of principal components that can be examined, but
for now keep the defaults and click OK. The results will appear as in the following
table.

It is evident that there is a great deal of common variation in the series, since
the first principal component captures over 96% of the variation in the series and
the first two components capture 99.8%. Consequently, if we wished, we could
reduce the dimensionality of the system by using two components rather than the
entire six interest rate series. Interestingly, the first component comprises almost
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Principal Components Analysis
Date: 07/04/13 Time: 10:27
Sample: 1986M03 2013M04
Included observations: 326
Computed using: Ordinary correlations
Extracting 6 of 6 possible components

Eigenvalues: (Sum = 6, Average = 1)
Cumulative Cumulative

Number Value Difference Proportion value proportion

1 5.791739 5.594419 0.9653 5.791739 0.9653
2 0.197320 0.189221 0.0329 5.989059 0.9982
3 0.008100 0.005865 0.0013 5.997159 0.9995
4 0.002235 0.001831 0.0004 5.999394 0.9999
5 0.000404 0.000203 0.0001 5.999798 1.0000
6 0.000202 – 0.0000 6.000000 1.0000

Eigenvectors (loadings):
Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

USTB3M 0.406637 −0.44824 0.514612 −0.46067 0.313742 −0.24136
USTB6M 0.408960 −0.39631 0.101355 0.198316 −0.498750 0.61427
USTB1Y 0.412145 −0.27130 −0.31644 0.598774 0.059054 −0.54257
USTB3Y 0.414372 0.117583 −0.56123 −0.21834 0.539421 0.40105
USTB5Y 0.409819 0.364608 −0.22123 −0.46562 −0.576110 −0.31854

USTB10Y 0.397340 0.649350 0.510727 0.35419 0.162654 0.08785

Ordinary correlations:
USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

USTB3M 1.000000
USTB6M 0.998334 1.000000
USTB1Y 0.99275 0.997345 1.000000
USTB3Y 0.963436 0.971666 0.98394 1.000000
USTB5Y 0.932431 0.941871 0.958699 0.993079 1.000000
USTB10Y 0.880137 0.890911 0.912862 0.966203 0.988502 1.000000

exactly equal weights in all six series while the second component puts a large
negative weight on the shortest yield and gradually increasing weights thereafter.
This ties in with the common belief that the first component captures the level of
interest rates, the second component captures the slope of the term structure (and
the third component captures curvature in the yield curve).
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Screenshot 4.4 Conducting PCA in EViews

Then Minimise this group and you will see that the ‘Interest’ group has
been added to the list of objects.

Self-study questions

1. By using examples from the relevant statistical tables, explain the relationship
between the t- and the F -distributions.
For questions 2–5, assume that the econometric model is of the form

yt = β1 + β2x2t + β3x3t + β4x4t + β5x5t + ut (4.53)

2. Which of the following hypotheses about the coefficients can be tested using
a t-test? Which of them can be tested using an F -test? In each case, state the
number of restrictions.
(a) H0 : β3 = 2
(b) H0 : β3 + β4 = 1
(c) H0 : β3 + β4 = 1 and β5 = 1
(d) H0 : β2 = 0 and β3 = 0 and β4 = 0 and β5 = 0
(e) H0 : β2β3 = 1

3. Which of the above null hypotheses constitutes ‘THE’ regression F -statistic
in the context of (4.53)? Why is this null hypothesis always of interest
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whatever the regression relationship under study? What exactly would
constitute the alternative hypothesis in this case?

4. Which would you expect to be bigger – the unrestricted residual sum of
squares or the restricted residual sum of squares, and why?

5. You decide to investigate the relationship given in the null hypothesis of
question 2, part (c). What would constitute the restricted regression? The
regressions are carried out on a sample of 96 quarterly observations, and the
residual sums of squares for the restricted and unrestricted regressions are
102.87 and 91.41, respectively. Perform the test. What is your conclusion?

6. You estimate a regression of the form given by (4.54) below in order to
evaluate the effect of various firm-specific factors on the returns of a sample
of firms. You run a cross-sectional regression with 200 firms

r i = β0 + β1Si + β2MBi + β3PEi + β4BETAi + ui (4.54)

where: r i is the percentage annual return for the stock
Si is the size of firm i measured in terms of sales revenue
MBi is the market to book ratio of the firm
PEi is the price/earnings (P/E) ratio of the firm
BETAi is the stock’s CAPM beta coefficient

You obtain the following results (with standard errors in parentheses)

r̂ i = 0.080 + 0.801Si + 0.321MBi + 0.164PEi − 0.084BETAi

(0.064) (0.147) (0.136) (0.420) (0.120) (4.55)

Calculate the t-ratios. What do you conclude about the effect of each variable
on the returns of the security? On the basis of your results, what variables
would you consider deleting from the regression? If a stock’s beta increased
from 1 to 1.2, what would be the expected effect on the stock’s return? Is the
sign on beta as you would have expected? Explain your answers in each case.

7. A researcher estimates the following econometric models including a lagged
dependent variable

yt = β1 + β2x2t + β3x3t + β4yt−1 + ut (4.56)

�yt = γ1 + γ2x2t + γ3x3t + γ4yt−1 + vt (4.57)

where ut and vt are iid disturbances.
Will these models have the same value of (a) The residual sum of squares

(RSS), (b) R2, (c) Adjusted R2? Explain your answers in each case.
8. A researcher estimates the following two econometric models

yt = β1 + β2x2t + β3x3t + ut (4.58)

yt = β1 + β2x2t + β3x3t + β4x4t + vt (4.59)

where ut and vt are iid disturbances and x3t is an irrelevant variable which
does not enter into the data generating process for yt . Will the value of (a)
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R2, (b) Adjusted R2, be higher for the second model than the first? Explain
your answers.

9. Re-open the CAPM Eviews file and estimate CAPM betas for each of the
other stocks in the file.
(a) Which of the stocks, on the basis of the parameter estimates you obtain,

would you class as defensive stocks and which as aggressive stocks?
Explain your answer.

(b) Is the CAPM able to provide any reasonable explanation of the overall
variability of the returns to each of the stocks over the sample period?
Why or why not?

10. Re-open the Macro file and apply the same APT-type model to some of the
other time series of stock returns contained in the CAPM-file.
(a) Run the stepwise procedure in each case. Is the same sub-set of variables

selected for each stock? Can you rationalise the differences between the
series chosen?

(b) Examine the sizes and signs of the parameters in the regressions in each
case – do these make sense?

11. What are the units of R2?
12. What are quantile regressions and why are they useful?
13. A researcher wishes to examine the link between the returns on two assets A

and B in situations where the price of B is falling rapidly. To do this, he
orders the data according to changes in the price of B and drops the top 80%
of ordered observations. He then runs a regression of the returns of A on the
returns of B for the remaining lowest 20% of observations. Would this be a
good way to proceed? Explain your answer.
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5 Classical linear regression model
assumptions and diagnostic tests

Learning outcomes

In this chapter, you will learn how to

• Describe the steps involved in testing regression residuals for

heteroscedasticity and autocorrelation

• Explain the impact of heteroscedasticity or autocorrelation on the optimality of

ordinary least squares (OLS) parameter and standard error estimation

• Distinguish between the Durbin–Watson and Breusch–Godfrey tests for

autocorrelation

• Highlight the advantages and disadvantages of dynamic models

• Test for whether the functional form of the model employed is appropriate

• Determine whether the residual distribution from a regression differs

significantly from normality

• Investigate whether the model parameters are stable

• Appraise different philosophies of how to build an econometric model

• Conduct diagnostic tests in EViews

• • • • • • • • • • • • • • 5.1 Introduction

Recall that five assumptions were made relating to the classical linear regression
model (CLRM). These were required to show that the estimation technique,
ordinary least squares (OLS), had a number of desirable properties, and also so that
hypothesis tests regarding the coefficient estimates could validly be conducted.
Specifically, it was assumed that:

(1) E(ut ) = 0
(2) var(ut ) = σ 2 < ∞
(3) cov(ui ,u j ) = 0
(4) cov(ut ,xt ) = 0
(5) ut ∼ N(0, σ 2)
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These assumptions will now be studied further, in particular looking at the fol-
lowing:

● How can violations of the assumptions be detected?
● What are the most likely causes of the violations in practice?
● What are the consequences for the model if an assumption is violated but this

fact is ignored and the researcher proceeds regardless?

The answer to the last of these questions is that, in general, the model could
encounter any combination of three problems:

● the coefficient estimates (β̂s) are wrong
● the associated standard errors are wrong
● the distributions that were assumed for the test statistics are inappropriate.

A pragmatic approach to ‘solving’ problems associated with the use of models
where one or more of the assumptions is not supported by the data will then be
adopted. Such solutions usually operate such that:

● the assumptions are no longer violated, or
● the problems are side-stepped, so that alternative techniques are used which

are still valid.

• • • • • • • • • • • • • • 5.2 Statistical distributions for diagnostic tests

The text below discusses various regression diagnostic (misspecification) tests that
are based on the calculation of a test statistic. These tests can be constructed
in several ways, and the precise approach to constructing the test statistic will
determine the distribution that the test statistic is assumed to follow. Two particular
approaches are in common usage and their results are given by the statistical
packages: the Lagrange Multiplier (LM) test and the Wald test. Further details
concerning these procedures are given in chapter 8. For now, all that readers require
to know is that LM test statistics in the context of the diagnostic tests presented
here follow a χ2 distribution with degrees of freedom equal to the number of
restrictions placed on the model, and denoted m . The Wald version of the test
follows an F-distribution with (m , T − k) degrees of freedom. Asymptotically,
these two tests are equivalent, although their results will differ somewhat in small
samples. They are equivalent as the sample size increases towards infinity since
there is a direct relationship between the χ2- and F-distributions. Asymptotically,
an F -variate will tend towards a χ2 variate divided by its degrees of freedom

F (m , T − k) → χ2(m )

m
as T → ∞

Computer packages typically present results using both approaches, although only
one of the two will be illustrated for each test below. They will usually give the
same conclusion, although if they do not, the F-version is usually considered
preferable for finite samples, since it is sensitive to sample size (one of its degrees of
freedom parameters depends on sample size) in a way that the χ2-version is not.
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yt

xt

Figure 5.1 Effect of no intercept on a regression line

• • • • • • • • • • • • • • 5.3 Assumption 1: E(ut ) = 0

The first assumption required is that the average value of the errors is zero. In fact,
if a constant term is included in the regression equation, this assumption will never
be violated. But what if financial theory suggests that, for a particular application,
there should be no intercept so that the regression line is forced through the origin?
If the regression did not include an intercept, and the average value of the errors
was non-zero, several undesirable consequences could arise. First, R2, defined as
ESS/TSS can be negative, implying that the sample average, ȳ, ‘explains’ more of
the variation in y than the explanatory variables. Second, and more fundamentally,
a regression with no intercept parameter could lead to potentially severe biases in
the slope coefficient estimates. To see this, consider figure 5.1.

The solid line shows the regression estimated including a constant term, while
the dotted line shows the effect of suppressing (i.e. setting to zero) the constant
term. The effect is that the estimated line in this case is forced through the origin,
so that the estimate of the slope coefficient (β̂) is biased. Additionally, R2 and R̄2

are usually meaningless in such a context. This arises since the mean value of the
dependent variable, ȳ, will not be equal to the mean of the fitted values from the
model, i.e. the mean of ŷ if there is no constant in the regression.

• • • • • • • • • • • • • • 5.4 Assumption 2: var(ut ) = σ 2 < ∞
It has been assumed thus far that the variance of the errors is constant, σ 2 –
this is known as the assumption of homoscedasticity. If the errors do not have a
constant variance, they are said to be heteroscedastic. To consider one illustration of
heteroscedasticity, suppose that a regression had been estimated and the residuals,
û t , have been calculated and then plotted against one of the explanatory variables,
x2t , as shown in figure 5.2.
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+

–

x2t

ût

Figure 5.2 Graphical illustration of heteroscedasticity

It is clearly evident that the errors in figure 5.2 are heteroscedastic – that
is, although their mean value is roughly constant, their variance is increasing
systematically with x2t .

5.4.1 Detection of heteroscedasticity

How can one tell whether the errors are heteroscedastic or not? It is possible to
use a graphical method as above, but unfortunately one rarely knows the cause or
the form of the heteroscedasticity, so that a plot is likely to reveal nothing. For
example, if the variance of the errors was an increasing function of x3t , and the
researcher had plotted the residuals against x2t , he would be unlikely to see any
pattern and would thus wrongly conclude that the errors had constant variance.
It is also possible that the variance of the errors changes over time rather than
systematically with one of the explanatory variables; this phenomenon is known
as ‘ARCH’ and is described in chapter 9.

Fortunately, there are a number of formal statistical tests for heteroscedastic-
ity, and one of the simplest such methods is the Goldfeld–Quandt (1965) test.
Their approach is based on splitting the total sample of length T into two sub-
samples of length T1 and T2. The regression model is estimated on each sub-sample
and the two residual variances are calculated as s 2

1 = û ′
1û1/(T1 − k) and s 2

2 =
û ′

2û2/(T2 − k) respectively. The null hypothesis is that the variances of the distur-
bances are equal, which can be written H0 : σ 2

1 = σ 2
2 , against a two-sided alterna-

tive. The test statistic, denoted GQ, is simply the ratio of the two residual variances
where the larger of the two variances must be placed in the numerator (i.e. s 2

1 is
the higher sample variance for the sample with length T1, even if it comes from
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the second sub-sample):

GQ = s 2
1

s 2
2

(5.1)

The test statistic is distributed as an F (T1 − k, T2 − k) under the null hypothesis,
and the null of a constant variance is rejected if the test statistic exceeds the critical
value.

The GQ test is simple to construct but its conclusions may be contingent upon
a particular, and probably arbitrary, choice of where to split the sample. Clearly,
the test is likely to be more powerful when this choice is made on theoretical
grounds – for example, before and after a major structural event. Suppose that it is
thought that the variance of the disturbances is related to some observable variable
zt (which may or may not be one of the regressors). A better way to perform the
test would be to order the sample according to values of zt (rather than through
time) and then to split the re-ordered sample into T1 and T2.

An alternative method that is sometimes used to sharpen the inferences from
the test and to increase its power is to omit some of the observations from the
centre of the sample so as to introduce a degree of separation between the two
sub-samples.

A further popular test is White’s (1980) general test for heteroscedasticity. The
test is particularly useful because it makes few assumptions about the likely form
of the heteroscedasticity. The test is carried out as in box 5.1.

Example 5.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that the model (5.2) above has been estimated using 120 observations, and
the R2 from the auxiliary regression (5.3) is 0.234. The test statistic will be given by
TR2 = 120 × 0.234 = 28.8, which will follow a χ2(5) under the null hypothesis. The 5%
critical value from the χ2 table is 11.07. The test statistic is therefore more than the
critical value and hence the null hypothesis is rejected. It would be concluded that
there is significant evidence of heteroscedasticity, so that it would not be plausible to
assume that the variance of the errors is constant in this case.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5.4.2 Consequences of using OLS in the presence of heteroscedasticity

What happens if the errors are heteroscedastic, but this fact is ignored and the
researcher proceeds with estimation and inference? In this case, OLS estimators
will still give unbiased (and also consistent) coefficient estimates, but they are no
longer best linear unbiased estimators (BLUE) – that is, they no longer have the
minimum variance among the class of unbiased estimators. The reason is that the
error variance, σ 2, plays no part in the proof that the OLS estimator is consistent
and unbiased, but σ 2 does appear in the formulae for the coefficient variances. If
the errors are heteroscedastic, the formulae presented for the coefficient standard
errors no longer hold. For a very accessible algebraic treatment of the consequences
of heteroscedasticity, see Hill, Griffiths and Judge (1997, pp. 217–18).
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Box 5.1 Conducting White’s test

(1) Assume that the regression model estimated is of the standard linear
form, e.g.

yt = β1 + β2x2t + β3x3t + ut (5.2)

To test var(ut ) = σ 2, estimate the model above, obtaining the residuals,
û t

(2) Then run the auxiliary regression

û2
t = α1 + α2x2t + α3x3t + α4x2

2t + α5x2
3t + α6x2t x3t + vt (5.3)

where vt is a normally distributed disturbance term independent of ut .
This regression is of the squared residuals on a constant, the original
explanatory variables, the squares of the explanatory variables and their
cross-products. To see why the squared residuals are the quantity of
interest, recall that for a random variable ut , the variance can be written

var(ut ) = E[(ut − E(ut ))2] (5.4)

Under the assumption that E(ut ) = 0, the second part of the RHS of
this expression disappears:

var(ut ) = E
[
u2

t

]
(5.5)

Once again, it is not possible to know the squares of the population
disturbances, u2

t , so their sample counterparts, the squared residuals, are
used instead.

The reason that the auxiliary regression takes this form is that it is
desirable to investigate whether the variance of the residuals (embodied
in û2

t ) varies systematically with any known variables relevant to the
model. Relevant variables will include the original explanatory
variables, their squared values and their cross-products. Note also that
this regression should include a constant term, even if the original
regression did not. This is as a result of the fact that û2

t will always have
a non-zero mean, even if û t has a zero mean.

(3) Given the auxiliary regression, as stated above, the test can be
conducted using two different approaches. First, it is possible to use the
F-test framework described in chapter 4. This would involve estimating
(5.3) as the unrestricted regression and then running a restricted
regression of û2

t on a constant only. The RSS from each specification
would then be used as inputs to the standard F-test formula.

With many diagnostic tests, an alternative approach can be adopted
that does not require the estimation of a second (restricted) regression.
This approach is known as a Lagrange Multiplier (LM) test, which
centres around the value of R2 for the auxiliary regression. If one or



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-05 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:40

5.4 Assumption 2: var(ut ) = σ 2 < ∞

•
•
•
•
•
•
•
•
• 185

more coefficients in (5.3) is statistically significant, the value of R2 for
that equation will be relatively high, while if none of the variables is
significant, R2 will be relatively low. The LM test would thus operate
by obtaining R2 from the auxiliary regression and multiplying it by the
number of observations, T. It can be shown that

TR2 ∼ χ2(m )

where m is the number of regressors in the auxiliary regression
(excluding the constant term), equivalent to the number of restrictions
that would have to be placed under the F-test approach.

(4) The test is one of the joint null hypothesis that α2 = 0, and α3 = 0, and
α4 = 0, and α5 = 0, and α6 = 0. For the LM test, if the χ2-test statistic
from step 3 is greater than the corresponding value from the statistical
table then reject the null hypothesis that the errors are homoscedastic.

So, the upshot is that if OLS is still used in the presence of heteroscedasticity,
the standard errors could be wrong and hence any inferences made could be
misleading. In general, the OLS standard errors will be too large for the intercept
when the errors are heteroscedastic. The effect of heteroscedasticity on the slope
standard errors will depend on its form. For example, if the variance of the errors
is positively related to the square of an explanatory variable (which is often the
case in practice), the OLS standard error for the slope will be too low. On the
other hand, the OLS slope standard errors will be too big when the variance of
the errors is inversely related to an explanatory variable.

5.4.3 Dealing with heteroscedasticity

If the form (i.e. the cause) of the heteroscedasticity is known, then an alternative
estimation method which takes this into account can be used. One possibility is
called generalised least squares (GLS). For example, suppose that the error variance
was related to zt by the expression

var(ut ) = σ 2z2
t (5.6)

All that would be required to remove the heteroscedasticity would be to divide
the regression equation through by zt

yt

zt
= β1

1
zt

+ β2
x2t

zt
+ β3

x3t

zt
+ vt (5.7)

where vt = ut

zt
is an error term.

Now, if var(ut ) = σ 2z2
t , var(vt ) = var

(
ut

zt

)
= var(ut )

z2
t

= σ 2z2
t

z2
t

= σ 2 for

known z.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-05 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:40

186

•
•
•
•
•
•
•
•
• Classical linear regression model assumptions

Box 5.2 ‘Solutions’ for heteroscedasticity

(1) Transforming the variables into logs or reducing by some other measure of
‘size’. This has the effect of rescaling the data to ‘pull in’ extreme
observations. The regression would then be conducted upon the
natural logarithms or the transformed data. Taking logarithms also has
the effect of making a previously multiplicative model, such as the
exponential regression model discussed previously (with a multiplicative
error term), into an additive one. However, logarithms of a variable
cannot be taken in situations where the variable can take on zero or
negative values, for the log will not be defined in such cases.

(2) Using heteroscedasticity-consistent standard error estimates. Most standard
econometrics software packages have an option (usually called
something like ‘robust’) that allows the user to employ standard error
estimates that have been modified to account for the heteroscedasticity
following White (1980). The effect of using the correction is that,
if the variance of the errors is positively related to the square of an
explanatory variable, the standard errors for the slope coefficients are
increased relative to the usual OLS standard errors, which would make
hypothesis testing more ‘conservative’, so that more evidence would be
required against the null hypothesis before it would be rejected.

Therefore, the disturbances from (5.7) will be homoscedastic. Note that this
latter regression does not include a constant since β1 is multiplied by (1/zt ). GLS
can be viewed as OLS applied to transformed data that satisfy the OLS assumptions.
GLS is also known as weighted least squares (WLS), since under GLS a weighted
sum of the squared residuals is minimised, whereas under OLS it is an unweighted
sum.

However, researchers are typically unsure of the exact cause of the heteroscedas-
ticity, and hence this technique is usually infeasible in practice. Two other possible
‘solutions’ for heteroscedasticity are shown in box 5.2.

Examples of tests for heteroscedasticity in the context of the single index
market model are given in Fabozzi and Francis (1980). Their results are strongly
suggestive of the presence of heteroscedasticity, and they examine various factors
that may constitute the form of the heteroscedasticity.

5.4.4 Testing for heteroscedasticity using EViews

Re-open the Microsoft (‘Macro’) Workfile that was examined in the previous
chapter and the regression that included all the macroeconomic explanatory vari-
ables and make sure that the regression output window is open (showing the table
of parameter estimates). First, plot the residuals by selecting View/Actual, Fitted,
Residuals/Residual Graph. If theresiduals of the regression have systematically
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changing variability over the sample, that is a sign of heteroscedasticity. In this case,
it is hard to see any clear pattern (although it is interesting to note the consid-
erable reduction in volatility post-2003), so we need to run the formal statistical
test. To test for heteroscedasticity using White’s test, click on the View button
in the regression window and select Residual Diagnostics/Heteroscedasticity
Tests. . . . You will see a large number of different tests available, including the
autoregressive conditional heteroscedasticity (ARCH) test that will be discussed in
chapter 9. For now, select the White specification. You can also select whether to
include the cross-product terms or not (i.e. each variable multiplied by each other
variable) or include only the squares of the variables in the auxiliary regression.
Uncheck the ‘Include White cross terms’ given the relatively large number of
variables in this regression and then click OK. The results of the test will appear
as follows.

Heteroskedasticity test: White

F-statistic 0.285965 Prob. F(7,316) 0.9592
Obs∗R-squared 2.039511 Prob. Chi-Square(7) 0.9576
Scaled explained SS 12.15911 Prob. Chi-Square(7) 0.0954

Test Equation:
Dependent Variable: RESID∧2
Method: Least Squares
Date: 07/04/13 Time: 13:42
Sample: 1986M05 20013M04
Included observations: 324

Coefficient Std. Error t-Statistic Prob.

C 193.5672 42.83306 4.519108 0.0000
ERSAND∧2P −0.16274 0.698446 −0.2330 0.8159

DPROD∧2 −11.3366 31.19290 −0.36344 0.7165
DCREDIT∧2 −1.01E−08 3.98E−08 −0.25438 0.7994

DINFLATION∧2 −65.7807 150.0464 −0.43840 0.6614
DMONEY∧2 −0.01229 0.027218 −0.45135 0.6520
DSPREAD∧2 −2.02297 638.3524 −0.00317 0.9975

RTERM∧2 −196.336 294.3750 −0.66696 0.5053

R-squared 0.006295 Mean dependent var 156.2891
Adjusted R-squared −0.015718 S.D. dependent var 554.1926
S.E. of regression 558.5309 Akaike info criterion 15.51288
Sum squared resid 98578340 Schwarz criterion 15.60623
Log likelihood −2505.086 Hannan-Quinn criter. 15.55014
F-statistic 0.285965 Durbin-Watson stat 2.028098
Prob(F-statistic) 0.959219
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EViews presents three different types of tests for heteroscedasticity and then the
auxiliary regression in the first results table displayed. The test statistics give us the
information we need to determine whether the assumption of homoscedasticity
is valid or not, but seeing the actual auxiliary regression in the second table can
provide useful additional information on the source of the heteroscedasticity if any
is found. In this case, both the F - and χ2 (‘LM’) versions of the test statistic give
the same conclusion that there is no evidence for the presence of heteroscedasticity,
since the p-values are considerably in excess of 0.05. The third version of the test
statistic, ‘Scaled explained SS’, which as the name suggests is based on a normalised
version of the explained sum of squares from the auxiliary regression, suggests in
this case that there is some limited evidence of heteroscedasticity (with the test
result significant at the 10% level but not lower). Thus the conclusion of the test
is slightly ambiguous but overall we would probably be satisfied that there is not a
serious problem here.

5.4.5 Using White’s modified standard error estimates in EViews

In order to estimate the regression with heteroscedasticity-robust standard errors
in EViews, select this from the option button in the regression entry window.
In other words, close the heteroscedasticity test window and click on the orig-
inal ‘Msoftreg’ regression results, then click on the Estimate button and in the
Equation Estimation window, choose the Options tab and screenshot 5.1 will
appear.

In the ‘Coefficient covariance matrix’ box at the top left of the tab, change
the option to White and click OK. Comparing the results of the regression using
heteroscedasticity-robust standard errors with those using the ordinary standard
errors, the changes in the significances of the parameters are only marginal. Of
course, only the standard errors have changed and the parameter estimates have
remained identical to those from before. The heteroscedasticity-consistent standard
errors are smaller for all variables, resulting in the t-ratios growing in absolute value
and the p-values being smaller. The main changes in the conclusions reached are
that the term structure variable, which was previously significant only at the 10%
level, is now significant at 5%, and the unexpected inflation and change in industrial
production variables are now significant at the 10% level.

• • • • • • • • • • • • • • 5.5 Assumption 3: cov(ui , u j ) = 0 for i �= j

Assumption 3 that is made of the CLRM’s disturbance terms is that the covariance
between the error terms over time (or cross-sectionally, for that type of data) is zero.
In other words, it is assumed that the errors are uncorrelated with one another. If
the errors are not uncorrelated with one another, it would be stated that they are
‘autocorrelated’ or that they are ‘serially correlated’. A test of this assumption is
therefore required.

Again, the population disturbances cannot be observed, so tests for autocor-
relation are conducted on the residuals, û . Before one can proceed to see how
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Screenshot 5.1 Regression options window

formal tests for autocorrelation are formulated, the concept of the lagged value of
a variable needs to be defined.

5.5.1 The concept of a lagged value

The lagged value of a variable (which may be yt , xt , or ut ) is simply the value that
the variable took during a previous period. So for example, the value of yt lagged
one period, written yt−1, can be constructed by shifting all of the observations
forward one period in a spreadsheet, as illustrated in table 5.1.

So, the value in the 2006M10 row and the yt−1 column shows the value that
yt took in the previous period, 2006M09, which was 0.8. The last column in
table 5.1 shows another quantity relating to y, namely the ‘first difference’. The
first difference of y, also known as the change in y, and denoted �yt , is calculated
as the difference between the values of y in this period and in the previous period.
This is calculated as

�yt = yt − yt−1 (5.8)

Note that when one-period lags or first differences of a variable are constructed,
the first observation is lost. Thus a regression of �yt using the above data would
begin with the October 2006 data point. It is also possible to produce two-period
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Table 5.1 Constructing a series of lagged values and first
differences

t yt yt−1 �yt

2006M09 0.8 − −
2006M10 1.3 0.8 (1.3 − 0.8) = 0.5

2006M11 −0.9 1.3 (−0.9 − 1.3) = −2.2

2006M12 0.2 −0.9 (0.2 −−0.9) = 1.1

2007M01 −1.7 0.2 (−1.7 −0.2) = −1.9

2007M02 2.3 −1.7 (2.3 −−1.7) = 4.0

2007M03 0.1 2.3 (0.1 − 2.3) = −2.2

2007M04 0.0 0.1 (0.0 − 0.1) = −0.1

. . . .

. . . .

. . . .

lags, three-period lags and so on. These would be accomplished in the obvious
way.

5.5.2 Graphical tests for autocorrelation

In order to test for autocorrelation, it is necessary to investigate whether any rela-
tionships exist between the current value of û , û t , and any of its previous values,
û t−1, û t−2, . . . The first step is to consider possible relationships between the cur-
rent residual and the immediately previous one, û t−1, via a graphical exploration.
Thus û t is plotted against û t−1, and û t is plotted over time. Some stereotypical
patterns that may be found in the residuals are discussed below.

Figures 5.3 and 5.4 show positive autocorrelation in the residuals, which is
indicated by a cyclical residual plot over time. This case is known as positive
autocorrelation since on average if the residual at time t − 1 is positive, the residual
at time t is likely to be also positive; similarly, if the residual at t − 1 is negative,
the residual at t is also likely to be negative. Figure 5.3 shows that most of the
dots representing observations are in the first and third quadrants, while figure 5.4
shows that a positively autocorrelated series of residuals will not cross the time-axis
very frequently.

Figures 5.5 and 5.6 show negative autocorrelation, indicated by an alternating
pattern in the residuals. This case is known as negative autocorrelation since on
average if the residual at time t − 1 is positive, the residual at time t is likely to be
negative; similarly, if the residual at t − 1 is negative, the residual at t is likely to
be positive. Figure 5.5 shows that most of the dots are in the second and fourth
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ût

ût–1

Figure 5.3 Plot of û t against û t−1, showing positive autocorrelation

ût

+

–

time

Figure 5.4 Plot of û t over time, showing positive autocorrelation
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+

–

+–

ût

ût–1

Figure 5.5 Plot of û t against û t−1, showing negative autocorrelation

+

–

time

ût

Figure 5.6 Plot of û t over time, showing negative autocorrelation

quadrants, while figure 5.6 shows that a negatively autocorrelated series of residuals
will cross the time-axis more frequently than if they were distributed randomly.

Finally, figures 5.7 and 5.8 show no pattern in residuals at all: this is what is
desirable to see. In the plot of û t against û t−1 (figure 5.7), the points are randomly
spread across all four quadrants, and the time series plot of the residuals (figure 5.8)
does not cross the x-axis either too frequently or too little.
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ût

ût–1

Figure 5.7 Plot of û t against û t−1, showing no autocorrelation

+

–

time

ût

Figure 5.8 Plot of û t over time, showing no autocorrelation

5.5.3 Detecting autocorrelation: the Durbin–Watson test

Of course, a first step in testing whether the residual series from an estimated
model are autocorrelated would be to plot the residuals as above, looking for any
patterns. Graphical methods may be difficult to interpret in practice, however, and
hence a formal statistical test should also be applied. The simplest test is due to
Durbin and Watson (1951).
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Durbin–Watson (DW ) is a test for first order autocorrelation – i.e. it tests only
for a relationship between an error and its immediately previous value. One way
to motivate the test and to interpret the test statistic would be in the context of a
regression of the time t error on its previous value

ut = ρut−1 + vt (5.9)

where vt ∼ N(0, σ 2
v ). The DW test statistic has as its null and alternative hypotheses

H0 : ρ = 0 and H1 : ρ �= 0

Thus, under the null hypothesis, the errors at time t − 1 and t are independent of
one another, and if this null were rejected, it would be concluded that there was
evidence of a relationship between successive residuals. In fact, it is not necessary
to run the regression given by (5.9) since the test statistic can be calculated using
quantities that are already available after the first regression has been run

DW =

T∑
t=2

(û t − û t−1)
2

T∑
t=2

û2
t

(5.10)

The denominator of the test statistic is simply (the number of observations −1) ×
the variance of the residuals. This arises since if the average of the residuals is zero

var(û t ) = E(û2
t ) = 1

T − 1

T∑
t=2

û2
t

so that
T∑

t=2

û2
t = var(û t ) × (T − 1)

The numerator ‘compares’ the values of the error at times t − 1 and t . If there
is positive autocorrelation in the errors, this difference in the numerator will be
relatively small, while if there is negative autocorrelation, with the sign of the error
changing very frequently, the numerator will be relatively large. No autocorrelation
would result in a value for the numerator between small and large.

It is also possible to express the DW statistic as an approximate function of the
estimated value of ρ

DW ≈ 2(1 − ρ̂) (5.11)

where ρ̂ is the estimated correlation coefficient that would have been obtained
from an estimation of (5.9). To see why this is the case, consider that the numerator
of (5.10) can be written as the parts of a quadratic

T∑
t=2

(û t − û t−1)
2 =

T∑
t=2

û2
t +

T∑
t=2

û2
t−1 − 2

T∑
t=2

û t û t−1 (5.12)
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Consider now the composition of the first two summations on the RHS of (5.12).
The first of these is

T∑
t=2

û2
t = û2

2 + û2
3 + û2

4 + · · · + û2
T

while the second is
T∑

t=2

û2
t−1 = û2

1 + û2
2 + û2

3 + · · · + û2
T−1

Thus, the only difference between them is that they differ in the first and last terms
in the summation

T∑
t=2

û2
t

contains û2
T but not û2

1, while

T∑
t=2

û2
t−1

contains û2
1 but not û2

T . As the sample size, T, increases towards infinity, the
difference between these two will become negligible. Hence, the expression in
(5.12), the numerator of (5.10), is approximately

2
T∑

t=2

û2
t − 2

T∑
t=2

û t û t−1

Replacing the numerator of (5.10) with this expression leads to

DW ≈
2

T∑
t=2

û2
t − 2

T∑
t=2

û t û t−1

T∑
t=2

û2
t

= 2

⎛
⎜⎜⎜⎜⎜⎝1 −

T∑
t=2

û t û t−1

T∑
t=2

û2
t

⎞
⎟⎟⎟⎟⎟⎠ (5.13)

The covariance between ut and ut−1 can be written as E[(ut − E(ut ))(ut−1 −
E(ut−1))]. Under the assumption that E(ut ) = 0 (and therefore that E(ut−1) = 0),
the covariance will be E[ut ut−1]. For the sample residuals, this covariance will be
evaluated as

1

T − 1

T∑
t=2

û t û t−1

Thus, the sum in the numerator of the expression on the right of (5.13) can be
seen as T − 1 times the covariance between û t and û t−1, while the sum in the
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Reject H0:
positive
autocorrelation

Inconclusive
Do not reject
H0: no evidence
of autocorrelation

Inconclusive
Reject H0:
negative
autocorrelation

0 dL dU 4-dU2 4-dL 4

Figure 5.9 Rejection and non-rejection regions for DW test

denominator of the expression on the right of (5.13) can be seen from the previous
exposition as T − 1 times the variance of û t . Thus, it is possible to write

DW ≈ 2
(

1 − (T − 1) cov(û t , û t−1)
(T − 1) var(û t )

)
= 2

(
1 − cov(û t , û t−1)

var(û t )

)

= 2 (1 − corr(û t , û t−1)) (5.14)

so that the DW test statistic is approximately equal to 2(1 − ρ̂). Since ρ̂ is a
correlation, it implies that −1 ≤ ρ̂ ≤ 1. That is, ρ̂ is bounded to lie between −1
and +1. Substituting in these limits for ρ̂ to calculate DW from (5.11) would give
the corresponding limits for DW as 0 ≤ DW ≤ 4. Consider now the implication
of DW taking one of three important values (0, 2, and 4):

● ρ̂ = 0, DW = 2 This is the case where there is no autocorrelation in the
residuals. So roughly speaking, the null hypothesis would not be rejected if
DW is near 2 → i.e. there is little evidence of autocorrelation.

● ρ̂ = 1, DW = 0 This corresponds to the case where there is perfect positive
autocorrelation in the residuals.

● ρ̂ = −1, DW = 4 This corresponds to the case where there is perfect neg-
ative autocorrelation in the residuals.

The DW test does not follow a standard statistical distribution such as a t , F ,
or χ2. DW has 2 critical values: an upper critical value (dU ) and a lower critical
value (dL), and there is also an intermediate region where the null hypothesis of
no autocorrelation can neither be rejected nor not rejected! The rejection, non-
rejection and inconclusive regions are shown on the number line in figure 5.9.

So, to reiterate, the null hypothesis is rejected and the existence of positive
autocorrelation presumed if DW is less than the lower critical value; the null
hypothesis is rejected and the existence of negative autocorrelation presumed if
DW is greater than 4 minus the lower critical value; the null hypothesis is not
rejected and no significant residual autocorrelation is presumed if DW is between
the upper and 4 minus the upper limits.

Example 5.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A researcher wishes to test for first order serial correlation in the residuals from a linear
regression. The DW test statistic value is 0.86. There are eighty quarterly observations
in the regression, and the regression is of the form

yt = β1 + β2x2t + β3x3t + β4x4t + ut (5.15)
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Box 5.3 Conditions for DW to be a valid test

(1) There must be a constant term in the regression
(2) The regressors must be non-stochastic – as assumption 4 of the CLRM

(see chapter 7)
(3) There must be no lags of dependent variable (see section 5.5.8) in the

regression.

The relevant critical values for the test (see table A2.6 in the appendix of statistical
distributions at the end of this book), are dL = 1.42, dU = 1.57, so 4 − dU = 2.43 and
4 − dL = 2.58. The test statistic is clearly lower than the lower critical value and hence
the null hypothesis of no autocorrelation is rejected and it would be concluded that the
residuals from the model appear to be positively autocorrelated.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5.5.4 Conditions which must be fulfilled for DW to be a valid test

In order for the DW test to be valid for application, three conditions must be
fulfilled (box 5.3).

If the test were used in the presence of lags of the dependent variable or oth-
erwise stochastic regressors, the test statistic would be biased towards 2, suggesting
that in some instances the null hypothesis of no autocorrelation would not be
rejected when it should be.

5.5.5 Another test for autocorrelation: the Breusch–Godfrey test

Recall that DW is a test only of whether consecutive errors are related to one
another. So, not only can the DW test not be applied if a certain set of circumstances
are not fulfilled, there will also be many forms of residual autocorrelation that DW
cannot detect. For example, if corr(û t , û t−1) = 0, but corr(û t , û t−2) �= 0, DW
as defined above will not find any autocorrelation. One possible solution would
be to replace û t−1 in (5.10) with û t−2. However, pairwise examinations of the
correlations (û t , û t−1), (û t , û t−2), (û t , û t−3), . . . will be tedious in practice and
is not coded in econometrics software packages, which have been programmed
to construct DW using only a one-period lag. In addition, the approximation in
(5.11) will deteriorate as the difference between the two time indices increases.
Consequently, the critical values should also be modified somewhat in these cases.

Therefore, it is desirable to examine a joint test for autocorrelation that will
allow examination of the relationship between û t and several of its lagged values at
the same time. The Breusch–Godfrey test is a more general test for autocorrelation
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up to the rth order. The model for the errors under this test is

ut = ρ1ut−1 + ρ2ut−2 + ρ3ut−3 + · · · + ρr u t−r + vt , vt ∼ N
(
0, σ 2

v

)
(5.16)

The null and alternative hypotheses are:

H0 : ρ1 = 0 and ρ2 = 0 and . . . and ρr = 0

H1 : ρ1 �= 0 or ρ2 �= 0 or . . . or ρr �= 0

So, under the null hypothesis, the current error is not related to any of its r previous
values. The test is carried out as in box 5.4.

Box 5.4 Conducting a Breusch–Godfrey test

(1) Estimate the linear regression using OLS and obtain the residuals, û t
(2) Regress û t on all of the regressors from stage 1 (the xs) plus û t−1,

û t−2, . . . , û t−r ; the regression will thus be

û t = γ1 + γ2x2t + γ3x3t + γ4x4t + ρ1û t−1 + ρ2û t−2 + ρ3û t−3

+ · · · + ρr û t−r + vt , vt ∼ N
(
0, σ 2

v

)
(5.17)

Obtain R2 from this auxiliary regression
(3) Letting T denote the number of observations, the test statistic is given

by

(T − r )R2 ∼ χ2
r

Note that (T − r ) pre-multiplies R2 in the test for autocorrelation rather than
T (as was the case for the heteroscedasticity test). This arises because the first r
observations will effectively have been lost from the sample in order to obtain
the r lags used in the test regression, leaving (T − r ) observations from which to
estimate the auxiliary regression. If the test statistic exceeds the critical value from
the chi-squared statistical tables, reject the null hypothesis of no autocorrelation.
As with any joint test, only one part of the null hypothesis has to be rejected to
lead to rejection of the hypothesis as a whole. So the error at time t has to be
significantly related only to one of its previous r values in the sample for the null
of no autocorrelation to be rejected. The test is more general than the DW test,
and can be applied in a wider variety of circumstances since it does not impose
the DW restrictions on the format of the first stage regression.

One potential difficulty with Breusch–Godfrey, however, is in determining an
appropriate value of r , the number of lags of the residuals, to use in computing the
test. There is no obvious answer to this, so it is typical to experiment with a range
of values, and also to use the frequency of the data to decide. So, for example, if
the data is monthly or quarterly, set r equal to 12 or 4, respectively. The argument
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would then be that errors at any given time would be expected to be related only
to those errors in the previous year. Obviously, if the model is statistically adequate,
no evidence of autocorrelation should be found in the residuals whatever value of
r is chosen.

5.5.6 Consequences of ignoring autocorrelation if it is present

In fact, the consequences of ignoring autocorrelation when it is present are similar
to those of ignoring heteroscedasticity. The coefficient estimates derived using
OLS are still unbiased, but they are inefficient, i.e. they are not BLUE, even at
large sample sizes, so that the standard error estimates could be wrong. There thus
exists the possibility that the wrong inferences could be made about whether a
variable is or is not an important determinant of variations in y. In the case of
positive serial correlation in the residuals, the OLS standard error estimates will be
biased downwards relative to the true standard errors. That is, OLS will understate
their true variability. This would lead to an increase in the probability of type
I error – that is, a tendency to reject the null hypothesis sometimes when it is
correct. Furthermore, R2 is likely to be inflated relative to its ‘correct’ value if
autocorrelation is present but ignored, since residual autocorrelation will lead to
an underestimate of the true error variance (for positive autocorrelation).

5.5.7 Dealing with autocorrelation

If the form of the autocorrelation is known, it would be possible to use a GLS pro-
cedure. One approach, which was once fairly popular, is known as the Cochrane–
Orcutt procedure (see box 5.5). Such methods work by assuming a particular form
for the structure of the autocorrelation (usually a first order autoregressive process –
see chapter 6 for a general description of these models). The model would thus be
specified as follows:

yt = β1 + β2x2t + β3x3t + ut , ut = ρut−1 + vt (5.18)

Note that a constant is not required in the specification for the errors since
E(ut ) = 0. If this model holds at time t , it is assumed to also hold for time t − 1,
so that the model in (5.18) is lagged one period

yt−1 = β1 + β2x2t−1 + β3x3t−1 + ut−1 (5.19)

Multiplying (5.19) by ρ

ρyt−1 = ρβ1 + ρβ2x2t−1 + ρβ3x3t−1 + ρut−1 (5.20)

Subtracting (5.20) from (5.18) would give

yt − ρyt−1 =β1 − ρβ1 + β2x2t − ρβ2x2t−1 + β3x3t − ρβ3x3t−1 + ut − ρut−1

(5.21)
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Factorising, and noting that vt =ut − ρut−1

(yt − ρyt−1)= (1 − ρ)β1 + β2(x2t − ρx2t−1) + β3(x3t − ρx3t−1) + vt (5.22)

Setting y∗
t = yt − ρyt−1, β

∗
1 = (1 − ρ)β1, x∗

2t = (x2t − ρx2t−1), and x∗
3t = (x3t −

ρx3t−1), the model in (5.22) can be written

y∗
t =β∗

1 + β2x∗
2t + β3x∗

3t + vt (5.23)

Since the final specification (5.23) contains an error term that is free from auto-
correlation, OLS can be directly applied to it. This procedure is effectively an
application of GLS. Of course, the construction of y∗

t etc. requires ρ to be known.
In practice, this will never be the case so that ρ has to be estimated before (5.23)
can be used.

A simple method would be to use the ρ obtained from rearranging the equation
for the DW statistic given in (5.11). However, this is only an approximation as the
related algebra showed. This approximation may be poor in the context of small
samples.

The Cochrane–Orcutt procedure is an alternative, which operates as in box 5.5.
This could be the end of the process. However, Cochrane and Orcutt (1949) argue
that better estimates can be obtained by going through steps 2–4 again. That is,
given the new coefficient estimates, β∗

1 , β2, β3, etc. construct again the residual
and regress it on its previous value to obtain a new estimate for ρ̂. This would
then be used to construct new values of the variables y∗

t , x∗
2t , x∗

3t and a new (5.23)
is estimated. This procedure would be repeated until the change in ρ̂ between
one iteration and the next is less than some fixed amount (e.g. 0.01). In practice,
a small number of iterations (no more than five) will usually suffice.

However, the Cochrane–Orcutt procedure and similar approaches require a
specific assumption to be made concerning the form of the model for the auto-
correlation. Consider again (5.22). This can be rewritten taking ρyt−1 over to the
RHS

yt = (1 − ρ)β1 + β2(x2t − ρx2t−1) + β3(x3t − ρx3t−1) + ρyt−1 + vt (5.24)

Expanding the brackets around the explanatory variable terms would give

yt = (1 − ρ)β1 + β2x2t − ρβ2x2t−1 + β3x3t − ρβ3x3t−1 + ρyt−1 + vt (5.25)

Now, suppose that an equation containing the same variables as (5.26) were esti-
mated using OLS

yt = γ1 + γ2x2t + γ3x2t−1 + γ4x3t + γ5x3t−1 + γ6yt−1 + vt (5.26)

It can be seen that (5.26) is a restricted version of (5.27), with the restrictions
imposed that the coefficient on x2t in (5.26) multiplied by the negative of the
coefficient on yt−1 gives the coefficient on x2t−1, and that the coefficient on x3t
multiplied by the negative of the coefficient on yt−1 gives the coefficient on x3t−1.
Thus, the restrictions implied for (5.27) to get (5.26) are

γ2γ6 = −γ3 and γ4γ6 = −γ5
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Box 5.5 The Cochrane–Orcutt procedure

(1) Assume that the general model is of the form (5.18) above. Estimate the
equation in (5.18) using OLS, ignoring the residual autocorrelation.

(2) Obtain the residuals, and run the regression

û t = ρû t−1 + vt (5.27)

(3) Obtain ρ̂ and construct y∗
t etc. using this estimate of ρ̂.

(4) Run the GLS regression (5.23).

These are known as the common factor restrictions, and they should be tested before
the Cochrane–Orcutt or similar procedure is implemented. If the restrictions hold,
Cochrane–Orcutt can be validly applied. If not, however, Cochrane–Orcutt and
similar techniques would be inappropriate, and the appropriate step would be to
estimate an equation such as (5.27) directly using OLS. Note that in general there
will be a common factor restriction for every explanatory variable (excluding a
constant) x2t , x3t , . . . , xkt in the regression. Hendry and Mizon (1978) argued that
the restrictions are likely to be invalid in practice and therefore a dynamic model
that allows for the structure of y should be used rather than a residual correction
on a static model – see also Hendry (1980).

The White variance–covariance matrix of the coefficients (that is, calculation
of the standard errors using the White correction for heteroscedasticity) is appro-
priate when the residuals of the estimated equation are heteroscedastic but serially
uncorrelated. Newey and West (1987) develop a variance–covariance estimator
that is consistent in the presence of both heteroscedasticity and autocorrelation. So
an alternative approach to dealing with residual autocorrelation would be to use
appropriately modified standard error estimates.

While White’s correction to standard errors for heteroscedasticity as discussed
above does not require any user input, the Newey–West procedure requires the
specification of a truncation lag length to determine the number of lagged residu-
als used to evaluate the autocorrelation. EViews uses INTEGER[4(T/100)2/9]. In
EViews, the Newey–West procedure for estimating the standard errors is employed
by invoking it from the same place as the White heteroscedasticity correction. That
is, click the Estimate button and in the Equation Estimation window, choose the
Options tab and then instead of checking the ‘White’ box, check Newey-West.
While this option is listed under ‘Heteroskedasticity consistent coefficient vari-
ance’, the Newey-West procedure in fact produces ‘HAC’ (Heteroscedasticity and
Autocorrelation Consistent) standard errors that correct for both autocorrelation
and heteroscedasticity that may be present.

A more ‘modern’ view concerning autocorrelation is that it presents an oppor-
tunity rather than a problem. This view, associated with Sargan, Hendry and
Mizon, suggests that serial correlation in the errors arises as a consequence of
‘misspecified dynamics’. For another explanation of the reason why this stance is
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taken, recall that it is possible to express the dependent variable as the sum of the
parts that can be explained using the model, and a part which cannot (the residuals)

yt = ŷt + û t (5.28)

where ŷt are the fitted values from the model (= β̂1 + β̂2x2t + β̂3x3t + · · · +
β̂kxkt ). Autocorrelation in the residuals is often caused by a dynamic structure in
y that has not been modelled and so has not been captured in the fitted values.
In other words, there exists a richer structure in the dependent variable y and
more information in the sample about that structure than has been captured by
the models previously estimated. What is required is a dynamic model that allows
for this extra structure in y.

5.5.8 Dynamic models

All of the models considered so far have been static in nature, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + β5x5t + ut (5.29)

In other words, these models have allowed for only a contemporaneous relationship
between the variables, so that a change in one or more of the explanatory vari-
ables at time t causes an instant change in the dependent variable at time t . But
this analysis can easily be extended to the case where the current value of yt
depends on previous values of y or on previous values of one or more of the
variables, e.g.

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + γ1yt−1 + γ2x2t−1

+ · · · + γkxkt−1 + ut (5.30)

It is of course possible to extend the model even more by adding further lags, e.g.
x2t−2, yt−3. Models containing lags of the explanatory variables (but no lags of the
explained variable) are known as distributed lag models. Specifications with lags of
both explanatory and explained variables are known as autoregressive distributed lag
(ADL) models.

How many lags and of which variables should be included in a dynamic
regression model? This is a tricky question to answer, but hopefully recourse
to financial theory will help to provide an answer; for another response, see
section 5.14.

Another potential ‘remedy’ for autocorrelated residuals would be to switch to
a model in first differences rather than in levels. As explained previously, the first
difference of yt , i.e. yt − yt−1 is denoted �yt ; similarly, one can construct a series
of first differences for each of the explanatory variables, e.g. �x2t = x2t − x2t−1,
etc. Such a model has a number of other useful features (see chapter 8 for more
details) and could be expressed as

�yt = β1 + β2�x2t + β3�x3t + ut (5.31)
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Sometimes the change in y is purported to depend on previous values of the level
of y or xi (i = 2, . . . , k) as well as changes in the explanatory variables

�yt = β1 + β2�x2t + β3�x3t + β4x2t−1 + β5yt−1 + ut (5.32)

5.5.9 Why might lags be required in a regression?

Lagged values of the explanatory variables or of the dependent variable (or both)
may capture important dynamic structure in the dependent variable that might be
caused by a number of factors. Two possibilities that are relevant in finance are as
follows:

● Inertia of the dependent variable Often a change in the value of one of
the explanatory variables will not affect the dependent variable immediately
during one time period, but rather with a lag over several time periods.
For example, the effect of a change in market microstructure or government
policy may take a few months or longer to work through since agents may be
initially unsure of what the implications for asset pricing are, and so on. More
generally, many variables in economics and finance will change only slowly.
This phenomenon arises partly as a result of pure psychological factors – for
example, in financial markets, agents may not fully comprehend the effects of
a particular news announcement immediately, or they may not even believe
the news. The speed and extent of reaction will also depend on whether the
change in the variable is expected to be permanent or transitory. Delays in
response may also arise as a result of technological or institutional factors. For
example, the speed of technology will limit how quickly investors’ buy or sell
orders can be executed. Similarly, many investors have savings plans or other
financial products where they are ‘locked in’ and therefore unable to act for
a fixed period. It is also worth noting that dynamic structure is likely to be
stronger and more prevalent the higher is the frequency of observation of the
data.

● Overreactions It is sometimes argued that financial markets overreact to
good and to bad news. So, for example, if a firm makes a profit warning,
implying that its profits are likely to be down when formally reported later
in the year, the markets might be anticipated to perceive this as implying that
the value of the firm is less than was previously thought, and hence that the
price of its shares will fall. If there is an overreaction, the price will initially
fall below that which is appropriate for the firm given this bad news, before
subsequently bouncing back up to a new level (albeit lower than the initial
level before the announcement).

Moving from a purely static model to one which allows for lagged effects is
likely to reduce, and possibly remove, serial correlation which was present in the
static model’s residuals. However, other problems with the regression could cause
the null hypothesis of no autocorrelation to be rejected, and these would not be
remedied by adding lagged variables to the model:
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● Omission of relevant variables, which are themselves autocorrelated
In other words, if there is a variable that is an important determinant of
movements in y, but which has not been included in the model, and which
itself is autocorrelated, this will induce the residuals from the estimated model
to be serially correlated. To give a financial context in which this may arise,
it is often assumed that investors assess one-step-ahead expected returns on a
stock using a linear relationship

r t = α0 + α1�t−1 + ut (5.33)

where �t−1 is a set of lagged information variables (i.e. �t−1 is a vector
of observations on a set of variables at time t − 1). However, (5.33) cannot
be estimated since the actual information set used by investors to form their
expectations of returns is not known. �t−1 is therefore proxied with an assumed
sub-set of that information, Zt−1. For example, in many popular arbitrage
pricing specifications, the information set used in the estimated model includes
unexpected changes in industrial production, the term structure of interest
rates, inflation and default risk premia. Such a model is bound to omit some
informational variables used by actual investors in forming expectations of
returns, and if these are autocorrelated, it will induce the residuals of the
estimated model to be also autocorrelated.

● Autocorrelation owing to unparameterised seasonality Suppose that
the dependent variable contains a seasonal or cyclical pattern, where cer-
tain features periodically occur. This may arise, for example, in the con-
text of sales of gloves, where sales will be higher in the autumn and win-
ter than in the spring or summer. Such phenomena are likely to lead
to a positively autocorrelated residual structure that is cyclical in shape,
such as that of figure 5.4, unless the seasonal patterns are captured by the
model. See chapter 10 for a discussion of seasonality and how to deal
with it.

● If ‘misspecification’ error has been committed by using an inappro-
priate functional form For example, if the relationship between y and the
explanatory variables was a non-linear one, but the researcher had specified a
linear regression model, this may again induce the residuals from the estimated
model to be serially correlated.

5.5.10 The long-run static equilibrium solution

Once a general model of the form given in (5.32) has been found, it may contain
many differenced and lagged terms that make it difficult to interpret from a
theoretical perspective. For example, if the value of x2 were to increase in period
t , what would be the effect on y in periods, t, t + 1, t + 2, and so on? One
interesting property of a dynamic model that can be calculated is its long-run or
static equilibrium solution.
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The relevant definition of ‘equilibrium’ in this context is that a system has
reached equilibrium if the variables have attained some steady state values and are
no longer changing, i.e. if y and x are in equilibrium, it is possible to write

yt = yt+1 = . . . = y and x2t = x2t+1 = . . . = x2, and so on.

Consequently, �yt = yt − yt−1 = y − y = 0,�x2t = x2t − x2t−1 = x2 − x2 =
0, etc. since the values of the variables are no longer changing. So the way to
obtain a long-run static solution from a given empirical model such as (5.32) is:

(1) Remove all time subscripts from the variables
(2) Set error terms equal to their expected values of zero, i.e E(ut ) = 0
(3) Remove differenced terms (e.g. �yt ) altogether
(4) Gather terms in x together and gather terms in y together
(5) Rearrange the resulting equation if necessary so that the dependent variable y

is on the left-hand side (LHS) and is expressed as a function of the independent
variables.

Example 5.3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Calculate the long-run equilibrium solution for the following model

�yt = β1 + β2�x2t + β3�x3t + β4x2t−1 + β5yt−1 + ut (5.34)

Applying first steps 1–3 above, the static solution would be given by

0 = β1 + β4x2 + β5y (5.35)

Rearranging (5.35) to bring y to the LHS

β5y = −β1 − β4x2 (5.36)

and finally, dividing through by β5

y = −β1

β5
− β4

β5
x2 (5.37)

Equation (5.37) is the long-run static solution to (5.34). Note that this equation does not
feature x3, since the only term which contained x3 was in first differenced form, so that
x3 does not influence the long-run equilibrium value of y.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5.5.11 Problems with adding lagged regressors to ‘cure’ autocorrelation

In many instances, a move from a static model to a dynamic one will result in
a removal of residual autocorrelation. The use of lagged variables in a regression
model does, however, bring with it additional problems:

● Inclusion of lagged values of the dependent variable violates the
assumption that the explanatory variables are non-stochastic (assump-
tion 4 of the CLRM), since by definition the value of y is determined partly
by a random error term, and so its lagged values cannot be non-stochastic.
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In small samples, inclusion of lags of the dependent variable can lead to
biased coefficient estimates, although they are still consistent, implying that the
bias will disappear asymptotically (that is, as the sample size increases towards
infinity).

● What does an equation with a large number of lags actually mean?
A model with many lags may have solved a statistical problem (autocorrelated
residuals) at the expense of creating an interpretational one (the empirical
model containing many lags or differenced terms is difficult to interpret and
may not test the original financial theory that motivated the use of regression
analysis in the first place).

Note that if there is still autocorrelation in the residuals of a model including
lags, then the OLS estimators will not even be consistent. To see why this occurs,
consider the following regression model

yt = β1 + β2x2t + β3x3t + β4yt−1 + ut (5.38)

where the errors, ut , follow a first order autoregressive process

ut = ρut−1 + vt (5.39)

Substituting into (5.38) for ut from (5.39)

yt = β1 + β2x2t + β3x3t + β4yt−1 + ρut−1 + vt (5.40)

Now, clearly yt depends upon yt−1. Taking (5.38) and lagging it one period (i.e.
subtracting one from each time index)

yt−1 = β1 + β2x2t−1 + β3x3t−1 + β4yt−2 + ut−1 (5.41)

It is clear from (5.41) that yt−1 is related to ut−1 since they both appear in
that equation. Thus, the assumption that E(X′u) = 0 is not satisfied for (5.41)
and therefore for (5.38). Thus the OLS estimator will not be consistent, so
that even with an infinite quantity of data, the coefficient estimates would be
biased.

5.5.12 Autocorrelation and dynamic models in EViews

In EViews, the lagged values of variables can be used as regressors or for other
purposes by using the notation x(−1) for a one-period lag, x(−5) for a five-period
lag, and so on, where x is the variable name. EViews will automatically adjust the
sample period used for estimation to take into account the observations that are
lost in constructing the lags. For example, if the regression contains five lags of
the dependent variable, five observations will be lost and estimation will commence
with observation six.

In EViews, the DW statistic is calculated automatically, and was given in the
general estimation output screens that result from estimating any regression model.
To view the results screen again, click on the View button in the regression window
and select Estimation output. For the Microsoft macroeconomic regression that
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included all of the explanatory variables, the value of the DW statistic was 2.165.
What is the appropriate conclusion regarding the presence or otherwise of first
order autocorrelation in this case?

The Breusch–Godfrey test can be conducted by selecting View/Residual
Diagnostics/Serial Correlation LM Test . . . In the new window, type again
the number of lagged residuals you want to include in the test and click on OK.
Assuming that you selected to employ ten lags in the test, the results would be as
given in the following table.

Breusch-Godfrey serial correlation LM test:

F-statistic 2.296984 Prob. F(10,306) 0.0130
Obs*R-squared 22.62283 Prob. chi-Square(10) 0.0122

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 07/04/13 Time: 14:11
Sample: 1986M05 2013M04
Included observations: 324
Presample missing value lagged residuals set to zero.

Coefficient Std. error t-Statistic Prob.

C 0.055522 0.887748 0.062542 0.9502
ERSANDP −0.00123 0.155137 −0.00792 0.9937

DPROD 0.217579 1.308076 0.166335 0.8680
DCREDIT −1.19E-05 7.55E-05 −0.15797 0.8746

DINFLATION −0.52145 2.170113 −2.40E-01 8.10E-01
DMONEY −0.00521 0.034704 −0.15008 0.8808
DSPREAD 0.108645 6.816919 0.015938 0.9873

RTERM 0.377417 2.502172 0.150836 0.8802
RESID(-1) −0.13700 0.057579 −2.37928 0.0180
RESID(-2) −0.05756 0.057540 −1.00042 0.3179
RESID(-3) −0.03018 0.057403 −0.52574 0.5994
RESID(-4) −0.13534 0.057235 −2.36454 0.0187
RESID(-5) −0.13527 0.056885 −2.37803 0.0180
RESID(-6) −0.11296 0.057015 −1.98118 0.0485
RESID(-7) −0.07431 0.057277 −1.29740 0.1955
RESID(-8) −0.10770 0.057247 −1.88125 0.0609
RESID(-9) −0.15779 0.057370 −2.75032 0.0063
RESID(-10) −0.05742 0.057536 −0.99800 0.3191
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R-squared 0.069824 Mean dependent var −4.93E-16
Adjusted R-squared 0.018147 S.D. dependent var 12.52090
S.E. of regression 12.40677 Akaike info criterion 7.928310
Sum squared resid 47101.95 Schwarz criterion 8.138356
Log likelihood −1266.387 Hannan-Quinn criter. 8.012151
F-statistic 1.351167 Durbin-Watson stat 2.008661
Prob(F-statistic) 0.159775

In the first table of output, EViews offers two versions of the test – an F -
version and a χ2 version, while the second table presents the estimates from the
auxiliary regression. The conclusion from both versions of the test in this case is
that the null hypothesis of no autocorrelation should be rejected since the p-values
are below 0.05. Does this agree with the DW test result? We might thus wish to
consider taking remedial action along the lines described above so think about the
possibilities.

5.5.13 Autocorrelation in cross-sectional data

The possibility that autocorrelation may occur in the context of a time- series
regression is quite intuitive. However, it is also plausible that autocorrelation could
be present in certain types of cross-sectional data. For example, if the cross-
sectional data comprise the profitability of banks in different regions of the US,
autocorrelation may arise in a spatial sense, if there is a regional dimension to
bank profitability that is not captured by the model. Thus the residuals from
banks of the same region or in neighbouring regions may be correlated. Testing
for autocorrelation in this case would be rather more complex than in the time
series context, and would involve the construction of a square, symmetric ‘spatial
contiguity matrix’ or a ‘distance matrix’. Both of these matrices would be N × N,
where N is the sample size. The former would be a matrix of zeros and ones,
with one for element i , j when observation i occurred for a bank in the same
region to, or sufficiently close to, region j and zero otherwise (i, j = 1, . . . , N).
The distance matrix would comprise elements that measured the distance (or the
inverse of the distance) between bank i and bank j . A potential solution to a
finding of autocorrelated residuals in such a model would be again to use a model
containing a lag structure, in this case known as a ‘spatial lag’. Further details are
contained in Anselin (1988).

• • • • • • • • • • • • • • 5.6 Assumption 4: the xt are non-stochastic

Fortunately, it turns out that the OLS estimator is consistent and unbiased in the
presence of stochastic regressors, provided that the regressors are not correlated
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with the error term of the estimated equation. To see this, recall that

β̂ = (X′X)−1 X′y and y = Xβ + u (5.42)

Thus

β̂ = (X′X)−1 X′(Xβ + u) (5.43)

β̂ = (X′X)−1 X′Xβ + (X′X)−1 X′u (5.44)

β̂ = β + (X′X)−1 X′u (5.45)

Taking expectations, and provided that X and u are independent,1

E(β̂) = E(β) + E((X′X)−1 X′u) (5.46)

E(β̂) = β + E[(X′X)−1 X′]E(u) (5.47)

Since E(u) = 0, this expression will be zero and therefore the estimator is still
unbiased, even if the regressors are stochastic.

However, if one or more of the explanatory variables is contemporaneously
correlated with the disturbance term, the OLS estimator will not even be consis-
tent. This results from the estimator assigning explanatory power to the variables
where in reality it is arising from the correlation between the error term and
yt . Suppose for illustration that x2t and ut are positively correlated. When the
disturbance term happens to take a high value, yt will also be high (because
yt = β1 + β2x2t + · · · + ut ). But if x2t is positively correlated with ut , then x2t is
also likely to be high. Thus the OLS estimator will incorrectly attribute the high
value of yt to a high value of x2t , where in reality yt is high simply because ut is high,
which will result in biased and inconsistent parameter estimates and a fitted line
that appears to capture the features of the data much better than it does in reality.

• • • • • • • • • • • • • • 5.7 Assumption 5: the disturbances are normally distributed

Recall that the normality assumption (ut ∼ N(0, σ 2)) is required in order to
conduct single or joint hypothesis tests about the model parameters.

5.7.1 Testing for departures from normality

One of the most commonly applied tests for normality is the Bera–Jarque (hereafter
BJ) test. BJ uses the property of a normally distributed random variable that the
entire distribution is characterised by the first two moments – the mean and the
variance. Recall from chapter 2 that standardised third and fourth moments of a
distribution are known as its skewness and kurtosis. A normal distribution is not
skewed and is defined to have a coefficient of kurtosis of 3. It is possible to define a
coefficient of excess kurtosis, equal to the coefficient of kurtosis minus 3; a normal
distribution will thus have a coefficient of excess kurtosis of zero. Bera and Jarque

1 A situation where X and u are not independent is discussed at length in chapter 7.
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(1981) formalise these ideas by testing whether the coefficient of skewness and the
coefficient of excess kurtosis are jointly zero. Denoting the errors by u and their
variance by σ 2, it can be proved that the coefficients of skewness and kurtosis can
be expressed respectively as

b1 = E[u3]

(σ 2)3/2 and b2 = E[u4]

(σ 2)2
(5.48)

The kurtosis of the normal distribution is 3 so its excess kurtosis (b2 − 3) is zero.
The Bera–Jarque test statistic is given by

W = T
[

b 2
1

6
+ (b2 − 3)2

24

]
(5.49)

where T is the sample size. The test statistic asymptotically follows a χ2(2) under
the null hypothesis that the distribution of the series is symmetric and mesokurtic.

b1 and b2 can be estimated using the residuals from the OLS regression, û . The
null hypothesis is of normality, and this would be rejected if the residuals from the
model were either significantly skewed or leptokurtic/platykurtic (or both).

5.7.2 Testing for non-normality using EViews

The Bera–Jarque normality tests results can be viewed by selecting View/Residual
Diagnostics/Histogram – Normality Test. The statistic has a χ2 distribution
with two degrees of freedom under the null hypothesis of normally distributed
errors. If the residuals are normally distributed, the histogram should be bell-shaped
and the Bera–Jarque statistic would not be significant. This means that the p-value
given at the bottom of the normality test screen should be bigger than 0.05 to
not reject the null of normality at the 5% level. In the example of the Microsoft
regression, the screen would appear as in screenshot 5.2.

In this case, the residuals are very negatively skewed and are leptokurtic. Hence
the null hypothesis for residual normality is rejected very strongly (the p-value for
the BJ test is zero to six decimal places), implying that the inferences we make
about the coefficient estimates could be wrong, although the sample is probably
large enough that we need be less concerned than we would be with a small
sample. The non-normality in this case appears to have been caused by a small
number of very large negative residuals representing monthly stock price falls of
more than −25%.

5.7.3 What should be done if evidence of non-normality is found?

It is not obvious what should be done! It is, of course, possible to employ an
estimation method that does not assume normality, but such a method may be
difficult to implement, and one can be less sure of its properties. It is thus desirable
to stick with OLS if possible, since its behaviour in a variety of circumstances
has been well researched. For sample sizes that are sufficiently large, violation of
the normality assumption is virtually inconsequential. Appealing to a central limit
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Screenshot 5.2 Non-normality test results

theorem, the test statistics will asymptotically follow the appropriate distributions
even in the absence of error normality.2

In economic or financial modelling, it is quite often the case that one or
two very extreme residuals cause a rejection of the normality assumption. Such
observations would appear in the tails of the distribution, and would therefore lead
u4, which enters into the definition of kurtosis, to be very large. Such observations
that do not fit in with the pattern of the remainder of the data are known as outliers.
If this is the case, one way to improve the chances of error normality is to use
dummy variables or some other method to effectively remove those observations.

In the time series context, suppose that a monthly model of asset returns from
1980–90 had been estimated, and the residuals plotted, and that a particularly large
outlier has been observed for October 1987, shown in figure 5.10.

A new variable called D87M10t could be defined as D87M10t = 1 during
October 1987 and zero otherwise the observations for the dummy variable would
appear as in box 5.6. The dummy variable would then be used just like any other

2 The law of large numbers states that the average of a sample (which is a random variable) will
converge to the population mean (which is fixed), and the central limit theorem states that the
sample mean converges to a normal distribution.
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+

–

timeOct
1987

ût

Figure 5.10 Regression residuals from stock return data, showing large outlier for October
1987

Box 5.6 Observations for the dummy variable

Time Value of dummy variable D 87M 10t

1986M12 0
1987M01 0

...
...

1987M09 0
1987M10 1
1987M11 0

...
...

variable in the regression model, e.g.

yt = β1 + β2x2t + β3x3t + β4 D87M10t + ut (5.50)

This type of dummy variable that takes the value one for only a single obser-
vation has an effect exactly equivalent to knocking out that observation from
the sample altogether, by forcing the residual for that observation to zero. The
estimated coefficient on the dummy variable will be equal to the residual that
the dummied observation would have taken if the dummy variable had not been
included.
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yt

xt

Figure 5.11 Possible effect of an outlier on OLS estimation

However, many econometricians would argue that dummy variables to remove
outlying residuals can be used to artificially improve the characteristics of the
model – in essence fudging the results. Removing outlying observations will
reduce standard errors, reduce the RSS, and therefore increase R2, thus improving
the apparent fit of the model to the data. The removal of observations is also hard
to reconcile with the notion in statistics that each data point represents a useful
piece of information.

The other side of this argument is that observations that are ‘a long way away’
from the rest, and seem not to fit in with the general pattern of the rest of the data
are known as outliers. Outliers can have a serious effect on coefficient estimates,
since by definition, OLS will receive a big penalty, in the form of an increased
RSS, for points that are a long way from the fitted line. Consequently, OLS will
try extra hard to minimise the distances of points that would have otherwise been
a long way from the line. A graphical depiction of the possible effect of an outlier
on OLS estimation, is given in figure 5.11.

In figure 5.11, one point is a long way away from the rest. If this point is
included in the estimation sample, the fitted line will be the dotted one, which
has a slight positive slope. If this observation were removed, the full line would be
the one fitted. Clearly, the slope is now large and negative. OLS would not select
this line if the outlier is included since the observation is a long way from the
others and hence when the residual (the distance from the point to the fitted line)
is squared, it would lead to a big increase in the RSS. Note that outliers could be
detected by plotting y against x only in the context of a bivariate regression. In
the case where there are more explanatory variables, outliers are easiest identified
by plotting the residuals over time, as in figure 5.10, etc.

So, it can be seen that a trade-off potentially exists between the need to remove
outlying observations that could have an undue impact on the OLS estimates and
cause residual non-normality on the one hand, and the notion that each data point
represents a useful piece of information on the other. The latter is coupled with
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the fact that removing observations at will could artificially improve the fit of the
model. A sensible way to proceed is by introducing dummy variables to the model
only if there is both a statistical need to do so and a theoretical justification for their
inclusion. This justification would normally come from the researcher’s knowledge
of the historical events that relate to the dependent variable and the model over
the relevant sample period. Dummy variables may be justifiably used to remove
observations corresponding to ‘one-off ’ or extreme events that are considered
highly unlikely to be repeated, and the information content of which is deemed of
no relevance for the data as a whole. Examples may include stock market crashes,
financial panics, government crises, and so on.

Non-normality in financial data could also arise from certain types of het-
eroscedasticity, known as ARCH – see chapter 8. In this case, the non-normality
is intrinsic to all of the data and therefore outlier removal would not make the
residuals of such a model normal.

Another important use of dummy variables is in the modelling of seasonality
in financial data, and accounting for so-called ‘calendar anomalies’, such as day-
of-the-week effects and weekend effects. These are discussed in chapter 10.

5.7.4 Dummy variable construction and use in EViews

As we saw from the plot of the distribution above, the non-normality in the
residuals from the Microsoft regression appears to have been caused by a small
number of outliers in the sample. Such events can be identified if they are present by
plotting the actual values, the fitted values and the residuals of the regression. This
can be achieved in EViews by selecting View/Actual, Fitted, Residual/Actual,
Fitted, Residual Graph. The plot should look as in screenshot 5.3.

From the graph, it can be seen that there are several large (negative) outliers,
but the largest of all occur in early 1998 and early 2003. All of the large outliers
correspond to months where the actual return was much smaller (i.e. more nega-
tive) than the model would have predicted. Interestingly, the residual in October
1987 is not quite so prominent because even though the stock price fell, the market
index value fell as well, so that the stock price fall was at least in part predicted
(this can be seen by comparing the actual and fitted values during that month).

In order to identify the exact dates that the biggest outliers were realised, we
could use the shading option by right clicking on the graph and selecting the
‘add lines & shading’ option. But it is probably easier to just examine a table of
values for the residuals, which can be achieved by selecting View/Actual, Fitted,
Residual/Actual, Fitted, Residual Table. If we do this, it is evident that the
two most extreme residuals (with values to the nearest integer) were in February
1998 (−64.3) and February 2003 (−67.7).

As stated above, one way to remove big outliers in the data is by using dummy
variables. It would be tempting, but incorrect, to construct one dummy variable
that takes the value 1 for both Feb 1998 and Feb 2003, but this would not have
the desired effect of setting both residuals to zero. Instead, to remove two outliers
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Screenshot 5.3 Regression residuals, actual values and fitted series

requires us to construct two separate dummy variables. In order to create the Feb
1998 dummy first, we generate a series called ‘FEB98DUM’ that will initially
contain only zeros. Generate this series (hint: you can use ‘Quick/Generate
Series’ and then type in the box ‘FEB98DUM = 0’. Double click on the new
object to open the spreadsheet and turn on the editing mode by clicking ‘Edit
+/−’ and input a single 1 in the cell that corresponds to February 1998. Leave all
other cell entries as zeros).

Once this dummy variable has been created, repeat the process above to cre-
ate another dummy variable called ‘FEB03DUM’ that takes the value 1 in
February 2003 and zero elsewhere and then rerun the regression including all
the previous variables plus these two dummy variables. This can most easily be
achieved by clicking on the ‘Msoftreg’ results object, then the Estimate button
and adding the dummy variables to the end of the variable list. The full list of
variables is

ermsoft c ersandp dprod dcredit dinflation dmoney dspread rterm
feb98dum feb03dum

and the results of this regression are as in the following table.
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Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/04/13 Time: 14:45
Sample (adjusted): 1986M05 2013M04
Included observations: 324 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 0.294125 0.826235 0.355982 0.7221
ERSANDP 1.401288 0.143171 9.787491 0.0000

DPROD −1.33384 1.206715 −1.10535 0.2699
DCREDIT −3.95E-05 6.96E-05 −0.56709 0.5711

DINFLATION 3.517510 1.975394 1.78E+00 7.59E-02
DMONEY −0.02196 0.032097 −0.68416 0.4944
DSPREAD 5.351376 6.302128 0.849138 0.3965

RTERM 4.650169 2.291471 2.029337 0.0433
FEB98DUM −66.4813 11.60474 −5.72881 0.0000
FEB03DUM −67.6132 11.58117 −5.83821 0.0000

R-squared 0.346058 Mean dependent var −0.311466
Adjusted R-squared 0.327315 S.D. dependent var 14.05871
S.E. of regression 11.53059 Akaike info criterion 7.758261
Sum squared resid 41747.69 Schwarz criterion 7.874951
Log likelihood −1246.838 Hannan-Quinn criter. 7.804837
F-statistic 18.46280 Durbin-Watson stat 2.156576
Prob(F-statistic) 0.000000

Note that the dummy variable parameters are both highly significant and take
approximately the values that the corresponding residuals would have taken if
the dummy variables had not been included in the model.3 By comparing the
results with those of the regression above that excluded the dummy variables,
it can be seen that the coefficient estimates on the remaining variables change
quite a bit in this instance and the significances improve considerably. The term
structure parameter is now significant at the 5% level and the unexpected inflation
parameter is now significant at the 10% level. The R2 value has risen from 0.21
to 0.35 because of the perfect fit of the dummy variables to those two extreme
outlying observations.

Finally, if we re-examine the normality test results by clicking View/Residual
Tests/Histogram – Normality Test, we will see that while the skewness and

3 Note the inexact correspondence between the values of the residuals and the values of the dummy
variable parameters because two dummies are being used together; had we included only one
dummy, the value of the dummy variable coefficient and that which the residual would have taken
would be identical.
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kurtosis are both slightly closer to the values that they would take under normality,
the Bera–Jarque test statistic still takes a value of 1601 (compared with 1845
previously). We would thus conclude that the residuals are still a long way from
following a normal distribution, and the distribution plot shows that there are still
several more very large negative residuals. While it would be possible to continue
to generate dummy variables, there is a limit to the extent to which it would be
desirable to do so. With this particular regression, we are unlikely to be able to
achieve a residual distribution that is close to normality without using an excessive
number of dummy variables. As a rule of thumb, in a monthly sample with 324
observations, it is reasonable to include, perhaps, two or three dummy variables
for outliers, but more would probably be excessive.

• • • • • • • • • • • • • • 5.8 Multicollinearity

An implicit assumption that is made when using the OLS estimation method is
that the explanatory variables are not correlated with one another. If there is no
relationship between the explanatory variables, they would be said to be orthogonal
to one another. If the explanatory variables were orthogonal to one another, adding
or removing a variable from a regression equation would not cause the values of
the coefficients on the other variables to change.

In any practical context, the correlation between explanatory variables will be
non-zero, although this will generally be relatively benign in the sense that a small
degree of association between explanatory variables will almost always occur but
will not cause too much loss of precision. However, a problem occurs when the
explanatory variables are very highly correlated with each other, and this problem
is known as multicollinearity. It is possible to distinguish between two classes of
multicollinearity: perfect multicollinearity and near multicollinearity.

Perfect multicollinearity occurs when there is an exact relationship between two
or more variables. In this case, it is not possible to estimate all of the coefficients in
the model. Perfect multicollinearity will usually be observed only when the same
explanatory variable is inadvertently used twice in a regression. For illustration,
suppose that two variables were employed in a regression function such that the
value of one variable was always twice that of the other (e.g. suppose x3 = 2x2).
If both x3 and x2 were used as explanatory variables in the same regression, then
the model parameters cannot be estimated. Since the two variables are perfectly
related to one another, together they contain only enough information to estimate
one parameter, not two. Technically, the difficulty would occur in trying to invert
the (X′X) matrix since it would not be of full rank (two of the columns would be
linearly dependent on one another), so that the inverse of (X′X) would not exist
and hence the OLS estimates β̂ = (X′X)−1 X′y could not be calculated.

Near multicollinearity is much more likely to occur in practice, and would
arise when there was a non-negligible, but not perfect, relationship between two
or more of the explanatory variables. Note that a high correlation between the
dependent variable and one of the independent variables is not multicollinearity.
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Visually, we could think of the difference between near and perfect multi-
collinearity as follows. Suppose that the variables x2t and x3t were highly correlated.
If we produced a scatter plot of x2t against x3t , then perfect multicollinearity would
correspond to all of the points lying exactly on a straight line, while near multi-
collinearity would correspond to the points lying close to the line, and the closer
they were to the line (taken altogether), the stronger would be the relationship
between the two variables.

5.8.1 Measuring near multicollinearity

Testing for multicollinearity is surprisingly difficult, and hence all that is presented
here is a simple method to investigate the presence or otherwise of the most easily
detected forms of near multicollinearity. This method simply involves looking
at the matrix of correlations between the individual variables. Suppose that a
regression equation has three explanatory variables (plus a constant term), and that
the pair-wise correlations between these explanatory variables are.

corr x2 x3 x4

x2 – 0.2 0.8
x3 0.2 – 0.3
x4 0.8 0.3 –

Clearly, if multicollinearity was suspected, the most likely culprit would be a high
correlation between x2 and x4. Of course, if the relationship involves three or more
variables that are collinear – e.g. x2 + x3 ≈ x4 – then multicollinearity would be
very difficult to detect.

5.8.2 Problems if near multicollinearity is present but ignored

First, R2 will be high but the individual coefficients will have high standard errors,
so that the regression ‘looks good’ as a whole, but the individual variables are not
significant.4 This arises in the context of very closely related explanatory variables
as a consequence of the difficulty in observing the individual contribution of
each variable to the overall fit of the regression. Second, the regression becomes
very sensitive to small changes in the specification, so that adding or removing an
explanatory variable leads to large changes in the coefficient values or significances
of the other variables. Finally, near multicollinearity will thus make confidence
intervals for the parameters very wide, and significance tests might therefore give
inappropriate conclusions, and so make it difficult to draw sharp inferences.

5.8.3 Solutions to the problem of multicollinearity

A number of alternative estimation techniques have been proposed that are valid
in the presence of multicollinearity – for example, ridge regression, or principal
components. Principal components analysis was discussed briefly in an appendix

4 Note that multicollinearity does not affect the value of R2 in a regression.
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to the previous chapter. Many researchers do not use these techniques, however, as
they can be complex, their properties are less well understood than those of the OLS
estimator and, above all, many econometricians would argue that multicollinearity
is more a problem with the data than with the model or estimation method.

Other, more ad hoc methods for dealing with the possible existence of near
multicollinearity include:

● Ignore it, if the model is otherwise adequate, i.e. statistically and in terms of
each coefficient being of a plausible magnitude and having an appropriate sign.
Sometimes, the existence of multicollinearity does not reduce the t-ratios on
variables that would have been significant without the multicollinearity suffi-
ciently to make them insignificant. It is worth stating that the presence of near
multicollinearity does not affect the BLUE properties of the OLS estimator –
i.e. it will still be consistent, unbiased and efficient since the presence of near
multicollinearity does not violate any of the CLRM assumptions 1–4. How-
ever, in the presence of near multicollinearity, it will be hard to obtain small
standard errors. This will not matter if the aim of the model-building exercise
is to produce forecasts from the estimated model, since the forecasts will be
unaffected by the presence of near multicollinearity so long as this relation-
ship between the explanatory variables continues to hold over the forecasted
sample.

● Drop one of the collinear variables, so that the problem disappears. How-
ever, this may be unacceptable to the researcher if there were strong a priori
theoretical reasons for including both variables in the model. Also, if the
removed variable was relevant in the data generating process for y, an omitted
variable bias would result (see section 5.10).

● Transform the highly correlated variables into a ratio and include only
the ratio and not the individual variables in the regression. Again, this may be
unacceptable if financial theory suggests that changes in the dependent variable
should occur following changes in the individual explanatory variables, and
not a ratio of them.

● Finally, as stated above, it is also often said that near multicollinearity is more a
problem with the data than with the model, so that there is insufficient information
in the sample to obtain estimates for all of the coefficients. This is why near
multicollinearity leads coefficient estimates to have wide standard errors, which
is exactly what would happen if the sample size were small. An increase in the
sample size will usually lead to an increase in the accuracy of coefficient
estimation and consequently a reduction in the coefficient standard errors,
thus enabling the model to better dissect the effects of the various explanatory
variables on the explained variable. A further possibility, therefore, is for the
researcher to go out and collect more data – for example, by taking a
longer run of data, or switching to a higher frequency of sampling. Of course,
it may be infeasible to increase the sample size if all available data is being
utilised already. A further method of increasing the available quantity of data
as a potential remedy for near multicollinearity would be to use a pooled
sample. This would involve the use of data with both cross-sectional and time
series dimensions (see chapter 11).
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5.8.4 Multicollinearity in EViews

For the Microsoft stock return example given above previously, a correlation
matrix for the macroeconomic independent variables can be constructed in
EViews by clicking Quick/Group Statistics/Correlations and then entering
the list of regressors (not including the regressand or the S&P returns) in the
dialog box that appears:

dprod dcredit dinflation dmoney dspread rterm

A new window will be displayed that contains the correlation matrix of the series
in a spreadsheet format:

DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM
DPROD 1.000000 0.141066 −0.124269 −0.130060 −0.055573 −0.002375

DCREDIT 0.141066 1.000000 0.045164 −0.011724 0.015264 0.009675
DINFLATION −0.124269 0.045164 1.000000 −0.097972 −0.224838 −0.054192

DMONEY −0.130060 −0.011724 −0.097972 1.000000 0.213576 −0.086218
DSPREAD −0.055573 0.015264 −0.224838 0.213576 1.000000 0.001571

RTERM −0.002375 0.009675 −0.054192 −0.086218 0.001571 1.000000

Do the results indicate any significant correlations between the independent
variables? In this particular case, the largest observed correlations (in absolute
value) are is 0.21 between the money supply and term structure variables, and
−0.22 between the term structure and unexpected inflation. This is probably
sufficiently small that it can reasonably be ignored.

• • • • • • • • • • • • • • 5.9 Adopting the wrong functional form

A further implicit assumption of the classical linear regression model is that the
appropriate ‘functional form’ is linear. This means that the appropriate model
is assumed to be linear in the parameters, and that in the bivariate case, the
relationship between y and x can be represented by a straight line. However, this
assumption may not always be upheld. Whether the model should be linear can
be formally tested using Ramsey’s (1969) RESET test, which is a general test for
misspecification of functional form. Essentially, the method works by using higher
order terms of the fitted values (e.g. ŷ2

t , ŷ3
t , etc.) in an auxiliary regression. The

auxiliary regression is thus one where yt , the dependent variable from the original
regression, is regressed on powers of the fitted values together with the original
explanatory variables

yt = α1 + α2 ŷ2
t + α3 ŷ3

t + · · · + αp ŷ p
t +

∑
βi xi t + vt (5.51)

Higher order powers of the fitted values of y can capture a variety of non-
linear relationships, since they embody higher order powers and cross-products of
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the original explanatory variables, e.g.

ŷ2
t = (β̂1 + β̂2x2t + β̂3x3t + · · · + β̂kxkt )2 (5.52)

The value of R2 is obtained from the regression (5.51), and the test statistic, given
by TR2, is distributed asymptotically as a χ2(p − 1). Note that the degrees of
freedom for this test will be (p − 1) and not p . This arises because p is the highest
order term in the fitted values used in the auxiliary regression and thus the test will
involve p − 1 terms, one for the square of the fitted value, one for the cube, . . . ,
one for the p th power. If the value of the test statistic is greater than the χ 2 critical
value, reject the null hypothesis that the functional form was correct.

5.9.1 What if the functional form is found to be inappropriate?

One possibility would be to switch to a non-linear model, but the RESET test
presents the user with no guide as to what a better specification might be! Also,
non-linear models in the parameters typically preclude the use of OLS, and require
the use of a non-linear estimation technique. Some non-linear models can still be
estimated using OLS, provided that they are linear in the parameters. For example,
if the true model is of the form

yt = β1 + β2x2t + β3x2
2t + β4x3

2t + ut (5.53)

– that is, a third order polynomial in x – and the researcher assumes that the
relationship between yt and xt is linear (i.e. x2

2t and x3
2t are missing from the

specification), this is simply a special case of omitted variables, with the usual
problems (see section 5.10) and obvious remedy.

However, the model may be multiplicatively non-linear. A second possibility
that is sensible in this case would be to transform the data into logarithms. This will
linearise many previously multiplicative models into additive ones. For example,
consider again the exponential growth model

yt = β1xβ2
t u t (5.54)

Taking logs, this becomes

ln(yt ) = ln(β1) + β2 ln(xt ) + ln(ut ) (5.55)

or

Yt = α + β2 Xt + vt (5.56)

where Yt = ln(yt ), α = ln(β1), Xt = ln(xt ), vt = ln(ut ). Thus a simple logarithmic
transformation makes this model a standard linear bivariate regression equation that
can be estimated using OLS.

Loosely following the treatment given in Stock and Watson (2011), the fol-
lowing list shows four different functional forms for models that are either linear
or can be made linear following a logarithmic transformation to one or more of
the dependent or independent variables, examining only a bivariate specification
for simplicity. Care is needed when interpreting the coefficient values in each case.
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(1) Linear model: yt = β1 + β2x2t + ut ; a 1-unit increase in x2t causes a β2-unit
increase in yt .

x2t

yt

(2) Log-linear: l n(yt ) = β1 + β2x2t + ut ; a 1-unit increase in x2t causes a 100 ×
β2% increase in yt .

x2t x2t

ln yt yt

(3) Linear-log: yt = β1 + β2l n(x2t ) + ut ; a 1% increase in x2t causes a 0.01 × β2-
unit increase in yt .

yt

In(x2t)

yt

x2t

(4) Double log: l n(yt ) = β1 + β2l n(x2t ) + ut ; a 1% increase in x2t causes a β2%
increase in yt . Note that to plot y against x2 would be more complex since
the shape would depend on the size of β2.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-05 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:40

5.9 Adopting the wrong functional form

•
•
•
•
•
•
•
•
• 223

ln(yt)

In(x2t)

Note also that we cannot use R2 or adjusted R2 to determine which of these
four types of model is most appropriate since the dependent variables are different
across some of the models.

5.9.2 RESET tests using EViews

Using EViews, the Ramsey RESET test is found in the View menu of the regres-
sion window (for ‘Msoftreg’) under Stability diagnostics/Ramsey RESET
test. . . . EViews will prompt you for the ‘number of fitted terms’, equivalent to
the number of powers of the fitted value to be used in the regression; leave the
default of 1 to consider only the square of the fitted values. The Ramsey RESET
test for this regression is in effect testing whether the relationship between the
Microsoft stock excess returns and the explanatory variables is linear or not. The
results of this test for one fitted term are shown in the following table.

Ramsey RESET Test

Equation: MSOFTREG
Specification: ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION

DMONEY DSPREAD RTERM FEB98DUM FEB03DUM
Omitted Variables: Squares of fitted values

Value df Probability
t-statistic 1.672232 313 0.0955
F-statistic 2.796359 (1,313) 0.0955
Likelihood ratio 2.881779 1 0.0860

F-test summary:

Sum of Sq. df Mean Squares
Test SSR 369.6734 1 369.6734
Restricted SSR 41747.69 314 132.9544
Unrestricted SSR 41378.02 313 132.1981
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LR-test summary:

Value df
Restricted LogL −1246.838 314
Unrestricted LogL −1245.397 313

Test Equation:
Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/04/13 Time: 15:24
Sample: 1986M05 2013M04
Included observations: 324

Coefficient Std. Error t-Statistic Prob.

C −0.283755 0.893422 −0.317605 0.7510
ERSANDP 1.500030 0.154493 9.709365 0.0000

DPROD −1.447299 1.205189 −1.200890 0.2307
DCREDIT −0.000031 0.000070 −0.442150 0.6587

DINFLATION 3.586413 1.970198 1.820331 0.0697
DMONEY −0.022506 0.032008 −0.703158 0.4825
DSPREAD 4.487382 6.305382 0.711675 0.4772

RTERM 4.517819 2.286315 1.976026 0.0490
FEB98DUM −104.6090 25.56902 −4.091250 0.0001
FEB03DUM −123.6420 35.43968 −3.488800 0.0006
FITTED∧2 0.011717 0.007007 1.672232 0.0955

R-squared 0.351849 Mean dependent var −0.311466
Adjusted R-squared 0.331141 S.D. dependent var 14.05871
S.E. of regression 11.49774 Akaike info criterion 7.755540
Sum squared resid 41378.02 Schwarz criterion 7.883898
Log likelihood −1245.397 Hannan-Quinn criter. 7.806774
F-statistic 16.99122 Durbin-Watson stat 2.109156
Prob(F-statistic) 0.000000

t , F− and χ2 versions of the test are presented in the first three rows respec-
tively, and it can be seen that there is limited evidence for non-linearity in the
regression equation (the p-values indicate that the test statistics are significant at
the 10% level but not at 5%). So it would be concluded that there is some support
for the notion that the linear model for the Microsoft returns is appropriate.

• • • • • • • • • • • • • • 5.10 Omission of an important variable

What would be the effects of excluding from the estimated regression a variable
that is a determinant of the dependent variable? For example, suppose that the



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-05 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:40

5.11 Inclusion of an irrelevant variable

•
•
•
•
•
•
•
•
• 225

true, but unknown, data generating process is represented by

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + ut (5.57)

but the researcher estimated a model of the form

yt = β1 + β2 x2t + β3 x3t + β4 x4t + ut (5.58)

so that the variable x5t is omitted from the model. The consequence would be that
the estimated coefficients on all the other variables will be biased and inconsistent
unless the excluded variable is uncorrelated with all the included variables. Even
if this condition is satisfied, the estimate of the coefficient on the constant term
will be biased, which would imply that any forecasts made from the model would
be biased. The standard errors will also be biased (upwards), and hence hypothesis
tests could yield inappropriate inferences. Further intuition is offered in Dougherty
(1992, pp. 168–73).

• • • • • • • • • • • • • • 5.11 Inclusion of an irrelevant variable

Suppose now that the researcher makes the opposite error to section 5.10, i.e. that
the true data generating process (DGP) was represented by

yt = β1 + β2 x2t + β3 x3t + β4 x4t + ut (5.59)

but the researcher estimates a model of the form

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + ut (5.60)

thus incorporating the superfluous or irrelevant variable x5t . As x5t is irrelevant,
the expected value of β5 is zero, although in any practical application, its estimated
value is very unlikely to be exactly zero. The consequence of including an irrelevant
variable would be that the coefficient estimators would still be consistent and
unbiased, but the estimators would be inefficient. This would imply that the
standard errors for the coefficients are likely to be inflated relative to the values
which they would have taken if the irrelevant variable had not been included.
Variables which would otherwise have been marginally significant may no longer
be so in the presence of irrelevant variables. In general, it can also be stated that
the extent of the loss of efficiency will depend positively on the absolute value of
the correlation between the included irrelevant variable and the other explanatory
variables.

Summarising the last two sections it is evident that when trying to determine
whether to err on the side of including too many or too few variables in a regression
model, there is an implicit trade-off between inconsistency and efficiency; many
researchers would argue that while in an ideal world, the model will incorporate
precisely the correct variables – no more and no less – the former problem is more
serious than the latter and therefore in the real world, one should err on the side
of incorporating marginally significant variables.
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• • • • • • • • • • • • • • 5.12 Parameter stability tests

So far, regressions of a form such as

yt = β1 + β2x2t + β3x3t + ut (5.61)

have been estimated. These regressions embody the implicit assumption that the
parameters (β1, β2 and β3) are constant for the entire sample, both for the data
period used to estimate the model, and for any subsequent period used in the
construction of forecasts.

This implicit assumption can be tested using parameter stability tests. The idea
is essentially to split the data into sub-periods and then to estimate up to three
models, for each of the sub-parts and for all the data and then to ‘compare’ the
RSS of each of the models. There are two types of test that will be considered,
namely the Chow (analysis of variance) test and predictive failure tests.

Box 5.7 Conducting a Chow test

(1) Split the data into two sub-periods. Estimate the regression over the whole
period and then for the two sub-periods separately (three regressions).
Obtain the RSS for each regression.

(2) The restricted regression is now the regression for the whole period while the
‘unrestricted regression’ comes in two parts: one for each of the
sub-samples. It is thus possible to form an F-test, which is based on the
difference between the RSSs. The statistic is

test statistic = RSS − (RSS1 + RSS2)

RSS1 + RSS2
× T − 2k

k
(5.62)

where RSS = residual sum of squares for whole sample
RSS1 = residual sum of squares for sub-sample 1
RSS2 = residual sum of squares for sub-sample 2
T = number of observations
2k = number of regressors in the ‘unrestricted’ regression (since it comes
in two parts)
k = number of regressors in (each) ‘unrestricted’ regression

The unrestricted regression is the one where the restriction has not been
imposed on the model. Since the restriction is that the coefficients are
equal across the sub-samples, the restricted regression will be the single
regression for the whole sample. Thus, the test is one of how much the
residual sum of squares for the whole sample (RSS) is bigger than the sum
of the residual sums of squares for the two sub-samples (RSS1 + RSS2). If
the coefficients do not change much between the samples, the residual
sum of squares will not rise much upon imposing the restriction. Thus the
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test statistic in (5.62) can be considered a straightforward application of the
standard F-test formula discussed in chapter 3. The restricted residual sum
of squares in (5.62) is RSS,
while the unrestricted residual sum of squares is (RSS1 + RSS2).
The number of restrictions is equal to the number of coefficients
that are estimated for each of the regressions, i.e. k. The number of
regressors in the unrestricted regression (including the constants) is 2k,
since the unrestricted regression comes in two parts, each with k
regressors.

(3) Perform the test. If the value of the test statistic is greater than the critical
value from the F-distribution, which is an F (k, T−2k), then reject the
null hypothesis that the parameters are stable over time.

5.12.1 The Chow test

The steps involved are shown in box 5.7. Note that it is also possible to use a
dummy variables approach to calculating both Chow and predictive failure tests.
In the case of the Chow test, the unrestricted regression would contain dummy
variables for the intercept and for all of the slope coefficients (see also chapter 10).
For example, suppose that the regression is of the form

yt = β1 + β2x2t + β3x3t + ut (5.63)

If the split of the total of T observations is made so that the sub-samples contain
T1 and T2 observations (where T1 + T2 = T), the unrestricted regression would
be given by

yt = β1 + β2x2t + β3x3t + β4 Dt + β5 Dt x2t + β6 Dt x3t + vt (5.64)

where Dt = 1 for t ∈ T1 and zero otherwise. In other words, Dt takes the value
one for observations in the first sub-sample and zero for observations in the second
sub-sample. The Chow test viewed in this way would then be a standard F-test
of the joint restriction H0: β4 = 0 and β5 = 0 and β6 = 0, with (5.64) and (5.63)
being the unrestricted and restricted regressions, respectively.

Example 5.4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that it is now January 1993. Consider the following regression for the standard
CAPM β for the returns on a stock

r g t = α + βr Mt + ut (5.65)

where r g t and r Mt are excess returns on Glaxo shares and on a market portfolio,
respectively. Suppose that you are interested in estimating beta using monthly data
from 1981 to 1992, to aid a stock selection decision. Another researcher expresses
concern that the October 1987 stock market crash fundamentally altered the risk–return
relationship. Test this conjecture using a Chow test. The model for each sub-period is
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1981M1–1987M10

r̂ g t = 0.24 + 1.2r Mt T = 82 RSS1 = 0.03555 (5.66)

1987M11–1992M12

r̂ g t = 0.68 + 1.53r Mt T = 62 RSS2 = 0.00336 (5.67)

1981M1–1992M12

r̂ g t = 0.39 + 1.37r Mt T = 144 RSS = 0.0434 (5.68)

The null hypothesis is

H0 : α1 = α2 and β1 = β2

where the subscripts 1 and 2 denote the parameters for the first and second
sub-samples, respectively. The test statistic will be given by

test statistic = 0.0434 − (0.0355 + 0.00336)

0.0355 + 0.00336
× 144 − 4

2
(5.69)

= 7.698

The test statistic should be compared with a 5%, F (2, 140) = 3.06. H0 is rejected at the
5% level and hence it is concluded that the restriction that the coefficients are the same
in the two periods cannot be employed. The appropriate modelling response would
probably be to employ only the second part of the data in estimating the CAPM beta
relevant for investment decisions made in early 1993.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5.12.2 The predictive failure test

A problem with the Chow test is that it is necessary to have enough data to do
the regression on both sub-samples, i.e. T1 � k, T2 � k. This may not hold in
the situation where the total number of observations available is small. Even more
likely is the situation where the researcher would like to examine the effect of
splitting the sample at some point very close to the start or very close to the end
of the sample. An alternative formulation of a test for the stability of the model is
the predictive failure test, which requires estimation for the full sample and one of
the sub-samples only. The predictive failure test works by estimating the regression
over a ‘long’ sub-period (i.e. most of the data) and then using those coefficient
estimates for predicting values of y for the other period. These predictions for y
are then implicitly compared with the actual values. Although it can be expressed
in several different ways, the null hypothesis for this test is that the prediction errors
for all of the forecasted observations are zero.

To calculate the test:

● Run the regression for the whole period (the restricted regression) and
obtain the RSS.
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● Run the regression for the ‘large’ sub-period and obtain the RSS (called
RSS1). Note that in this book, the number of observations for the long esti-
mation sub-period will be denoted by T1 (even though it may come second).
The test statistic is given by

test statistic = RSS − RSS1

RSS1
× T1 − k

T2
(5.70)

where T2 = number of observations that the model is attempting to ‘predict’.
The test statistic will follow an F (T2, T1 − k).

For an intuitive interpretation of the predictive failure test statistic formulation,
consider an alternative way to test for predictive failure using a regression containing
dummy variables. A separate dummy variable would be used for each observation
that was in the prediction sample. The unrestricted regression would then be
the one that includes the dummy variables, which will be estimated using all T
observations, and will have (k + T2) regressors (the k original explanatory variables,
and a dummy variable for each prediction observation, i.e. a total of T2 dummy
variables). Thus the numerator of the last part of (5.70) would be the total number
of observations (T) minus the number of regressors in the unrestricted regression
(k + T2). Noting also that T − (k + T2) = (T1 − k), since T1 + T2 = T, this gives
the numerator of the last term in (5.70). The restricted regression would then be
the original regression containing the explanatory variables but none of the dummy
variables. Thus the number of restrictions would be the number of observations
in the prediction period, which would be equivalent to the number of dummy
variables included in the unrestricted regression, T2.

To offer an illustration, suppose that the regression is again of the form of
(5.63), and that the last three observations in the sample are used for a predictive
failure test. The unrestricted regression would include three dummy variables, one
for each of the observations in T2

r g t = α + βr Mt + γ1 D1t + γ2 D2t + γ3 D3t + ut (5.71)

where D1t = 1 for observation T− 2 and zero otherwise, D2t = 1 for observation
T − 1 and zero otherwise, D3t = 1 for observation T and zero otherwise. In this
case, k = 2, and T2 = 3. The null hypothesis for the predictive failure test in
this regression is that the coefficients on all of the dummy variables are zero (i.e.
H0 : γ1 = 0 and γ2 = 0 and γ3 = 0). Both approaches to conducting the predictive
failure test described above are equivalent, although the dummy variable regression
is likely to take more time to set up.

However, for both the Chow and the predictive failure tests, the dummy
variables approach has the one major advantage that it provides the user with
more information. This additional information comes from the fact that one can
examine the significances of the coefficients on the individual dummy variables
to see which part of the joint null hypothesis is causing a rejection. For example,
in the context of the Chow regression, is it the intercept or the slope coefficients
that are significantly different across the two sub-samples? In the context of the
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predictive failure test, use of the dummy variables approach would show for which
period(s) the prediction errors are significantly different from zero.

5.12.3 Backward versus forward predictive failure tests

There are two types of predictive failure tests – forward tests and backwards tests.
Forward predictive failure tests are where the last few observations are kept back for
forecast testing. For example, suppose that observations for 1980Q1–2013Q4 are
available. A forward predictive failure test could involve estimating the model over
1980Q1–2012Q4 and forecasting 2013Q1–2013Q4. Backward predictive failure
tests attempt to ‘back-cast’ the first few observations, e.g. if data for 1980Q1–
2013Q4 are available, and the model is estimated over 1971Q1–2013Q4 and
back-cast 1980Q1–1980Q4. Both types of test offer further evidence on the
stability of the regression relationship over the whole sample period.

Example 5.5 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that the researcher decided to determine the stability of the estimated model
for stock returns over the whole sample in example 5.4 by using a predictive failure
test of the last two years of observations. The following models would be estimated:

1981M1–1992M12 (whole sample)

r̂ g t = 0.39 + 1.37r Mt T = 144 RSS = 0.0434 (5.72)

1981M1–1990M12 (‘long sub-sample’)

r̂ g t = 0.32 + 1.31r Mt T = 120 RSS1 = 0.0420 (5.73)

Can this regression adequately ‘forecast’ the values for the last two years? The test
statistic would be given by

test statistic = 0.0434 − 0.0420
0.0420

× 120 − 2
24

(5.74)

= 0.164

Compare the test statistic with an F (24, 118) = 1.66 at the 5% level. So the null
hypothesis that the model can adequately predict the last few observations would not
be rejected. It would thus be concluded that the model did not suffer from predictive
failure during the 1991M1–1992M12 period.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5.12.4 How can the appropriate sub-parts to use be decided?

As a rule of thumb, some or all of the following methods for selecting where the
overall sample split occurs could be used:

● Plot the dependent variable over time and split the data accordingly to any
obvious structural changes in the series, as illustrated in figure 5.12.

It is clear that y in figure 5.12 underwent a large fall in its value around
observation 175, and it is possible that this may have caused a change in its
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behaviour. A Chow test could be conducted with the sample split at this
observation.

● Split the data according to any known important historical events (e.g. a stock
market crash, change in market microstructure, new government elected). The
argument is that a major change in the underlying environment in which y is
measured is more likely to cause a structural change in the model’s parameters
than a relatively trivial change.

● Use all but the last few observations and do a forwards predictive failure test on
those.

● Use all but the first few observations and do a backwards predictive failure test on
those.

1400
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0

Observation number

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449

y t

Figure 5.12 Plot of a variable showing suggestion for break date

If a model is good, it will survive a Chow or predictive failure test with any
break date. If the Chow or predictive failure tests are failed, two approaches could
be adopted. Either the model is respecified, for example, by including additional
variables, or separate estimations are conducted for each of the sub-samples. On
the other hand, if the Chow and predictive failure tests show no rejections, it is
empirically valid to pool all of the data together in a single regression. This will
increase the sample size and therefore the number of degrees of freedom relative
to the case where the sub-samples are used in isolation.

5.12.5 The QLR test

The Chow and predictive failure tests will work satisfactorily if the date of a
structural break in a financial time series can be specified. But more often, a
researcher will not know the break date in advance, or may know only that it
lies within a given range (sub-set) of the sample period. In such circumstances, a
modified version of the Chow test, known as the Quandt likelihood ratio (QLR) test,
named after Quandt (1960), can be used instead. The test works by automatically
computing the usual Chow F -test statistic repeatedly with different break dates,
then the break date giving the largest F -statistic value is chosen. While the test
statistic is of the F -variety, it will follow a non-standard distribution rather than
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an F -distribution since we are selecting the largest from a number of F -statistics
rather than examining a single one.

The test is well behaved only when the range of possible break dates is suf-
ficiently far from the end points of the whole sample, so it is usual to ‘trim’ the
sample by (typically) 5% at each end. To illustrate, suppose that the full sample
comprises 200 observations; then we would test for a structural break between
observations 31 and 170 inclusive. The critical values will depend on how much
of the sample is trimmed away, the number of restrictions under the null hypothesis
(the number of regressors in the original regression as this is effectively a Chow
test) and the significance level.

5.12.6 Stability tests based on recursive estimation

An alternative to the QLR test for use in the situation where a researcher believes
that a series may contain a structural break but is unsure of the date is to perform a
recursive estimation. This is sometimes known as recursive least squares (RLS). The
procedure is appropriate only for time-series data or cross-sectional data that have
been ordered in some sensible way (for example, a sample of annual stock returns,
ordered by market capitalisation). Recursive estimation simply involves starting
with a sub-sample of the data, estimating the regression, then sequentially adding
one observation at a time and re-running the regression until the end of the sample
is reached. It is common to begin the initial estimation with the very minimum
number of observations possible, which will be k + 1. So at the first step, the
model is estimated using observations 1 to k + 1; at the second step, observations
1 to k + 2 are used and so on; at the final step, observations 1 to T are used. The
final result will be the production of T − k separate estimates of every parameter
in the regression model.

It is to be expected that the parameter estimates produced near the start
of the recursive procedure will appear rather unstable since these estimates are
being produced using so few observations, but the key question is whether they
then gradually settle down or whether the volatility continues through the whole
sample. Seeing the latter would be an indication of parameter instability.

It should be evident that RLS in itself is not a statistical test for parameter
stability as such, but rather it provides qualitative information which can be plotted
and thus gives a very visual impression of how stable the parameters appear to be.
But two important stability tests, known as the CUSUM and CUSUMSQ tests,
are derived from the residuals of the recursive estimation (known as the recursive
residuals).5 The CUSUM statistic is based on a normalised (i.e. scaled) version of
the cumulative sums of the residuals. Under the null hypothesis of perfect parameter
stability, the CUSUM statistic is zero however many residuals are included in the
sum (because the expected value of a disturbance is always zero). A set of ±2

5 Strictly, the CUSUM and CUSUMSQ statistics are based on the one-step ahead prediction
errors – i.e. the differences between yt and its predicted value based on the parameters estimated
at time t − 1. See Greene (2002, chapter 7) for full technical details.
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Screenshot 5.4 Chow test for parameter stability

standard error bands is usually plotted around zero and any statistic lying outside
the bands is taken as evidence of parameter instability.

The CUSUMSQ test is based on a normalised version of the cumulative sums
of squared residuals. The scaling is such that under the null hypothesis of parameter
stability, the CUSUMSQ statistic will start at zero and end the sample with a value
of 1. Again, a set of ±2 standard error bands is usually plotted around zero and
any statistic lying outside these is taken as evidence of parameter instability.

5.12.7 Stability tests in EViews

In EViews, to access the Chow test, click on View/Stability Diagnostics/Chow
Breakpoint Test . . . in the ‘Msoftreg’ regression window. In the new window
that appears, enter the date at which it is believed that a breakpoint occurred.
Input 1996:01 in the dialog box in screenshot 5.4 to split the sample roughly in
half. Note that it is not possible to conduct a Chow test or a parameter stability
test when there are outlier dummy variables in the regression, so make sure that
FEB98DUM and FEB03DUM are omitted from the variable list. This occurs
because when the sample is split into two parts, the dummy variable for one of the
parts will have values of zero for all observations, which would thus cause perfect
multicollinearity with the column of ones that is used for the constant term. So
ensure that the Chow test is performed using the regression containing all of the
explanatory variables except the dummies. By default, EViews allows the values of
all the parameters to vary across the two sub-samples in the unrestricted regressions,
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although if we wanted, we could force some of the parameters to be fixed across
the two sub-samples.

EViews gives three versions of the test statistics, as shown in the following
table.

Chow Breakpoint Test: 1996M01
Null Hypothesis: No breaks at specified breakpoints
Varying regressors: C ERSANDP DPROD DCREDIT
DINFLATION DMONEY DSPREAD RTERM
Equation Sample: 1986M05 2013M04

F-statistic 0.756884 Prob. F(8,306) 0.6411
Log likelihood ratio 6.348645 Prob. Chi-Square(8) 0.6082
Wald Statistic 6.055072 Prob. Chi-Square(8) 0.6411

The first version of the test is the familiar F -test, which computes a restricted
version and an unrestricted version of the auxiliary regression and ‘compares’ the
residual sums of squares, while the second and third versions are based on χ2

formulations. In this case, all three test statistics are smaller than their critical values
and so the null hypothesis that the parameters are constant across the two sub-
samples is not rejected. Note that the Chow forecast (i.e. the predictive failure) test
could also be employed by clicking on the View/Stability Diagnostics/Chow
Forecast Test . . . in the regression window. Determine whether the model
can predict the last four observations by entering 2013:01 in the dialog box.
The results of this test are given in the following table (note that only the first two
lines of results are presented since the remainder are not needed for interpretation).

Chow Forecast Test
Equation: MSOFTREG
C ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM
Test predictions for observations from 2013M01 to 2013M04

Value df Probability
F-statistic 0.518180 (4,310) 0.7224
Likelihood ratio 2.159117 4 0.7065

The table indicates that the model can indeed adequately predict the 2007
observations. Thus the conclusions from both forms of the test are that there is no
evidence of parameter instability. However, the conclusion should really be that
the parameters are stable with respect to these particular break dates. It is important to
note that for the model to be deemed adequate, it needs to be stable with respect
to any break dates that we may choose. A good way to test this is to use one of the
tests based on recursive estimation.
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Screenshot 5.5 Plotting recursive coefficient estimates

Click on View/Stability Diagnostics/Recursive Estimates (OLS
Only). . . . You will be presented with a menu as shown in screenshot 5.5 contain-
ing a number of options including the CUSUM and CUSUMSQ tests described
above and also the opportunity to plot the recursively estimated coefficients.

First, check the box next to Recursive coefficients and then recursive esti-
mates will be given for all those parameters listed in the ‘Coefficient display list’
box, which by default is all of them. Click OK and you will be presented with
eight small figures, one for each parameter, showing the recursive estimates and
±2 standard error bands around them. As discussed above, it is bound to take
some time for the coefficients to stabilise since the first few sets are estimated using
such small samples. Given this, the parameter estimates in all cases are remark-
ably stable over time. Now go back to View/Stability Diagnostics/Recursive
Estimates (OLS Only) . . . and choose CUSUM Test. The resulting graph is in
screenshot 5.6.

Since the line is well within the confidence bands, the conclusion would be
again that the null hypothesis of stability is not rejected. Now repeat the above
but using the CUSUMSQ test rather than CUSUM. Do we retain the same
conclusion? (Yes) Why?

• • • • • • • • • • • • • • 5.13 Measurement errors

As stated above, one of the of the assumptions of the classical linear regression
model is that the explanatory variables are non-stochastic. One way in which this
assumption can be violated is when there is a two-way causal relationship between
the explanatory and explained variable, and this situation (simultaneous equations bias)
is discussed in detail in chapter 7. A further situation where the assumption will not
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Screenshot 5.6 CUSUM test graph

apply is when there is measurement error in one or more of the explanatory variables.
Sometimes this is also known as the errors-in-variables problem. Measurement errors
can occur in a variety of circumstances – for example, macroeconomic variables are
almost always estimated quantities (GDP, inflation and so on), as is most information
contained in company accounts. Similarly, it is sometimes the case that we cannot
observe or obtain data on a variable we require and so we need to use a proxy
variable – for instance, many models include expected quantities (e.g. expected
inflation) but since we cannot typically measure expectations, we need to use
a proxy. More generally, measurement error could be present in the dependent
or independent variables, and each of these cases is considered in the following
sub-sections.

5.13.1 Measurement error in the explanatory variable(s)

For simplicity, suppose that we wish to estimate a model containing just one
explanatory variable, xt

yt = β1 + β2xt + ut (5.75)
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where ut is a disturbance term. Suppose further that xt is measured with error
so that instead of observing its true value, we observe a noisy version, x̃t that
comprises the actual xt plus some additional noise, vt that is independent of xt
and ut

x̃t = xt + vt (5.76)

Taking equation (5.75) and substituting in for xt from (5.76), we get

yt = β1 + β2(x̃t − vt ) + ut (5.77)

We can rewrite this equation by separately expressing the composite error
term, (ut − β2vt )

yt = β1 + β2x̃t + (ut − β2vt ) (5.78)

It should be clear from (5.76) and (5.78) that the explanatory variable measured
with error, (x̃), and the composite error term (ut − β2vt ) are correlated since both
depend on vt . Thus the requirement that the explanatory variables are non-
stochastic does not hold. This causes the parameters to be estimated inconsistently.
It can be shown that the size of the bias in the estimates will be a function of the
variance of the noise in xt as a proportion of the overall disturbance variance. It
can be further shown that if β2 is positive, the bias will be negative but if β2 is
negative, the bias will be positive – in other words, the parameter estimate will
always be biased towards zero as a result of the measurement noise.

The impact of this estimation bias when the explanatory variables are measured
with error can be quite important and is a serious issue in particular when testing
asset pricing models. The standard approach to testing the CAPM pioneered by
Fama and MacBeth (1973) comprises two stages (discussed more fully in chap-
ter 14). Stage one is to run separate time series regressions for each firm to estimate
the betas and the second stage involves running a cross-sectional regression of the
stock returns on the betas. Since the betas are estimated at the first stage rather
than being directly observable, they will surely contain measurement error. In the
finance literature, the effect of this has sometimes been termed attenuation bias.
Early tests of the CAPM showed that the relationship between beta and returns
was positive but smaller than expected, and this is precisely what would happen
as a result of measurement error in the betas. Various approaches to solving this
issue have been proposed, the most common of which is to use portfolio betas
in place of individual stock betas in the second stage. The hope is that this will
smooth out the estimation error in the betas. An alternative approach attributed
to Shanken (1992) is to modify the standard errors in the second stage regression
to adjust directly for the measurement errors in the betas. More discussion of this
issue will be presented in chapter 14.

5.13.2 Measurement error in the explained variable

Measurement error in the explained variable is much less serious than in the
explanatory variable(s); recall that one of the motivations for the inclusion of the
disturbance term in a regression model is that it can capture measurement errors in
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y. Thus, when the explained variable is measured with error, the disturbance term
will in effect be a composite of the usual disturbance term and another source of
noise from the measurement error. In such circumstances, the parameter estimates
will still be consistent and unbiased and the usual formulae for calculating standard
errors will still be appropriate. The only consequence is that the additional noise
means the standard errors will be enlarged relative to the situation where there was
no measurement error in y.

• • • • • • • • • • • • • • 5.14 A strategy for constructing econometric models and a discussion of
model-building philosophies

The objective of many econometric model-building exercises is to build a statis-
tically adequate empirical model which satisfies the assumptions of the CLRM,
is parsimonious, has the appropriate theoretical interpretation, and has the right
‘shape’ (i.e. all signs on coefficients are ‘correct’ and all sizes of coefficients are
‘correct’).

But how might a researcher go about achieving this objective? A common
approach to model building is the ‘LSE’ or general-to-specific methodology asso-
ciated with Sargan and Hendry. This approach essentially involves starting with a
large model which is statistically adequate and restricting and rearranging the model
to arrive at a parsimonious final formulation. Hendry’s approach (see Gilbert,
1986) argues that a good model is consistent with the data and with theory. A
good model will also encompass rival models, which means that it can explain all
that rival models can and more. The Hendry methodology suggests the extensive
use of diagnostic tests to ensure the statistical adequacy of the model.

An alternative philosophy of econometric model-building, which pre-dates
Hendry’s research, is that of starting with the simplest model and adding to it
sequentially so that it gradually becomes more complex and a better descrip-
tion of reality. This approach, associated principally with Koopmans (1937), is
sometimes known as a ‘specific-to-general’ or ‘bottoms-up’ modelling approach.
Gilbert (1986) termed this the ‘Average Economic Regression’ since most applied
econometric work had been tackled in that way. This term was also having a joke
at the expense of a top economics journal that published many papers using such
a methodology.

Hendry and his co-workers have severely criticised this approach, mainly on
the grounds that diagnostic testing is undertaken, if at all, almost as an after-thought
and in a very limited fashion. However, if diagnostic tests are not performed, or are
performed only at the end of the model-building process, all earlier inferences are
potentially invalidated. Moreover, if the specific initial model is generally misspec-
ified, the diagnostic tests themselves are not necessarily reliable in indicating the
source of the problem. For example, if the initially specified model omits relevant
variables which are themselves autocorrelated, introducing lags of the included
variables would not be an appropriate remedy for a significant DW test statistic.
Thus the eventually selected model under a specific-to-general approach could
be sub-optimal in the sense that the model selected using a general-to-specific
approach might represent the data better. Under the Hendry approach, diagnostic
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tests of the statistical adequacy of the model come first, with an examination of
inferences for financial theory drawn from the model left until after a statistically
adequate model has been found.

According to Hendry and Richard (1982), a final acceptable model should
satisfy several criteria (adapted slightly here). The model should:

● be logically plausible
● be consistent with underlying financial theory, including satisfying any relevant

parameter restrictions
● have regressors that are uncorrelated with the error term
● have parameter estimates that are stable over the entire sample
● have residuals that are white noise (i.e. completely random and exhibiting no

patterns)
● be capable of explaining the results of all competing models and more.

The last of these is known as the encompassing principle. A model that nests
within it a smaller model always trivially encompasses it. But a small model is
particularly favoured if it can explain all of the results of a larger model; this is
known as parsimonious encompassing.

The advantages of the general-to-specific approach are that it is statistically
sensible and also that the theory on which the models are based usually has nothing
to say about the lag structure of a model. Therefore, the lag structure incorporated
in the final model is largely determined by the data themselves. Furthermore, the
statistical consequences from excluding relevant variables are usually considered
more serious than those from including irrelevant variables.

The general-to-specific methodology is conducted as follows. The first step
is to form a ‘large’ model with lots of variables on the RHS. This is known as
a generalised unrestricted model (GUM), which should originate from financial
theory, and which should contain all variables thought to influence the dependent
variable. At this stage, the researcher is required to ensure that the model satisfies
all of the assumptions of the CLRM. If the assumptions are violated, appropriate
actions should be taken to address or allow for this, e.g. taking logs, adding lags,
adding dummy variables.

It is important that the steps above are conducted prior to any hypothesis
testing. It should also be noted that the diagnostic tests presented above should be
cautiously interpreted as general rather than specific tests. In other words, rejection
of a particular diagnostic test null hypothesis should be interpreted as showing that
there is something wrong with the model. So, for example, if the RESET test or
White’s test show a rejection of the null, such results should not be immediately
interpreted as implying that the appropriate response is to find a solution for inap-
propriate functional form or heteroscedastic residuals, respectively. It is quite often
the case that one problem with the model could cause several assumptions to be
violated simultaneously. For example, an omitted variable could cause failures of
the RESET, heteroscedasticity and autocorrelation tests. Equally, a small number
of large outliers could cause non-normality and residual autocorrelation (if they
occur close together in the sample) and heteroscedasticity (if the outliers occur
for a narrow range of the explanatory variables). Moreover, the diagnostic tests



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-05 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 1:40

240

•
•
•
•
•
•
•
•
• Classical linear regression model assumptions

themselves do not operate optimally in the presence of other types of misspecifica-
tion since they essentially assume that the model is correctly specified in all other
respects. For example, it is not clear that tests for heteroscedasticity will behave
well if the residuals are autocorrelated.

Once a model that satisfies the assumptions of the CLRM has been obtained, it
could be very big, with large numbers of lags and independent variables. The next
stage is therefore to reparameterise the model by knocking out very insignificant
regressors. Also, some coefficients may be insignificantly different from each other,
so that they can be combined. At each stage, it should be checked whether the
assumptions of the CLRM are still upheld. If this is the case, the researcher should
have arrived at a statistically adequate empirical model that can be used for testing
underlying financial theories, forecasting future values of the dependent variable,
or for formulating policies.

However, needless to say, the general-to-specific approach also has its critics.
For small or moderate sample sizes, it may be impractical. In such instances, the
large number of explanatory variables will imply a small number of degrees of
freedom. This could mean that none of the variables is significant, especially if
they are highly correlated. This being the case, it would not be clear which of
the original long list of candidate regressors should subsequently be dropped.
Moreover, in any case the decision on which variables to drop may have profound
implications for the final specification of the model. A variable whose coefficient
was not significant might have become significant at a later stage if other variables
had been dropped instead.

In theory, sensitivity of the final specification to the various possible paths of
variable deletion should be carefully checked. However, this could imply checking
many (perhaps even hundreds) of possible specifications. It could also lead to several
final models, none of which appears noticeably better than the others.

The general-to-specific approach, if followed faithfully to the end, will hope-
fully lead to a statistically valid model that passes all of the usual model diagnostic
tests and contains only statistically significant regressors. However, the final model
could also be a bizarre creature that is devoid of any theoretical interpretation.
There would also be more than just a passing chance that such a model could be
the product of a statistically vindicated data mining exercise. Such a model would
closely fit the sample of data at hand, but could fail miserably when applied to
other samples if it is not based soundly on theory.

There now follows another example of the use of the classical linear regression
model in finance, based on an examination of the determinants of sovereign credit
ratings by Cantor and Packer (1996).

• • • • • • • • • • • • • • 5.15 Determinants of sovereign credit ratings

5.15.1 Background

Sovereign credit ratings are an assessment of the riskiness of debt issued by govern-
ments. They embody an estimate of the probability that the borrower will default
on her obligation. Two famous US ratings agencies, Moody’s and Standard and
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Poor’s (S&P), provide ratings for many governments. Although the two agencies
use different symbols to denote the given riskiness of a particular borrower, the
ratings of the two agencies are comparable. Gradings are split into two broad cate-
gories: investment grade and speculative grade. Investment grade issuers have good
or adequate payment capacity, while speculative grade issuers either have a high
degree of uncertainty about whether they will make their payments, or are already
in default. The highest grade offered by the agencies, for the highest quality of
payment capacity, is ‘triple A’, which Moody’s denotes ‘Aaa’ and S&P denotes
‘AAA’. The lowest grade issued to a sovereign in the Cantor and Packer sample
was B3 (Moody’s) or B− (S&P). Thus the number of grades of debt quality from
the highest to the lowest given to governments in their sample is 16.

The central aim of Cantor and Packer’s paper is an attempt to explain and
model how the agencies arrived at their ratings. Although the ratings themselves
are publicly available, the models or methods used to arrive at them are shrouded
in secrecy. The agencies also provide virtually no explanation as to what the
relative weights of the factors that make up the rating are. Thus, a model of
the determinants of sovereign credit ratings could be useful in assessing whether
the ratings agencies appear to have acted rationally. Such a model could also be
employed to try to predict the rating that would be awarded to a sovereign that
has not previously been rated and when a re-rating is likely to occur. The paper
continues, among other things, to consider whether ratings add to publicly available
information, and whether it is possible to determine what factors affect how the
sovereign yields react to ratings announcements.

5.15.2 Data

Cantor and Packer (1996) obtain a sample of government debt ratings for forty-
nine countries as of September 1995 that range between the above gradings. The
ratings variable is quantified, so that the highest credit quality (Aaa/AAA) in the
sample is given a score of 16, while the lowest rated sovereign in the sample is given
a score of 1 (B3/B−). This score forms the dependent variable. The factors that are
used to explain the variability in the ratings scores are macroeconomic variables. All
of these variables embody factors that are likely to influence a government’s ability
and willingness to service its debt costs. Ideally, the model would also include
proxies for socio-political factors, but these are difficult to measure objectively and
so are not included. It is not clear in the paper from where the list of factors was
drawn. The included variables (with their units of measurement) are:

● Per capita income (in 1994 US dollars, thousands). Cantor and Packer argue
that per capita income determines the tax base, which in turn influences the
government’s ability to raise revenue.

● GDP growth (annual 1991–4 average, %). The growth rate of increase in GDP
is argued to measure how much easier it will become to service debt costs in
the future.

● Inflation (annual 1992–4 average, %). Cantor and Packer argue that high
inflation suggests that inflationary money financing will be used to service
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debt when the government is unwilling or unable to raise the required revenue
through the tax system.

● Fiscal balance (average annual government budget surplus as a proportion of
GDP 1992–4, %). Again, a large fiscal deficit shows that the government has
a relatively weak capacity to raise additional revenue and to service debt costs.

● External balance (average annual current account surplus as a proportion of
GDP 1992–4, %). Cantor and Packer argue that a persistent current account
deficit leads to increasing foreign indebtedness, which may be unsustainable in
the long run.

● External debt (foreign currency debt as a proportion of exports in 1994, %).
Reasoning as for external balance (which is the change in external debt over
time).

● Dummy for economic development (=1 for a country classified by the International
Monetary Fund (IMF) as developed, 0 otherwise). Cantor and Packer argue
that credit ratings agencies perceive developing countries as relatively more
risky beyond that suggested by the values of the other factors listed above.

● Dummy for default history (=1 if a country has defaulted, 0 otherwise). It is
argued that countries that have previously defaulted experience a large fall in
their credit rating.

The income and inflation variables are transformed to their logarithms. The model
is linear and estimated using OLS. Some readers of this book who have a back-
ground in econometrics will note that strictly, OLS is not an appropriate technique
when the dependent variable can take on only one of a certain limited set of values
(in this case, 1, 2, 3, . . . 16). In such applications, a technique such as ordered
probit (not covered in this text) would usually be more appropriate. Cantor and
Packer argue that any approach other than OLS is infeasible given the relatively
small sample size (forty-nine), and the large number (sixteen) of ratings categories.

The results from regressing the rating value on the variables listed above are pre-
sented in their exhibit 5, adapted and presented here as table 5.2. Four regressions
are conducted, each with identical independent variables but a different depen-
dent variable. Regressions are conducted for the rating score given by each agency
separately, with results presented in columns (4) and (5) of table 5.2. Occasionally,
the ratings agencies give different scores to a country – for example, in the case
of Italy, Moody’s gives a rating of ‘A1’, which would generate a score of 12 on a
16-scale. S&P, on the other hand, gives a rating of ‘AA’, which would score 14 on
the 16-scale, two gradings higher. Thus a regression with the average score across
the two agencies, and with the difference between the two scores as dependent
variables, is also conducted, and presented in columns (3) and (6), respectively of
table 5.2.

5.15.3 Interpreting the models

The models are difficult to interpret in terms of their statistical adequacy, since
virtually no diagnostic tests have been undertaken. The values of the adjusted R2,
at over 90% for each of the three ratings regressions, are high for cross-sectional
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Table 5.2 Determinants and impacts of sovereign credit ratings

Dependent variable

Explanatory Expected Average Moody’s S&P Difference
variable sign rating rating rating Moody’s/S&P
(1) (2) (3) (4) (5) (6)

Intercept ? 1.442 3.408 −0.524 3.932∗∗

(0.663) (1.379) (−0.223) (2.521)

Per capita income + 1.242∗∗∗ 1.027∗∗∗ 1.458∗∗∗ −0.431∗∗∗

(5.302) (4.041) (6.048) (−2.688)

GDP growth + 0.151 0.130 0.171∗∗ −0.040

(1.935) (1.545) (2.132) ( 0.756)

Inflation − −0.611∗∗∗ −0.630∗∗∗ −0.591∗∗∗ −0.039

(−2.839) (−2.701) (−2.671) (−0.265)

Fiscal balance + 0.073 0.049 0.097∗ −0.048

(1.324) (0.818) (1.71) (−1.274)

External balance + 0.003 0.006 0.001 0.006

(0.314) (0.535) (0.046) (0.779)

External debt − −0.013∗∗∗ −0.015∗∗∗ −0.011∗∗∗ −0.004∗∗∗

(−5.088) (−5.365) (−4.236) (−2.133)

Development dummy + 2.776∗∗∗ 2.957∗∗∗ 2.595∗∗∗ 0.362

(4.25) (4.175) (3.861) (0.81)

Default dummy − −2.042∗∗∗ −1.63∗∗ −2.622∗∗∗ 1.159∗∗∗

(−3.175) (−2.097) (−3.962) (2.632)

Adjusted R2 0.924 0.905 0.926 0.836

Notes: t-ratios in parentheses; ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

regressions, indicating that the model seems able to capture almost all of the
variability of the ratings about their mean values across the sample. There does
not appear to be any attempt at reparameterisation presented in the paper, so it is
assumed that the authors reached this set of models after some searching.

In this particular application, the residuals have an interesting interpretation
as the difference between the actual and fitted ratings. The actual ratings will be
integers from 1 to 16, although the fitted values from the regression and therefore
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the residuals can take on any real value. Cantor and Packer argue that the model
is working well as no residual is bigger than 3, so that no fitted rating is more
than three categories out from the actual rating, and only four countries have
residuals bigger than two categories. Furthermore, 70% of the countries have
ratings predicted exactly (i.e. the residuals are less than 0.5 in absolute value).

Now, turning to interpret the models from a financial perspective, it is of
interest to investigate whether the coefficients have their expected signs and sizes.
The expected signs for the regression results of columns (3)–(5) are displayed in
column (2) of table 5.2 (as determined by this author). As can be seen, all of
the coefficients have their expected signs, although the fiscal balance and external
balance variables are not significant or are only very marginally significant in all
three cases. The coefficients can be interpreted as the average change in the rating
score that would result from a unit change in the variable. So, for example, a rise
in per capita income of $1,000 will on average increase the rating by 1.0 units
according to Moody’s and 1.5 units according to S&P. The development dummy
suggests that, on average, a developed country will have a rating three notches
higher than an otherwise identical developing country. And everything else equal,
a country that has defaulted in the past will have a rating two notches lower than
one that has always kept its obligation.

By and large, the ratings agencies appear to place similar weights on each of the
variables, as evidenced by the similar coefficients and significances across columns
(4) and (5) of table 5.2. This is formally tested in column (6) of the table, where the
dependent variable is the difference between Moody’s and S&P ratings. Only three
variables are statistically significantly differently weighted by the two agencies. S&P
places higher weights on income and default history, while Moody’s places more
emphasis on external debt.

5.15.4 The relationship between ratings and yields

In this section of the paper, Cantor and Packer try to determine whether ratings
have any additional information useful for modelling the cross-sectional variability
of sovereign yield spreads over and above that contained in publicly available
macroeconomic data. The dependent variable is now the log of the yield spread,
i.e.

ln(Yield on the sovereign bond – Yield on a US Treasury Bond)

One may argue that such a measure of the spread is imprecise, for the true credit
spread should be defined by the entire credit quality curve rather than by just two
points on it. However, leaving this issue aside, the results are presented in table 5.3.

Three regressions are presented in table 5.3, denoted specifications (1), (2) and
(3). The first of these is a regression of the ln(spread) on only a constant and the
average rating (column (1)), and this shows that ratings have a highly significant
inverse impact on the spread. Specification (2) is a regression of the ln(spread) on
the macroeconomic variables used in the previous analysis. The expected signs are
given (as determined by this author) in column (2). As can be seen, all coefficients
have their expected signs, although now only the coefficients belonging to the
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Table 5.3 Do ratings add to public information?

Dependent variable: ln (yield spread)

Variable Expected sign (1) (2) (3)

Intercept ? 2.105∗∗∗ 0.466 0.074

(16.148) (0.345) (0.071)

Average rating − −0.221∗∗∗ −0.218∗∗∗

(−19.175) (−4.276)

Per capita − −0.144 0.226

income (−0.927) (1.523)

GDP growth − −0.004 0.029

(−0.142) (1.227)

Inflation + 0.108 −0.004

(1.393) (−0.068)

Fiscal balance − −0.037 −0.02

(−1.557) (−1.045)

External balance − −0.038 −0.023

(−1.29) (−1.008)

External debt + 0.003∗∗∗ 0.000

(2.651) (0.095)

Development − −0.723∗∗∗ −0.38

dummy (−2.059) (−1.341)

Default dummy + 0.612∗∗∗ 0.085

(2.577) (0.385)

Adjusted R2 0.919 0.857 0.914

Notes: t-ratios in parentheses; ∗, ∗∗and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,
respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

external debt and the two dummy variables are statistically significant. Specification
(3) is a regression on both the average rating and the macroeconomic variables.
When the rating is included with the macroeconomic factors, none of the latter
is any longer significant – only the rating coefficient is statistically significantly
different from zero. This message is also portrayed by the adjusted R2 values,
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which are highest for the regression containing only the rating, and slightly lower
for the regression containing the macroeconomic variables and the rating. One
may also observe that, under specification (3), the coefficients on the per capita
income, GDP growth and inflation variables now have the wrong sign. This is,
in fact, never really an issue, for if a coefficient is not statistically significant, it
is indistinguishable from zero in the context of hypothesis testing, and therefore
it does not matter whether it is actually insignificant and positive or insignificant
and negative. Only coefficients that are both of the wrong sign and statistically
significant imply that there is a problem with the regression.

It would thus be concluded from this part of the paper that there is no more
incremental information in the publicly available macroeconomic variables that is
useful for predicting the yield spread than that embodied in the rating. The infor-
mation contained in the ratings encompasses that contained in the macroeconomic
variables.

5.15.5 What determines how the market reacts to ratings announcements?

Cantor and Packer also consider whether it is possible to build a model to predict
how the market will react to ratings announcements, in terms of the resulting
change in the yield spread. The dependent variable for this set of regressions
is now the change in the log of the relative spread, i.e. log[(yield – treasury
yield)/treasury yield], over a two-day period at the time of the announcement.
The sample employed for estimation comprises every announcement of a ratings
change that occurred between 1987 and 1994; seventy-nine such announcements
were made, spread over eighteen countries. Of these, thirty nine were actual ratings
changes by one or more of the agencies, and forty were listed as likely in the near
future to experience a regrading. Moody’s calls this a ‘watchlist’, while S&P term
it their ‘outlook’ list. The explanatory variables are mainly dummy variables for:

● whether the announcement was positive – i.e. an upgrade
● whether there was an actual ratings change or just listing for probable regrading
● whether the bond was speculative grade or investment grade
● whether there had been another ratings announcement in the previous sixty

days
● the ratings gap between the announcing and the other agency.

The following cardinal variable was also employed:

● the change in the spread over the previous sixty days.

The results are presented in table 5.4, but in this text, only the final specification
(numbered 5 in Cantor and Packer’s exhibit 11) containing all of the variables
described above is included.

As can be seen from table 5.4, the models appear to do a relatively poor job
of explaining how the market will react to ratings announcements. The adjusted
R2 value is only 12%, and this is the highest of the five specifications tested
by the authors. Further, only two variables are significant and one marginally
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Table 5.4 What determines reactions to ratings announcements?

Dependent variable: log relative spread

Independent variable Coefficient (t-ratio)

Intercept −0.02

(−1.4)

Positive announcements 0.01

(0.34)

Ratings changes −0.01

(−0.37)

Moody’s announcements 0.02

(1.51)

Speculative grade 0.03∗∗

(2.33)

Change in relative spreads from day −60 to day −1 −0.06

(−1.1)

Rating gap 0.03∗

(1.7)

Other rating announcements from day −60 to day −1 0.05∗∗

(2.15)

Adjusted R2 0.12

Note: ∗ and ∗∗ denote significance at the 10% and 5% levels, respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

significant of the seven employed in the model. It can therefore be stated that yield
changes are significantly higher following a ratings announcement for speculative
than investment grade bonds, and that ratings changes have a bigger impact on
yield spreads if there is an agreement between the ratings agencies at the time
the announcement is made. Further, yields change significantly more if there has
been a previous announcement in the past sixty days than if not. On the other
hand, neither whether the announcement is an upgrade or a downgrade, nor
whether it is an actual ratings change or a name on the watchlist, nor whether the
announcement is made by Moody’s or S&P, nor the amount by which the relative
spread has already changed over the past sixty days, has any significant impact on
how the market reacts to ratings announcements.
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5.15.6 Conclusions

● To summarise, six factors appear to play a big role in determining sovereign
credit ratings – incomes, GDP growth, inflation, external debt, industrialised
or not and default history

● The ratings provide more information on yields than all of the macro-economic
factors put together

● One cannot determine with any degree of confidence what factors determine
how the markets will react to ratings announcements.

Key concepts

The key terms to be able to define and explain from this chapter are

• homoscedasticity • heteroscedasticity

• autocorrelation • dynamic model

• equilibrium solution • robust standard errors

• skewness • kurtosis

• outlier • functional form

• multicollinearity • omitted variable

• irrelevant variable • parameter stability

• recursive least squares • general-to-specific approach

• measurement error

Self-study questions

1. Are assumptions made concerning the unobservable error terms (ut ) or about
their sample counterparts, the estimated residuals (û t )? Explain your answer.

2. What pattern(s) would one like to see in a residual plot and why?
3. A researcher estimates the following model for stock market returns, but

thinks that there may be a problem with it. By calculating the t-ratios and
considering their significance and by examining the value of R2 or otherwise,
suggest what the problem might be.

ŷt = 0.638 + 0.402x2t − 0.891x3t R2 = 0.96, R̄2 = 0.89
(5.79)

(0.436) (0.291) (0.763)

How might you go about solving the perceived problem?
4. (a) State in algebraic notation and explain the assumption about the CLRM’s

disturbances that is referred to by the term ‘homoscedasticity’.
(b) What would the consequence be for a regression model if the errors were

not homoscedastic?
(c) How might you proceed if you found that (b) were actually the case?
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5. (a) What do you understand by the term ‘autocorrelation’?
(b) An econometrician suspects that the residuals of her model might be

autocorrelated. Explain the steps involved in testing this theory using the
Durbin–Watson (DW ) test.

(c) The econometrician follows your guidance (!!!) in part (b) and calculates
a value for the Durbin–Watson statistic of 0.95. The regression has sixty
quarterly observations and three explanatory variables (plus a constant
term). Perform the test. What is your conclusion?

(d) In order to allow for autocorrelation, the econometrician decides to use a
model in first differences with a constant

�yt = β1 + β2�x2t + β3�x3t + β4�x4t + ut (5.80)

By attempting to calculate the long-run solution to this model, explain
what might be a problem with estimating models entirely in first
differences.

(e) The econometrician finally settles on a model with both first differences
and lagged levels terms of the variables

�yt = β1 + β2�x2t + β3�x3t + β4�x4t + β5x2t−1

+ β6x3t−1 + β7x4t−1 + vt (5.81)

Can the Durbin–Watson test still validly be used in this case?
6. Calculate the long-run static equilibrium solution to the following dynamic

econometric model

�yt = β1 + β2�x2t + β3�x3t + β4yt−1 + β5x2t−1

+ β6x3t−1 + β7x3t−4 + ut (5.82)

7. What might Ramsey’s RESET test be used for? What could be done if it
were found that the RESET test has been failed?

8. (a) Why is it necessary to assume that the disturbances of a regression model
are normally distributed?

(b) In a practical econometric modelling situation, how might the problem
that the residuals are not normally distributed be addressed?

9. (a) Explain the term ‘parameter structural stability’?
(b) A financial econometrician thinks that the stock market crash of October

1987 fundamentally changed the risk–return relationship given by the
CAPM equation. He decides to test this hypothesis using a Chow test.
The model is estimated using monthly data from January 1981–December
1995, and then two separate regressions are run for the sub-periods
corresponding to data before and after the crash. The model is

r t = α + βRmt + ut (5.83)

so that the excess return on a security at time t is regressed upon the
excess return on a proxy for the market portfolio at time t . The results
for the three models estimated for a given stock are as follows:
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1981M1–1995M12

r t = 0.0215 + 1.491 r mt RSS = 0.189 T = 180 (5.84)

1981M1–1987M10

r t = 0.0163 + 1.308 r mt RSS = 0.079 T = 82 (5.85)

1987M11–1995M12

r t = 0.0360 + 1.613 r mt RSS = 0.082 T = 98 (5.86)

(c) What are the null and alternative hypotheses that are being tested here, in
terms of α and β?

(d) Perform the test. What is your conclusion?
10. For the same model as above, and given the following results, do a forward

and backward predictive failure test:

1981M1–1995M12

r t = 0.0215 + 1.491 r mt RSS = 0.189 T = 180 (5.87)

1981M1–1994M12

r t = 0.0212 + 1.478 r mt RSS = 0.148 T = 168 (5.88)

1982M1–1995M12

r t = 0.0217 + 1.523 r mt RSS = 0.182 T = 168 (5.89)

What is your conclusion?
11. Why is it desirable to remove insignificant variables from a regression?
12. Explain why it is not possible to include an outlier dummy variable in a

regression model when you are conducting a Chow test for parameter
stability. Will the same problem arise if you were to conduct a predictive
failure test? Why or why not?

13. Re-open the ‘macro.wf1’ and apply the stepwise procedure including all of
the explanatory variables as listed above, i.e. ersandp dprod dcredit dinflation
dmoney dspread rterm with a strict 5% threshold criterion for inclusion in
the model. Then examine the resulting model both financially and
statistically by investigating the signs, sizes and significances of the parameter
estimates and by conducting all of the diagnostic tests for model adequacy.
(a) Explain the term ‘measurement error’.
(b) How does measurement error arise?
(c) Is measurement error more serious if it is present in the dependent

variable or the independent variable(s) of a regression? Explain your
answer.

(d) What is the likely impact of measurement error on tests of the CAPM
and what are the possible solutions?
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6 Univariate time series modelling
and forecasting

Learning outcomes

In this chapter, you will learn how to

• Explain the defining characteristics of various types of stochastic processes

• Identify the appropriate time series model for a given data series

• Produce forecasts for autoregressive moving average (ARMA) and

exponential smoothing models

• Evaluate the accuracy of predictions using various metrics

• Estimate time series models and produce forecasts from them in EViews

• • • • • • • • • • • • • • 6.1 Introduction

Univariate time series models are a class of specifications where one attempts to model
and to predict financial variables using only information contained in their own
past values and possibly current and past values of an error term. This practice can
be contrasted with structural models, which are multivariate in nature, and attempt
to explain changes in a variable by reference to the movements in the current
or past values of other (explanatory) variables. Time series models are usually
a-theoretical, implying that their construction and use is not based upon any
underlying theoretical model of the behaviour of a variable. Instead, time series
models are an attempt to capture empirically relevant features of the observed data
that may have arisen from a variety of different (but unspecified) structural models.
An important class of time series models is the family of autoregressive integrated
moving average (ARIMA) models, usually associated with Box and Jenkins (1976).
Time series models may be useful when a structural model is inappropriate. For
example, suppose that there is some variable yt whose movements a researcher
wishes to explain. It may be that the variables thought to drive movements of yt
are not observable or not measurable, or that these forcing variables are measured
at a lower frequency of observation than yt . For example, yt might be a series of
daily stock returns, where possible explanatory variables could be macroeconomic
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indicators that are available monthly. Additionally, as will be examined later in this
chapter, structural models are often not useful for out-of-sample forecasting. These
observations motivate the consideration of pure time series models, which are the
focus of this chapter.

The approach adopted for this topic is as follows. In order to define, estimate
and use ARIMA models, one first needs to specify the notation and to define
several important concepts. The chapter will then consider the properties and
characteristics of a number of specific models from the ARIMA family. The book
endeavours to answer the following question: ‘For a specified time series model
with given parameter values, what will be its defining characteristics?’ Following
this, the problem will be reversed, so that the reverse question is asked: ‘Given a set
of data, with characteristics that have been determined, what is a plausible model
to describe that data?’

• • • • • • • • • • • • • • 6.2 Some notation and concepts

The following sub-sections define and describe several important concepts in time
series analysis. Each will be elucidated and drawn upon later in the chapter. The first
of these concepts is the notion of whether a series is stationary or not. Determining
whether a series is stationary or not is very important, for the stationarity or
otherwise of a series can strongly influence its behaviour and properties. Further
detailed discussion of stationarity, testing for it, and implications of it not being
present, are covered in chapter 8.

6.2.1 A strictly stationary process

A strictly stationary process is one where, for any t1, t2, . . . , tT ∈ Z, any k ∈ Z
and T = 1, 2, . . .

F yt1, yt2, . . . , ytT (y1, . . . , yT) = F yt1+k, yt2+k, . . . , ytT+k(y1, . . . , yT) (6.1)

where F denotes the joint distribution function of the set of random variables
(Tong, 1990, p.3). It can also be stated that the probability measure for the sequence
{yt } is the same as that for {yt+k}∀ k (where ‘∀ k’ means ‘for all values of k’). In
other words, a series is strictly stationary if the distribution of its values remains the
same as time progresses, implying that the probability that y falls within a particular
interval is the same now as at any time in the past or the future.

6.2.2 A weakly stationary process

If a series satisfies (6.2)–(6.4) for t = 1, 2, . . . , ∞, it is said to be weakly or
covariance stationary

(1) E(yt ) = μ (6.2)

(2) E(yt − μ)(yt − μ) = σ 2 < ∞ (6.3)

(3) E(yt1 − μ)(yt2 − μ) = γt2−t1 ∀ t1, t2 (6.4)
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These three equations state that a stationary process should have a constant mean, a
constant variance and a constant autocovariance structure, respectively. Definitions
of the mean and variance of a random variable are probably well known to readers,
but the autocovariances may not be.

The autocovariances determine how y is related to its previous values, and for
a stationary series they depend only on the difference between t1 and t2, so that
the covariance between yt and yt−1 is the same as the covariance between yt−10
and yt−11, etc. The moment

E(yt − E(yt ))(yt−s − E(yt−s )) = γs , s = 0, 1, 2, . . . (6.5)

is known as the autocovariance function. When s = 0, the autocovariance at lag zero
is obtained, which is the autocovariance of yt with yt , i.e. the variance of y. These
covariances, γs , are also known as autocovariances since they are the covariances
of y with its own previous values. The autocovariances are not a particularly useful
measure of the relationship between y and its previous values, however, since the
values of the autocovariances depend on the units of measurement of yt , and hence
the values that they take have no immediate interpretation.

It is thus more convenient to use the autocorrelations, which are the autoco-
variances normalised by dividing by the variance

τs = γs

γ0
, s = 0, 1, 2, . . . (6.6)

The series τs now has the standard property of correlation coefficients that the
values are bounded to lie between ±1. In the case that s = 0, the autocorrelation
at lag zero is obtained, i.e. the correlation of yt with yt , which is of course 1. If τs
is plotted against s = 0, 1, 2, . . . , a graph known as the autocorrelation function (acf)
or correlogram is obtained.

6.2.3 A white noise process

Roughly speaking, a white noise process is one with no discernible structure. A
definition of a white noise process is

E(yt ) = μ (6.7)

var(yt ) = σ 2 (6.8)

γt−r =
{
σ 2 if t = r
0 otherwise (6.9)

Thus a white noise process has constant mean and variance, and zero autocovari-
ances, except at lag zero. Another way to state this last condition would be to say
that each observation is uncorrelated with all other values in the sequence. Hence
the autocorrelation function for a white noise process will be zero apart from a
single peak of 1 at s = 0. If μ = 0, and the three conditions hold, the process is
known as zero mean white noise.
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If it is further assumed that yt is distributed normally, then the sample auto-
correlation coefficients are also approximately normally distributed

τ̂s ∼ approx. N(0, 1/T)

where T is the sample size, and τ̂s denotes the autocorrelation coefficient at lag
s estimated from a sample. This result can be used to conduct significance tests
for the autocorrelation coefficients by constructing a non-rejection region (like
a confidence interval) for an estimated autocorrelation coefficient to determine
whether it is significantly different from zero. For example, a 95% non-rejection
region would be given by

±1.96 × 1√
T

for s �= 0. If the sample autocorrelation coefficient, τ̂s , falls outside this region for
a given value of s , then the null hypothesis that the true value of the coefficient at
that lag s is zero is rejected.

It is also possible to test the joint hypothesis that all m of the τk correlation
coefficients are simultaneously equal to zero using the Q-statistic developed by
Box and Pierce (1970)

Q = T
m∑

k=1

τ̂ 2
k (6.10)

where T = sample size, m = maximum lag length.
The correlation coefficients are squared so that the positive and negative coef-

ficients do not cancel each other out. Since the sum of squares of independent
standard normal variates is itself a χ2 variate with degrees of freedom equal to the
number of squares in the sum, it can be stated that the Q-statistic is asymptotically
distributed as a χ2

m under the null hypothesis that all m autocorrelation coefficients
are zero. As for any joint hypothesis test, only one autocorrelation coefficient needs
to be statistically significant for the test to result in a rejection.

However, the Box–Pierce test has poor small sample properties, implying that
it leads to the wrong decision too frequently for small samples. A variant of the
Box–Pierce test, having better small sample properties, has been developed. The
modified statistic is known as the Ljung–Box (1978) statistic

Q∗ = T(T + 2)
m∑

k=1

τ̂ 2
k

T − k
∼ χ2

m (6.11)

It should be clear from the form of the statistic that asymptotically (that is, as
the sample size increases towards infinity), the (T + 2) and (T − k) terms in the
Ljung–Box formulation will cancel out, so that the statistic is equivalent to the
Box–Pierce test. This statistic is very useful as a portmanteau (general) test of linear
dependence in time series.
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Example 6.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that a researcher had estimated the first five autocorrelation coefficients using
a series of length 100 observations, and found them to be

Lag 1 2 3 4 5
Autocorrelation coefficient 0.207 −0.013 0.086 0.005 −0.022

Test each of the individual correlation coefficients for significance, and test all
five jointly using the Box–Pierce and Ljung–Box tests.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A 95% confidence interval can be constructed for each coefficient using

±1.96 × 1√
T

where T = 100 in this case. The decision rule is thus to reject the null hypothesis
that a given coefficient is zero in the cases where the coefficient lies outside the
range (−0.196, +0.196). For this example, it would be concluded that only the
first autocorrelation coefficient is significantly different from zero at the 5% level.

Now, turning to the joint tests, the null hypothesis is that all of the first five
autocorrelation coefficients are jointly zero, i.e.

H0 : τ1 = 0, τ2 = 0, τ3 = 0, τ4 = 0, τ5 = 0

The test statistics for the Box–Pierce and Ljung–Box tests are given respectively as

Q = 100 × (0.2072 + −0.0132 + 0.0862 + 0.0052 + −0.0222)

= 5.09 (6.12)

Q∗ = 100 × 102 ×
(

0.2072

100 − 1
+ −0.0132

100 − 2
+ 0.0862

100 − 3

+ 0.0052

100 − 4
+ −0.0222

100 − 5

)
= 5.26 (6.13)

The relevant critical values are from a χ2 distribution with five degrees of freedom,
which are 11.1 at the 5% level, and 15.1 at the 1% level. Clearly, in both cases,
the joint null hypothesis that all of the first five autocorrelation coefficients are
zero cannot be rejected. Note that, in this instance, the individual test caused
a rejection while the joint test did not. This is an unexpected result that may
have arisen as a result of the low power of the joint test when four of the five
individual autocorrelation coefficients are insignificant. Thus the effect of the
significant autocorrelation coefficient is diluted in the joint test by the insignificant
coefficients. The sample size used in this example is also modest relative to those
commonly available in finance.
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• • • • • • • • • • • • • • 6.3 Moving average processes

The simplest class of time series model that one could entertain is that of the
moving average process. Let ut (t = 1, 2, 3, . . . ) be a white noise process with
E(ut ) = 0 and var(ut ) = σ 2. Then

yt = μ + ut + θ1ut−1 + θ2ut−2 + · · · + θq ut−q (6.14)

is a q th order moving average mode, denoted MA(q ). This can be expressed using
sigma notation as

yt = μ +
q∑

i=1

θi u t−i + ut (6.15)

A moving average model is simply a linear combination of white noise processes,
so that yt depends on the current and previous values of a white noise disturbance
term. Equation (6.15) will later have to be manipulated, and such a process is most
easily achieved by introducing the lag operator notation. This would be written
Lyt = yt−1 to denote that yt is lagged once. In order to show that the i th lag of yt
is being taken (that is, the value that yt took i periods ago), the notation would be
Li yt = yt−i . Note that in some books and studies, the lag operator is referred to
as the ‘backshift operator’, denoted by B. Using the lag operator notation, (6.15)
would be written as

yt = μ +
q∑

i=1

θi Li u t + ut (6.16)

or as

yt = μ + θ (L)ut (6.17)

where: θ (L) = 1 + θ1L + θ2L2 + · · · + θq Lq .
In much of what follows, the constant (μ) is dropped from the equations.

Removing μ considerably eases the complexity of algebra involved, and is incon-
sequential for it can be achieved without loss of generality. To see this, consider
a sample of observations on a series, zt that has a mean z̄. A zero-mean series, yt
can be constructed by simply subtracting z̄ from each observation zt .

The distinguishing properties of the moving average process of order q given
above are

(1) E(yt ) = μ (6.18)

(2) var(yt ) = γ0 = (
1 + θ2

1 + θ2
2 + · · · + θ2

q

)
σ 2 (6.19)

(3) covariances γs

=
{

(θs + θs+1θ1 + θs+2θ2 + · · · + θq θq −s ) σ 2 for s = 1, 2, . . . , q
0 for s > q (6.20)

So, a moving average process has constant mean, constant variance, and autoco-
variances which may be non-zero to lag q and will always be zero thereafter. Each
of these results will be derived below.
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Example 6.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Consider the following MA(2) process

yt = ut + θ1ut−1 + θ2ut−2 (6.21)

where ut is a zero mean white noise process with variance σ 2.

(1) Calculate the mean and variance of yt .
(2) Derive the autocorrelation function for this process (i.e. express the

autocorrelations, τ1, τ2, . . . as functions of the parameters θ1 and θ2).
(3) If θ1 = −0.5 and θ2 = 0.25, sketch the acf of yt .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Solution

(1) If E(ut ) = 0, then E(ut−i ) = 0 ∀ i (6.22)

So the expected value of the error term is zero for all time periods. Taking
expectations of both sides of (6.21) gives

E(yt ) = E(ut + θ1ut−1 + θ2ut−2)

= E(ut ) + θ1E(ut−1) + θ2E(ut−2) = 0 (6.23)

var(yt ) = E[yt − E(yt )][yt − E(yt )] (6.24)

but E(yt ) = 0, so that the last component in each set of square brackets in
(6.24) is zero and this reduces to

var(yt ) = E[(yt )(yt )] (6.25)

Replacing yt in (6.25) with the RHS of (6.21)

var(yt ) = E[(ut + θ1ut−1 + θ2ut−2)(ut + θ1ut−1 + θ2ut−2)] (6.26)

var(yt ) = E
[
u2

t + θ2
1 u2

t−1 + θ2
2 u2

t−2 + cross-products
]

(6.27)

But E[cross-products] = 0 since cov(ut , ut−s ) = 0 for s �= 0. ‘Cross-products’ is
thus a catchall expression for all of the terms in u which have different time
subscripts, such as ut−1ut−2 or ut−5ut−20, etc. Again, one does not need to
worry about these cross-product terms, since these are effectively the autoco-
variances of ut , which will all be zero by definition since ut is a random error
process, which will have zero autocovariances (except at lag zero). So

var(yt ) = γ0 = E
[
u2

t + θ2
1 u2

t−1 + θ2
2 u2

t−2

]
(6.28)

var(yt ) = γ0 = σ 2 + θ2
1 σ 2 + θ2

2 σ 2 (6.29)

var(yt ) = γ0 = (
1 + θ2

1 + θ2
2

)
σ 2 (6.30)

γ0 can also be interpreted as the autocovariance at lag zero.
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(2) Calculating now the acf of yt , first determine the autocovariances and then
the autocorrelations by dividing the autocovariances by the variance.

The autocovariance at lag 1 is given by

γ1 = E[yt − E(yt )][yt−1 − E(yt−1)] (6.31)

γ1 = E[yt ][yt−1] (6.32)

γ1 = E[(ut + θ1ut−1 + θ2ut−2)(ut−1 + θ1ut−2 + θ2ut−3)] (6.33)

Again, ignoring the cross-products, (6.33) can be written as

γ1 = E
[(

θ1u2
t−1 + θ1θ2u2

t−2

)]
(6.34)

γ1 = θ1σ
2 + θ1θ2σ

2 (6.35)

γ1 = (θ1 + θ1θ2)σ 2 (6.36)

The autocovariance at lag 2 is given by

γ2 = E[yt − E(yt )][yt−2 − E(yt−2)] (6.37)

γ2 = E[yt ][yt−2] (6.38)

γ2 = E[(ut + θ1ut−1 + θ2ut−2)(ut−2 + θ1ut−3 + θ2ut−4)] (6.39)

γ2 = E
[(

θ2u2
t−2

)]
(6.40)

γ2 = θ2σ
2 (6.41)

The autocovariance at lag 3 is given by

γ3 = E[yt − E(yt )][yt−3 − E(yt−3)] (6.42)

γ3 = E[yt ][yt−3] (6.43)

γ3 = E[(ut + θ1ut−1 + θ2ut−2)(ut−3 + θ1ut−4 + θ2ut−5)] (6.44)

γ3 = 0 (6.45)

So γs = 0 for s 2. All autocovariances for the MA(2) process will be zero for
any lag length, s , greater than 2.

The autocorrelation at lag 0 is given by

τ0 = γ0

γ0
= 1 (6.46)

The autocorrelation at lag 1 is given by

τ1 = γ1

γ0
= (θ1 + θ1θ2)σ 2(

1 + θ2
1 + θ2

2

)
σ 2

= (θ1 + θ1θ2)(
1 + θ2

1 + θ2
2

) (6.47)
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Figure 6.1 Autocorrelation function for sample MA(2) process

The autocorrelation at lag 2 is given by

τ2 = γ2

γ0
= (θ2)σ 2(

1 + θ2
1 + θ2

2

)
σ 2

= θ2(
1 + θ2

1 + θ2
2

) (6.48)

The autocorrelation at lag 3 is given by

τ3 = γ3

γ0
= 0 (6.49)

The autocorrelation at lag s is given by

τs = γs

γ0
= 0 ∀ s > 2 (6.50)

(3) For θ1 = −0.5 and θ2 = 0.25, substituting these into the formulae above
gives the first two autocorrelation coefficients as τ1 = −0.476, τ2 = 0.190.
Autocorrelation coefficients for lags greater than 2 will all be zero for an
MA(2) model. Thus the acf plot will appear as in figure 6.1.

• • • • • • • • • • • • • • 6.4 Autoregressive processes

An autoregressive model is one where the current value of a variable, y, depends
upon only the values that the variable took in previous periods plus an error term.
An autoregressive model of order p , denoted as AR(p ), can be expressed as

yt = μ + φ1yt−1 + φ2yt−2 + · · · + φp yt−p + ut (6.51)
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where ut is a white noise disturbance term. A manipulation of expression (6.51)
will be required to demonstrate the properties of an autoregressive model. This
expression can be written more compactly using sigma notation

yt = μ +
p∑

i=1

φi yt−i + ut (6.52)

or using the lag operator, as

yt = μ +
p∑

i=1

φi Li yt + ut (6.53)

or

φ(L)yt = μ + ut (6.54)

where φ(L) = (1 − φ1L − φ2L2 − · · · − φp L p ).

Box 6.1 The stationarity condition for an AR(p) model

Setting μ to zero in (6.54), for a zero mean AR(p ) process, yt , given by

φ(L)yt = ut (6.55)

it would be stated that the process is stationary if it is possible to write

yt = φ(L)−1ut (6.56)

with φ(L)−1 converging to zero. This means that the autocorrelations will
decline eventually as the lag length is increased. When the expansion
φ(L)−1 is calculated, it will contain an infinite number of terms, and can be
written as an MA(∞), e.g. a1ut−1 + a2ut−2 + a3ut−3 + · · · + ut . If the
process given by (6.54) is stationary, the coefficients in the MA(∞)
representation will decline eventually with lag length. On the other hand, if
the process is non-stationary, the coefficients in the MA(∞) representation
would not converge to zero as the lag length increases.

The condition for testing for the stationarity of a general AR(p ) model
is that the roots of the ‘characteristic equation’

1 − φ1z − φ2z2 − · · · − φp zp = 0 (6.57)

all lie outside the unit circle. The notion of a characteristic equation is
so-called because its roots determine the characteristics of the process yt –
for example, the acf for an AR process will depend on the roots of this
characteristic equation, which is a polynomial in z.
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6.4.1 The stationarity condition

Stationarity is a desirable property of an estimated AR model, for several reasons.
One important reason is that a model whose coefficients are non-stationary will
exhibit the unfortunate property that previous values of the error term will have a
non-declining effect on the current value of yt as time progresses. This is arguably
counter-intuitive and empirically implausible in many cases. More discussion on
this issue will be presented in chapter 8. Box 6.1 defines the stationarity condition
algebraically.

Example 6.3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Is the following model stationary?

yt = yt−1 + ut (6.58)

In order to test this, first write yt−1 in lag operator notation (i.e. as Lyt ), and take this
term over to the LHS of (6.58), and factorise

yt = Lyt + ut (6.59)

yt − Lyt = ut (6.60)

yt (1 − L) = ut (6.61)

Then the characteristic equation is

1 − z = 0, (6.62)

having the root z = 1, which lies on, not outside, the unit circle. In fact, the particular
AR(p ) model given by (6.58) is a non-stationary process known as a random walk (see
chapter 8).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

This procedure can also be adopted for autoregressive models with longer lag
lengths and where the stationarity or otherwise of the process is less obvious. For
example, is the following process for yt stationary?

yt = 3yt−1 − 2.75yt−2 + 0.75yt−3 + ut (6.63)

Again, the first stage is to express this equation using the lag operator notation,
and then taking all the terms in y over to the left hand side (LHS)

yt = 3Lyt − 2.75L2yt + 0.75L3yt + ut (6.64)

(1 − 3L + 2.75L2 − 0.75L3)yt = ut (6.65)

The characteristic equation is

1 − 3z + 2.75z2 − 0.75z3 = 0 (6.66)

which fortunately factorises to

(1 − z)(1 − 1.5z)(1 − 0.5z) = 0 (6.67)
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so that the roots are z =1, z = 2/3, and z =2. Only one of these lies outside the
unit circle and hence the process for yt described by (6.63) is not stationary.

6.4.2 Wold’s decomposition theorem

Wold’s decomposition theorem states that any stationary series can be decomposed
into the sum of two unrelated processes, a purely deterministic part and a purely
stochastic part, which will be an MA(∞). A simpler way of stating this in the
context of AR modelling is that any stationary autoregressive process of order p
with no constant and no other terms can be expressed as an infinite order moving
average model. This result is important for deriving the autocorrelation function
for an autoregressive process.

For the AR(p ) model, given in, for example, (6.51) (with μ set to zero for
simplicity) and expressed using the lag polynomial notation, φ(L)yt = ut , the
Wold decomposition is

yt = ψ(L)ut (6.68)

where ψ(L) = φ(L)−1 = (1 − φ1L − φ2L2 − · · · − φp L p )−1

The characteristics of an autoregressive process are as follows. The (uncondi-
tional) mean of y is given by

E(yt ) = μ

1 − φ1 − φ2 − · · · − φp
(6.69)

The autocovariances and autocorrelation functions can be obtained by solving a set
of simultaneous equations known as the Yule–Walker equations. The Yule–Walker
equations express the correlogram (the τ s) as a function of the autoregressive
coefficients (the φs)

τ1 = φ1 + τ1φ2 + · · · + τp−1φp

τ2 = τ1φ1 + φ2 + · · · + τp−2φp

...
...

... (6.70)

τp = τp−1φ1 + τp−2φ2 + · · · + φp

For any AR model that is stationary, the autocorrelation function will decay
geometrically to zero.1 These characteristics of an autoregressive process will be
derived from first principles below using an illustrative example.

Example 6.4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Consider the following simple AR(1) model

yt = μ + φ1yt−1 + ut (6.71)

1 Note that the τs will not follow an exact geometric sequence, but rather the absolute value of the
τs is bounded by a geometric series. This means that the autocorrelation function does not have
to be monotonically decreasing and may change sign.
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(1) Calculate the (unconditional) mean yt .
For the remainder of the question, set the constant to zero (μ = 0) for simplicity.

(2) Calculate the (unconditional) variance of yt .
(3) Derive the autocorrelation function for this process.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Solution

(i) The unconditional mean will be given by the expected value of expression
(6.71)

E(yt ) = E(μ + φ1yt−1) (6.72)

E(yt ) = μ + φ1E(yt−1) (6.73)

But also

yt−1 = μ + φ1yt−2 + ut−1 (6.74)

So, replacing yt−1 in (6.73) with the RHS of (6.74)

E(yt ) = μ + φ1(μ + φ1E(yt−2)) (6.75)

E(yt ) = μ + φ1μ + φ2
1E(yt−2) (6.76)

Lagging (6.74) by a further one period

yt−2 = μ + φ1yt−3 + ut−2 (6.77)

Repeating the steps given above one more time

E(yt ) = μ + φ1μ + φ2
1(μ + φ1E(yt−3)) (6.78)

E(yt ) = μ + φ1μ + φ2
1μ + φ3

1E(yt−3) (6.79)

Hopefully, readers will by now be able to see a pattern emerging. Making n
such substitutions would give

E(yt ) = μ
(
1 + φ1 + φ2

1 + · · · + φn−1
1

) + φt
1E(yt−n ) (6.80)

So long as the model is stationary, i.e. |φ1| < 1, then φ∞
1 = 0. Therefore,

taking limits as n → ∞, then limn→∞φt
1E(yt−n ) = 0, and so

E(yt ) = μ
(
1 + φ1 + φ2

1 + · · · ) (6.81)

Recall the rule of algebra that the finite sum of an infinite number of geomet-
rically declining terms in a series is given by ‘first term in series divided by
(1 minus common difference)’, where the common difference is the quantity
that each term in the series is multiplied by to arrive at the next term. It can
thus be stated from (6.81) that

E(yt ) = μ

1 − φ1
(6.82)
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Thus the expected or mean value of an autoregressive process of order one
is given by the intercept parameter divided by one minus the autoregressive
coefficient.

(ii) Calculating now the variance of yt , with μ set to zero

yt = φ1yt−1 + ut (6.83)

This can be written equivalently as

yt (1 − φ1L) = ut (6.84)

From Wold’s decomposition theorem, the AR(p ) can be expressed as an
MA(∞)

yt = (1 − φ1L)−1ut (6.85)

yt = (
1 + φ1L + φ2

1 L2 + · · · )ut (6.86)

or

yt = ut + φ1ut−1 + φ2
1ut−2 + φ3

1ut−3 + · · · (6.87)

So long as |φ1| < 1, i.e. so long as the process for yt is stationary, this sum will
converge.

From the definition of the variance of any random variable y, it is possible
to write

var(yt ) = E[yt − E(yt )][yt − E(yt )] (6.88)

but E(yt ) = 0, since μ is set to zero to obtain (6.83) above. Thus

var(yt ) = E[(yt )(yt )] (6.89)

var(yt ) = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · · )(ut + φ1ut−1 + φ2

1ut−2 + · · · )]
(6.90)

var(yt ) = E
[
u2

t + φ2
1u2

t−1 + φ4
1u2

t−2 + · · · + cross-products
]

(6.91)

As discussed above, the ‘cross-products’ can be set to zero.

var(yt ) = γ0 = E
[
u2

t + φ2
1u2

t−1 + φ4
1u2

t−2 + · · · ] (6.92)

var(yt ) = σ 2 + φ2
1σ

2 + φ4
1σ

2 + · · · (6.93)

var(yt ) = σ 2 (
1 + φ2

1 + φ4
1 + · · · ) (6.94)

Provided that |φ1| < 1, the infinite sum in (6.94) can be written as

var(yt ) = σ 2(
1 − φ2

1

) (6.95)

(iii) Turning now to the calculation of the autocorrelation function, the auto-
covariances must first be calculated. This is achieved by following similar
algebraic manipulations as for the variance above, starting with the definition
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of the autocovariances for a random variable. The autocovariances for lags 1,
2, 3, . . . , s , will be denoted by γ1, γ2, γ3, . . . , γs , as previously.

γ1 = cov (yt , yt−1) = E[yt − E(yt )][yt−1 − E(yt−1)] (6.96)

Since μ has been set to zero, E(yt ) = 0 and E(yt−1) = 0, so

γ1 = E[yt yt−1] (6.97)

under the result above that E(yt ) = E(yt−1) = 0. Thus

γ1 = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · · )(ut−1 + φ1ut−2 + φ2

1ut−3 + · · · )]
(6.98)

γ1 = E
[
φ1u2

t−1 + φ3
1u2

t−2 + · · · + cross − products
]

(6.99)

Again, the cross-products can be ignored so that

γ1 = φ1σ
2 + φ3

1σ
2 + φ5

1σ
2 + · · · (6.100)

γ1 = φ1σ
2(1 + φ2

1 + φ4
1 + · · · ) (6.101)

γ1 = φ1σ
2(

1 − φ2
1

) (6.102)

For the second autocovariance,

γ2 = cov(yt , yt−2) = E[yt − E(yt )][yt−2 − E(yt−2)] (6.103)

Using the same rules as applied above for the lag 1 covariance

γ2 = E[yt yt−2] (6.104)

γ2 = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · · )(ut−2 + φ1ut−3 + φ2

1ut−4 + · · · )]
(6.105)

γ2 = E
[
φ2

1u2
t−2 + φ4

1u2
t−3 + · · · +cross-products

]
(6.106)

γ2 = φ2
1σ

2 + φ4
1σ

2 + · · · (6.107)

γ2 = φ2
1σ

2(1 + φ2
1 + φ4

1 + · · · ) (6.108)

γ2 = φ2
1σ

2(
1 − φ2

1

) (6.109)

By now it should be possible to see a pattern emerging. If these steps were
repeated for γ3, the following expression would be obtained

γ3 = φ3
1σ

2(
1 − φ2

1

) (6.110)
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and for any lag s , the autocovariance would be given by

γs = φs
1σ

2(
1 − φ2

1

) (6.111)

The acf can now be obtained by dividing the covariances by the variance, so
that

τ0 = γ0

γ0
= 1 (6.112)

τ1 = γ1

γ0
=

(
φ1σ

2(
1 − φ2

1

)
)

(
σ 2(

1 − φ2
1

)
) = φ1 (6.113)

τ2 = γ2

γ0
=

(
φ2

1σ
2(

1 − φ2
1

)
)

(
σ 2(

1 − φ2
1

)
) = φ2

1 (6.114)

τ3 = φ3
1 (6.115)

The autocorrelation at lag s is given by

τs = φs
1 (6.116)

which means that corr(yt , yt−s ) = φs
1. Note that use of the Yule–Walker equa-

tions would have given the same answer.

• • • • • • • • • • • • • • 6.5 The partial autocorrelation function

The partial autocorrelation function, or pacf (denoted τkk), measures the corre-
lation between an observation k periods ago and the current observation, after
controlling for observations at intermediate lags (i.e. all lags < k) – i.e. the corre-
lation between yt and yt−k, after removing the effects of yt−k+1, yt−k+2, . . . , yt−1.
For example, the pacf for lag 3 would measure the correlation between yt and yt−3
after controlling for the effects of yt−1 and yt−2.

At lag 1, the autocorrelation and partial autocorrelation coefficients are equal,
since there are no intermediate lag effects to eliminate. Thus, τ11 = τ1, where τ1
is the autocorrelation coefficient at lag 1.

At lag 2

τ22 = (
τ2 − τ 2

1

)/(
1 − τ 2

1

)
(6.117)

where τ1 and τ2 are the autocorrelation coefficients at lags 1 and 2, respectively. For
lags greater than two, the formulae are more complex and hence a presentation of
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these is beyond the scope of this book. There now proceeds, however, an intuitive
explanation of the characteristic shape of the pacf for a moving average and for an
autoregressive process.

In the case of an autoregressive process of order p , there will be direct con-
nections between yt and yt−s for s ≤ p , but no direct connections for s > p . For
example, consider the following AR(3) model

yt = φ0 + φ1yt−1 + φ2yt−2 + φ3yt−3 + ut (6.118)

There is a direct connection through the model between yt and yt−1, and between
yt and yt−2, and between yt and yt−3, but not between yt and yt−s , for s > 3.
Hence the pacf will usually have non-zero partial autocorrelation coefficients for
lags up to the order of the model, but will have zero partial autocorrelation coeffi-
cients thereafter. In the case of the AR(3), only the first three partial autocorrelation
coefficients will be non-zero.

What shape would the partial autocorrelation function take for a moving aver-
age process? One would need to think about the MA model as being transformed
into an AR in order to consider whether yt and yt−k, k = 1, 2, . . . , are directly
connected. In fact, so long as the MA(q ) process is invertible, it can be expressed
as an AR(∞). Thus a definition of invertibility is now required.

6.5.1 The invertibility condition

An MA(q ) model is typically required to have roots of the characteristic equation
θ (z) = 0 greater than one in absolute value. The invertibility condition is math-
ematically the same as the stationarity condition, but is different in the sense that
the former refers to MA rather than AR processes. This condition prevents the
model from exploding under an AR(∞) representation, so that θ−1(L) converges
to zero. Box 6.2 shows the invertibility condition for an MA(2) model.

Box 6.2 The invertibility condition for an MA(2) model

In order to examine the shape of the pacf for moving average processes,
consider the following MA(2) process for yt

yt = ut + θ1ut−1 + θ2ut−2 = θ (L)ut (6.119)

Provided that this process is invertible, this MA(2) can be expressed as an
AR(∞)

yt =
∞∑

i=1

c i Li yt−i + ut (6.120)

yt = c 1yt−1 + c 2yt−2 + c 3yt−3 + · · · + ut (6.121)



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-06 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:28

268

•
•
•
•
•
•
•
•
• Univariate time series modelling and forecasting

It is now evident when expressed in this way that for a moving average
model, there are direct connections between the current value of y and all
of its previous values. Thus, the partial autocorrelation function for an
MA(q ) model will decline geometrically, rather than dropping off to zero
after q lags, as is the case for its autocorrelation function. It could thus be
stated that the acf for an AR has the same basic shape as the pacf for an
MA, and the acf for an MA has the same shape as the pacf for an AR.

• • • • • • • • • • • • • • 6.6 ARMA processes

By combining the AR(p ) and MA(q ) models, an ARMA(p, q ) model is obtained.
Such a model states that the current value of some series y depends linearly on its
own previous values plus a combination of current and previous values of a white
noise error term. The model could be written

φ(L)yt = μ + θ (L)ut (6.122)

where

φ(L) = 1 − φ1L − φ2L2 − · · · − φp L p and

θ (L) = 1 + θ1L + θ2L2 + · · · + θq Lq

or

yt = μ + φ1yt−1 + φ2yt−2 + · · · + φp yt−p + θ1ut−1

+ θ2ut−2 + · · · + θq ut−q + ut (6.123)

with

E(ut ) = 0; E
(
u2

t

) = σ 2; E(ut us ) = 0, t �= s

The characteristics of an ARMA process will be a combination of those from
the autoregressive (AR) and moving average (MA) parts. Note that the pacf is
particularly useful in this context. The acf alone can distinguish between a pure
autoregressive and a pure moving average process. However, an ARMA process
will have a geometrically declining acf, as will a pure AR process. So, the pacf is
useful for distinguishing between an AR(p ) process and an ARMA(p, q ) process –
the former will have a geometrically declining autocorrelation function, but a
partial autocorrelation function which cuts off to zero after p lags, while the latter
will have both autocorrelation and partial autocorrelation functions which decline
geometrically.

We can now summarise the defining characteristics of AR, MA and ARMA
processes.

An autoregressive process has:
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● a geometrically decaying acf
● a number of non-zero points of pacf = AR order.

A moving average process has:

● number of non-zero points of acf = MA order
● a geometrically decaying pacf.

A combination autoregressive moving average process has:

● a geometrically decaying acf
● a geometrically decaying pacf.

In fact, the mean of an ARMA series is given by

E(yt ) = μ

1 − φ1 − φ2 − · · · − φp
(6.124)

The autocorrelation function will display combinations of behaviour derived from
the AR and MA parts, but for lags beyond q , the acf will simply be identical to
the individual AR(p ) model, so that the AR part will dominate in the long term.
Deriving the acf and pacf for an ARMA process requires no new algebra, but is
tedious and hence is left as an exercise for interested readers.

6.6.1 Sample acf and pacf plots for standard processes

Figures 6.2–6.8 give some examples of typical processes from the ARMA family
with their characteristic autocorrelation and partial autocorrelation functions. The
acf and pacf are not produced analytically from the relevant formulae for a model of
that type, but rather are estimated using 100,000 simulated observations with distur-
bances drawn from a normal distribution. Each figure also has 5% (two-sided) rejec-
tion bands represented by dotted lines. These are based on (±1.96/

√
100000) =

±0.0062, calculated in the same way as given above. Notice how, in each case, the
acf and pacf are identical for the first lag.

In figure 6.2, the MA(1) has an acf that is significant for only lag 1, while the
pacf declines geometrically, and is significant until lag 7. The acf at lag 1 and all of
the pacfs are negative as a result of the negative coefficient in the MA generating
process.

Again, the structures of the acf and pacf in figure 6.3 are as anticipated.
The first two autocorrelation coefficients only are significant, while the partial
autocorrelation coefficients are geometrically declining. Note also that, since the
second coefficient on the lagged error term in the MA is negative, the acf and
pacf alternate between positive and negative. In the case of the pacf, we term this
alternating and declining function a ‘damped sine wave’ or ‘damped sinusoid’.

For the autoregressive model of order 1 with a fairly high coefficient – i.e.
relatively close to 1 – the autocorrelation function would be expected to die away
relatively slowly, and this is exactly what is observed here in figure 6.4. Again, as
expected for an AR(1), only the first pacf coefficient is significant, while all others
are virtually zero and are not significant.
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Figure 6.2 Sample autocorrelation and partial autocorrelation functions for an MA(1)
model: yt = −0.5ut−1 + ut
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Figure 6.3 Sample autocorrelation and partial autocorrelation functions for an MA(2)
model: yt = 0.5ut−1 − 0.25ut−2 + ut

Figure 6.5 plots an AR(1), which was generated using identical error terms,
but a much smaller autoregressive coefficient. In this case, the autocorrelation
function dies away much more quickly than in the previous example, and in fact
becomes insignificant after around five lags.

Figure 6.6 shows the acf and pacf for an identical AR(1) process to that used for
figure 6.5, except that the autoregressive coefficient is now negative. This results
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Figure 6.4 Sample autocorrelation and partial autocorrelation functions for a slowly
decaying AR(1) model: yt = 0.9yt−1 + ut
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Figure 6.5 Sample autocorrelation and partial autocorrelation functions for a more rapidly
decaying AR(1) model: yt = 0.5yt−1 + ut

in a damped sinusoidal pattern for the acf, which again becomes insignificant after
around lag 5. Recalling that the autocorrelation coefficient for this AR(1) at lag s
is equal to (−0.5)s , this will be positive for even s , and negative for odd s . Only
the first pacf coefficient is significant (and negative).

Figure 6.7 plots the acf and pacf for a non-stationary series (see chapter 8 for an
extensive discussion) that has a unit coefficient on the lagged dependent variable.
The result is that shocks to y never die away, and persist indefinitely in the system.
Consequently, the acf function remains relatively flat at unity, even up to lag 10.
In fact, even by lag 10, the autocorrelation coefficient has fallen only to 0.9989.
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Figure 6.6 Sample autocorrelation and partial autocorrelation functions for a more rapidly
decaying AR(1) model with negative coefficient: yt = −0.5yt−1 + ut
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Figure 6.7 Sample autocorrelation and partial autocorrelation functions for a
non-stationary model (i.e. a unit coefficient): yt = yt−1 + ut

Note also that on some occasions, the acf does die away, rather than looking like
figure 6.7, even for such a non-stationary process, owing to its inherent instability
combined with finite computer precision. The pacf, however, is significant only
for lag 1, correctly suggesting that an autoregressive model with no moving average
term is most appropriate.

Finally, figure 6.8 plots the acf and pacf for a mixed ARMA process. As one
would expect of such a process, both the acf and the pacf decline geometrically – the
acf as a result of the AR part and the pacf as a result of the MA part. The
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Figure 6.8 Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1)
model: yt = 0.5yt−1 + 0.5ut−1 + ut

coefficients on the AR and MA are, however, sufficiently small that both acf and
pacf coefficients have become insignificant by lag 6.

• • • • • • • • • • • • • • 6.7 Building ARMA models: the Box–Jenkins approach

Although the existence of ARMA models predates them, Box and Jenkins (1976)
were the first to approach the task of estimating an ARMA model in a systematic
manner. Their approach was a practical and pragmatic one, involving three steps:

(1) Identification
(2) Estimation
(3) Diagnostic checking.

These steps are now explained in greater detail.

Step 1

This involves determining the order of the model required to capture the dynamic features
of the data. Graphical procedures are used (plotting the data over time and plotting
the acf and pacf) to determine the most appropriate specification.

Step 2

This involves estimation of the parameters of the model specified in step 1. This can
be done using least squares or another technique, known as maximum likelihood,
depending on the model.
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Step 3

This involves model checking – i.e. determining whether the model specified and
estimated is adequate. Box and Jenkins suggest two methods: overfitting and resid-
ual diagnostics. Overfitting involves deliberately fitting a larger model than that
required to capture the dynamics of the data as identified in stage 1. If the model
specified at step 1 is adequate, any extra terms added to the ARMA model would
be insignificant. Residual diagnostics imply checking the residuals for evidence of
linear dependence which, if present, would suggest that the model originally spec-
ified was inadequate to capture the features of the data. The acf, pacf or Ljung–Box
tests could be used.

It is worth noting that ‘diagnostic testing’ in the Box–Jenkins world essentially
involves only autocorrelation tests rather than the whole barrage of tests outlined
in chapter 4. Also, such approaches to determining the adequacy of the model
could only reveal a model that is underparameterised (‘too small’) and would not
reveal a model that is overparameterised (‘too big’).

Examining whether the residuals are free from autocorrelation is much more
commonly used than overfitting, and this may partly have arisen since for ARMA
models, it can give rise to common factors in the overfitted model that make
estimation of this model difficult and the statistical tests ill behaved. For example,
if the true model is an ARMA(1,1) and we deliberately then fit an ARMA(2,2)
there will be a common factor so that not all of the parameters in the latter model
can be identified. This problem does not arise with pure AR or MA models, only
with mixed processes.

It is usually the objective to form a parsimonious model, which is one that
describes all of the features of data of interest using as few parameters (i.e. as simple
a model) as possible. A parsimonious model is desirable because:

● The residual sum of squares is inversely proportional to the number of degrees
of freedom. A model which contains irrelevant lags of the variable or of
the error term (and therefore unnecessary parameters) will usually lead to
increased coefficient standard errors, implying that it will be more difficult to
find significant relationships in the data. Whether an increase in the number
of variables (i.e. a reduction in the number of degrees of freedom) will actually
cause the estimated parameter standard errors to rise or fall will obviously
depend on how much the RSS falls, and on the relative sizes of T and k. If T
is very large relative to k, then the decrease in RSS is likely to outweigh the
reduction in T − k so that the standard errors fall. Hence ‘large’ models with
many parameters are more often chosen when the sample size is large.

● Models that are profligate might be inclined to fit to data specific features,
which would not be replicated out-of-sample. This means that the models
may appear to fit the data very well, with perhaps a high value of R2, but
would give very inaccurate forecasts. Another interpretation of this concept,
borrowed from physics, is that of the distinction between ‘signal’ and ‘noise’.
The idea is to fit a model which captures the signal (the important features of
the data, or the underlying trends or patterns), but which does not try to fit a
spurious model to the noise (the completely random aspect of the series).
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6.7.1 Information criteria for ARMA model selection

The identification stage would now typically not be done using graphical plots of
the acf and pacf. The reason is that when ‘messy’ real data is used, it unfortunately
rarely exhibits the simple patterns of figures 6.2–6.8. This makes the acf and pacf
very hard to interpret, and thus it is difficult to specify a model for the data. Another
technique, which removes some of the subjectivity involved in interpreting the
acf and pacf, is to use what are known as information criteria. Information criteria
embody two factors: a term which is a function of the residual sum of squares
(RSS), and some penalty for the loss of degrees of freedom from adding extra
parameters. So, adding a new variable or an additional lag to a model will have
two competing effects on the information criteria: the residual sum of squares will
fall but the value of the penalty term will increase.

The object is to choose the number of parameters which minimises the value
of the information criteria. So, adding an extra term will reduce the value of
the criteria only if the fall in the residual sum of squares is sufficient to more
than outweigh the increased value of the penalty term. There are several different
criteria, which vary according to how stiff the penalty term is. The three most
popular information criteria are Akaike’s (1974) information criterion (AIC),
Schwarz’s (1978) Bayesian information criterion (SBIC) and the Hannan–Quinn
criterion (HQIC). Algebraically, these are expressed, respectively, as

AIC = ln(σ̂ 2) + 2k
T

(6.125)

SBIC = ln(σ̂ 2) + k
T

ln T (6.126)

HQIC = ln(σ̂ 2) + 2k
T

ln(ln(T)) (6.127)

where σ̂ 2 is the residual variance (also equivalent to the residual sum of squares
divided by the number of observations, T), k = p + q + 1 is the total number
of parameters estimated and T is the sample size. The information criteria are
actually minimised subject to p ≤ p̄, q ≤ q̄ , i.e. an upper limit is specified on
the number of moving average (q̄ ) and/or autoregressive ( p̄ ) terms that will be
considered.

It is worth noting that SBIC embodies a much stiffer penalty term than AIC,
while HQIC is somewhere in between. The adjusted R2 measure can also be
viewed as an information criterion, although it is a very soft one, which would
typically select the largest models of all.

6.7.2 Which criterion should be preferred if they suggest different
model orders?

SBIC is strongly consistent (but inefficient) and AIC is not consistent, but is
generally more efficient. In other words, SBIC will asymptotically deliver the
correct model order, while AIC will deliver on average too large a model, even
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with an infinite amount of data. On the other hand, the average variation in
selected model orders from different samples within a given population will be
greater in the context of SBIC than AIC. Overall, then, no criterion is definitely
superior to others.

6.7.3 ARIMA modelling

ARIMA modelling, as distinct from ARMA modelling, has the additional letter
‘I’ in the acronym, standing for ‘integrated’. An integrated autoregressive process is one
whose characteristic equation has a root on the unit circle. Typically researchers
difference the variable as necessary and then build an ARMA model on those
differenced variables. An ARMA(p, q ) model in the variable differenced d times
is equivalent to an ARIMA(p, d , q ) model on the original data – see chap-
ter 8 for further details. For the remainder of this chapter, it is assumed that
the data used in model construction are stationary, or have been suitably trans-
formed to make them stationary. Thus only ARMA models will be considered
further.

• • • • • • • • • • • • • • 6.8 Constructing ARMA models in EViews

6.8.1 Getting started

This example uses the monthly UK house price series which was already incor-
porated in an EViews workfile in chapter 1. There were a total of 268 monthly
observations running from February 1991 (recall that the January observation was
‘lost’ in constructing the lagged value) to May 2013 for the percentage change in
house price series.

The objective of this exercise is to build an ARMA model for the house price
changes. Recall that there are three stages involved: identification, estimation and
diagnostic checking. The first stage is carried out by looking at the autocor-
relation and partial autocorrelation coefficients to identify any structure in the
data.

6.8.2 Estimating the autocorrelation coefficients for up to twelve lags

Double click on the DHP series and then click View and choose Correlogram
. . . . In the ‘Correlogram Specification’ window, choose Level (since the series we
are investigating has already been transformed into percentage returns or percentage
changes) and in the ‘Lags to include’ box, type 12. Click on OK. The output,
including relevant test statistics, is given in screenshot 6.1.

It is clearly evident from the first columns that the series is quite persistent
given that it is already in percentage change form. The autocorrelation function
dies away quite slowly. Only the first two partial autocorrelation coefficients appear
strongly significant while the autocorrelation coefficients are significant until lag six
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Screenshot 6.1 Estimating the correlogram

(they are all outside the dotted lines in the picture), the coefficient is insignificant
at lag seven but then they become significant again from lag eight. The numerical
values of the autocorrelation and partial autocorrelation coefficients at lags 1–12
are given in the fourth and fifth columns of the output, with the lag length given
in the third column.

The penultimate column of output gives the statistic resulting from a Ljung–
Box test with number of lags in the sum equal to the row number (i.e. the number
in the third column). The test statistics will follow a χ2(1) for the first row, a χ2(2)
for the second row, and so on. p-values associated with these test statistics are given
in the last column.

Remember that as a rule of thumb, a given autocorrelation coefficient is classed
as significant if it is outside a ±1.96 × 1/(T)

1
2 band, where T is the number of

observations. In this case, it would imply that a correlation coefficient is classed as
significant if it is bigger than approximately 0.11 or smaller than −0.11. The band
is of course wider when the sampling frequency is monthly, as it is here, rather than
daily where there would be more observations. It can be deduced that the first six
autocorrelation coefficients (then eight through twelve) and the first two partial
autocorrelation coefficients (then nine, eleven and twelve) are significant under
this rule. Since the first acf coefficient is highly significant, the Ljung–Box joint
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test statistic rejects the null hypothesis of no autocorrelation at the 1% level for all
numbers of lags considered. It could be concluded that a mixed ARMA process
could be appropriate, although it is hard to precisely determine the appropriate
order given these results. In order to investigate this issue further, the information
criteria are now employed.

6.8.3 Using information criteria to decide on model orders

As demonstrated above, deciding on the appropriate model orders from autocor-
relation functions could be very difficult in practice. An easier way is to choose
the model order that minimises the value of an information criterion.

An important point to note is that books and statistical packages often differ
in their construction of the test statistic. For example, the formulae given earlier
in this chapter for Akaike’s and Schwarz’s Information Criteria were

AIC = ln(σ̂ 2) + 2k
T

(6.128)

SBIC = ln(σ̂ 2) + k
T

(ln T) (6.129)

where σ̂ 2 is the estimator of the variance of regressions disturbances ut , k is the
number of parameters and T is the sample size. When using the criterion based on
the estimated standard errors, the model with the lowest value of AIC and SBIC
should be chosen. However, EViews uses a formulation of the test statistic derived
from the log-likelihood function value based on a maximum likelihood estimation
(see chapter 9). The corresponding EViews formulae are

AIC� = −2�/T + 2k
T

(6.130)

SBIC� = −2�/T + k
T

(ln T) (6.131)

where l = −T
2

(1 + ln(2π ) + ln(û ′û/T))

Unfortunately, this modification is not benign, since it affects the relative
strength of the penalty term compared with the error variance, sometimes leading
different packages to select different model orders for the same data and criterion.

Suppose that it is thought that ARMA models from order (0,0) to (5,5) are
plausible for the house price changes. This would entail considering thirty-six
models (ARMA(0,0), ARMA(1,0), ARMA(2,0), . . . ARMA(5,5)), i.e. from zero
up to five lags in both the autoregressive and moving average terms.

In EViews, this can be done by separately estimating each of the models and
noting down the value of the information criteria in each case.2 This would be

2 Alternatively, any reader who knows how to write programs in EViews could set up a structure
to loop over the model orders and calculate all the values of the information criteria together –
see chapter 13.
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done in the following way. From the EViews main menu, click on Quick and
choose Estimate Equation . . . . EViews will open an Equation Specification
window. In the Equation Specification editor, type, for example

dhp c ar(1) ma(1)

For the estimation settings, select LS – Least Squares (NLS and ARMA), select
the whole sample, and click OK – this will specify an ARMA(1,1). The output is
given in the table below.

Dependent Variable: DHP
Method: Least Squares
Date: 07/06/13 Time: 10:20
Sample (adjusted): 1991M03 2013M05
Included observations: 267 after adjustments
Convergence achieved after 8 iterations
MA Backcast: 1991M02

Coefficient Std. Error t-Statistic Prob.

C 0.448704 0.180581 2.484784 0.0136
AR(1) 0.840140 0.063711 13.18666 0.0000
MA(1) −0.56410 0.097038 −5.81321 0.0000

R-squared 0.205312 Mean dependent var 0.436493
Adjusted R-squared 0.199292 S.D. dependent var 1.202504
S.E. of regression 1.076028 Akaike info criterion 2.995603
Sum squared resid 305.5590 Schwarz criterion 3.035909
Log likelihood −396.9130 Hannan-Quinn criter. 3.011794
F-statistic 34.10301 Durbin-Watson stat 2.114776
Prob(F-statistic) 0.000000

Inverted AR Roots .84
Inverted MA Roots .56

In theory, the output would then be interpreted in a similar way to that
discussed in chapter 3. However, in reality it is very difficult to interpret the
parameter estimates in the sense of, for example, saying, ‘a one unit increase in
x leads to a β unit increase in y’. In part because the construction of ARMA
models is not based on any economic or financial theory, it is often best not to
even try to interpret the individual parameter estimates, but rather to examine the
plausibility of the model as a whole and to determine whether it describes the data
well and produces accurate forecasts (if this is the objective of the exercise, which it
often is).

The inverses of the AR and MA roots of the characteristic equation are also
shown. These can be used to check whether the process implied by the model is
stationary and invertible. For the AR and MA parts of the process to be stationary
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and invertible, respectively, the inverted roots in each case must be smaller than
one in absolute value, which they are in this case. Note also that the roots are
identical to (absolute values of) the values of the parameter estimates in this case
(since there is only one AR term and one MA term) – in general this will not be
the case when there are more lags. The header for the EViews output for ARMA
models states the number of iterations that have been used in the model estimation
process. This shows that, in fact, an iterative numerical optimisation procedure has
been employed to estimate the coefficients (see chapter 9 for further details).

Repeating these steps for the other ARMA models would give all of the
required values for the information criteria. To give just one more example, in the
case of an ARMA(5,5), the following would be typed in the Equation Specification
editor box:

dhp c ar(1) ar(2) ar(3) ar(4) ar(5) ma(1) ma(2) ma(3) ma(4) ma(5)

Note that, in order to estimate an ARMA(5,5) model, it is necessary to write
out the whole list of terms as above rather than to simply write, for example,
‘dhp c ar(5) ma(5)’, which would give a model with a fifth lag of the dependent
variable and a fifth lag of the error term but no other variables. The values of
all of the Akaike and Schwarz information criteria calculated using EViews are as
follows.

Information criteria for ARMA models of the percentage changes in UK house prices

AIC

p/q 0 1 2 3 4 5
0 3.207 3.137 2.999 2.989 2.983 2.981
1 3.082 2.995 2.968 2.959 2.990 2.982
2 2.953 2.960 2.968 2.952 2.952 2.941
3 2.958 2.964 2.969 2.960 2.949 2.953
4 2.965 2.972 2.925 2.932 2.940 2.903

5 2.976 2.957 2.955 2.919 2.945 2.918

SBIC

p/q 0 1 2 3 4 5
0 3.220 3.164 3.039 3.043 3.050 3.061
1 3.109 3.036 3.021 3.026 3.071 3.076
2 2.993 3.014 3.036 3.033 3.046 3.049
3 3.012 3.031 3.050 3.054 3.057 3.075
4 3.033 3.054 3.019 3.041 3.062 3.038
5 3.058 3.052 3.063 3.041 3.080 3.067

So which model actually minimises the two information criteria? In this case,
the criteria choose different models: AIC selects an ARMA(4,5), while SBIC
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selects the smaller ARMA(2,0) model – i.e. an AR(2). These chosen models are
highlighted in bold in the table. It will always be the case that SBIC selects a
model that is at least as small (i.e. with fewer or the same number of parameters)
as AIC, because the former criterion has a stricter penalty term. This means that
SBIC penalises the incorporation of additional terms more heavily. Many different
models provide almost identical values of the information criteria, suggesting that
the chosen models do not provide particularly sharp characterisations of the data
and that a number of other specifications would fit the data almost as well. Note
that we could also have employed the Hannan-Quinn criterion and as an exercise,
you might determine the appropriate model order using that approach too.

• • • • • • • • • • • • • • 6.9 Examples of time series modelling in finance

6.9.1 Covered and uncovered interest parity

The determination of the price of one currency in terms of another (i.e. the
exchange rate) has received a great deal of empirical examination in the inter-
national finance literature. Of these, three hypotheses in particular are studied –
covered interest parity (CIP), uncovered interest parity (UIP) and purchasing power
parity (PPP). The first two of these will be considered as illustrative examples in
this chapter, while PPP will be discussed in chapter 8. All three relations are rel-
evant for students of finance, for violation of one or more of the parities may
offer the potential for arbitrage, or at least will offer further insights into how
financial markets operate. All are discussed briefly here; for a more comprehensive
treatment, see Cuthbertson and Nitzsche (2004) or the many references therein.

6.9.2 Covered interest parity

Stated in its simplest terms, CIP implies that, if financial markets are efficient, it
should not be possible to make a riskless profit by borrowing at a risk-free rate
of interest in a domestic currency, switching the funds borrowed into another
(foreign) currency, investing them there at a risk-free rate and locking in a forward
sale to guarantee the rate of exchange back to the domestic currency. Thus, if CIP
holds, it is possible to write

f t − s t = (r − r ∗)t (6.132)

where f t and s t are the log of the forward and spot prices of the domestic in terms
of the foreign currency at time t , r is the domestic interest rate and r ∗ is the foreign
interest rate. This is an equilibrium condition which must hold otherwise there
would exist riskless arbitrage opportunities, and the existence of such arbitrage
would ensure that any deviation from the condition cannot hold indefinitely. It is
worth noting that, underlying CIP are the assumptions that the risk-free rates are
truly risk-free – that is, there is no possibility for default risk. It is also assumed that
there are no transactions costs, such as broker’s fees, bid–ask spreads, stamp duty,
etc., and that there are no capital controls, so that funds can be moved without
restriction from one currency to another.
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6.9.3 Uncovered interest parity

UIP takes CIP and adds to it a further condition known as ‘forward rate unbi-
asedness’ (FRU). Forward rate unbiasedness states that the forward rate of foreign
exchange should be an unbiased predictor of the future value of the spot rate. If
this condition does not hold, again in theory riskless arbitrage opportunities could
exist. UIP, in essence, states that the expected change in the exchange rate should
be equal to the interest rate differential between that available risk-free in each of
the currencies. Algebraically, this may be stated as

s e
t+1 − s t = (r − r ∗)t (6.133)

where the notation is as above and s e
t+1 is the expectation, made at time t of the

spot exchange rate that will prevail at time t + 1.
The literature testing CIP and UIP is huge with literally hundreds of published

papers. Tests of CIP unsurprisingly (for it is a pure arbitrage condition) tend not to
reject the hypothesis that the condition holds. Taylor (1987, 1989) has conducted
extensive examinations of CIP, and concluded that there were historical periods
when arbitrage was profitable, particularly during periods where the exchange
rates were under management.

Relatively simple tests of UIP and FRU take equations of the form (6.133)
and add intuitively relevant additional terms. If UIP holds, these additional terms
should be insignificant. Ito (1988) tests UIP for the yen/dollar exchange rate with
the three-month forward rate for January 1973 until February 1985. The sample
period is split into three as a consequence of perceived structural breaks in the
series. Strict controls on capital movements were in force in Japan until 1977,
when some were relaxed and finally removed in 1980. A Chow test confirms Ito’s
intuition and suggests that the three sample periods should be analysed separately.
Two separate regressions are estimated for each of the three sample sub-periods

s t+3 − f t,3 = a + b1(s t − f t−3,3) + b2(s t−1 − f t−4,3) + ut (6.134)

where s t+3 is the spot interest rate prevailing at time t + 3, f t,3 is the forward rate
for three periods ahead available at time t , and so on, and ut is an error term. A
natural joint hypothesis to test is H0: a = 0 and b1 =0 and b2 = 0. This hypothesis
represents the restriction that the deviation of the forward rate from the realised
rate should have a mean value insignificantly different from zero (a = 0) and it
should be independent of any information available at time t (b1 = 0 and b2 =
0). All three of these conditions must be fulfilled for UIP to hold. The second
equation that Ito tests is

s t+3 − f t,3 = a + b (s t − f t,3) + vt (6.135)

where vt is an error term and the hypothesis of interest in this case is H0: a = 0
and b = 0.

Equation (6.134) tests whether past forecast errors have information useful for
predicting the difference between the actual exchange rate at time t + 3, and the
value of it that was predicted by the forward rate. Equation (6.135) tests whether
the forward premium has any predictive power for the difference between the
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Table 6.1 Uncovered interest parity test results

Sample period 1973M1–1977M3 1977M4–1980M12 1981M1–1985M2
Panel A: Estimates and hypothesis tests for

St+3 − ft,3 = a + b1(st − ft−3,3) + b2(st−1 − ft−4,3) + ut

Estimate of a 0.0099 0.0031 0.027
Estimate of b1 0.020 0.24 0.077
Estimate of b2 −0.37 0.16 −0.21
Joint test χ2(3) 23.388 5.248 6.022
P-value for joint test 0.000 0.155 0.111

Panel B: Estimates and hypothesis tests for
St+3 − ft,3 = a + b(st − ft,3) + vt

Estimate of a 0.00 −0.052 −0.89
Estimate of b 0.095 4.18 2.93
Joint test χ2(2) 31.923 22.06 5.39
p-value for joint test 0.000 0.000 0.07

Source: Ito (1988). Reprinted with permission from MIT Press Journals.

actual exchange rate at time t + 3, and the value of it that was predicted by the
forward rate. The results for the three sample periods are presented in Ito’s table 3,
and are adapted and reported here in table 6.1.

The main conclusion is that UIP clearly failed to hold throughout the period
of strictest controls, but there is less and less evidence against UIP as controls were
relaxed.

• • • • • • • • • • • • • • 6.10 Exponential smoothing

Exponential smoothing is another modelling technique (not based on the ARIMA
approach) that uses only a linear combination of the previous values of a series
for modelling it and for generating forecasts of its future values. Given that only
previous values of the series of interest are used, the only question remaining
is how much weight should be attached to each of the previous observations.
Recent observations would be expected to have the most power in helping to
forecast future values of a series. If this is accepted, a model that places more
weight on recent observations than those further in the past would be desirable.
On the other hand, observations a long way in the past may still contain some
information useful for forecasting future values of a series, which would not be
the case under a centred moving average. An exponential smoothing model will
achieve this, by imposing a geometrically declining weighting scheme on the
lagged values of a series. The equation for the model is

St = αyt + (1 − α)St−1 (6.136)
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where α is the smoothing constant, with 0 < α < 1, yt is the current realised
value, St is the current smoothed value.

Since α + (1 − α) = 1, St is modelled as a weighted average of the current
observation yt and the previous smoothed value. The model above can be rewritten
to express the exponential weighting scheme more clearly. By lagging (6.136) by
one period, the following expression is obtained

St−1 = αyt−1 + (1 − α)St−2 (6.137)

and lagging again

St−2 = αyt−2 + (1 − α)St−3 (6.138)

Substituting into (6.136) for St−1 from (6.137)

St = αyt + (1 − α)(αyt−1 + (1 − α)St−2) (6.139)

St = αyt + (1 − α)αyt−1 + (1 − α)2St−2 (6.140)

Substituting into (6.140) for St−2 from (6.138)

St = αyt + (1 − α)αyt−1 + (1 − α)2(αyt−2 + (1 − α)St−3) (6.141)

St = αyt + (1 − α)αyt−1 + (1 − α)2αyt−2 + (1 − α)3St−3 (6.142)

T successive substitutions of this kind would lead to

St =
(

T∑
i=0

α(1 − α)i yt−i

)
+ (1 − α)T+1St−1−T (6.143)

Since α 0, the effect of each observation declines geometrically as the variable
moves another observation forward in time. In the limit as T → ∞, (1−α)T S0 →
0, so that the current smoothed value is a geometrically weighted infinite sum of
the previous realisations.

The forecasts from an exponential smoothing model are simply set to the
current smoothed value, for any number of steps ahead, s

f t,s = St , s = 1, 2, 3, . . . (6.144)

The exponential smoothing model can be seen as a special case of a Box–Jenkins
model, an ARIMA(0,1,1), with MA coefficient (1 − α) – see Granger and New-
bold (1986, p. 174).

The technique above is known as single or simple exponential smoothing, and
it can be modified to allow for trends (Holt’s method) or to allow for seasonality
(Winter’s method) in the underlying variable. These augmented models are not
pursued further in this text since there is a much better way to model the trends
(using a unit root process – see chapter 8) and the seasonalities (see chapter 9) of
the form that are typically present in financial data.

Exponential smoothing has several advantages over the slightly more complex
ARMA class of models discussed above. First, exponential smoothing is obviously
very simple to use. There is no decision to be made on how many parameters
to estimate (assuming only single exponential smoothing is considered). Thus it is
easy to update the model if a new realisation becomes available.
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Among the disadvantages of exponential smoothing is the fact that it is overly
simplistic and inflexible. Exponential smoothing models can be viewed as but
one model from the ARIMA family, which may not necessarily be optimal for
capturing any linear dependence in the data. Also, the forecasts from an exponential
smoothing model do not converge on the long-term mean of the variable as the
horizon increases. The upshot is that long-term forecasts are overly affected by
recent events in the history of the series under investigation and will therefore be
sub-optimal.

A discussion of how exponential smoothing models can be estimated using
EViews will be given after the following section on forecasting in econometrics.

• • • • • • • • • • • • • • 6.11 Forecasting in econometrics

Although the words ‘forecasting’ and ‘prediction’ are sometimes given different
meanings in some studies, in this text the words will be used synonymously. In this
context, prediction or forecasting simply means an attempt to determine the values
that a series is likely to take. Of course, forecasts might also usefully be made in a
cross-sectional environment. Although the discussion below refers to time series
data, some of the arguments will carry over to the cross-sectional context.

Determining the forecasting accuracy of a model is an important test of its
adequacy. Some econometricians would go as far as to suggest that the statistical
adequacy of a model in terms of whether it violates the CLRM assumptions
or whether it contains insignificant parameters, is largely irrelevant if the model
produces accurate forecasts. The following sub-sections of the book discuss why
forecasts are made, how they are made from several important classes of models,
how to evaluate the forecasts, and so on.

6.11.1 Why forecast?

Forecasts are made essentially because they are useful! Financial decisions often
involve a long-term commitment of resources, the returns to which will depend
upon what happens in the future. In this context, the decisions made today will
reflect forecasts of the future state of the world, and the more accurate those
forecasts are, the more utility (or money!) is likely to be gained from acting on them.

Some examples in finance of where forecasts from econometric models might
be useful include:

● Forecasting tomorrow’s return on a particular share
● Forecasting the price of a house given its characteristics
● Forecasting the riskiness of a portfolio over the next year
● Forecasting the volatility of bond returns
● Forecasting the correlation between US and UK stock market movements tomorrow
● Forecasting the likely number of defaults on a portfolio of home loans.

Again, it is evident that forecasting can apply either in a cross-sectional or a time
series context. It is useful to distinguish between two approaches to forecasting:
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In-sample estimation period
Out-of-sample forecast

evaluation period

Jan 1990 Dec 1998 Jan 1999 Dec 1999

Figure 6.9 Use of in-sample and out-of-sample periods for analysis

● Econometric (structural) forecasting – relates a dependent variable to one or more
independent variables. Such models often work well in the long run, since
a long-run relationship between variables often arises from no-arbitrage or
market efficiency conditions. Examples of such forecasts would include return
predictions derived from arbitrage pricing models, or long-term exchange
rate prediction based on purchasing power parity or uncovered interest parity
theory.

● Time series forecasting – involves trying to forecast the future values of a series
given its previous values and/or previous values of an error term.

The distinction between the two types is somewhat blurred – for example, it is not
clear where vector autoregressive models (see chapter 7 for an extensive overview)
fit into this classification.

It is also worth distinguishing between point and interval forecasts. Point fore-
casts predict a single value for the variable of interest, while interval forecasts provide
a range of values in which the future value of the variable is expected to lie with
a given level of confidence.

6.11.2 The difference between in-sample and out-of-sample forecasts

In-sample forecasts are those generated for the same set of data that was used to
estimate the model’s parameters. One would expect the ‘forecasts’ of a model to
be relatively good in-sample, for this reason. Therefore, a sensible approach to
model evaluation through an examination of forecast accuracy is not to use all
of the observations in estimating the model parameters, but rather to hold some
observations back. The latter sample, sometimes known as a holdout sample, would
be used to construct out-of-sample forecasts.

To give an illustration of this distinction, suppose that some monthly FTSE
returns for 120 months (January 1990–December 1999) are available. It would
be possible to use all of them to build the model (and generate only in-sample
forecasts), or some observations could be kept back, as shown in figure 6.9.

What would be done in this case would be to use data from 1990M1 until
1998M12 to estimate the model parameters, and then the observations for 1999
would be forecasted from the estimated parameters. Of course, where each of the
in-sample and out-of-sample periods should start and finish is somewhat arbitrary
and at the discretion of the researcher. One could then compare how close the
forecasts for the 1999 months were relative to their actual values that are in the
holdout sample. This procedure would represent a better test of the model than an
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examination of the in-sample fit of the model since the information from 1999M1
onwards has not been used when estimating the model parameters.

6.11.3 Some more terminology: one-step-ahead versus multi-step-ahead
forecasts and rolling versus recursive samples

A one-step-ahead forecast is a forecast generated for the next observation only, whereas
multi-step-ahead forecasts are those generated for 1, 2, 3, . . . , s steps ahead, so that
the forecasting horizon is for the next s periods. Whether one-step- or multi-
step-ahead forecasts are of interest will be determined by the forecasting horizon
of interest to the researcher.

Suppose that the monthly FTSE data are used as described in the example
above. If the in-sample estimation period stops in December 1998, then up to
twelve-step-ahead forecasts could be produced, giving twelve predictions that can
be compared with the actual values of the series. Comparing the actual and forecast
values in this way is not ideal, for the forecasting horizon is varying from one to
twelve steps ahead. It might be the case, for example, that the model produces
very good forecasts for short horizons (say, one or two steps), but that it produces
inaccurate forecasts further ahead. It would not be possible to evaluate whether
this was in fact the case or not since only a single one-step-ahead forecast, a single
two-step-ahead forecast, and so on, are available. An evaluation of the forecasts
would require a considerably larger holdout sample.

A useful way around this problem is to use a recursive or rolling window, which
generates a series of forecasts for a given number of steps ahead. A recursive
forecasting model would be one where the initial estimation date is fixed, but
additional observations are added one at a time to the estimation period. A rolling
window, on the other hand, is one where the length of the in-sample period used to
estimate the model is fixed, so that the start date and end date successively increase
by one observation. Suppose now that only one-, two-, and three-step-ahead
forecasts are of interest. They could be produced using the following recursive and
rolling window approaches:

Objective: to produce Data used to estimate model parameters

1-, 2-, 3-step-ahead forecasts for: Rolling window Recursive window

1999M1, M2, M3 1990M1–1998M12 1990M1–1998M12
1999M2, M3, M4 1990M2–1999M1 1990M1–1999M1
1999M3, M4, M5 1990M3–1999M2 1990M1–1999M2
1999M4, M5, M6 1990M4–1999M3 1990M1–1999M3
1999M5, M6, M7 1990M5–1999M4 1990M1–1999M4
1999M6, M7, M8 1990M6–1999M5 1990M1–1999M5
1999M7, M8, M9 1990M7–1999M6 1990M1–1999M6
1999M8, M9, M10 1990M8–1999M7 1990M1–1999M7
1999M9, M10, M11 1990M9–1999M8 1990M1–1999M8
1999M10, M11, M12 1990M10–1999M9 1990M1–1999M9
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The sample length for the rolling windows above is always set at 108 observations,
while the number of observations used to estimate the parameters in the recursive
case increases as we move down the table and through the sample.

6.11.4 Forecasting with time series versus structural models

To understand how to construct forecasts, the idea of conditional expectations is
required. A conditional expectation would be expressed as

E(yt+1|�t )

This expression states that the expected value of y is taken for time t + 1, condi-
tional upon, or given, (|) all information available up to and including time t (�t ).
Contrast this with the unconditional expectation of y, which is the expected
value of y without any reference to time, i.e. the unconditional mean of y. The
conditional expectations operator is used to generate forecasts of the series.

How this conditional expectation is evaluated will of course depend on the
model under consideration. Several families of models for forecasting will be
developed in this and subsequent chapters.

A first point to note is that by definition the optimal forecast for a zero mean
white noise process is zero

E(ut+s |�t ) = 0 ∀ s > 0 (6.145)

The two simplest forecasting ‘methods’ that can be employed in almost every
situation are shown in box 6.3.

Box 6.3 Naive forecasting methods

(1) Assume no change so that the forecast, f , of the value of y, s steps into
the future is the current value of y

E(yt+s |�t ) = yt (6.146)

Such a forecast would be optimal if yt followed a random walk process.
(2) In the absence of a full model, forecasts can be generated using the

long-term average of the series. Forecasts using the unconditional mean
would be more useful than ‘no change’ forecasts for any series that is
‘mean-reverting’ (i.e. stationary).

Time series models are generally better suited to the production of time series
forecasts than structural models. For an illustration of this, consider the following
linear regression model

yt = β1 + β2x2t + β3x3t + · · · + βkxkt + ut (6.147)
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To forecast y, the conditional expectation of its future value is required. Taking
expectations of both sides of (6.147) yields

E(yt |�t−1 ) = E(β1 + β2x2t + β3x3t + · · · + βkxkt + ut ) (6.148)

The parameters can be taken through the expectations operator, since this is
a population regression function and therefore they are assumed known. The
following expression would be obtained

E(yt |�t−1 ) = β1 + β2E(x2t ) + β3E(x3t ) + · · · + βkE(xkt ) (6.149)

But there is a problem: what are E(x2t ), etc.? Remembering that information is
available only until time t − 1, the values of these variables are unknown. It may be
possible to forecast them, but this would require another set of forecasting models
for every explanatory variable. To the extent that forecasting the explanatory
variables may be as difficult, or even more difficult, than forecasting the explained
variable, this equation has achieved nothing! In the absence of a set of forecasts for
the explanatory variables, one might think of using x̄2, etc., i.e. the mean values
of the explanatory variables, giving

E(yt ) = β1 + β2x̄2 + β3x̄3 + · · · + βk x̄k = ȳ ! (6.150)

Thus, if the mean values of the explanatory variables are used as inputs to the
model, all that will be obtained as a forecast is the average value of y. Forecasting
using pure time series models is relatively common, since it avoids this problem.

6.11.5 Forecasting with ARMA models

Forecasting using ARMA models is a fairly simple exercise in calculating condi-
tional expectations. Although any consistent and logical notation could be used,
the following conventions will be adopted in this book. Let f t,s denote a forecast
made using an ARMA(p ,q ) model at time t for s steps into the future for some
series y. The forecasts are generated by what is known as a forecast function,
typically of the form

f t,s =
p∑

i=1

a i f t,s−i +
q∑

j=1

b j u t+s− j (6.151)

where f t,s = yt+s , s ≤ 0; ut+s = 0, s > 0 = ut+s , s ≤ 0

and a i and b i are the autoregressive and moving average coefficients, respectively.
A demonstration of how one generates forecasts for separate AR and MA

processes, leading to the general equation (6.151) above, will now be given.

6.11.6 Forecasting the future value of an MA(q ) process

A moving average process has a memory only of length q , and this limits the
sensible forecasting horizon. For example, suppose that an MA(3) model has been



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-06 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:28

290

•
•
•
•
•
•
•
•
• Univariate time series modelling and forecasting

estimated

yt = μ + θ1ut−1 + θ2ut−2 + θ3ut−3 + ut (6.152)

Since parameter constancy over time is assumed, if this relationship holds for the
series y at time t , it is also assumed to hold for y at time t + 1, t + 2, . . . , so 1
can be added to each of the time subscripts in (6.152), and 2 added to each of the
time subscripts, and then 3, and so on, to arrive at the following

yt+1 = μ + θ1ut + θ2ut−1 + θ3ut−2 + ut+1 (6.153)

yt+2 = μ + θ1ut+1 + θ2ut + θ3ut−1 + ut+2 (6.154)

yt+3 = μ + θ1ut+2 + θ2ut+1 + θ3ut + ut+3 (6.155)

Suppose that all information up to and including that at time t is available and
that forecasts for 1, 2, . . . , s steps ahead – i.e. forecasts for y at times t + 1, t +
2, . . . , t + s are wanted. yt , yt−1, . . . , and ut , ut−1, are known, so producing the
forecasts is just a matter of taking the conditional expectation of (6.153)

f t,1 = E(yt+1|t ) = E(μ + θ1ut + θ2ut−1 + θ3ut−2 + ut+1|�t ) (6.156)

where E(yt+1|t ) is a short-hand notation for E(yt+1|�t )

f t,1 = E(yt+1|t ) = μ + θ1ut + θ2ut−1 + θ3ut−2 (6.157)

Thus the forecast for y, one step ahead, made at time t , is given by this linear
combination of the disturbance terms. Note that it would not be appropriate to
set the values of these disturbance terms to their unconditional mean of zero. This
arises because it is the conditional expectation of their values that is of interest. Given
that all information is known up to and including that at time t is available, the
values of the error terms up to time t are known. But ut+1 is not known at time t
and therefore E(ut+1|t ) = 0, and so on.

The forecast for two steps ahead is formed by taking the conditional expecta-
tion of (6.154)

f t,2 = E(yt+2|t ) = E(μ + θ1ut+1 + θ2ut + θ3ut−1 + ut+2 | �t ) (6.158)

f t,2 = E(yt+2|t ) = μ + θ2ut + θ3ut−1 (6.159)

In the case above, ut+2 is not known since information is available only to time t ,
so E(ut+2) is set to zero. Continuing and applying the same rules to generate 3-,
4-, . . . , s -step-ahead forecasts

f t,3 = E(yt+3|t ) = E(μ + θ1ut+2 + θ2ut+1 + θ3ut + ut+3 | �t ) (6.160)

f t,3 = E(yt+3|t ) = μ + θ3ut (6.161)

f t,4 = E(yt+4|t ) = μ (6.162)

f t,s = E(yt+s |t ) = μ ∀ s ≥ 4 (6.163)

As the MA(3) process has a memory of only three periods, all forecasts four or
more steps ahead collapse to the intercept. Obviously, if there had been no constant
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term in the model, the forecasts four or more steps ahead for an MA(3) would be
zero.

6.11.7 Forecasting the future value of an AR(p) process

Unlike a moving average process, an autoregressive process has infinite memory.
To illustrate, suppose that an AR(2) model has been estimated

yt = μ + φ1yt−1 + φ2yt−2 + ut (6.164)

Again, by appealing to the assumption of parameter stability, this equation will
hold for times t + 1, t + 2, and so on

yt+1 = μ + φ1yt + φ2yt−1 + ut+1 (6.165)

yt+2 = μ + φ1yt+1 + φ2yt + ut+2 (6.166)

yt+3 = μ + φ1yt+2 + φ2yt+1 + ut+3 (6.167)

Producing the one-step-ahead forecast is easy, since all of the information required
is known at time t . Applying the expectations operator to (6.165), and setting
E(ut+1) to zero would lead to

f t,1 = E(yt+1|t ) = E(μ + φ1yt + φ2yt−1 + ut+1 | �t ) (6.168)

f t,1 = E(yt+1|t ) = μ + φ1E(yt | t ) + φ2E(yt−1 | t ) (6.169)

f t,1 = E(yt+1|t ) = μ + φ1yt + φ2yt−1 (6.170)

Applying the same procedure in order to generate a two-step-ahead forecast

f t,2 = E(yt+2|t ) = E(μ + φ1yt+1 + φ2yt + ut+2 | �t ) (6.171)

f t,2 = E(yt+2|t ) = μ + φ1E(yt+1 | t ) + φ2E(yt | t ) (6.172)

The case above is now slightly more tricky, since E(yt+1) is not known, although
this in fact is the one-step-ahead forecast, so that (6.172) becomes

f t,2 = E(yt+2|t ) = μ + φ1 f t,1 + φ2yt (6.173)

Similarly, for three, four, . . . and s steps ahead, the forecasts will be, respectively,
given by

f t,3 = E(yt+3|t ) = E(μ + φ1yt+2 + φ2yt+1 + ut+3 | �t ) (6.174)

f t,3 = E(yt+3|t ) = μ + φ1E(yt+2 | t ) + φ2E(yt+1 | t ) (6.175)

f t,3 = E(yt+3|t ) = μ + φ1 f t,2 + φ2 f t,1 (6.176)

f t,4 = μ + φ1 f t,3 + φ2 f t,2 (6.177)

etc. so

f t,s = μ + φ1 f t,s−1 + φ2 f t,s−2 (6.178)
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Table 6.2 Forecast error aggregation

Steps ahead Forecast Actual Squared error Absolute error

1 0.20 −0.40 (0.20 −−0.40)2 = 0.360 |0.20 −−0.40| = 0.600
2 0.15 0.20 (0.15−0.20)2 = 0.002 |0.15−0.20| = 0.050
3 0.10 0.10 (0.10−0.10)2 = 0.000 |0.10−0.10| = 0.000
4 0.06 −0.10 (0.06 −−0.10)2 = 0.026 |0.06 −−0.10| = 0.160
5 0.04 −0.05 (0.04 −−0.05)2 = 0.008 |0.04 −−0.05| = 0.090

Thus the s -step-ahead forecast for an AR(2) process is given by the intercept +
the coefficient on the one-period lag multiplied by the time s − 1 forecast + the
coefficient on the two-period lag multiplied by the s − 2 forecast.

ARMA(p ,q ) forecasts can easily be generated in the same way by applying the
rules for their component parts, and using the general formula given by (6.151).

6.11.8 Determining whether a forecast is accurate or not

For example, suppose that tomorrow’s return on the FTSE is predicted to be
0.2, and that the outcome is actually −0.4. Is this an accurate forecast? Clearly,
one cannot determine whether a forecasting model is good or not based upon
only one forecast and one realisation. Thus in practice, forecasts would usually
be produced for the whole of the out-of-sample period, which would then be
compared with the actual values, and the difference between them aggregated in
some way. The forecast error for observation i is defined as the difference between
the actual value for observation i and the forecast made for it. The forecast error,
defined in this way, will be positive (negative) if the forecast was too low (high).
Therefore, it is not possible simply to sum the forecast errors, since the positive
and negative errors will cancel one another out. Thus, before the forecast errors
are aggregated, they are usually squared or the absolute value taken, which renders
them all positive. To see how the aggregation works, consider the example in
table 6.2, where forecasts are made for a series up to five steps ahead, and are then
compared with the actual realisations (with all calculations rounded to three decimal
places).

The mean squared error (MSE) and mean absolute error (MAE) are now
calculated by taking the average of the fourth and fifth columns, respectively

MSE = (0.360 + 0.002 + 0.000 + 0.026 + 0.008)/5 = 0.079 (6.179)

MAE = (0.600 + 0.050 + 0.000 + 0.160 + 0.090)/5 = 0.180 (6.180)

Taken individually, little can be gleaned from considering the size of the MSE or
MAE, for the statistic is unbounded from above (like the residual sum of squares or
RSS). Instead, the MSE or MAE from one model would be compared with those
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of other models for the same data and forecast period, and the model(s) with the
lowest value of the error measure would be argued to be the most accurate.

MSE provides a quadratic loss function, and so may be particularly useful
in situations where large forecast errors are disproportionately more serious than
smaller errors. This may, however, also be viewed as a disadvantage if large errors
are not disproportionately more serious, although the same critique could also,
of course, be applied to the whole least squares methodology. Indeed Dielman
(1986) goes as far as to say that when there are outliers present, least absolute
values should be used to determine model parameters rather than least squares.
Makridakis (1993, p. 528) argues that mean absolute percentage error (MAPE)
is ‘a relative measure that incorporates the best characteristics among the various
accuracy criteria’. Once again, denoting s -step-ahead forecasts of a variable made
at time t as f t,s and the actual value of the variable at time t as yt , then the MSE
can be defined as

MSE = 1

T − (T1 − 1)

T∑
t=T1

(yt+s − f t,s )2 (6.181)

where T is the total sample size (in-sample + out-of-sample), and T1 is the first
out-of-sample forecast observation. Thus in-sample model estimation initially runs
from observation 1 to (T1−1), and observations T1 to T are available for out-of-
sample estimation, i.e. a total holdout sample of T − (T1 − 1).

MAE measures the average absolute forecast error, and is given by

MAE = 1
T − (T1 − 1)

T∑
t=T1

|yt+s − f t,s | (6.182)

Adjusted MAPE (AMAPE) or symmetric MAPE corrects for the problem of
asymmetry between the actual and forecast values

AMAPE = 100

T − (T1 − 1)

T∑
t=T1

∣∣∣∣ yt+s − f t,s

yt+s + f t,s

∣∣∣∣ (6.183)

The symmetry in (6.183) arises since the forecast error is divided by twice the
average of the actual and forecast values. So, for example, AMAPE will be the
same whether the forecast is 0.5 and the actual value is 0.3, or the actual value is
0.5 and the forecast is 0.3. The same is not true of the standard MAPE formula,
where the denominator is simply yt+s , so that whether yt or f t,s is larger will
affect the result

MAPE = 100
T − (T1 − 1)

T∑
t=T1

∣∣∣∣ yt+s − f t,s

yt+s

∣∣∣∣ (6.184)

MAPE also has the attractive additional property compared to MSE that it can
be interpreted as a percentage error, and furthermore, its value is bounded from
below by 0.
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Unfortunately, it is not possible to use the adjustment if the series and the
forecasts can take on opposite signs (as they could in the context of returns forecasts,
for example). This is due to the fact that the prediction and the actual value may,
purely by coincidence, take on values that are almost equal and opposite, thus
almost cancelling each other out in the denominator. This leads to extremely large
and erratic values of AMAPE. In such an instance, it is not possible to use MAPE
as a criterion either. Consider the following example: say we forecast a value of
f t,s = 3, but the out-turn is that yt+s = 0.0001. The addition to total MSE from
this one observation is given by

1

391
× (0.0001 − 3)2 = 0.0230 (6.185)

This value for the forecast is large, but perfectly feasible since in many cases it will
be well within the range of the data. But the addition to total MAPE from just
this single observation is given by

100
391

∣∣∣∣0.0001 − 3
0.0001

∣∣∣∣ = 7670 (6.186)

MAPE has the advantage that for a random walk in the log levels (i.e. a zero
forecast), the criterion will take the value one (or 100 if we multiply the formula
by 100 to get a percentage, as was the case for the equation above). So if a
forecasting model gives a MAPE smaller than one (or 100), it is superior to the
random walk model. In fact the criterion is also not reliable if the series can take
on absolute values less than one. This point may seem somewhat obvious, but it is
clearly important for the choice of forecast evaluation criteria.

Another criterion which is popular is Theil’s U-statistic (1966). The metric is
defined as follows

U =

√
T∑

t=T1

(
yt+s − f t,s

yt+s

)2

√
T∑

t=T1

(
yt+s − f b t,s

yt+s

)2
(6.187)

where f b t,s is the forecast obtained from a benchmark model (typically a simple
model such as a naive or random walk). A U-statistic of one implies that the model
under consideration and the benchmark model are equally (in)accurate, while a
value of less than one implies that the model is superior to the benchmark, and
vice versa for U > 1. Although the measure is clearly useful, as Makridakis and
Hibon (1995) argue, it is not without problems since if fbt,s is the same as yt+s ,
Uwill be infinite since the denominator will be zero. The value of U will also be
influenced by outliers in a similar vein to MSE and has little intuitive meaning.3

3 Note that the Theil’s U-formula reported by EViews is slightly different.
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6.11.9 Statistical versus financial or economic loss functions

Many econometric forecasting studies evaluate the models’ success using statistical
loss functions such as those described above. However, it is not necessarily the case
that models classed as accurate because they have small mean squared forecast errors
are useful in practical situations. To give one specific illustration, it has recently
been shown (Gerlow, Irwin and Liu, 1993) that the accuracy of forecasts according
to traditional statistical criteria may give little guide to the potential profitability
of employing those forecasts in a market trading strategy. So models that perform
poorly on statistical grounds may still yield a profit if used for trading, and vice
versa.

On the other hand, models that can accurately forecast the sign of future
returns, or can predict turning points in a series have been found to be more
profitable (Leitch and Tanner, 1991). Two possible indicators of the ability of
a model to predict direction changes irrespective of their magnitude are those
suggested by Pesaran and Timmerman (1992) and by Refenes (1995). The relevant
formulae to compute these measures are, respectively

% correct sign predictions = 1

T − (T1 − 1)

T∑
t=T1

zt+s (6.188)

where zt+s = 1 if (yt+s f t,s ) > 0

zt+s = 0 otherwise

and

% correct direction change predictions = 1
T − (T1 − 1)

T∑
t=T1

zt+s (6.189)

where zt+s = 1 if (yt+s − yt )( f t,s − yt ) > 0

zt+s = 0 otherwise

Thus, in each case, the criteria give the proportion of correctly predicted signs and
directional changes for some given lead time s , respectively.

Considering how strongly each of the three criteria outlined above (MSE,
MAE and proportion of correct sign predictions) penalises large errors relative to
small ones, the criteria can be ordered as follows:

Penalises large errors least → penalises large errors most heavily

Sign prediction → MAE →MSE

MSE penalises large errors disproportionately more heavily than small errors,
MAE penalises large errors proportionately equally as heavily as small errors, while
the sign prediction criterion does not penalise large errors any more than small
errors.
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6.11.10 Finance theory and time series analysis

An example of ARIMA model identification, estimation and forecasting in the
context of commodity prices is given by Chu (1978). He finds ARIMA models
useful compared with structural models for short-term forecasting, but also finds
that they are less accurate over longer horizons. It also observed that ARIMA
models have limited capacity to forecast unusual movements in prices.

Chu (1978) argues that, although ARIMA models may appear to be com-
pletely lacking in theoretical motivation, and interpretation, this may not nec-
essarily be the case. He cites several papers and offers an additional example to
suggest that ARIMA specifications quite often arise naturally as reduced form
equations (see chapter 7) corresponding to some underlying structural relation-
ships. In such a case, not only would ARIMA models be convenient and easy to
estimate, they could also be well grounded in financial or economic theory after
all.

• • • • • • • • • • • • • • 6.12 Forecasting using ARMA models in EViews

Once a specific model order has been chosen and the model estimated for a
particular set of data, it may be of interest to use the model to forecast future values
of the series. Suppose that the AR(2) model selected for the house price percentage
changes series were estimated using observations February 1991–December 2010,
leaving twenty-nine remaining observations to construct forecasts for and to test
forecast accuracy (for the period January 2011–May 2013).

Once the required model has been estimated and EViews has opened a window
displaying the output, click on the Forecast icon. In this instance, the sample
range to forecast would be entered as 2011M01–2013M05. There are two methods
available in EViews for constructing forecasts: dynamic and static. Select the option
Dynamic to calculate multi-step forecasts starting from the first period in the
forecast sample or Static to calculate a sequence of one-step-ahead forecasts,
rolling the sample forwards one observation after each forecast. There is also a box
that allows you to choose to use actual rather than forecasted values for lagged
dependent variables for the out-of-sample observations. Screenshot 6.2 shows
the window to enter these options while the outputs for the dynamic and static
forecasts are given in screenshots 6.3 and 6.4. By default, EViews will store the
forecasts in a new series DHPF. If you examine this series you will see that all of
the observations up to and including December 2010 are the same as the original
series (since we did not forecast those data points) but the data points from January
2011 onwards represent the forecasts from the AR(2).

The forecasts are plotted using the continuous line, while a confidence interval
is given by the two dotted lines in each case. For the dynamic forecasts, it is clearly
evident that the forecasts quickly converge upon the long-term unconditional
mean value as the horizon increases. Of course, this does not occur with the series
of one-step-ahead forecasts produced by the ‘static’ command. Several other useful
measures concerning the forecast errors are displayed in the plot box, including the
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Screenshot 6.2 The options available when producing forecasts

square root of the mean squared error (RMSE), the MAE, the MAPE and Theil’s
U-statistic. The MAPE for the dynamic and static forecasts for DHP are well
over 100% in both cases, which can sometimes happen for the reasons outlined
above. This indicates that the model forecasts are unable to account for much of
the variability of the out-of-sample part of the data. This is to be expected as
forecasting changes in house prices, along with the changes in the prices of any
other assets, is difficult!

EViews provides another piece of useful information – a decomposition of
the forecast errors. The mean squared forecast error can be decomposed into
a bias proportion, a variance proportion and a covariance proportion. The bias
component measures the extent to which the mean of the forecasts is different to
the mean of the actual data (i.e. whether the forecasts are biased). Similarly, the
variance component measures the difference between the variation of the forecasts
and the variation of the actual data, while the covariance component captures any
remaining unsystematic part of the forecast errors. As one might have expected,
the forecasts are not biased. Accurate forecasts would be unbiased and also have a
small variance proportion, so that most of the forecast error should be attributable
to the covariance (unsystematic or residual) component. For further details, see
Granger and Newbold (1986).

A robust forecasting exercise would of course employ a longer out-of-sample
period than the two years or so used here, would perhaps employ several competing
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Screenshot 6.3 Dynamic forecasts for the percentage changes in house prices

models in parallel, and would also compare the accuracy of the predictions by
examining the error measures given in the box after the forecast plots.

• • • • • • • • • • • • • • 6.13 Exponential smoothing models in EViews

This class of models can be easily estimated in EViews by double clicking on the
desired variable in the workfile, so that the spreadsheet for that variable appears,
and selecting Proc on the button bar for that variable and then Exponential
Smoothing/Simple Exponential Smoothing. . . . The screen with options
will appear as in screenshot 6.5.

There is a variety of smoothing methods available, including single and dou-
ble, or various methods to allow for seasonality and trends in the data. Select
Single (exponential smoothing), which is the only smoothing method that has
been discussed in this book, and specify the estimation sample period as 1991M1 –
2010M12 to leave twenty-nine observations for out-of-sample forecasting. Click-
ing OK will give the results in the following table.
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Screenshot 6.4 Static forecasts for the percentage changes in house prices

Date: 07/06/13 Time: 14:31
Sample: 1991M02 2010M12
Included observations: 239
Method: Single Exponential
Original Series: DHP
Forecast Series: DHPSM

Parameters: Alpha 0.2400
Sum of Squared Residuals 299.3045
Root Mean Squared Error 1.119071

End of Period Levels: Mean −0.458934

The output includes the value of the estimated smoothing coefficient (= 0.24
in this case), together with the RSS for the in-sample estimation period and the
RMSE for the twenty-nine forecasts. The final in-sample smoothed value will
be the forecast for those twenty-nine observations (which in this case would be
-0.458934). EViews has automatically saved the smoothed values (i.e. the model
fitted values) and the forecasts in a series called ‘DHPSM’.
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Screenshot 6.5 Estimating exponential smoothing models

Key concepts

The key terms to be able to define and explain from this chapter are

• ARIMA models • Ljung–Box test

• invertible MA • Wold’s decomposition theorem

• autocorrelation function • partial autocorrelation function

• Box–Jenkins methodology • information criteria

• exponential smoothing • recursive window

• rolling window • out-of-sample

• multi-step forecast • mean squared error

• mean absolute percentage error

Self-study questions

1. What are the differences between autoregressive and moving average models?
2. Why might ARMA models be considered particularly useful for financial

time series? Explain, without using any equations or mathematical notation,
the difference between AR, MA and ARMA processes.
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3. Consider the following three models that a researcher suggests might be a
reasonable model of stock market prices

yt = yt−1 + ut (6.190)

yt = 0.5yt−1 + ut (6.191)

yt = 0.8ut−1 + ut (6.192)

(a) What classes of models are these examples of?
(b) What would the autocorrelation function for each of these processes look

like? (You do not need to calculate the acf, simply consider what shape it
might have given the class of model from which it is drawn.)

(c) Which model is more likely to represent stock market prices from a
theoretical perspective, and why? If any of the three models truly
represented the way stock market prices move, which could potentially
be used to make money by forecasting future values of the series?

(d) By making a series of successive substitutions or from your knowledge of
the behaviour of these types of processes, consider the extent of
persistence of shocks in the series in each case.

4. (a) Describe the steps that Box and Jenkins (1976) suggested should be
involved in constructing an ARMA model.

(b) What particular aspect of this methodology has been the subject of
criticism and why?

(c) Describe an alternative procedure that could be used for this aspect.
5. You obtain the following estimates for an AR(2) model of some returns data

yt = 0.803yt−1 + 0.682yt−2 + ut

where ut is a white noise error process. By examining the characteristic
equation, check the estimated model for stationarity.

6. A researcher is trying to determine the appropriate order of an ARMA
model to describe some actual data, with 200 observations available. She has
the following figures for the log of the estimated residual variance (i.e. log
(σ̂ 2)) for various candidate models. She has assumed that an order greater
than (3,3) should not be necessary to model the dynamics of the data. What
is the ‘optimal’ model order?

ARMA(p ,q ) log(σ̂ 2)
model order
(0,0) 0.932
(1,0) 0.864
(0,1) 0.902
(1,1) 0.836
(2,1) 0.801
(1,2) 0.821
(2,2) 0.789
(3,2) 0.773
(2,3) 0.782
(3,3) 0.764
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7. How could you determine whether the order you suggested for question 6
was in fact appropriate?

8. ‘Given that the objective of any econometric modelling exercise is to find the
model that most closely ‘fits’ the data, then adding more lags to an ARMA
model will almost invariably lead to a better fit. Therefore a large model is
best because it will fit the data more closely.’

Comment on the validity (or otherwise) of this statement.
9. (a) You obtain the following sample autocorrelations and partial

autocorrelations for a sample of 100 observations from actual data:

Lag 1 2 3 4 5 6 7 8
acf 0.420 0.104 0.032 −0.206 −0.138 0.042 −0.018 0.074

pacf 0.632 0.381 0.268 0.199 0.205 0.101 0.096 0.082

Can you identify the most appropriate time series process for this
data?

(b) Use the Ljung–Box Q∗ test to determine whether the first three
autocorrelation coefficients taken together are jointly significantly
different from zero.

10. You have estimated the following ARMA(1,1) model for some time series
data

yt = 0.036 + 0.69yt−1 + 0.42ut−1 + ut

Suppose that you have data for time to t− 1, i.e. you know that yt−1 = 3.4,
and û t−1 = − 1.3
(a) Obtain forecasts for the series y for times t , t + 1, and t + 2 using the

estimated ARMA model.
(b) If the actual values for the series turned out to be −0.032, 0.961, 0.203

for t , t + 1, t + 2, calculate the (out-of-sample) mean squared error.
(c) A colleague suggests that a simple exponential smoothing model might

be more useful for forecasting the series. The estimated value of the
smoothing constant is 0.15, with the most recently available smoothed
value, St−1 being 0.0305. Obtain forecasts for the series y for times t ,
t + 1, and t + 2 using this model.

(d) Given your answers to parts (a) to (c) of the question, determine whether
Box–Jenkins or exponential smoothing models give the most accurate
forecasts in this application.

11. (a) Explain what stylised shapes would be expected for the autocorrelation
and partial autocorrelation functions for the following stochastic
processes:
● white noise
● an AR(2)
● an MA(1)
● an ARMA (2,1).

(b) Consider the following ARMA process.

yt = 0.21 + 1.32yt−1 + 0.58ut−1 + ut
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Determine whether the MA part of the process is invertible.
(c) Produce one-, two-, three- and four-step-ahead forecasts for the process

given in part (b).
(d) Outline two criteria that are available for evaluating the forecasts

produced in part (c), highlighting the differing characteristics of each.
(e) What procedure might be used to estimate the parameters of an ARMA

model? Explain, briefly, how such a procedure operates, and why OLS is
not appropriate.

12. (a) Briefly explain any difference you perceive between the characteristics of
macroeconomic and financial data. Which of these features suggest the
use of different econometric tools for each class of data?

(b) Consider the following autocorrelation and partial autocorrelation
coefficients estimated using 500 observations for a weakly stationary
series, yt :

Lag acf pacf

1 0.307 0.307
2 −0.013 0.264
3 0.086 0.147
4 0.031 0.086
5 −0.197 0.049

Using a simple ‘rule of thumb’, determine which, if any, of the acf and
pacf coefficients are significant at the 5% level. Use both the Box–Pierce
and Ljung–Box statistics to test the joint null hypothesis that the first five
autocorrelation coefficients are jointly zero.

(c) What process would you tentatively suggest could represent the most
appropriate model for the series in part (b)? Explain your answer.

(d) Two researchers are asked to estimate an ARMA model for a daily
USD/GBP exchange rate return series, denoted xt . Researcher A uses
Schwarz’s criterion for determining the appropriate model order and
arrives at an ARMA(0,1). Researcher B uses Akaike’s information
criterion which deems an ARMA(2,0) to be optimal. The estimated
models are

A : x̂t = 0.38 + 0.10ut−1

B : x̂t = 0.63 + 0.17xt−1 − 0.09xt−2

where ut is an error term.
You are given the following data for time until day z (i.e. t = z)

xz = 0.31, xz−1 = 0.02, xz−2 = −0.16

uz = −0.02, uz−1 = 0.13, uz−2 = 0.19
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Produce forecasts for the next four days (i.e. for times z+ 1, z+ 2,
z + 3, z + 4) from both models.

(e) Outline two methods proposed by Box and Jenkins (1970) for
determining the adequacy of the models proposed in part (d).

(f) Suppose that the actual values of the series x on days z+1, z+2, z+ 3,
z+ 4 turned out to be 0.62, 0.19, −0.32, 0.72, respectively. Determine
which researcher’s model produced the most accurate forecasts.

13. Select two of the stock series from the ‘CAPM.XLS’ Excel file, construct a
set of continuously compounded returns, and then perform a time series
analysis of these returns. The analysis should include
(a) An examination of the autocorrelation and partial autocorrelation

functions.
(b) An estimation of the information criteria for each ARMA model order

from (0,0) to (5,5).
(c) An estimation of the model that you feel most appropriate given the

results that you found from the previous two parts of the question.
(d) The construction of a forecasting framework to compare the forecasting

accuracy of
i. Your chosen ARMA model
ii. An arbitrary ARMA(1,1)
iii. An single exponential smoothing model
iv. A random walk with drift in the log price levels (hint: this is easiest

achieved by treating the returns as an ARMA(0,0) – i.e. simply
estimating a model including only a constant).

(e) Then compare the fitted ARMA model with the models that were
estimated in chapter 4 based on exogenous variables. Which type of
model do you prefer and why?
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Learning outcomes

In this chapter, you will learn how to

• Compare and contrast single equation and systems-based approaches to

building models

• Discuss the cause, consequence and solution to simultaneous equations bias

• Derive the reduced form equations from a structural model

• Describe several methods for estimating simultaneous equations models

• Explain the relative advantages and disadvantages of VAR modelling

• Determine whether an equation from a system is identified

• Estimate optimal lag lengths, impulse responses and variance decompositions

• Conduct Granger causality tests

• Construct simultaneous equations models and VARs in EViews

• • • • • • • • • • • • • • 7.1 Motivations

All of the structural models that have been considered thus far have been single
equations models of the form

y = Xβ + u (7.1)

One of the assumptions of the classical linear regression model (CLRM) is that
the explanatory variables are non-stochastic, or fixed in repeated samples. There are
various ways of stating this condition, some of which are slightly more or less strict,
but all of which have the same broad implication. It could also be stated that all of
the variables contained in the X matrix are assumed to be exogenous – that is, their
values are determined outside that equation. This is a rather simplistic working
definition of exogeneity, although several alternatives are possible; this issue will
be revisited later in the chapter. Another way to state this is that the model is
‘conditioned on’ the variables in X.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-07 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:0

306

•
•
•
•
•
•
•
•
• Multivariate models

As stated in chapter 3, the X matrix is assumed not to have a probability
distribution. Note also that causality in this model runs from X to y, and not vice
versa, i.e. that changes in the values of the explanatory variables cause changes
in the values of y, but that changes in the value of y will not impact upon the
explanatory variables. On the other hand, y is an endogenous variable – that is, its
value is determined by (7.1).

The purpose of the first part of this chapter is to investigate one of the important
circumstances under which the assumption presented above will be violated. The
impact on the OLS estimator of such a violation will then be considered.

To illustrate a situation in which such a phenomenon may arise, consider the
following two equations that describe a possible model for the total aggregate
(country-wide) supply of new houses (or any other physical asset).

Q dt = α + β Pt + γ St + ut (7.2)

Q s t = λ + μPt + κTt + vt (7.3)

Q dt = Qs t (7.4)

where

Q dt = quantity of new houses demanded at time t
Q s t = quantity of new houses supplied (built) at time t
Pt = (average) price of new houses prevailing at time t
St = price of a substitute (e.g. older houses)
Tt = some variable embodying the state of housebuilding technology, ut and vt
are error terms.

Equation (7.2) is an equation for modelling the demand for new houses, and (7.3)
models the supply of new houses. (7.4) is an equilibrium condition for there to be
no excess demand (people willing and able to buy new houses but cannot) and no
excess supply (constructed houses that remain empty owing to lack of demand).

Assuming that the market always clears, that is, that the market is always in
equilibrium, and dropping the time subscripts for simplicity, (7.2)–(7.4) can be
written

Q = α + β P + γ S + u (7.5)

Q = λ + μP + κT + v (7.6)

Equations (7.5) and (7.6) together comprise a simultaneous structural form of the
model, or a set of structural equations. These are the equations incorporating
the variables that economic or financial theory suggests should be related to one
another in a relationship of this form. The point is that price and quantity are
determined simultaneously (price affects quantity and quantity affects price). Thus,
in order to sell more houses, everything else equal, the builder will have to lower the
price. Equally, in order to obtain a higher price for each house, the builder should
construct and expect to sell fewer houses. P and Q are endogenous variables,
while S and T are exogenous.
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A set of reduced form equations corresponding to (7.5) and (7.6) can be
obtained by solving (7.5) and (7.6) for P and for Q (separately). There will be a
reduced form equation for each endogenous variable in the system.

Solving for Q

α + β P + γ S + u = λ + μP + κT + v (7.7)

Solving for P

Q
β

− α

β
− γ S

β
− u

β
= Q

μ
− λ

μ
− κT

μ
− v

μ
(7.8)

Rearranging (7.7)

β P − μP = λ − α + κT − γ S + v − u (7.9)

(β − μ)P = (λ − α) + κT − γ S + (v − u) (7.10)

P = λ − α

β − μ
+ κ

β − μ
T − γ

β − μ
S + v − u

β − μ
(7.11)

Multiplying (7.8) through by βμ and rearranging

μQ − μα − μγ S − μu = βQ − βλ − βκT − βv (7.12)

μQ − βQ = μα − βλ − βκT + μγ S + μu − βv (7.13)

(μ − β)Q = (μα − βλ) − βκT + μγ S + (μu − βv) (7.14)

Q = μα − βλ

μ − β
− βκ

μ − β
T + μγ

μ − β
S + μu − βv

μ − β
(7.15)

(7.11) and (7.15) are the reduced form equations for P and Q. They are the
equations that result from solving the simultaneous structural equations given by
(7.5) and (7.6). Notice that these reduced form equations have only exogenous
variables on the right hand side (RHS).

• • • • • • • • • • • • • • 7.2 Simultaneous equations bias

It would not be possible to estimate (7.5) and (7.6) validly using OLS, as they
are clearly related to one another since they both contain P and Q, and OLS
would require them to be estimated separately. But what would have happened if
a researcher had estimated them separately using OLS? Both equations depend on
P . One of the CLRM assumptions was that X and u are independent (where X is
a matrix containing all the variables on the RHS of the equation), and given also
the assumption that E(u) = 0, then E(X′u) = 0, i.e. the errors are uncorrelated
with the explanatory variables. But it is clear from (7.11) that P is related to the
errors in (7.5) and (7.6) – i.e. it is stochastic. So this assumption has been violated.

What would be the consequences for the OLS estimator, β̂ if the simultaneity
were ignored? Recall that

β̂ = (X′X)−1 X′y (7.16)
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and that

y = Xβ + u (7.17)

Replacing y in (7.16) with the RHS of (7.17)

β̂ = (X′X)−1 X′(Xβ + u) (7.18)

so that

β̂ = (X′X)−1 X′Xβ + (X′X)−1 X′u (7.19)

β̂ = β + (X′X)−1 X′u (7.20)

Taking expectations,

E(β̂) = E(β) + E((X′X)−1 X′u) (7.21)

E(β̂) = β + E((X′X)−1 X′u) (7.22)

If the Xs are non-stochastic (i.e. if the assumption had not been violated),
E[(X′X)−1 X′u] = (X′X)−1 X′E[u] = 0, which would be the case in a single equa-
tion system, so that E(β̂) = β in (7.22). The implication is that the OLS estimator,
β̂, would be unbiased.

But, if the equation is part of a system, then E[(X′X)−1 X′u] �= 0, in general,
so that the last term in (7.22) will not drop out, and so it can be concluded
that application of OLS to structural equations which are part of a simultaneous
system will lead to biased coefficient estimates. This is known as simultaneity bias
or simultaneous equations bias.

Is the OLS estimator still consistent, even though it is biased? No, in fact,
the estimator is inconsistent as well, so that the coefficient estimates would still
be biased even if an infinite amount of data were available, although proving this
would require a level of algebra beyond the scope of this book.

• • • • • • • • • • • • • • 7.3 So how can simultaneous equations models be validly estimated?

Taking (7.11) and (7.15), i.e. the reduced form equations, they can be rewritten as

P = π10 + π11T + π12S + ε1 (7.23)

Q = π20 + π21T + π22S + ε2 (7.24)

where the π coefficients in the reduced form are simply combinations of the
original coefficients, so that

π10 = λ − α

β − μ
, π11 = κ

β − μ
, π12 = −γ

β − μ
, ε1 = v − u

β − μ
,

π20 = μα − βλ

μ − β
, π21 = −βκ

μ − β
, π22 = μγ

μ − β
, ε2 = μu − βv

μ − β
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Equations (7.23) and (7.24) can be estimated using OLS since all the RHS variables
are exogenous, so the usual requirements for consistency and unbiasedness of the
OLS estimator will hold (provided that there are no other misspecifications).
Estimates of the πi j coefficients would thus be obtained. But, the values of the π

coefficients are probably not of much interest; what was wanted were the original
parameters in the structural equations – α, β, γ, λ, μ, κ. The latter are the
parameters whose values determine how the variables are related to one another
according to financial or economic theory.

• • • • • • • • • • • • • • 7.4 Can the original coefficients be retrieved from the π s ?

The short answer to this question is ‘sometimes’, depending upon whether the
equations are identified. Identification is the issue of whether there is enough infor-
mation in the reduced form equations to enable the structural form coefficients to
be calculated. Consider the following demand and supply equations

Q = α + β P Supply equation (7.25)

Q = λ + μP Demand equation (7.26)

It is impossible to tell which equation is which, so that if one simply observed
some quantities of a good sold and the price at which they were sold, it would
not be possible to obtain the estimates of α, β, λ and μ. This arises since there is
insufficient information from the equations to estimate four parameters. Only two
parameters could be estimated here, although each would be some combination
of demand and supply parameters, and so neither would be of any use. In this
case, it would be stated that both equations are unidentified (or not identified or
underidentified). Notice that this problem would not have arisen with (7.5) and
(7.6) since they have different exogenous variables.

7.4.1 What determines whether an equation is identified or not?

Any one of three possible situations could arise, as shown in box 7.1.
How can it be determined whether an equation is identified or not? Broadly,

the answer to this question depends upon how many and which variables are present
in each structural equation. There are two conditions that could be examined to
determine whether a given equation from a system is identified – the order condition
and the rank condition:

● The order condition – is a necessary but not sufficient condition for an equation
to be identified. That is, even if the order condition is satisfied, the equation
might not be identified.

● The rank condition – is a necessary and sufficient condition for identification.
The structural equations are specified in a matrix form and the rank of a
coefficient matrix of all of the variables excluded from a particular equation
is examined. An examination of the rank condition requires some technical
algebra beyond the scope of this text.
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Box 7.1 Determining whether an equation is identified

(1) An equation is unidentified, such as (7.25) or (7.26). In the case of an
unidentified equation, structural coefficients cannot be obtained from
the reduced form estimates by any means.

(2) An equation is exactly identified (just identified), such as (7.5) or (7.6). In
the case of a just identified equation, unique structural form coefficient
estimates can be obtained by substitution from the reduced form
equations.

(3) If an equation is overidentified, more than one set of structural
coefficients can be obtained from the reduced form. An example of this
will be presented later in this chapter.

Even though the order condition is not sufficient to ensure identification of an
equation from a system, the rank condition will not be considered further here.
For relatively simple systems of equations, the two rules would lead to the same
conclusions. Also, in fact, most systems of equations in economics and finance are
overidentified, so that underidentification is not a big issue in practice.

7.4.2 Statement of the order condition

There are a number of different ways of stating the order condition; that employed
here is an intuitive one (taken from Ramanathan, 1995, p. 666, and slightly mod-
ified):

Let G denote the number of structural equations. An equation is just identified
if the number of variables excluded from an equation is G− 1, where ‘excluded’
means the number of all endogenous and exogenous variables that are not present
in this particular equation. If more than G− 1 are absent, it is over-identified. If
less than G− 1 are absent, it is not identified.

One obvious implication of this rule is that equations in a system can have differing
degrees of identification, as illustrated by the following example.

Example 7.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the following system of equations, the Ys are endogenous, while the Xs are
exogenous (with time subscripts suppressed). Determine whether each equation is
overidentified, underidentified, or just identified.

Y1 = α0 + α1Y2 + α3Y3 + α4 X1 + α5 X2 + u1 (7.27)

Y2 = β0 + β1Y3 + β2 X1 + u2 (7.28)

Y3 = γ0 + γ1Y2 + u3 (7.29)
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In this case, there are G = 3 equations and 3 endogenous variables. Thus, if the
number of excluded variables is exactly 2, the equation is just identified. If the number
of excluded variables is more than 2, the equation is overidentified. If the number of
excluded variables is less than 2, the equation is not identified.

The variables that appear in one or more of the three equations are Y1, Y2, Y3, X1,
X2. Applying the order condition to (7.27)–(7.29):

● Equation (7.27): contains all variables, with none excluded, so that it is not identified
● Equation (7.28): has variables Y1 and X2 excluded, and so is just identified
● Equation (7.29): has variables Y1, X1, X2 excluded, and so is overidentified

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 7.5 Simultaneous equations in finance

There are of course numerous situations in finance where a simultaneous equations
framework is more relevant than a single equation model. Two illustrations from the
market microstructure literature are presented later in this chapter, while another,
drawn from the banking literature, will be discussed now.

There has recently been much debate internationally, but especially in the
UK, concerning the effectiveness of competitive forces in the banking industry.
Governments and regulators express concern at the increasing concentration in the
industry, as evidenced by successive waves of merger activity, and at the enormous
profits that many banks made in the late 1990s and early twenty-first century.
They argue that such profits result from a lack of effective competition. However,
many (most notably, of course, the banks themselves!) suggest that such profits are
not the result of excessive concentration or anti-competitive practices, but rather
partly arise owing to recent world prosperity at that phase of the business cycle
(the ‘profits won’t last’ argument) and partly owing to massive cost-cutting by
the banks, given recent technological improvements. These debates have fuelled
a resurgent interest in models of banking profitability and banking competition.
One such model is employed by Shaffer and DiSalvo (1994) in the context of two
banks operating in south central Pennsylvania. The model is given by

ln qi t = a0 + a1 ln Pi t + a2 ln Pj t + a3 ln Yt + a4 ln Zt + a5t + ui1t (7.30)

ln TRi t = b0 + b1 ln qi t +
3∑

k = 1

bk+1 ln wi kt + ui2t (7.31)

where i = 1, 2 are the two banks, q is bank output, Pt is the price of the output at
time t , Yt is a measure of aggregate income at time t , Zt is the price of a substitute
for bank activity at time t , the variable t represents a time trend, TRi t is the total
revenue of bank i at time t , wi kt are the prices of input k (k = 1, 2, 3 for labour,
bank deposits and physical capital) for bank i at time t and the u are unobservable
error terms. The coefficient estimates are not presented here, but suffice to say that
a simultaneous framework, with the resulting model estimated separately using
annual time series data for each bank, is necessary. Output is a function of price on
the RHS of (7.30), while in (7.31), total revenue, which is a function of output on
the RHS, is obviously related to price. Therefore, OLS is again an inappropriate
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estimation technique. Both of the equations in this system are overidentified, since
there are only two equations, and the income, the substitute for banking activity
and the trend terms are missing from (7.31), whereas the three input prices are
missing from (7.30).

• • • • • • • • • • • • • • 7.6 A definition of exogeneity

Leamer (1985) defines a variable x as exogenous if the conditional distribution
of y given x does not change with modifications of the process generating x.
Although several slightly different definitions exist, it is possible to classify two
forms of exogeneity – predeterminedness and strict exogeneity:

● A predetermined variable is one that is independent of the contemporaneous
and future errors in that equation

● A strictly exogenous variable is one that is independent of all contemporaneous,
future and past errors in that equation.

7.6.1 Tests for exogeneity

How can a researcher tell whether variables really need to be treated as endogenous
or not? In other words, financial theory might suggest that there should be a two-
way relationship between two or more variables, but how can it be tested whether
a simultaneous equations model is necessary in practice?

Example 7.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Consider again (7.27)–(7.29). Equation (7.27) contains Y2 and Y3 – but are separate
equations required for them, or could the variables Y2 and Y3 be treated as
exogenous variables (in which case, they would be called X3 and X4!)? This can be
formally investigated using a Hausman test, which is calculated as shown in box 7.2.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Box 7.2 Conducting a Hausman test for exogeneity

(1) Obtain the reduced form equations corresponding to (7.27)–(7.29).
The reduced form equations are obtained as follows.

Substituting in (7.28) for Y3 from (7.29):

Y2 = β0 + β1(γ0 + γ1Y2 + u3) + β2 X1 + u2 (7.32)

Y2 = β0 + β1γ0 + β1γ1Y2 + β1u3 + β2 X1 + u2 (7.33)

Y2(1 − β1γ1) = (β0 + β1γ0) + β2 X1 + (u2 + β1u3) (7.34)

Y2 = (β0 + β1γ0)
(1 − β1γ1)

+ β2 X1

(1 − β1γ1)
+ (u2 + β1u3)

(1 − β1γ1)
(7.35)
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(7.35) is the reduced form equation for Y2, since there are no
endogenous variables on the RHS. Substituting in (7.27) for Y3 from
(7.29):

Y1 = α0 + α1Y2 + α3(γ0 + γ1Y2 + u3) + α4 X1 + α5 X2 + u1 (7.36)

Y1 = α0 + α1Y2 + α3γ0 + α3γ1Y2 + α3u3 + α4 X1 + α5 X2 + u1

(7.37)

Y1 = (α0 + α3γ0) + (α1 + α3γ1)Y2 + α4 X1 + α5 X2 + (u1 + α3u3)

(7.38)

Substituting in (7.38) for Y2 from (7.35):

Y1 = (α0 + α3γ0) + (α1 + α3γ1)
(

(β0 + β1γ0)
(1 − β1γ1)

+ β2 X1

(1 − β1γ1)

+ (u2 + β1u3)
(1 − β1γ1)

)
+ α4 X1 + α5 X2 + (u1 + α3u3) (7.39)

Y1 =
(

α0 + α3γ0 + (α1 + α3γ1)
(β0 + β1γ0)
(1 − β1γ1)

)
+ (α1 + α3γ1)β2 X1

(1 − β1γ1)

+ (α1 + α3γ1)(u2 + β1u3)
(1 − β1γ1)

+ α4 X1 + α5 X2 + (u1 + α3u3)

(7.40)

Y1 =
(

α0 + α3γ0 + (α1 + α3γ1)
(β0 + β1γ0)

(1 − β1γ1)

)

+
(

(α1 + α3γ1)β2

(1 − β1γ1)
+ α4

)
X1 + α5 X2

+
(

(α1 + α3γ1)(u2 + β1u3)

(1 − β1γ1)
+ (u1 + α3u3)

)
(7.41)

(7.41) is the reduced form equation for Y1. Finally, to obtain the
reduced form equation for Y3, substitute in (7.29) for Y2 from (7.35):

Y3 =
(

γ0 + γ1(β0 + β1γ0)
(1 − β1γ1)

)
+ γ1β2 X1

(1 − β1γ1)
+

(
γ1(u2 + β1u3)

(1 − β1γ1)
+ u3

)
(7.42)

So, the reduced form equations corresponding to (7.27)–(7.29) are,
respectively, given by (7.41), (7.35) and (7.42). These three equations
can also be expressed using πi j for the coefficients, as discussed above:

Y1 = π10 + π11 X1 + π12 X2 + v1 (7.43)

Y2 = π20 + π21 X1 + v2 (7.44)

Y3 = π30 + π31 X1 + v3 (7.45)
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Estimate the reduced form equations (7.43)–(7.45) using OLS, and
obtain the fitted values, Ŷ1

1 , Ŷ1
2 , Ŷ1

3 , where the superfluous superscript
1 denotes the fitted values from the reduced form estimation.

(2) Run the regression corresponding to (7.27) – i.e. the structural form
equation, at this stage ignoring any possible simultaneity.

(3) Run the regression (7.27) again, but now also including the fitted
values from the reduced form equations, Ŷ1

2 , Ŷ1
3 , as additional regressors

Y1 = α0 + α1Y2 + α3Y3 + α4 X1 + α5 X2 + λ2Ŷ1
2 + λ3Ŷ1

3 + ε1 (7.46)

(4) Use an F-test to test the joint restriction that λ2 = 0, and λ3 = 0. If the
null hypothesis is rejected, Y2 and Y3 should be treated as endogenous.
If λ2 and λ3 are significantly different from zero, there is extra important
information for modelling Y1 from the reduced form equations. On the
other hand, if the null is not rejected, Y2 and Y3 can be treated as
exogenous for Y1, and there is no useful additional information
available for Y1 from modelling Y2 and Y3 as endogenous variables.

Steps 2–4 would then be repeated for (7.28) and (7.29).

• • • • • • • • • • • • • • 7.7 Triangular systems

Consider the following system of equations, with time subscripts omitted for
simplicity

Y1 = β10 + γ11 X1 + γ12 X2 + u1 (7.47)

Y2 = β20 + β21Y1 + γ21 X1 + γ22 X2 + u2 (7.48)

Y3 = β30 + β31Y1 + β32Y2 + γ31 X1 + γ32 X2 + u3 (7.49)

Assume that the error terms from each of the three equations are not correlated
with each other. Can the equations be estimated individually using OLS? At first
blush, an appropriate answer to this question might appear to be, ‘No, because this
is a simultaneous equations system’. But consider the following:

● Equation (7.47): contains no endogenous variables, so X1 and X2 are not
correlated with u1. So OLS can be used on (7.47).

● Equation (7.48): contains endogenous Y1 together with exogenous X1 and X2.
OLS can be used on (7.48) if all the RHS variables in (7.48) are uncorrelated
with that equation’s error term. In fact, Y1 is not correlated with u2 because
there is no Y2 term in (7.47). So OLS can be used on (7.48).

● Equation (7.49): contains both Y1 and Y2; these are required to be uncorrelated
with u3. By similar arguments to the above, (7.47) and (7.48) do not contain
Y3. So OLS can be used on (7.49).
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This is known as a recursive or triangular system, which is really a special case – a set of
equations that looks like a simultaneous equations system, but isn’t. In fact, there
is not a simultaneity problem here, since the dependence is not bi-directional, for
each equation it all goes one way.

• • • • • • • • • • • • • • 7.8 Estimation procedures for simultaneous equations systems

Each equation that is part of a recursive system can be estimated separately using
OLS. But in practice, not many systems of equations will be recursive, so a direct
way to address the estimation of equations that are from a true simultaneous system
must be sought. In fact, there are potentially many methods that can be used, three
of which – indirect least squares, two-stage least squares and instrumental variables –
will be detailed here. Each of these will be discussed below.

7.8.1 Indirect least squares (ILS)

Although it is not possible to use OLS directly on the structural equations, it
is possible to validly apply OLS to the reduced form equations. If the system is
just identified, ILS involves estimating the reduced form equations using OLS,
and then using them to substitute back to obtain the structural parameters. ILS is
intuitive to understand in principle; however, it is not widely applied because:

(1) Solving back to get the structural parameters can be tedious. For a large system, the
equations may be set up in a matrix form, and to solve them may therefore
require the inversion of a large matrix.

(2) Most simultaneous equations systems are overidentified, and ILS can be used to obtain
coefficients only for just identified equations. For overidentified systems, ILS
would not yield unique structural form estimates.

ILS estimators are consistent and asymptotically efficient, but in general they are
biased, so that in finite samples ILS will deliver biased structural form estimates.
In a nutshell, the bias arises from the fact that the structural form coefficients
under ILS estimation are transformations of the reduced form coefficients. When
expectations are taken to test for unbiasedness, it is in general not the case that the
expected value of a (non-linear) combination of reduced form coefficients will be
equal to the combination of their expected values (see Gujarati, 2003 for a proof ).

7.8.2 Estimation of just identified and overidentified systems using 2SLS

This technique is applicable for the estimation of overidentified systems, where
ILS cannot be used. In fact, it can also be employed for estimating the coefficients
of just identified systems, in which case the method would yield asymptotically
equivalent estimates to those obtained from ILS.

Two-stage least squares (2SLS or TSLS) is done in two stages:

● Stage 1 Obtain and estimate the reduced form equations using OLS. Save the
fitted values for the dependent variables.
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● Stage 2 Estimate the structural equations using OLS, but replace any RHS
endogenous variables with their stage 1 fitted values.

Example 7.3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that (7.27)–(7.29) are required. 2SLS would involve the following two steps:

● Stage 1 Estimate the reduced form equations (7.43)–(7.45) individually by OLS and
obtain the fitted values, and denote them Ŷ1

1 , Ŷ1
2 , Ŷ1

3 , where the superfluous
superscript 1 indicates that these are the fitted values from the first stage.

● Stage 2 Replace the RHS endogenous variables with their stage 1 estimated
values

Y1 = α0 + α1Ŷ1
2 + α3Ŷ1

3 + α4 X1 + α5 X2 + u1 (7.50)

Y2 = β0 + β1Ŷ1
3 + β2 X1 + u2 (7.51)

Y3 = γ0 + γ1Ŷ1
2 + u3 (7.52)

where Ŷ1
2 and Ŷ1

3 are the fitted values from the reduced form estimation. Now Ŷ1
2

and Ŷ1
3 will not be correlated with u1, Ŷ1

3 will not be correlated with u2, and Ŷ1
2 will

not be correlated with u3. The simultaneity problem has therefore been removed.
It is worth noting that the 2SLS estimator is consistent, but not unbiased.

In a simultaneous equations framework, it is still of concern whether the usual
assumptions of the CLRM are valid or not, although some of the test statistics require
modifications to be applicable in the systems context. Most econometrics packages
will automatically make any required changes. To illustrate one potential consequence
of the violation of the CLRM assumptions, if the disturbances in the structural equations
are autocorrelated, the 2SLS estimator is not even consistent.

The standard error estimates also need to be modified compared with their OLS
counterparts (again, econometrics software will usually do this automatically), but once
this has been done, the usual t -tests can be used to test hypotheses about the
structural form coefficients. This modification arises as a result of the use of the reduced
form fitted values on the RHS rather than actual variables, which implies that a
modification to the error variance is required.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7.8.3 Instrumental variables

Broadly, the method of instrumental variables (IV) is another technique for param-
eter estimation that can be validly used in the context of a simultaneous equations
system. Recall that the reason that OLS cannot be used directly on the structural
equations is that the endogenous variables are correlated with the errors.

One solution to this would be not to use Y2 or Y3, but rather to use some
other variables instead. These other variables should be (highly) correlated with
Y2 and Y3, but not correlated with the errors – such variables would be known
as instruments. Suppose that suitable instruments for Y2 and Y3, were found and
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denoted z2 and z3, respectively. The instruments are not used in the structural
equations directly, but rather, regressions of the following form are run

Y2 = λ1 + λ2z2 + ε1 (7.53)

Y3 = λ3 + λ4z3 + ε2 (7.54)

Obtain the fitted values from (7.53) and (7.54), Ŷ1
2 and Ŷ1

3 , and replace Y2 and Y3
with these in the structural equation. It is typical to use more than one instrument
per endogenous variable. If the instruments are the variables in the reduced form
equations, then IV is equivalent to 2SLS, so that the latter can be viewed as a
special case of the former.

7.8.4 What happens if IV or 2SLS are used unnecessarily?

In other words, suppose that one attempted to estimate a simultaneous system
when the variables specified as endogenous were in fact independent of one
another. The consequences are similar to those of including irrelevant variables
in a single equation OLS model. That is, the coefficient estimates will still be
consistent, but will be inefficient compared to those that just used OLS directly.

7.8.5 Other estimation techniques

There are, of course, many other estimation techniques available for systems of
equations, including three-stage least squares (3SLS), full information maximum
likelihood (FIML) and limited information maximum likelihood (LIML). Three-
stage least squares provides a third step in the estimation process that allows for
non-zero covariances between the error terms in the structural equations. It is
asymptotically more efficient than 2SLS since the latter ignores any information
that may be available concerning the error covariances (and also any additional
information that may be contained in the endogenous variables of other equations).
Full information maximum likelihood involves estimating all of the equations in
the system simultaneously using maximum likelihood (see chapter 8 for a discus-
sion of the principles of maximum likelihood estimation). Thus under FIML, all
of the parameters in all equations are treated jointly, and an appropriate likelihood
function is formed and maximised. Finally, limited information maximum likeli-
hood involves estimating each equation separately by maximum likelihood. LIML
and 2SLS are asymptotically equivalent. For further technical details on each of
these procedures, see Greene (2002, chapter 15).

The following section presents an application of the simultaneous equations
approach in finance to the joint modelling of bid–ask spreads and trading activity
in the S&P100 index options market. Two related applications of this technique
that are also worth examining are by Wang, Yau and Baptiste (1997) and by Wang
and Yau (2000). The former employs a bivariate system to model trading volume
and bid–ask spreads and they show using a Hausman test that the two are indeed
simultaneously related and so must both be treated as endogenous variables and
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are modelled using 2SLS. The latter paper employs a trivariate system to model
trading volume, spreads and intra-day volatility.

• • • • • • • • • • • • • • 7.9 An application of a simultaneous equations approach to modelling
bid–ask spreads and trading activity

7.9.1 Introduction

One of the most rapidly growing areas of empirical research in finance is the
study of market microstructure. This research is involved with issues such as price
formation in financial markets, how the structure of the market may affect the
way it operates, determinants of the bid–ask spread, and so on. One application of
simultaneous equations methods in the market microstructure literature is a study
by George and Longstaff (1993). Among other issues, this paper considers the
questions:

● Is trading activity related to the size of the bid–ask spread?
● How do spreads vary across options, and how is this related to the volume of

contracts traded? ‘Across options’ in this case means for different maturities
and strike prices for an option on a given underlying asset.

This chapter will now examine the George and Longstaff models, results and
conclusions.

7.9.2 The data

The data employed by George and Longstaff comprise options prices on the
S&P100 index, observed on all trading days during 1989. The S&P100 index has
been traded on the Chicago Board Options Exchange (CBOE) since 1983 on
a continuous open-outcry auction basis. The option price as used in the paper
is defined as the average of the bid and the ask. The average bid and ask prices
are calculated for each option during the time 2.00p.m.–2.15p.m. (US Central
Standard Time) to avoid time-of-day effects, such as differences in behaviour at
the open and the close of the market. The following are then dropped from the
sample for that day to avoid any effects resulting from stale prices:

● Any options that do not have bid and ask quotes reported during the fifteen
minutes hour

● Any options with fewer than ten trades during the day.

This procedure results in a total of 2,456 observations. A ‘pooled’ regression is
conducted since the data have both time series and cross-sectional dimensions.
That is, the data are measured every trading day and across options with different
strikes and maturities, and the data is stacked in a single column for analysis.
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7.9.3 How might the option price/trading volume and the bid–ask spread
be related?

George and Longstaff argue that the bid–ask spread will be determined by the
interaction of market forces. Since there are many market makers trading the
S&P100 contract on the CBOE, the bid–ask spread will be set to just cover
marginal costs. There are three components of the costs associated with being a
market maker. These are administrative costs, inventory holding costs and ‘risk
costs’. George and Longstaff consider three possibilities for how the bid–ask spread
might be determined:

● Market makers equalise spreads across options This is likely to be the case if
order-processing (administrative) costs make up the majority of costs associ-
ated with being a market maker. This could be the case since the CBOE
charges market makers the same fee for each option traded. In fact, for every
contract (100 options) traded, a CBOE fee of 9 cents and an Options Clearing
Corporation (OCC) fee of 10 cents is levied on the firm that clears the trade.

● The spread might be a constant proportion of the option value This would be the
case if the majority of the market maker’s cost is in inventory holding costs,
since the more expensive options will cost more to hold and hence the spread
would be set wider.

● Market makers might equalise marginal costs across options irrespective of trading volume
This would occur if the riskiness of an unwanted position were the most
important cost facing market makers. Market makers typically do not hold
a particular view on the direction of the market – they simply try to make
money by buying and selling. Hence, they would like to be able to offload
any unwanted (long or short) positions quickly. But trading is not continuous,
and in fact the average time between trades in 1989 was approximately five
minutes. The longer market makers hold an option, the higher the risk they
face since the higher the probability that there will be a large adverse price
movement. Thus options with low trading volumes would command higher
spreads since it is more likely that the market maker would be holding these
options for longer.

In a non-quantitative exploratory analysis, George and Longstaff find that, com-
paring across contracts with different maturities, the bid–ask spread does indeed
increase with maturity (as the option with longer maturity is worth more) and
with ‘moneyness’ (that is, an option that is deeper in the money has a higher spread
than one which is less in the money). This is seen to be true for both call and put
options.

7.9.4 The influence of tick-size rules on spreads

The CBOE limits the tick size (the minimum granularity of price quotes), which
will of course place a lower limit on the size of the spread. The tick sizes are:
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● $1/8 for options worth $3 or more
● $1/16 for options worth less than $3.

7.9.5 The models and results

The intuition that the bid–ask spread and trading volume may be simultaneously
related arises since a wider spread implies that trading is relatively more expensive
so that marginal investors would withdraw from the market. On the other hand,
market makers face additional risk if the level of trading activity falls, and hence
they may be expected to respond by increasing their fee (the spread). The models
developed seek to simultaneously determine the size of the bid–ask spread and the
time between trades.

For the calls, the model is:

CBAi = α0 + α1CDUM i + α2Ci + α3CLi + α4Ti + α5CRi + e i (7.55)

CLi = γ0 + γ1CBAi + γ2Ti + γ3T2
i + γ4M2

i + vi (7.56)

And symmetrically for the puts:

PBAi = β0 + β1PDUM i + β2 Pi + β3PLi + β4Ti + β5PRi + ui (7.57)

PLi = δ0 + δ1PBAi + δ2Ti + δ3T2
i + δ4M2

i + wi (7.58)

where CBAi and PBAi are the call bid–ask spread and the put bid–ask spread for
option i , respectively

Ci and Pi are the call price and put price for option i , respectively
CLi and PLi are the times between trades for the call and put option i ,

respectively
CRi and PRi are the squared deltas of the options
CDUM i and PDUM i are dummy variables to allow for the minimum tick size

= 0 if Ci or Pi < $3

= 1 if Ci or Pi ≥ $3

T is the time to maturity
T2 allows for a non-linear relationship between time to maturity and the spread

M2 is the square of moneyness, which is employed in quadratic form since at-
the-money options have a higher trading volume, while out-of-the-money
and in-the-money options both have lower trading activity

CRi and PRi are measures of risk for the call and put, respectively, given by the
square of their deltas.

Equations (7.55) and (7.56), and then separately (7.57) and (7.58), are estimated
using 2SLS. The results are given here in tables 7.1 and 7.2.

The adjusted R2 ≈ 0.6 for all four equations, indicating that the variables
selected do a good job of explaining the spread and the time between trades.
George and Longstaff argue that strategic market maker behaviour, which cannot



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-07 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:0

7.9 An application of a simultaneous equations approach

•
•
•
•
•
•
•
•
• 321

Table 7.1 Call bid–ask spread and trading volume regression

CBAi = α0 + α1CDUMi + α2Ci + α3CL i + α4Ti + α5CRi + ei (7.55)

CL i = γ0 + γ1CBAi + γ2Ti + γ3T2
i + γ4M2

i + vi (7.56)

α0 α1 α2 α3 α4 α5 Adj. R2

0.08362 0.06114 0.01679 0.00902 −0.00228 −0.15378 0.688

(16.80) (8.63) (15.49) (14.01) (−12.31) (−12.52)

γ0 γ1 γ2 γ3 γ4 Adj. R2

−3.8542 46.592 −0.12412 0.00406 0.00866 0.618

(−10.50) (30.49) (−6.01) (14.43) (4.76)

Note: t-ratios in parentheses.
Source: George and Longstaff (1993). Reprinted with the permission of School of Business Admin-
istration, University of Washington.

Table 7.2 Put bid–ask spread and trading volume regression

PBAi = β0 + β1PDUMi + β2Pi + β3PL i + β4Ti + β5PRi + ui (7.57)

PL i = δ0 + δ1PBAi + δ2Ti + δ3T2
i + δ4M2

i + wi (7.58)

β0 β1 β2 β3 β4 β5 Adj.R2

0.05707 0.03258 0.01726 0.00839 −0.00120 −0.08662 0.675

(15.19) (5.35) (15.90) (12.56) (−7.13) (−7.15)

δ0 δ1 δ2 δ3 δ4 Adj. R2

−2.8932 46.460 −0.15151 0.00339 0.01347 0.517

(−8.42) (34.06) (−7.74) (12.90) (10.86)

Note: t-ratios in parentheses.
Source: George and Longstaff (1993). Reprinted with the permission of School of Business Admin-
istration, University of Washington.

be easily modelled, is important in influencing the spread and that this precludes a
higher adjusted R2.

A next step in examining the empirical plausibility of the estimates is to
consider the sizes, signs and significances of the coefficients. In the call and put
spread regressions, respectively, α1 and β1 measure the tick size constraint on the
spread – both are statistically significant and positive. α2 and β2 measure the effect
of the option price on the spread. As expected, both of these coefficients are again
significant and positive since these are inventory or holding costs. The coefficient
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value of approximately 0.017 implies that a 1 dollar increase in the price of the
option will on average lead to a 1.7 cent increase in the spread. α3 and β3 measure
the effect of trading activity on the spread. Recalling that an inverse trading activity
variable is used in the regressions, again, the coefficients have their correct sign.
That is, as the time between trades increases (that is, as trading activity falls), the
bid–ask spread widens. Furthermore, although the coefficient values are small, they
are statistically significant. In the put spread regression, for example, the coefficient
of approximately 0.009 implies that, even if the time between trades widened from
one minute to one hour, the spread would increase by only 54 cents. α4 and
β4 measure the effect of time to maturity on the spread; both are negative and
statistically significant. The authors argue that this may arise as market making is a
more risky activity for near-maturity options. A possible alternative explanation,
which they dismiss after further investigation, is that the early exercise possibility
becomes more likely for very short-dated options since the loss of time value
would be negligible. Finally, α5 and β5 measure the effect of risk on the spread; in
both the call and put spread regressions, these coefficients are negative and highly
statistically significant. This seems an odd result, which the authors struggle to
justify, for it seems to suggest that more risky options will command lower spreads.

Turning attention now to the trading activity regressions, γ1 and δ1 measure
the effect of the spread size on call and put trading activity, respectively. Both are
positive and statistically significant, indicating that a rise in the spread will increase
the time between trades. The coefficients are such that a 1 c e nt increase in the
spread would lead to an increase in the average time between call and put trades
of nearly half a minute. γ2 and δ2 give the effect of an increase in time to maturity,
while γ3 and δ3 are coefficients attached to the square of time to maturity. For
both the call and put regressions, the coefficient on the level of time to maturity is
negative and significant, while that on the square is positive and significant. As time
to maturity increases, the squared term would dominate, and one could therefore
conclude that the time between trades will show a U-shaped relationship with time
to maturity. Finally, γ4 and δ4 give the effect of an increase in the square of money-
ness (i.e. the effect of an option going deeper into the money or deeper out of the
money) on the time between trades. For both the call and put regressions, the coef-
ficients are statistically significant and positive, showing that as the option moves
further from the money in either direction, the time between trades rises. This is
consistent with the authors’ supposition that trade is most active in at-the-money
options, and less active in both out-of-the-money and in-the-money options.

7.9.6 Conclusions

The value of the bid–ask spread on S&P100 index options and the time between
trades (a measure of market liquidity) can be usefully modelled in a simultaneous
system with exogenous variables such as the options’ deltas, time to maturity,
moneyness, etc.

This study represents a nice example of the use of a simultaneous equations
system, but, in this author’s view, it can be criticised on several grounds. First,
there are no diagnostic tests performed. Second, clearly the equations are all
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overidentified, but it is not obvious how the over-identifying restrictions have been
generated. Did they arise from consideration of financial theory? For example, why
do the CL and PL equations not contain the CR and PR variables? Why do the
CBA and PBA equations not contain moneyness or squared maturity variables?
The authors could also have tested for endogeneity of CBA and CL. Finally, the
wrong sign on the highly statistically significant squared deltas is puzzling.

• • • • • • • • • • • • • • 7.10 Simultaneous equations modelling using EViews

What is the relationship between inflation and stock returns? Holding stocks is
often thought to provide a good hedge against inflation, since the payments to
equity holders are not fixed in nominal terms and represent a claim on real assets
(unlike the coupons on bonds, for example). However, the majority of empirical
studies that have investigated the sign of this relationship have found it to be
negative. Various explanations of this puzzling empirical phenomenon have been
proposed, including a link through real activity, so that real activity is negatively
related to inflation but positively related to stock returns and therefore stock
returns and inflation vary positively. Clearly, inflation and stock returns ought to
be simultaneously related given that the rate of inflation will affect the discount rate
applied to cashflows and therefore the value of equities, but the performance of
the stock market may also affect consumer demand and therefore inflation through
its impact on householder wealth (perceived or actual).1

This simple example uses the same macroeconomic data as used previously to
estimate this relationship simultaneously. Suppose (without justification) that we
wish to estimate the following model, which does not allow for dynamic effects
or partial adjustments and does not distinguish between expected and unexpected
inflation

inflationt = α0 + α1 returnst + α2 dcreditt + α3 dprodt + α4 dmoney + u1t

(7.59)

returnst = β0 + β1 dprodt + β2 dspreadt + β3 inflationt + β4 rtermt + u2t

(7.60)

where ‘returns’ are stock returns and all of the other variables are defined as in the
previous example in chapter 4.

It is evident that there is feedback between the two equations since the inflation
variable appears in the stock returns equation and vice versa. Are the equations
identified? Since there are two equations, each will be identified if one variable
is missing from that equation. Equation (7.59), the inflation equation, omits two
variables. It does not contain the default spread or the term spread, and so is over-
identified. Equation (7.60), the stock returns equation, omits two variables as well
– the consumer credit and money supply variables – and so is over-identified too.
Two-stage least squares (2SLS) is therefore the appropriate technique to use.

1 Crucially, good econometric models are based on solid financial theory. This model is clearly
not, but represents a simple way to illustrate the estimation and interpretation of simultaneous
equations models using EViews with freely available data!
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Screenshot 7.1 Estimating the inflation equation

In EViews, to do this we need to specify a list of instruments, which would
be all of the variables from the reduced form equation. In this case, the reduced
form equations would be

inflation = f (constant, dprod, dspread, rterm, dcredit, qrev, dmoney) (7.61)

returns = g (constant, dprod, dspread, rterm, dcredit, qrev, dmoney) (7.62)

We can perform both stages of 2SLS in one go, but by default, EViews estimates
each of the two equations in the system separately. To do this, click Quick, Esti-
mate Equation and then select TSLS – Two Stage Least Squares (TSNLS
and ARMA) from the list of estimation methods. Then fill in the dialog box as
in screenshot 7.1 to estimate the inflation equation.

Thus the format of writing out the variables in the first window is as usual,
and the full structural equation for inflation as a dependent variable should be
specified here. In the instrument list, include every variable from the reduced
form equation, including the constant, and click OK. The results would then
appear as in the following table.
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Dependent Variable: INFLATION
Method: Two-Stage Least Squares
Date: 07/06/13 Time: 14:39
Sample (adjusted): 1986M04 2013M04
Included observations: 325 after adjustments
Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.

C 0.195313 0.048012 4.067988 0.0001
DPROD 0.013887 0.064302 0.215958 0.8292
DCREDIT −7.46E-07 3.79E-06 −0.19700 0.8440
DMONEY −0.004408 0.001662 −2.652566 0.0084
RSANDP 0.115471 0.041049 2.813014 0.0052

R-squared −2.571046 Mean dependent var 0.233696
Adjusted R-squared −2.615684 S.D. dependent var 0.324318
S.E. of regression 0.616689 Sum squared resid 121.6975
F-statistic 3.627476 Durbin-Watson stat 1.814403
Prob(F-statistic) 0.006583 Second-Stage SSR 28.56077
J-statistic 0.270084 Instrument Rank 6
Prob(J-statistic) 0.603275

Similarly, the dialog box for the rsandp equation would be specified as in
screenshot 7.2. The output for the returns equation is shown in the following
table.

The results overall show the stock index returns are a positive and significant
determinant of inflation (changes in the money supply negatively affect inflation),
while inflation has a negative effect on the stock market, albeit not significantly so.
The R2 and R̄2 values from the inflation equation are also negative, so should be
interpreted with caution. As the EViews User’s Guide warns, this can sometimes
happen even when there is an intercept in the regression. The J -statistic is essen-
tially a transformed version of the residual sum of squares that evaluates the model
fit.

It may also be of relevance to conduct a Hausman test for the endogeneity
of the inflation and stock return variables. To do this, estimate the reduced
form equations and save the residuals. Then create series of fitted values
by constructing new variables which are equal to the actual values minus the
residuals. Call the fitted value series inflation fit and rsandp fit. Then estimate
the structural equations (separately), adding the fitted values from the relevant
reduced form equations. The two sets of variables (in EViews format, with the
dependent variables first followed by the lists of independent variables) are as
follows.
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Dependent Variable: RSANDP
Method: Two-Stage Least Squares
Date: 07/06/13 Time: 22:05
Sample (adjusted): 1986M04 2013M04
Included observations: 325 after adjustments
Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.

C 1.110730 0.927393 1.197691 0.2319
DPROD −0.269418 0.461822 −0.583381 0.5600
DSPREAD −9.615083 4.627064 −2.078009 0.0385
RTERM −0.261785 0.918059 −0.285150 0.7757
INFLATION −2.173678 3.846050 −0.565171 0.5724

R-squared 0.027482 Mean dependent var 0.584671
Adjusted R-squared 0.015325 S.D. dependent var 4.589186
S.E. of regression 4.553886 Sum squared resid 6636.120
F-statistic 2.665537 Durbin-Watson stat 1.935389
Prob(F-statistic) 0.032509 Second-Stage SSR 6602.534
J-statistic 0.929368 Instrument Rank 6
Prob(J-statistic) 0.335027

For the stock returns equation:

rsandp c dprod dspread rterm inflation inflation fit

and for the inflation equation:

inflation c dprod dcredit dmoney rsandp rsandp fit

The conclusion is that the inflation fitted value term is not significant in the stock
return equation and so inflation can be considered exogenous for stock returns.
Thus it would be valid to simply estimate this equation (minus the fitted value
term) on its own using OLS. But the fitted stock return term is significant in the
inflation equation, suggesting that stock returns are endogenous.

• • • • • • • • • • • • • • 7.11 Vector autoregressive models

Vector autoregressive models (VARs) were popularised in econometrics by Sims
(1980) as a natural generalisation of univariate autoregressive models discussed
in chapter 6. A VAR is a systems regression model (i.e. there is more than one
dependent variable) that can be considered a kind of hybrid between the univariate
time series models considered in chapter 6 and the simultaneous equations models
developed previously in this chapter. VARs have often been advocated as an
alternative to large-scale simultaneous equations structural models.
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Screenshot 7.2 Estimating the rsandp equation

The simplest case that can be entertained is a bivariate VAR, where there are
only two variables, y1t and y2t , each of whose current values depend on different
combinations of the previous k values of both variables, and error terms

y1t = β10 + β11y1t−1 + · · · + β1k y1t−k + α11y2t−1 + · · · + α1k y2t−k + u1t

(7.63)

y2t = β20 + β21y2t−1 + · · · + β2k y2t−k + α21y1t−1 + · · · + α2k y1t−k + u2t

(7.64)

where ui t is a white noise disturbance term with E(ui t ) = 0, (i = 1, 2), E(u1t u2t ) =
0.

As should already be evident, an important feature of the VAR model is its
flexibility and the ease of generalisation. For example, the model could be extended
to encompass moving average errors, which would be a multivariate version of an
ARMA model, known as a VARMA. Instead of having only two variables, y1t
and y2t , the system could also be expanded to include g variables, y1t , y2t , y3t , . . . ,
yg t , each of which has an equation.
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Another useful facet of VAR models is the compactness with which the
notation can be expressed. For example, consider the case from above where
k = 1, so that each variable depends only upon the immediately previous values
of y1t and y2t , plus an error term. This could be written as

y1t = β10 + β11y1t−1 + α11y2t−1 + u1t (7.65)

y2t = β20 + β21y2t−1 + α21y1t−1 + u2t (7.66)

or (
y1t
y2t

)
=

(
β10
β20

)
+

(
β11 α11
α21 β21

)(
y1t−1
y2t−1

)
+

(
u1t
u2t

)
(7.67)

or even more compactly as

yt = β0 + β1yt−1 + ut
g × 1 g × 1 g × g g × 1 g × 1 (7.68)

In (7.68), there are g = 2 variables in the system. Extending the model to the case
where there are k lags of each variable in each equation is also easily accomplished
using this notation

yt = β0 + β1yt−1 + β2yt−2 + · · · + βk yt−k + ut
g × 1 g × 1 g × g g × 1 g × g g × 1 g × g g × 1 g × 1

(7.69)

The model could be further extended to the case where the model includes first
difference terms and cointegrating relationships (a vector error correction model
(VECM) – see chapter 8).

7.11.1 Advantages of VAR modelling

VAR models have several advantages compared with univariate time series models
or simultaneous equations structural models:

● The researcher does not need to specify which variables are endogenous or
exogenous – all are endogenous. This is a very important point, since a require-
ment for simultaneous equations structural models to be estimable is that
all equations in the system are identified. Essentially, this requirement boils
down to a condition that some variables are treated as exogenous and that
the equations contain different RHS variables. Ideally, this restriction should
arise naturally from financial or economic theory. However, in practice theory
will be at best vague in its suggestions of which variables should be treated
as exogenous. This leaves the researcher with a great deal of discretion con-
cerning how to classify the variables. Since Hausman-type tests are often not
employed in practice when they should be, the specification of certain vari-
ables as exogenous, required to form identifying restrictions, is likely in many
cases to be invalid. Sims termed these identifying restrictions ‘incredible’. VAR
estimation, on the other hand, requires no such restrictions to be imposed.
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● VARs allow the value of a variable to depend on more than just its own lags or
combinations of white noise terms, so VARs are more flexible than univariate
AR models; the latter can be viewed as a restricted case of VAR models. VAR
models can therefore offer a very rich structure, implying that they may be able
to capture more features of the data.

● Provided that there are no contemporaneous terms on the RHS of the equa-
tions, it is possible to simply use OLS separately on each equation. This arises from
the fact that all variables on the RHS are pre-determined – that is, at time t ,
they are known. This implies that there is no possibility for feedback from any
of the LHS variables to any of the RHS variables. Pre-determined variables
include all exogenous variables and lagged values of the endogenous variables.

● The forecasts generated by VARs are often better than ‘traditional structural’ models.
It has been argued in a number of articles (see, for example, Sims, 1980) that
large-scale structural models performed badly in terms of their out-of-sample
forecast accuracy. This could perhaps arise as a result of the ad hoc nature
of the restrictions placed on the structural models to ensure identification
discussed above. McNees (1986) shows that forecasts for some variables (e.g.
the US unemployment rate and real gross national product (GNP), etc.) are
produced more accurately using VARs than from several different structural
specifications.

7.11.2 Problems with VARs

VAR models of course also have drawbacks and limitations relative to other model
classes:

● VARs are a-theoretical (as are ARMA models), since they use little theoret-
ical information about the relationships between the variables to guide the
specification of the model. On the other hand, valid exclusion restrictions
that ensure identification of equations from a simultaneous structural system
will inform on the structure of the model. An upshot of this is that VARs
are less amenable to theoretical analysis and therefore to policy prescriptions.
There also exists an increased possibility under the VAR approach that a hap-
less researcher could obtain an essentially spurious relationship by mining the
data. It is also often not clear how the VAR coefficient estimates should be
interpreted.

● How should the appropriate lag lengths for the VAR be determined? There are
several approaches available for dealing with this issue, which will be discussed
below.

● So many parameters! If there are g equations, one for each of g variables and
with k lags of each of the variables in each equation, (g + kg 2) parameters will
have to be estimated. For example, if g = 3 and k = 3 there will be thirty
parameters to estimate. For relatively small sample sizes, degrees of freedom
will rapidly be used up, implying large standard errors and therefore wide
confidence intervals for model coefficients.
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● Should all of the components of the VAR be stationary? Obviously, if one wishes
to use hypothesis tests, either singly or jointly, to examine the statistical sig-
nificance of the coefficients, then it is essential that all of the components in
the VAR are stationary. However, many proponents of the VAR approach
recommend that differencing to induce stationarity should not be done. They
would argue that the purpose of VAR estimation is purely to examine the
relationships between the variables, and that differencing will throw informa-
tion on any long-run relationships between the series away. It is also possible
to combine levels and first differenced terms in a VECM – see chapter 8.

7.11.3 Choosing the optimal lag length for a VAR

Often, financial theory will have little to say on what is an appropriate lag length
for a VAR and how long changes in the variables should take to work through
the system. In such instances, there are broadly two methods that could be used
to arrive at the optimal lag length: cross-equation restrictions and information
criteria.

7.11.4 Cross-equation restrictions for VAR lag length selection

A first (but incorrect) response to the question of how to determine the appropriate
lag length would be to use the block F-tests highlighted in section 7.13 below.
These, however, are not appropriate in this case as the F-test would be used
separately for the set of lags in each equation, and what is required here is a
procedure to test the coefficients on a set of lags on all variables for all equations
in the VAR at the same time.

It is worth noting here that in the spirit of VAR estimation (as Sims, for
example, thought that model specification should be conducted), the models
should be as unrestricted as possible. A VAR with different lag lengths for each
equation could be viewed as a restricted VAR. For example, consider a VAR with
three lags of both variables in one equation and four lags of each variable in the
other equation. This could be viewed as a restricted model where the coefficient
on the fourth lags of each variable in the first equation have been set to zero.

An alternative approach would be to specify the same number of lags in each
equation and to determine the model order as follows. Suppose that a VAR
estimated using quarterly data has eight lags of the two variables in each equation,
and it is desired to examine a restriction that the coefficients on lags five–eight are
jointly zero. This can be done using a likelihood ratio test (see chapter 9 for more
general details concerning such tests). Denote the variance–covariance matrix of
residuals (given by û û ′), as �̂. The likelihood ratio test for this joint hypothesis is
given by

LR = T[log|�̂r | − log|�̂u |] (7.70)
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where |�̂r | is the determinant of the variance–covariance matrix of the residuals
for the restricted model (with four lags), |�̂u | is the determinant of the variance–
covariance matrix of residuals for the unrestricted VAR (with eight lags) and T
is the sample size. The test statistic is asymptotically distributed as a χ2 variate
with degrees of freedom equal to the total number of restrictions. In the VAR case
above, four lags of two variables are being restricted in each of the two equations =
a total of 4 × 2 × 2 = 16 restrictions. In the general case of a VAR with g equations,
to impose the restriction that the last q lags have zero coefficients, there would
be g 2q restrictions altogether. Intuitively, the test is a multivariate equivalent to
examining the extent to which the RSS rises when a restriction is imposed. If �̂r

and �̂u are ‘close together’, the restriction is supported by the data.

7.11.5 Information criteria for VAR lag length selection

The likelihood ratio (LR) test explained above is intuitive and fairly easy to estimate,
but has its limitations. Principally, one of the two VARs must be a special case
of the other and, more seriously, only pairwise comparisons can be made. In the
above example, if the most appropriate lag length had been seven or even ten, there
is no way that this information could be gleaned from the LR test conducted. One
could achieve this only by starting with a VAR(10), and successively testing one
set of lags at a time.

A further disadvantage of the LR test approach is that the χ2 test will strictly be
valid asymptotically only under the assumption that the errors from each equation
are normally distributed. This assumption is unlikely to be upheld for financial
data. An alternative approach to selecting the appropriate VAR lag length would be
to use an information criterion, as defined in chapter 6 in the context of ARMA
model selection. Information criteria require no such normality assumptions con-
cerning the distributions of the errors. Instead, the criteria trade off a fall in the
RSS of each equation as more lags are added, with an increase in the value of the
penalty term. The univariate criteria could be applied separately to each equation
but, again, it is usually deemed preferable to require the number of lags to be
the same for each equation. This requires the use of multivariate versions of the
information criteria, which can be defined as

MAIC = log
∣∣∣�̂∣∣∣ + 2k′/T (7.71)

MSBIC = log
∣∣∣�̂∣∣∣ + k′

T
log(T) (7.72)

MHQIC = log
∣∣∣�̂∣∣∣ + 2k′

T
log(log(T)) (7.73)

where again �̂ is the variance–covariance matrix of residuals, T is the number of
observations and k′ is the total number of regressors in all equations, which will
be equal to p2k + p for p equations in the VAR system, each with k lags of the
p variables, plus a constant term in each equation. As previously, the values of the
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information criteria are constructed for 0, 1, . . . , k̄ lags (up to some pre-specified
maximum k̄), and the chosen number of lags is that number minimising the value
of the given information criterion.

• • • • • • • • • • • • • • 7.12 Does the VAR include contemporaneous terms?

So far, it has been assumed that the VAR specified is of the form

y1t = β10 + β11y1t−1 + α11y2t−1 + u1t (7.74)

y2t = β20 + β21y2t−1 + α21y1t−1 + u2t (7.75)

so that there are no contemporaneous terms on the RHS of (7.74) or (7.75) – i.e.
there is no term in y2t on the RHS of the equation for y1t and no term in y1t on
the RHS of the equation for y2t . But what if the equations had a contemporaneous
feedback term, as in the following case?

y1t = β10 + β11y1t−1 + α11y2t−1 + α12y2t + u1t (7.76)

y2t = β20 + β21y2t−1 + α21y1t−1 + α22y1t + u2t (7.77)

Equations (7.76) and (7.77) could also be written by stacking up the terms into
matrices and vectors:(

y1t
y2t

)
=

(
β10
β20

)
+

(
β11 α11
α21 β21

)(
y1t−1
y2t−1

)
+

(
α12 0
0 α22

)(
y2t
y1t

)
+

(
u1t
u2t

)

(7.78)

This would be known as a VAR in primitive form, similar to the structural form for a
simultaneous equations model. Some researchers have argued that the a-theoretical
nature of reduced form VARs leaves them unstructured and their results difficult
to interpret theoretically. They argue that the forms of VAR given previously are
merely reduced forms of a more general structural VAR (such as (7.78)), with the
latter being of more interest.

The contemporaneous terms from (7.78) can be taken over to the LHS and
written as(

1 −α12
−α22 1

)(
y1t
y2t

)
=

(
β10
β20

)
+

(
β11 α11
α21 β21

)(
y1t−1
y2t−1

)
+

(
u1t
u2t

)
(7.79)

or

Ayt = β0 + β1yt−1 + ut (7.80)

If both sides of (7.80) are pre-multiplied by A−1

yt = A−1β0 + A−1β1yt−1 + A−1ut (7.81)

or

yt = A0 + A1yt−1 + e t (7.82)
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This is known as a standard form VAR, which is akin to the reduced form from
a set of simultaneous equations. This VAR contains only pre-determined values
on the RHS (i.e. variables whose values are known at time t ), and so there is no
contemporaneous feedback term. This VAR can therefore be estimated equation
by equation using OLS.

Equation (7.78), the structural or primitive form VAR, is not identified, since
identical pre-determined (lagged) variables appear on the RHS of both equations.
In order to circumvent this problem, a restriction that one of the coefficients on
the contemporaneous terms is zero must be imposed. In (7.78), either α12 or α22
must be set to zero to obtain a triangular set of VAR equations that can be validly
estimated. The choice of which of these two restrictions to impose is ideally made
on theoretical grounds. For example, if financial theory suggests that the current
value of y1t should affect the current value of y2t but not the other way around, set
α12 = 0, and so on. Another possibility would be to run separate estimations, first
imposing α12 = 0 and then α22 = 0, to determine whether the general features of
the results are much changed. It is also very common to estimate only a reduced
form VAR, which is of course perfectly valid provided that such a formulation
is not at odds with the relationships between variables that financial theory says
should hold.

One fundamental weakness of the VAR approach to modelling is that its
a-theoretical nature and the large number of parameters involved make the
estimated models difficult to interpret. In particular, some lagged variables may
have coefficients which change sign across the lags, and this, together with the
interconnectivity of the equations, could render it difficult to see what effect a
given change in a variable would have upon the future values of the variables
in the system. In order to partially alleviate this problem, three sets of statistics
are usually constructed for an estimated VAR model: block significance tests,
impulse responses and variance decompositions. How important an intuitively
interpretable model is will of course depend on the purpose of constructing the
model. Interpretability may not be an issue at all if the purpose of producing the
VAR is to make forecasts – see box 7.3.

• • • • • • • • • • • • • • 7.13 Block significance and causality tests

It is likely that, when a VAR includes many lags of variables, it will be difficult
to see which sets of variables have significant effects on each dependent variable
and which do not. In order to address this issue, tests are usually conducted that
restrict all of the lags of a particular variable to zero. For illustration, consider the
following bivariate VAR(3)

(
y1t
y2t

)
=

(
α10
α20

)
+

(
β11 β12
β21 β22

)(
y1t−1
y2t−1

)
+

(
γ11 γ12
γ21 γ22

)(
y1t−2
y2t−2

)

+
(

δ11 δ12
δ21 δ22

)(
y1t−3
y2t−3

)
+

(
u1t
u2t

)
(7.83)
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Box 7.3 Forecasting with VARs

One of the main advantages of the VAR approach to modelling and
forecasting is that since only lagged variables are used on the right hand
side, forecasts of the future values of the dependent variables can be
calculated using only information from within the system. We could term
these unconditional forecasts since they are not constructed conditional on a
particular set of assumed values. However, conversely it may be useful to
produce forecasts of the future values of some variables conditional upon
known values of other variables in the system. For example, it may be the
case that the values of some variables become known before the values of
the others. If the known values of the former are employed, we would
anticipate that the forecasts should be more accurate than if estimated values
were used unnecessarily, thus throwing known information away.
Alternatively, conditional forecasts can be employed for counterfactual
analysis based on examining the impact of certain scenarios. For example,
in a trivariate VAR system incorporating monthly stock returns, inflation
and gross domestic product (GDP), we could answer the question: ‘What is
the likely impact on the stock market over the next 1–6 months of a
2-percentage point increase in inflation and a 1% rise in GDP?’

This VAR could be written out to express the individual equations as

y1t = α10 + β11y1t−1 + β12y2t−1 + γ11y1t−2 + γ12y2t−2

+ δ11y1t−3 + δ12y2t−3 + u1t
(7.84)

y2t = α20 + β21y1t−1 + β22y2t−1 + γ21y1t−2 + γ22y2t−2

+ δ21y1t−3 + δ22y2t−3 + u2t

One might be interested in testing the hypotheses and their implied restrictions
on the parameter matrices given in table 7.3.

Assuming that all of the variables in the VAR are stationary, the joint hypotheses
can easily be tested within the F-test framework, since each individual set of
restrictions involves parameters drawn from only one equation. The equations
would be estimated separately using OLS to obtain the unrestricted RSS, then the
restrictions imposed and the models re-estimated to obtain the restricted RSS. The
F-statistic would then take the usual form described in chapter 4. Thus, evaluation
of the significance of variables in the context of a VAR almost invariably occurs
on the basis of joint tests on all of the lags of a particular variable in an equation,
rather than by examination of individual coefficient estimates.

In fact, the tests described above could also be referred to as causality tests. Tests
of this form were described by Granger (1969) and a slight variant due to Sims
(1972). Causality tests seek to answer simple questions of the type, ‘Do changes
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Table 7.3 Granger causality tests and implied restrictions on VAR
models

Hypothesis Implied restriction

1 Lags of y1t do not explain current y2t β21 = 0 and γ21 = 0 and δ21 = 0

2 Lags of y1t do not explain current y1t β11 = 0 and γ11 = 0 and δ11 = 0

3 Lags of y2t do not explain current y1t β12 = 0 and γ12 = 0 and δ12 = 0

4 Lags of y2t do not explain current y2t β22 = 0 and γ22 = 0 and δ22 = 0

in y1 cause changes in y2?’ The argument follows that if y1 causes y2, lags of y1
should be significant in the equation for y2. If this is the case and not vice versa,
it would be said that y1 ‘Granger-causes’ y2 or that there exists unidirectional
causality from y1 to y2. On the other hand, if y2 causes y1, lags of y2 should be
significant in the equation for y1. If both sets of lags were significant, it would
be said that there was ‘bi-directional causality’ or ‘bi-directional feedback’. If y1
is found to Granger-cause y2, but not vice versa, it would be said that variable y1
is strongly exogenous (in the equation for y2). If neither set of lags are statistically
significant in the equation for the other variable, it would be said that y1 and
y2 are independent. Finally, the word ‘causality’ is somewhat of a misnomer, for
Granger-causality really means only a correlation between the current value of one
variable and the past values of others; it does not mean that movements of one
variable cause movements of another.

• • • • • • • • • • • • • • 7.14 VARs with exogenous variables

Consider the following specification for a VAR(1) where Xt is a vector of exoge-
nous variables and B is a matrix of coefficients

yt = A0 + A1yt−1 + BXt + e t (7.85)

The components of the vector Xt are known as exogenous variables since their
values are determined outside of the VAR system – in other words, there are
no equations in the VAR with any of the components of Xt as dependent vari-
ables. Such a model is sometimes termed a VARX, although it could be viewed
as simply a restricted VAR where there are equations for each of the exoge-
nous variables, but with the coefficients on the RHS in those equations restricted
to zero. Such a restriction may be considered desirable if theoretical considera-
tions suggest it, although it is clearly not in the true spirit of VAR modelling,
which is not to impose any restrictions on the model but rather to ‘let the data
decide’.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-07 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:0

336

•
•
•
•
•
•
•
•
• Multivariate models

• • • • • • • • • • • • • • 7.15 Impulse responses and variance decompositions

Block F-tests and an examination of causality in a VAR will suggest which of the
variables in the model have statistically significant impacts on the future values of
each of the variables in the system. But F-test results will not, by construction,
be able to explain the sign of the relationship or how long these effects require to
take place. That is, F-test results will not reveal whether changes in the value of a
given variable have a positive or negative effect on other variables in the system, or
how long it would take for the effect of that variable to work through the system.
Such information will, however, be given by an examination of the VAR’s impulse
responses and variance decompositions.

Impulse responses trace out the responsiveness of the dependent variables in the
VAR to shocks to each of the variables. So, for each variable from each equation
separately, a unit shock is applied to the error, and the effects upon the VAR
system over time are noted. Thus, if there are g variables in a system, a total of g 2

impulse responses could be generated. The way that this is achieved in practice is
by expressing the VAR model as a VMA – that is, the vector autoregressive model
is written as a vector moving average (in the same way as was done for univariate
autoregressive models in chapter 5). Provided that the system is stable, the shock
should gradually die away.

To illustrate how impulse responses operate, consider the following bivariate
VAR(1)

yt = A1yt−1 + ut (7.86)

where A1 =
[
0.5 0.3
0.0 0.2

]

The VAR can also be written out using the elements of the matrices and vectors
as [

y1t
y2t

]
=

[
0.5 0.3
0.0 0.2

][
y1t−1
y2t−1

]
+

[
u1t
u2t

]
(7.87)

Consider the effect at time t = 0, 1, . . . , of a unit shock to y1t at time t = 0

y0 =
[

u10
u20

]
=

[
1
0

]
(7.88)

y1 = A1y0 =
[
0.5 0.3
0.0 0.2

][
1
0

]
=

[
0.5
0

]
(7.89)

y2 = A1y1 =
[
0.5 0.3
0.0 0.2

][
0.5
0

]
=

[
0.25

0

]
(7.90)

and so on. It would thus be possible to plot the impulse response functions of y1t
and y2t to a unit shock in y1t . Notice that the effect on y2t is always zero, since
the variable y1t−1 has a zero coefficient attached to it in the equation for y2t .



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-07 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:0

7.15 Impulse responses and variance decompositions

•
•
•
•
•
•
•
•
• 337

Now consider the effect of a unit shock to y2t at time t = 0

y0 =
[

u10
u20

]
=

[
0
1

]
(7.91)

y1 = A1y0 =
[
0.5 0.3
0.0 0.2

][
0
1

]
=

[
0.3
0.2

]
(7.92)

y2 = A1y1 =
[
0.5 0.3
0.0 0.2

][
0.3
0.2

]
=

[
0.21
0.04

]
(7.93)

and so on. Although it is probably fairly easy to see what the effects of shocks to
the variables will be in such a simple VAR, the same principles can be applied in
the context of VARs containing more equations or more lags, where it is much
more difficult to see by eye what are the interactions between the equations.

Variance decompositions offer a slightly different method for examining VAR
system dynamics. They give the proportion of the movements in the dependent
variables that are due to their ‘own’ shocks, versus shocks to the other variables.
A shock to the i th variable will directly affect that variable of course, but it will
also be transmitted to all of the other variables in the system through the dynamic
structure of the VAR. Variance decompositions determine how much of the s -
step-ahead forecast error variance of a given variable is explained by innovations
to each explanatory variable for s = 1, 2, . . . In practice, it is usually observed that
own series shocks explain most of the (forecast) error variance of the series in a
VAR. To some extent, impulse responses and variance decompositions offer very
similar information.

For calculating impulse responses and variance decompositions, the ordering
of the variables is important. To see why this is the case, recall that the impulse
responses refer to a unit shock to the errors of one VAR equation alone. This
implies that the error terms of all other equations in the VAR system are held
constant. However, this is not realistic since the error terms are likely to be
correlated across equations to some extent. Thus, assuming that they are completely
independent would lead to a misrepresentation of the system dynamics. In practice,
the errors will have a common component that cannot be associated with a single
variable alone.

The usual approach to this difficulty is to generate orthogonalised impulse
responses. In the context of a bivariate VAR, the whole of the common com-
ponent of the errors is attributed somewhat arbitrarily to the first variable in the
VAR. In the general case where there are more than two variables in the VAR, the
calculations are more complex but the interpretation is the same. Such a restriction
in effect implies an ‘ordering’ of variables, so that the equation for y1t would be
estimated first and then that of y2t , a bit like a recursive or triangular system.

Assuming a particular ordering is necessary to compute the impulse responses
and variance decompositions, although the restriction underlying the ordering used
may not be supported by the data. Again, ideally, financial theory should suggest
an ordering (in other words, that movements in some variables are likely to follow,
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rather than precede, others). Failing this, the sensitivity of the results to changes in
the ordering can be observed by assuming one ordering, and then exactly reversing
it and re-computing the impulse responses and variance decompositions. It is also
worth noting that the more highly correlated are the residuals from an estimated
equation, the more the variable ordering will be important. But when the residuals
are almost uncorrelated, the ordering of the variables will make little difference
(see Lütkepohl, 1991, chapter 2 for further details).

Runkle (1987) argues that both impulse responses and variance decomposi-
tions are notoriously difficult to interpret accurately. He argues that confidence
bands around the impulse responses and variance decompositions should always be
constructed. However, he further states that, even then, the confidence intervals
are typically so wide that sharp inferences are impossible.

• • • • • • • • • • • • • • 7.16 VAR model example: the interaction between property returns and
the macroeconomy

7.16.1 Background, data and variables

Brooks and Tsolacos (1999) employ a VAR methodology for investigating the
interaction between the UK property market and various macroeconomic vari-
ables. Monthly data, in logarithmic form, are used for the period from December
1985 to January 1998. The selection of the variables for inclusion in the VAR
model is governed by the time series that are commonly included in studies of
stock return predictability. It is assumed that stock returns are related to macroe-
conomic and business conditions, and hence time series which may be able to
capture both current and future directions in the broad economy and the business
environment are used in the investigation.

Broadly, there are two ways to measure the value of property-based assets –
direct measures of property value and equity-based measures. Direct property measures
are based on periodic appraisals or valuations of the actual properties in a port-
folio by surveyors, while equity-based measures evaluate the worth of properties
indirectly by considering the values of stock market traded property companies.
Both sources of data have their drawbacks. Appraisal-based value measures suffer
from valuation biases and inaccuracies. Surveyors are typically prone to ‘smooth’
valuations over time, such that the measured returns are too low during property
market booms and too high during periods of property price falls. Additionally,
not every property in the portfolio that comprises the value measure is appraised
during every period, resulting in some stale valuations entering the aggregate valu-
ation, further increasing the degree of excess smoothness of the recorded property
price series. Indirect property vehicles – property-related companies traded on
stock exchanges – do not suffer from the above problems, but are excessively
influenced by general stock market movements. It has been argued, for example,
that over three-quarters of the variation over time in the value of stock exchange
traded property companies can be attributed to general stock market-wide price
movements. Therefore, the value of equity-based property series reflects much
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more the sentiment in the general stock market than the sentiment in the property
market specifically.

Brooks and Tsolacos (1999) elect to use the equity-based FTSE Property
Total Return Index to construct property returns. In order to purge the real estate
return series of its general stock market influences, it is common to regress property
returns on a general stock market index (in this case the FTA All-Share Index is
used), saving the residuals. These residuals are expected to reflect only the variation
in property returns, and thus become the property market return measure used in
subsequent analysis, and are denoted PROPRES.

Hence, the variables included in the VAR are the property returns (with general
stock market effects removed), the rate of unemployment, nominal interest rates,
the spread between the long- and short-term interest rates, unanticipated inflation
and the dividend yield. The motivations for including these particular variables in
the VAR together with the property series, are as follows:

● The rate of unemployment (denoted UNEM) is included to indicate general
economic conditions. In US research, authors tend to use aggregate consump-
tion, a variable that has been built into asset pricing models and examined as a
determinant of stock returns. Data for this variable and for alternative variables
such as GDP are not available on a monthly basis in the UK. Monthly data are
available for industrial production series but other studies have not shown any
evidence that industrial production affects real estate returns. As a result, this
series was not considered as a potential causal variable.

● Short-term nominal interest rates (denoted SIR) are assumed to contain infor-
mation about future economic conditions and to capture the state of
investment opportunities. It was found in previous studies that short-term
interest rates have a very significant negative influence on property stock
returns.

● Interest rate spreads (denoted SPREAD), i.e. the yield curve, are usually mea-
sured as the difference in the returns between long-term Treasury Bonds (of
maturity, say, ten or twenty years), and the one-month or three-month Trea-
sury Bill rate. It has been argued that the yield curve has extra predictive
power, beyond that contained in the short-term interest rate, and can help
predict GDP up to four years ahead. It has also been suggested that the term
structure also affects real estate market returns.

● Inflation rate influences are also considered important in the pricing of stocks.
For example, it has been argued that unanticipated inflation could be a source
of economic risk and as a result, a risk premium will also be added if the stock
of firms has exposure to unanticipated inflation. The unanticipated inflation
variable (denoted UNINFL) is defined as the difference between the realised
inflation rate, computed as the percentage change in the Retail Price Index
(RPI), and an estimated series of expected inflation. The latter series was
produced by fitting an ARMA model to the actual series and making a one-
period(month)-ahead forecast, then rolling the sample forward one period,
and re-estimating the parameters and making another one-step-ahead forecast,
and so on.
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● Dividend yields (denoted DIVY) have been widely used to model stock mar-
ket returns, and also real estate property returns, based on the assumption
that movements in the dividend yield series are related to long-term business
conditions and that they capture some predictable components of returns.

All variables to be included in the VAR are required to be stationary in order to
carry out joint significance tests on the lags of the variables. Hence, all variables
are subjected to augmented Dickey–Fuller (ADF) tests (see chapter 8). Evidence
that the log of the RPI and the log of the unemployment rate both contain a
unit root is observed. Therefore, the first differences of these variables are used
in subsequent analysis. The remaining four variables led to rejection of the null
hypothesis of a unit root in the log-levels, and hence these variables were not first
differenced.

7.16.2 Methodology

A reduced form VAR is employed and therefore each equation can effectively be
estimated using OLS. For a VAR to be unrestricted, it is required that the same
number of lags of all of the variables is used in all equations. Therefore, in order to
determine the appropriate lag lengths, the multivariate generalisation of Akaike’s
information criterion (AIC) is used.

Within the framework of the VAR system of equations, the significance of all
the lags of each of the individual variables is examined jointly with an F -test. Since
several lags of the variables are included in each of the equations of the system,
the coefficients on individual lags may not appear significant for all lags, and may
have signs and degrees of significance that vary with the lag length. However,
F -tests will be able to establish whether all of the lags of a particular variable are
jointly significant. In order to consider further the effect of the macro-economy
on the real estate returns index, the impact multipliers (orthogonalised impulse
responses) are also calculated for the estimated VAR model. Two standard error
bands are calculated using the Monte Carlo integration approach employed by
McCue and Kling (1994), and based on Doan (1994). The forecast error variance
is also decomposed to determine the proportion of the movements in the real
estate series that are a consequence of its own shocks rather than shocks to other
variables.

7.16.3 Results

The number of lags that minimises the value of Akaike’s information criterion is
fourteen, consistent with the fifteen lags used by McCue and Kling (1994). There
are thus (1 + 14 × 6) = 85 variables in each equation, implying fifty-nine degrees
of freedom. F-tests for the null hypothesis that all of the lags of a given variable
are jointly insignificant in a given equation are presented in table 7.4.

In contrast to a number of US studies which have used similar variables, it
is found to be difficult to explain the variation in the UK real estate returns
index using macroeconomic factors, as the last row of table 7.4 shows. Of all the
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Table 7.4 Marginal significance levels associated with joint F-tests

Lags of variable
Dependent

variable SIR DIVY SPREAD UNEM UNINFL PROPRES

SIR 0.0000 0.0091 0.0242 0.0327 0.2126 0.0000

DIVY 0.5025 0.0000 0.6212 0.4217 0.5654 0.4033

SPREAD 0.2779 0.1328 0.0000 0.4372 0.6563 0.0007

UNEM 0.3410 0.3026 0.1151 0.0000 0.0758 0.2765

UNINFL 0.3057 0.5146 0.3420 0.4793 0.0004 0.3885

PROPRES 0.5537 0.1614 0.5537 0.8922 0.7222 0.0000

The test is that all fourteen lags have no explanatory power for that particular equation in the VAR.
Source: Brooks and Tsolacos (1999).

lagged variables in the real estate equation, only the lags of the real estate returns
themselves are highly significant, and the dividend yield variable is significant only
at the 20% level. No other variables have any significant explanatory power for
the real estate returns. Therefore, based on the F-tests, an initial conclusion is
that the variation in property returns, net of stock market influences, cannot be
explained by any of the main macroeconomic or financial variables used in existing
research. One possible explanation for this might be that, in the UK, these variables
do not convey the information about the macro-economy and business conditions
assumed to determine the intertemporal behaviour of property returns. It is possible
that property returns may reflect property market influences, such as rents, yields
or capitalisation rates, rather than macroeconomic or financial variables. However,
again the use of monthly data limits the set of both macroeconomic and property
market variables that can be used in the quantitative analysis of real estate returns
in the UK.

It appears, however, that lagged values of the real estate variable have explana-
tory power for some other variables in the system. These results are shown in
the last column of table 7.4. The property sector appears to help in explaining
variations in the term structure and short-term interest rates, and moreover since
these variables are not significant in the property index equation, it is possible
to state further that the property residual series Granger-causes the short-term
interest rate and the term spread. This is a bizarre result. The fact that property
returns are explained by own lagged values – i.e. that is there is interdepen-
dency between neighbouring data points (observations) – may reflect the way
that property market information is produced and reflected in the property return
indices.

Table 7.5 gives variance decompositions for the property returns index equa-
tion of the VAR for one, two, three, four, twelve and twenty-four steps ahead for
the two variable orderings:



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-07 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:0

342

•
•
•
•
•
•
•
•
• Multivariate models

Table 7.5 Variance decompositions for the property sector index residuals

Explained by innovations in

SIR DIVY SPREAD UNEM UNINFL PROPRES

Months
ahead I II I II I II I II I II I II

1 0.0 0.8 0.0 38.2 0.0 9.1 0.0 0.7 0.0 0.2 100.0 51.0

2 0.2 0.8 0.2 35.1 0.2 12.3 0.4 1.4 1.6 2.9 97.5 47.5

3 3.8 2.5 0.4 29.4 0.2 17.8 1.0 1.5 2.3 3.0 92.3 45.8

4 3.7 2.1 5.3 22.3 1.4 18.5 1.6 1.1 4.8 4.4 83.3 51.5

12 2.8 3.1 15.5 8.7 15.3 19.5 3.3 5.1 17.0 13.5 46.1 50.0

24 8.2 6.3 6.8 3.9 38.0 36.2 5.5 14.7 18.1 16.9 23.4 22.0

Source: Brooks and Tsolacos (1999).

Order I: PROPRES, DIVY, UNINFL, UNEM, SPREAD, SIR
Order II: SIR, SPREAD, UNEM, UNINFL, DIVY, PROPRES.

Unfortunately, the ordering of the variables is important in the decomposition.
Thus two orderings are applied, which are the exact opposite of one another,
and the sensitivity of the result is considered. It is clear that by the two-year
forecasting horizon, the variable ordering has become almost irrelevant in most
cases. An interesting feature of the results is that shocks to the term spread and
unexpected inflation together account for over 50% of the variation in the real
estate series. The short-term interest rate and dividend yield shocks account for
only 10–15% of the variance of the property index. One possible explanation for
the difference in results between the F-tests and the variance decomposition is that
the former is a causality test and the latter is effectively an exogeneity test. Hence
the latter implies the stronger restriction that both current and lagged shocks to the
explanatory variables do not influence the current value of the dependent variable
of the property equation. Another way of stating this is that the term structure
and unexpected inflation have a contemporaneous rather than a lagged effect on
the property index, which implies insignificant F-test statistics but explanatory
power in the variance decomposition. Therefore, although the F-tests did not
establish any significant effects, the error variance decompositions show evidence
of a contemporaneous relationship between PROPRES and both SPREAD and
UNINFL. The lack of lagged effects could be taken to imply speedy adjustment
of the market to changes in these variables.

Figures 7.1 and 7.2 give the impulse responses for PROPRES associated with
separate unit shocks to unexpected inflation and the dividend yield, as examples
(as stated above, a total of thirty-six impulse responses could be calculated since
there are six variables in the system).
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Figure 7.1 Impulse responses and standard error bands for innovations in unexpected
inflation equation errors
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Figure 7.2 Impulse responses and standard error bands for innovations in the dividend
yields

Considering the signs of the responses, innovations to unexpected inflation
(figure 7.1) always have a negative impact on the real estate index, since the
impulse response is negative, and the effect of the shock does not die down,
even after twenty-four months. Increasing stock dividend yields (figure 7.2) have
a negative impact for the first three periods, but beyond that, the shock appears to
have worked its way out of the system.

7.16.4 Conclusions

The conclusion from the VAR methodology adopted in the Brooks and Tsolacos
paper is that overall, UK real estate returns are difficult to explain on the basis of the
information contained in the set of the variables used in existing studies based on
non-UK data. The results are not strongly suggestive of any significant influences
of these variables on the variation of the filtered property returns series. There
is, however, some evidence that the interest rate term structure and unexpected
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Screenshot 7.3 VAR inputs screen

inflation have a contemporaneous effect on property returns, in agreement with
the results of a number of previous studies.

• • • • • • • • • • • • • • 7.17 VAR estimation in EViews

By way of illustration, a VAR is estimated in order to examine whether there
are lead–lag relationships for the returns to three exchange rates against the US
dollar – the euro, the British pound and the Japanese yen. The data are daily
and run from 7 July 2002 to 6 June 2013, giving a total of 3,986 observations.
The data are contained in the Excel file ‘currencies.xls’. First Create a new
workfile, called ‘currencies.wf1’, and import the three currency series. Con-
struct a set of continuously compounded percentage returns called ‘reur’, ‘rgbp’
and ‘rjpy’. VAR estimation in EViews can be accomplished by clicking on the
Quick menu and then Estimate VAR. . . . The VAR inputs screen appears as in
screenshot 7.3.
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Vector Autoregression Estimates
Date: 07/07/13 Time: 12:01
Sample (adjusted): 7/10/2002 6/06/2013
Included observations: 3985 after adjustments
Standard errors in ( ) & t-statistics in [ ]

REUR RGBP RJPY

REUR(-1) 0.200155 −0.042777 0.024186
−0.022710 −0.020790 −0.022510
[8.81447] [−2.05766] [1.07460]

REUR(-2) −0.033413 0.056771 −0.031334
−0.022620 −0.020710 −0.022420
[−1.47722] [2.74149] [−1.39762]

RGBP(-1) −0.061566 0.261643 −0.067979
−0.024110 −0.022070 −0.023890
[−2.55382] [11.8548] [−2.84494]

RGBP(-2) 0.024656 −0.092099 0.032403
−0.024080 −0.022040 −0.023870
[1.02395] [−4.17778] [1.35768]

RJPY(-1) −0.020151 −0.056639 0.150845
−0.016660 −0.015250 −0.016510
[−1.20970] [−3.71393] [9.13617]

RJPY(-2) 0.002628 0.002964 0.000718
−0.016680 −0.015270 −0.016530
[0.15753] [0.19409] [0.04345]

C −0.005836 0.000045 −0.003682
−0.007450 −0.006820 −0.007390
[−0.78299] [0.00665] [−0.49847]

R-squared 0.025479 0.05224 0.024297
Adj. R-squared 0.024009 0.050815 0.022826
Sum sq. resids 879.8663 737.4698 864.4051
S.E. equation 0.470301 0.430566 0.466151
F-statistic 17.33423 36.54742 16.51038
Log likelihood −2644.754 −2292.988 −2609.430
Akaike AIC 1.330868 1.154323 1.313139
Schwarz SC 1.341917 1.165372 1.324189
Mean dependent −0.0006978 0.000162 −0.004320
S.D. dependent 0.476051 0.441941 0.471564

Determinant resid covariance (dof adj.) 0.004189
Determinant resid covariance 0.004167
Log likelihood −6043.540
Akaike information criterion 3.043684
Schwarz criterion 3.076832

345
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In the Endogenous variables box, type the three variable names, reur rgbp
rjpy. In the Exogenous box, leave the default ‘C’ and in the Lag Interval box,
enter 1 2 to estimate a VAR(2), just as an example. The output appears in a neatly
organised table as shown on the following page, with one column for each equation
in the first and second panels, and a single column of statistics that describes the
system as a whole in the third. So values of the information criteria are given
separately for each equation in the second panel and jointly for the model as a
whole in the third.

We will shortly discuss the interpretation of the output, but the example so
far has assumed that we know the appropriate lag length for the VAR. However, in
practice, the first step in the construction of any VAR model, once the variables
that will enter the VAR have been decided, will be to determine the appropriate
lag length. This can be achieved in a variety of ways, but one of the easiest is to
employ a multivariate information criterion. In EViews, this can be done easily
from the EViews VAR output we have by clicking View/Lag Structure/Lag
Length Criteria. . . . You will be invited to specify the maximum number of lags
to entertain including in the model, and for this example, arbitrarily select 10. The
output in the following table would be observed.

EViews presents the values of various information criteria and other methods
for determining the lag order. In this case, the Akaike and Hannan–Quinn criteria
both select a lag length of two as optimal, while Schwarz’s criterion chooses a
VAR(1). Estimate a VAR(1) and examine the results. Does the model look as if
it fits the data well? Why or why not?

Next, run a Granger causality test by clicking View/Lag Structure/
Granger Causality/Block Exogeneity Tests. The table of statistics will appear
immediately as on the following page.

The results show only modest evidence of lead–lag interactions between the
series. Since we have estimated a tri-variate VAR, three panels are displayed, with
one for each dependent variable in the system. There is causality from the pound
to the euro and from the pound to the yen that is significant at the 5% and 1%
levels respectively, but no causality in the opposite direction in the case of the
euro to pound and no causality between the euro–dollar and the yen–dollar in
either direction. These results might be interpreted as suggesting that information
is incorporated slightly more quickly in the pound–dollar rate than in the euro–
dollar or yen–dollar rates.

It is worth also noting that the term ‘Granger causality’ is something of a
misnomer since a finding of ‘causality’ does not mean that movements in one
variable physically cause movements in another. For example, in the above analysis,
if movements in the euro–dollar market were found to Granger-cause movements
in the pound–dollar market, this would not have meant that the pound–dollar rate
changed as a direct result of, or because of, movements in the euro–dollar market.
Rather, causality simply implies a chronological ordering of movements in the series. It
could validly be stated that movements in the pound–dollar rate appear to lead
those of the euro–dollar rate, and so on.

The EViews manual suggests that block F-test restrictions can be performed
by estimating the VAR equations individually using OLS and then by using the
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VAR Lag Order Selection Criteria
Endogenous variables: REUR RGBP RJPY
Exogenous variables: C
Date: 07/07/13 Time: 12:19
Sample: 7/07/2002 6/06/2013
Included observations: 3977

Lag LogL LR FPE AIC SC HQ

0 −6324.3310 NA 0.004836 3.181962 3.186705 3.183644
1 −6060.2640 527.6036 0.004254 3.053690 3.072664∗ 3.060418
2 −6034.8720 50.69431 0.004219∗ 3.045447∗ 3.078652 3.057221∗

3 −6030.9570 7.808927 0.004230 3.048005 3.095440 3.064824
4 −6022.9370 15.98760 0.004232 3.048498 3.110163 3.070363
5 −6015.1100 15.59165 0.004234 3.049087 3.124983 3.075998
6 −6009.1700 11.82421 0.004241 3.050626 3.140752 3.082583
7 −6000.1710 17.89848∗ 0.004241 3.050626 3.154983 3.087629
8 −5992.9660 14.31748 0.004245 3.051530 3.170117 3.093578
9 −5988.1330 9.599241 0.004254 3.053625 3.186442 3.100719

∗ indicates lag order selected by the criterion
LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

View then Lag Structure then Lag Exclusion Tests. EViews tests for whether
the parameters for a given lag of all the variables in a particular equation can be
restricted to zero.

To obtain the impulse responses for the estimated model, simply click the
Impulse on the button bar above the VAR object and a new dialog box will
appear as in screenshot 7.4.
By default, EViews will offer to estimate and plot all of the responses to separate
shocks of all of the variables in the order that the variables were listed in the
estimation window, using ten steps and confidence intervals generated using ana-
lytic formulae. If twenty steps ahead had been selected, with ‘combined response
graphs’, you would see the graphs in the format in screenshot 7.5 (obviously they
appear small on the page and the colour has been lost, but the originals are much
clearer). As one would expect given the parameter estimates and the Granger
causality test results, only a few linkages between the series are established here.
The responses to the shocks are very small, except for the response of a variable to
its own shock, and they die down to almost nothing after the first lag. The only
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VAR Granger Causality/Block Exogeneity Wald Tests
Date: 07/07/13 Time: 14:36
Sample: 7/07/2002 6/06/13
Included observations: 3986

Dependent variable: REUR

Excluded Chi-sq df Prob.

RGBP 5.736328 1 0.0166
RJPY 1.413860 1 0.2344

All 6.844297 2 0.0326

Dependent variable: RGBP

Excluded Chi-sq df Prob.

REUR 1.508416 1 0.2194
RJPY 12.94274 1 0.0003

All 17.61849 2 0.0001

Dependent variable: RJPY

Excluded Chi-sq df Prob.

REUR 0.568845 1 0.4507
RGBP 6.702967 1 0.0096

All 8.551943 2 0.0139

exceptions are that the pound (second graph in the screenshot) and the yen (third
graph) both respond to shocks to the euro rate against the dollar.

Plots of the variance decompositions can also be generated by clicking on
View and then Variance Decomposition. . . . A similar plot for the variance
decompositions would appear as in screenshot 7.6.

There is little again that can be seen from these variance decomposition graphs
that appear small on a printed page apart from the fact that the behaviour is
observed to settle down to a steady state very quickly. Interestingly, while the
percentage of the errors that is attributable to own shocks is 100% in the case of
the euro rate, for the pound, the euro series explains around 47% of the variation
in returns, and for the yen, the euro series explains around 7% of the variation and
the pound 37%.

We should remember that the ordering of the variables has an effect on the
impulse responses and variance decompositions, and when, as in this case, theory
does not suggest an obvious ordering of the series, some sensitivity analysis should
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Screenshot 7.4 Constructing the VAR impulse responses

Screenshot 7.5 Combined impulse response graphs

349
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Screenshot 7.6 Variance decomposition graphs

be undertaken. This can be achieved by clicking on the ‘Impulse Definition’ tab
when the window that creates the impulses is open. A window entitled ‘Ordering
for Cholesky’ should be apparent, and it would be possible to reverse the order
of variables or to select any other order desired. For the variance decompositions,
the ‘Ordering for Cholesky’ box is observed in the window for creating the
decompositions without having to select another tab.

Key concepts

The key terms to be able to define and explain from this chapter are

• endogenous variable • exogenous variable

• simultaneous equations bias • identified

• order condition • rank condition

• Hausman test • reduced form

• structural form • instrumental variables

• indirect least squares • two-stage least squares

• vector autoregression • Granger causality

• impulse response • variance decomposition
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Self-study questions

1. Consider the following simultaneous equations system

y1t = α0 + α1y2t + α2y3t + α3 X1t + α4 X2t + u1t (7.94)

y2t = β0 + β1y3t + β2 X1t + β3 X3t + u2t (7.95)

y3t = γ0 + γ1y1t + γ2 X2t + γ3 X3t + u3t (7.96)

(a) Derive the reduced form equations corresponding to (7.94)–(7.96).
(b) What do you understand by the term ‘identification’? Describe a rule for

determining whether a system of equations is identified. Apply this rule
to (7.94)–(7.96). Does this rule guarantee that estimates of the structural
parameters can be obtained?

(c) Which would you consider the more serious misspecification: treating
exogenous variables as endogenous, or treating endogenous variables as
exogenous? Explain your answer.

(d) Describe a method of obtaining the structural form coefficients
corresponding to an overidentified system.

(e) Using EViews, estimate a VAR model for the interest rate series used in
the principal components example of chapter 4. Use a method for
selecting the lag length in the VAR optimally. Determine whether certain
maturities lead or lag others, by conducting Granger causality tests and
plotting impulse responses and variance decompositions. Is there any
evidence that new information is reflected more quickly in some
maturities than others?

2. Consider the following system of two equations

y1t = α0 + α1y2t + α2 X1t + α3 X2t + u1t (7.97)

y2t = β0 + β1y1t + β2 X1t + u2t (7.98)

(a) Explain, with reference to these equations, the undesirable consequences
that would arise if (7.97) and (7.98) were estimated separately using OLS.

(b) What would be the effect upon your answer to (a) if the variable y1t had
not appeared in (7.98)?

(c) State the order condition for determining whether an equation which is
part of a system is identified. Use this condition to determine whether
(7.97) or (7.98) or both or neither are identified.

(d) Explain whether indirect least squares (ILS) or two-stage least squares
(2SLS) could be used to obtain the parameters of (7.97) and (7.98).
Describe how each of these two procedures (ILS and 2SLS) are used to
calculate the parameters of an equation. Compare and evaluate the
usefulness of ILS, 2SLS and IV.

(e) Explain briefly the Hausman procedure for testing for exogeneity.
3. Explain, using an example if you consider it appropriate, what you understand

by the equivalent terms ‘recursive equations’ and ‘triangular system’. Can a
triangular system be validly estimated using OLS? Explain your answer.
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4. Consider the following vector autoregressive model

yt = β0 +
k∑

i=1

βi yt−i + ut (7.99)

where yt is a p × 1 vector of variables determined by k lags of all p variables
in the system, ut is a p× 1 vector of error terms, β0 is a p× 1 vector of
constant term coefficients and βi are p × p matrices of coefficients on the
i th lag of y.
(a) If p = 2, and k = 3, write out all the equations of the VAR in full,

carefully defining any new notation you use that is not given in the
question.

(b) Why have VARs become popular for application in economics and
finance, relative to structural models derived from some underlying
theory?

(c) Discuss any weaknesses you perceive in the VAR approach to
econometric modelling.

(d) Two researchers, using the same set of data but working independently,
arrive at different lag lengths for the VAR equation (7.99). Describe and
evaluate two methods for determining which of the lag lengths is more
appropriate.

5. Define carefully the following terms
● Simultaneous equations system
● Exogenous variables
● Endogenous variables
● Structural form model
● Reduced form model.
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8 Modelling long-run relationships
in finance

Learning outcomes

In this chapter, you will learn how to

• Highlight the problems that may occur if non-stationary data are used in their

levels form

• Test for unit roots

• Examine whether systems of variables are cointegrated

• Estimate error correction and vector error correction models

• Explain the intuition behind Johansen’s test for cointegration

• Describe how to test hypotheses in the Johansen framework

• Construct models for long-run relationships between variables in EViews

• • • • • • • • • • • • • • 8.1 Stationarity and unit root testing

8.1.1 Why are tests for non-stationarity necessary?

There are several reasons why the concept of non-stationarity is important and why
it is essential that variables that are non-stationary be treated differently from those
that are stationary. Two definitions of non-stationarity were presented at the start
of chapter 6. For the purpose of the analysis in this chapter, a stationary series can
be defined as one with a constant mean, constant variance and constant autocovariances
for each given lag. Therefore, the discussion in this chapter relates to the concept of
weak stationarity. An examination of whether a series can be viewed as stationary
or not is essential for the following reasons:

● The stationarity or otherwise of a series can strongly influence its behaviour and
properties. To offer one illustration, the word ‘shock’ is usually used to denote
a change or an unexpected change in a variable or perhaps simply the value of
the error term during a particular time period. For a stationary series, ‘shocks’
to the system will gradually die away. That is, a shock during time t will have
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Figure 8.1 Value of R2 for 1,000 sets of regressions of a non-stationary variable on another
independent non-stationary variable

a smaller effect in time t + 1, a smaller effect still in time t + 2, and so on. This
can be contrasted with the case of non-stationary data, where the persistence
of shocks will always be infinite, so that for a non-stationary series, the effect
of a shock during time t will not have a smaller effect in time t + 1, and in
time t + 2, etc.

● The use of non-stationary data can lead to spurious regressions. If two stationary
variables are generated as independent random series, when one of those
variables is regressed on the other, the t-ratio on the slope coefficient would
be expected not to be significantly different from zero, and the value of R2

would be expected to be very low. This seems obvious, for the variables are
not related to one another. However, if two variables are trending over time, a
regression of one on the other could have a high R2 even if the two are totally
unrelated. So, if standard regression techniques are applied to non-stationary
data, the end result could be a regression that ‘looks’ good under standard
measures (significant coefficient estimates and a high R2), but which is really
valueless. Such a model would be termed a ‘spurious regression’.

To give an illustration of this, two independent sets of non-stationary
variables, y and x, were generated with sample size 500, one regressed on the
other and the R2 noted. This was repeated 1,000 times to obtain 1,000 R2

values. A histogram of these values is given in figure 8.1.
As figure 8.1 shows, although one would have expected the R2 values

for each regression to be close to zero, since the explained and explanatory
variables in each case are independent of one another, in fact R2 takes on
values across the whole range. For one set of data, R2 is bigger than 0.9, while
it is bigger than 0.5 over 16% of the time!

● If the variables employed in a regression model are not stationary, then it can
be proved that the standard assumptions for asymptotic analysis will not be
valid. In other words, the usual ‘t-ratios’ will not follow a t-distribution, and
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Figure 8.2 Value of t-ratio of slope coefficient for 1,000 sets of regressions of a
non-stationary variable on another independent non-stationary variable

the F -statistic will not follow an F -distribution, and so on. Using the same
simulated data as used to produce figure 8.1, figure 8.2 plots a histogram of
the estimated t-ratio on the slope coefficient for each set of data.

In general, if one variable is regressed on another unrelated variable, the
t-ratio on the slope coefficient will follow a t-distribution. For a sample of
size 500, this implies that 95% of the time, the t-ratio will lie between ±2. As
figure 8.2 shows quite dramatically, however, the standard t-ratio in a regression
of non-stationary variables can take on enormously large values. In fact, in the
above example, the t-ratio is bigger than 2 in absolute value over 98% of the
time, when it should be bigger than 2 in absolute value only approximately 5%
of the time! Clearly, it is therefore not possible to validly undertake hypothesis
tests about the regression parameters if the data are non-stationary.

8.1.2 Two types of non-stationarity

There are two models that have been frequently used to characterise the non-
stationarity, the random walk model with drift

yt = μ + yt−1 + ut (8.1)

and the trend-stationary process – so-called because it is stationary around a linear
trend

yt = α + βt + ut (8.2)

where ut is a white noise disturbance term in both cases.
Note that the model (8.1) could be generalised to the case where yt is an

explosive process

yt = μ + φyt−1 + ut (8.3)
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where φ > 1. Typically, this case is ignored and φ = 1 is used to characterise the
non-stationarity because φ > 1 does not describe many data series in economics
and finance, but φ = 1 has been found to describe accurately many financial and
economic time series. Moreover, φ > 1 has an intuitively unappealing property:
shocks to the system are not only persistent through time, they are propagated so
that a given shock will have an increasingly large influence. In other words, the
effect of a shock during time t will have a larger effect in time t + 1, a larger effect
still in time t + 2, and so on. To see this, consider the general case of an AR(1)
with no drift

yt = φyt−1 + ut (8.4)

Let φ take any value for now. Lagging (8.4) one and then two periods

yt−1 = φyt−2 + ut−1 (8.5)

yt−2 = φyt−3 + ut−2 (8.6)

Substituting into (8.4) from (8.5) for yt−1 yields

yt = φ(φyt−2 + ut−1) + ut (8.7)

yt = φ2yt−2 + φut−1 + ut (8.8)

Substituting again for yt−2 from (8.6)

yt = φ2(φyt−3 + ut−2) + φut−1 + ut (8.9)

yt = φ3yt−3 + φ2ut−2 + φut−1 + ut (8.10)

T successive substitutions of this type lead to

yt = φT+1yt−(T+1) + φut−1 + φ2ut−2 + φ3ut−3 + · · · + φTut−T + ut (8.11)

There are three possible cases:

(1) φ < 1 ⇒ φT → 0 as T → ∞
So the shocks to the system gradually die away – this is the stationary case.

(2) φ = 1 ⇒ φT = 1 ∀ T
So shocks persist in the system and never die away. The following is obtained

yt = y0 +
∞∑

t=0

ut as T→∞ (8.12)

So the current value of y is just an infinite sum of past shocks plus some starting
value of y0. This is known as the unit root case, for the root of the characteristic
equation would be unity.

(3) φ > 1. Now given shocks become more influential as time goes on, since if
φ > 1, φ3 > φ2 > φ, etc. This is the explosive case which, for the reasons listed
above, will not be considered as a plausible description of the data.

Going back to the two characterisations of non-stationarity, the random walk
with drift

yt = μ + yt−1 + ut (8.13)



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-08 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:11

8.1 Stationarity and unit root testing

•
•
•
•
•
•
•
•
• 357

and the trend-stationary process

yt = α + βt + ut (8.14)

The two will require different treatments to induce stationarity. The second case is
known as deterministic non-stationarity and de-trending is required. In other words,
if it is believed that only this class of non-stationarity is present, a regression of the
form given in (8.14) would be run, and any subsequent estimation would be done
on the residuals from (8.14), which would have had the linear trend removed.

The first case is known as stochastic non-stationarity, where there is a stochastic
trend in the data. Letting �yt = yt − yt−1 and Lyt = yt−1 so that (1 − L) yt =
yt − Lyt = yt − yt−1. If (8.13) is taken and yt−1 subtracted from both sides

yt − yt−1 = μ + ut (8.15)

(1 − L) yt = μ + ut (8.16)

� yt = μ + ut (8.17)

There now exists a new variable �yt , which will be stationary. It would be said
that stationarity has been induced by ‘differencing once’. It should also be apparent
from the representation given by (8.16) why yt is also known as a unit root process:
i.e. that the root of the characteristic equation (1− z) = 0, will be unity.

Although trend-stationary and difference-stationary series are both ‘trending’
over time, the correct approach needs to be used in each case. If first differences
of a trend-stationary series were taken, it would ‘remove’ the non-stationarity,
but at the expense of introducing an MA(1) structure into the errors. To see this,
consider the trend-stationary model

yt = α + βt + ut (8.18)

This model can be expressed for time t − 1, which would be obtained by removing
1 from all of the time subscripts in (8.18)

yt−1 = α + β(t − 1) + ut−1 (8.19)

Subtracting (8.19) from (8.18) gives

�yt = β + ut − ut−1 (8.20)

Not only is this a moving average in the errors that has been created, it is a non-
invertible MA (i.e. one that cannot be expressed as an autoregressive process). Thus
the series, �yt would in this case have some very undesirable properties.

Conversely if one tried to de-trend a series which has stochastic trend, then
the non-stationarity would not be removed. Clearly then, it is not always obvious
which way to proceed. One possibility is to nest both cases in a more general
model and to test that. For example, consider the model

�yt = α0 + α1t + (γ − 1)yt−1 + ut (8.21)

Although again, of course the t-ratios in (8.21) will not follow a t-distribution.
Such a model could allow for both deterministic and stochastic non-stationarity.
However, this book will now concentrate on the stochastic stationarity model
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Figure 8.3 Example of a white noise process

since it is the model that has been found to best describe most non-stationary
financial and economic time series. Consider again the simplest stochastic trend
model

yt = yt−1 + ut (8.22)

or

�yt = ut (8.23)

This concept can be generalised to consider the case where the series contains
more than one ‘unit root’. That is, the first difference operator, �, would need to
be applied more than once to induce stationarity. This situation will be described
later in this chapter.

Arguably the best way to understand the ideas discussed above is to consider
some diagrams showing the typical properties of certain relevant types of processes.
Figure 8.3 plots a white noise (pure random) process, while figures 8.4 and 8.5 plot
a random walk versus a random walk with drift and a deterministic trend process,
respectively.

Comparing these three figures gives a good idea of the differences between the
properties of a stationary, a stochastic trend and a deterministic trend process. In
figure 8.3, a white noise process visibly has no trending behaviour, and it frequently
crosses its mean value of zero. The random walk (thick line) and random walk
with drift (faint line) processes of figure 8.4 exhibit ‘long swings’ away from their
mean value, which they cross very rarely. A comparison of the two lines in this
graph reveals that the positive drift leads to a series that is more likely to rise over
time than to fall; obviously, the effect of the drift on the series becomes greater and
greater the further the two processes are tracked. Finally, the deterministic trend
process of figure 8.5 clearly does not have a constant mean, and exhibits completely
random fluctuations about its upward trend. If the trend were removed from the
series, a plot similar to the white noise process of figure 8.3 would result. In this
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Figure 8.4 Time series plot of a random walk versus a random walk with drift
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Figure 8.5 Time series plot of a deterministic trend process

author’s opinion, more time series in finance and economics look like figure 8.4
than either figure 8.3 or 8.5. Consequently, as stated above, the stochastic trend
model will be the focus of the remainder of this chapter.

Finally, figure 8.6 plots the value of an autoregressive process of order 1 with
different values of the autoregressive coefficient as given by (8.4). Values of φ = 0
(i.e. a white noise process), φ = 0.8 (i.e. a stationary AR(1)) and φ = 1 (i.e. a
random walk) are plotted over time.
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Figure 8.6 Autoregressive processes with differing values of φ (0, 0.8, 1)

8.1.3 Some more definitions and terminology

If a non-stationary series, yt must be differenced d times before it becomes station-
ary, then it is said to be integrated of order d . This would be written yt ∼ I(d ). So
if yt ∼ I(d ) then �d yt ∼ I(0). This latter piece of terminology states that applying
the difference operator, �, d times, leads to an I(0) process, i.e. a process with no
unit roots. In fact, applying the difference operator more than d times to an I(d )
process will still result in a stationary series (but with an MA error structure). An
I(0) series is a stationary series, while an I (1) series contains one unit root. For
example, consider the random walk

yt = yt−1 + ut (8.24)

An I(2) series contains two unit roots and so would require differencing twice to
induce stationarity. I(1) and I(2) series can wander a long way from their mean
value and cross this mean value rarely, while I(0) series should cross the mean
frequently. The majority of financial and economic time series contain a single
unit root, although some are stationary and some have been argued to possibly
contain two unit roots (series such as nominal consumer prices and nominal wages).
The efficient markets hypothesis together with rational expectations suggest that
asset prices (or the natural logarithms of asset prices) should follow a random
walk or a random walk with drift, so that their differences are unpredictable (or
only predictable to their long-term average value).

To see what types of data generating process could lead to an I(2) series,
consider the equation

yt = 2yt−1 − yt−2 + ut (8.25)
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taking all of the terms in y over to the left hand side (LHS), and then applying the
lag operator notation

yt − 2yt−1 + yt−2 = ut (8.26)

(1 − 2L + L2)yt = ut (8.27)

(1 − L)(1 − L)yt = ut (8.28)

It should be evident now that this process for yt contains two unit roots, and would
require differencing twice to induce stationarity.

What would happen if yt in (8.25) were differenced only once? Taking first
differences of (8.25), i.e. subtracting yt−1 from both sides

yt − yt−1 = yt−1 − yt−2 + ut (8.29)

yt − yt−1 = (yt − yt−1)−1 + ut (8.30)

�yt = �yt−1 + ut (8.31)

(1 − L)�yt = ut (8.32)

First differencing would therefore have removed one of the unit roots, but there is
still a unit root remaining in the new variable, �yt .

8.1.4 Testing for a unit root

One immediately obvious (but inappropriate) method that readers may think of
to test for a unit root would be to examine the autocorrelation function of the
series of interest. However, although shocks to a unit root process will remain
in the system indefinitely, the acf for a unit root process (a random walk) will
often be seen to decay away very slowly to zero. Thus, such a process may be
mistaken for a highly persistent but stationary process. Hence it is not possible to
use the acf or pacf to determine whether a series is characterised by a unit root or
not. Furthermore, even if the true data generating process for yt contains a unit
root, the results of the tests for a given sample could lead one to believe that the
process is stationary. Therefore, what is required is some kind of formal hypothesis
testing procedure that answers the question, ‘given the sample of data to hand, is
it plausible that the true data generating process for y contains one or more unit
roots?’

The early and pioneering work on testing for a unit root in time series was
done by Dickey and Fuller (Fuller, 1976; Dickey and Fuller, 1979). The basic
objective of the test is to examine the null hypothesis that φ = 1 in

yt = φyt−1 + ut (8.33)

against the one-sided alternative φ < 1. Thus the hypotheses of interest are H0:
series contains a unit root versus H1: series is stationary.

In practice, the following regression is employed, rather than (8.33), for ease
of computation and interpretation

�yt = ψyt−1 + ut (8.34)

so that a test of φ = 1 is equivalent to a test of ψ = 0 (since φ − 1 = ψ).
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Table 8.1 Critical values for DF tests (Fuller, 1976, p. 373)

Significance level 10% 5% 1%

CV for constant but no trend −2.57 −2.86 −3.43

CV for constant and trend −3.12 −3.41 −3.96

Dickey–Fuller (DF) tests are also known as τ -tests, and can be conducted
allowing for an intercept, or an intercept and deterministic trend, or neither, in
the test regression. The model for the unit root test in each case is

yt = φyt−1 + μ + λt + ut (8.35)

The tests can also be written, by subtracting yt−1 from each side of the equation,
as

�yt = ψyt−1 + μ + λt + ut (8.36)

In another paper, Dickey and Fuller (1981) provide a set of additional test
statistics and their critical values for joint tests of the significance of the lagged y,
and the constant and trend terms. These are not examined further here. The test
statistics for the original DF tests are defined as

test statistic = ψ̂

ˆSE( ˆ )ψ

(8.37)

The test statistics do not follow the usual t-distribution under the null hypothesis,
since the null is one of non-stationarity, but rather they follow a non-standard dis-
tribution. Critical values are derived from simulations experiments in, for example,
Fuller (1976); see also chapter 13 in this book. Relevant examples of the distri-
bution are shown in table 8.1. A full set of DF critical values is given in the
appendix of statistical tables at the end of this book. A discussion and example of
how such critical values (CV) are derived using simulations methods are presented
in chapter 13.

Comparing these with the standard normal critical values, it can be seen that
the DF critical values are much bigger in absolute terms (i.e. more negative). Thus
more evidence against the null hypothesis is required in the context of unit root
tests than under standard t-tests. This arises partly from the inherent instability
of the unit root process, the fatter distribution of the t-ratios in the context of
non-stationary data (see figure 8.2), and the resulting uncertainty in inference. The
null hypothesis of a unit root is rejected in favour of the stationary alternative in
each case if the test statistic is more negative than the critical value.
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The tests above are valid only if ut is white noise. In particular, ut is assumed
not to be autocorrelated, but would be so if there was autocorrelation in the
dependent variable of the regression (�yt ) which has not been modelled. If this
is the case, the test would be ‘oversized’, meaning that the true size of the test
(the proportion of times a correct null hypothesis is incorrectly rejected) would be
higher than the nominal size used (e.g. 5%). The solution is to ‘augment’ the test
using p lags of the dependent variable. The alternative model in case (i) is now
written

�yt = ψyt−1 +
p∑

i=1

αi �yt−i + ut (8.38)

The lags of �yt now ‘soak up’ any dynamic structure present in the dependent
variable, to ensure that ut is not autocorrelated. The test is known as an augmented
Dickey–Fuller (ADF) test and is still conducted on ψ , and the same critical values
from the DF tables are used as before.

A problem now arises in determining the optimal number of lags of the
dependent variable. Although several ways of choosing p have been proposed,
they are all somewhat arbitrary, and are thus not presented here. Instead, the
following two simple rules of thumb are suggested. First, the frequency of the data
can be used to decide. So, for example, if the data are monthly, use twelve lags,
if the data are quarterly, use four lags, and so on. Clearly, there would not be an
obvious choice for the number of lags to use in a regression containing higher
frequency financial data (e.g. hourly or daily)! Second, an information criterion can
be used to decide. So choose the number of lags that minimises the value of an
information criterion, as outlined in chapter 6.

It is quite important to attempt to use an optimal number of lags of the
dependent variable in the test regression, and to examine the sensitivity of the
outcome of the test to the lag length chosen. In most cases, hopefully the conclusion
will not be qualitatively altered by small changes in p , but sometimes it will.
Including too few lags will not remove all of the autocorrelation, thus biasing the
results, while using too many will increase the coefficient standard errors. The
latter effect arises since an increase in the number of parameters to estimate uses
up degrees of freedom. Therefore, everything else being equal, the absolute values
of the test statistics will be reduced. This will result in a reduction in the power
of the test, implying that for a stationary process the null hypothesis of a unit root
will be rejected less frequently than would otherwise have been the case.

8.1.5 Testing for higher orders of integration

Consider the simple regression

�yt = ψyt−1 + ut (8.39)

H0: ψ = 0 is tested against H1: ψ < 0.
If H0 is rejected, it would simply be concluded that yt does not contain a unit

root. But what should be the conclusion if H0 is not rejected? The series contains
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a unit root, but is that it? No! What if yt ∼ I(2)? The null hypothesis would still
not have been rejected. It is now necessary to perform a test of

H0 : yt ∼ I(2) vs. H1 : yt ∼ I(1)

�2yt (= �yt − �yt−1) would now be regressed on �yt−1 (plus lags of �2yt to
augment the test if necessary). Thus, testing H0: �yt ∼ I(1) is equivalent to H0:
yt ∼ I(2). So in this case, if H0 is not rejected (very unlikely in practice), it would
be concluded that yt is at least I(2). If H0 is rejected, it would be concluded that yt
contains a single unit root. The tests should continue for a further unit root until
H0 is rejected.

Dickey and Pantula (1987) have argued that an ordering of the tests as described
above (i.e. testing for I(1), then I(2), and so on) is, strictly speaking, invalid. The
theoretically correct approach would be to start by assuming some highest plausible
order of integration (e.g. I(2)), and to test I(2) against I(1). If I(2) is rejected, then
test I(1) against I(0). In practice, however, to the author’s knowledge, no financial
time series contain more than a single unit root, so that this matter is of less concern
in finance.

8.1.6 Phillips–Perron (PP) tests

Phillips and Perron have developed a more comprehensive theory of unit root non-
stationarity. The tests are similar to ADF tests, but they incorporate an automatic
correction to the DF procedure to allow for autocorrelated residuals. The tests
often give the same conclusions as, and suffer from most of the same important
limitations as, the ADF tests.

8.1.7 Criticisms of Dickey–Fuller- and Phillips–Perron-type tests

The most important criticism that has been levelled at unit root tests is that
their power is low if the process is stationary but with a root close to the non-
stationary boundary. So, for example, consider an AR(1) data generating process
with coefficient 0.95. If the true data generating process is

yt = 0.95yt−1 + ut (8.40)

the null hypothesis of a unit root should be rejected. It has been thus argued that
the tests are poor at deciding, for example, whether φ = 1 or φ = 0.95, especially
with small sample sizes. The source of this problem is that, under the classical
hypothesis-testing framework, the null hypothesis is never accepted, it is simply
stated that it is either rejected or not rejected. This means that a failure to reject the
null hypothesis could occur either because the null was correct, or because there is
insufficient information in the sample to enable rejection. One way to get around
this problem is to use a stationarity test as well as a unit root test, as described in
box 8.1.
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Box 8.1 Stationarity tests

Stationarity tests have stationarity under the null hypothesis, thus reversing
the null and alternatives under the Dickey–Fuller approach. Thus, under
stationarity tests, the data will appear stationary by default if there is little
information in the sample. One such stationarity test is the KPSS test
(Kwaitkowski et al., 1992). The computation of the test statistic is not
discussed here but the test is available within the EViews software. The results
of these tests can be compared with the ADF/PP procedure to see if the same
conclusion is obtained. The null and alternative hypotheses under each testing
approach are as follows:

ADF/PP KPSS
H0 : yt ∼ I (1) H0 : yt ∼ I (0)
H1 : yt ∼ I (0) H1 : yt ∼ I (1)

There are four possible outcomes:

(1) Reject H0 and Do not reject H0
(2) Do not reject H0 and Reject H0
(3) Reject H0 and Reject H0
(4) Do not reject H0 and Do not reject H0

For the conclusions to be robust, the results should fall under outcomes 1 or 2,
which would be the case when both tests concluded that the series is stationary
or non-stationary, respectively. Outcomes 3 or 4 imply conflicting results.
The joint use of stationarity and unit root tests is known as confirmatory data
analysis.

• • • • • • • • • • • • • • 8.2 Tests for unit roots in the presence of structural breaks

8.2.1 Motivation

The standard Dickey-Fuller-type unit root tests presented above do not perform
well if there are one or more structural breaks in the series under investigation,
either in the intercept or the slope of the regression. More specifically, the tests
have low power in such circumstances and they fail to reject the unit root null
hypothesis when it is incorrect as the slope parameter in the regression of yt on
yt−1 is biased towards unity by an unparameterised structural break. In general,
the larger the break and the smaller the sample, the lower the power of the test.
As Leybourne et al. (1998) have shown, unit root tests are also oversized in the
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presence of structural breaks, so they reject the null hypothesis too frequently when
it is correct.1

Perron’s (1989) work is important since he was able to demonstrate that if we
allow for structural breaks in the testing framework, a whole raft of macroeconomic
series that Nelson and Plosser (1982) had identified as non-stationary may turn out
to be stationary. He argues that most economic time series are best characterised by
broken trend stationary processes, where the data generating process is a deterministic
trend but with a structural break around 1929 that permanently changed the levels
(i.e. the intercepts) of the series.

8.2.2 The Perron (1989) procedure

Recall from above that the flexible framework for unit root testing involves a
regression of the form

�yt = ψyt−1 + μ + λt +
p∑

i=1

αi �yt−i + ut (8.41)

where μ is an intercept and λt captures the time trend, one or both of which
could be excluded from the regression if they were thought to be unnecessary.

Perron (1989) proposes three test equations differing dependent on the type
of break that was thought to be present. The first he terms a ‘crash’ model that
allows a break in the level (i.e. the intercept) of the series; the second is a ‘changing
growth’ model that allows for a break in the growth rate (i.e. the slope) of the
series; the final model allows for both types of break to occur at the same time,
changing both the intercept and the slope of the trend. If we define the break
point in the data as Tb , and Dt is a dummy variable defined as

Dt =
{

0 if t < Tb

1 if t ≥ Tb

the general equation for the third type of test (i.e. the most general) is

�yt = ψyt−1 + μ + α1 Dt + α2(t − Tb )Dt + λt +
p∑

i=1

αi �yt−i + ut (8.42)

For the crash only model, set α2 = 0, while for the changing growth only
model, set α1 = 0. In all three cases, there is a unit root with a structural break at
Tb under the null hypothesis and a series that is a stationary process with a break
under the alternative.

1 This material is fairly specialised and thus is not well covered by most of the standard textbooks. But
for any readers wishing to see more detail, there is a useful and accessible chapter by Perron in the
book Cointegration for the Applied Economist edited by B. B. Rao (1994), Macmillan, Basingstoke,
UK. There is also a chapter on structural change in the book Unit Roots, Cointegration and Structural
Change by G. S. Maddala and I-M. Kim (1998), Cambridge University Press.
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While Perron (1989) commences a new literature on testing for unit roots in
the presence of structural breaks, an important limitation of this approach is that it
assumes that the break date is known in advance and the test is constructed using
this information. It is possible, and perhaps even likely, however, that the date will
not be known and must be determined from the data. More seriously, Christiano
(1992) has argued that the critical values employed with the test will presume the
break date to be chosen exogenously, and yet most researchers will select a break
point based on an examination of the data and thus the asymptotic theory assumed
will no longer hold.

As a result, Banerjee et al. (1992) and Zivot and Andrews (1992) introduce an
approach to testing for unit roots in the presence of structural change that allows
the break date to be selected endogenously. Their methods are based on recursive,
rolling and sequential tests. For the recursive and rolling tests, Banerjee et al.
propose four specifications. First, the standard Dickey–Fuller test on the whole
sample, which they term t̂DF ; second, the ADF test is conducted repeatedly on
the sub-samples and the minimal DF statistic, t̂min

DF , is obtained; third, the maximal
DF statistic is obtained from the sub-samples, t̂max

DF ; finally, the difference between
the maximal and minimal statistics, t̂ diff

DF = t̂max
DF − t̂min

DF , is taken. For the sequential
test, the whole sample is used each time with the following regression being
run

�yt = ψyt−1 + μ + ατt (tused) + λt +
p∑

i=1

αi �yt−i + ut (8.43)

where tused = Tb/T. The test is run repeatedly for different values of Tb over as
much of the data as possible (a ‘trimmed sample’) that excludes the first few and the
last few observations (since it is not possible to reliably detect breaks there). Clearly
it is τt (tused) that allows for the break, which can either be in the level (where
τt (tused) = 1 if t > tused and 0 otherwise); or the break can be in the deterministic
trend (where τt (tused) = t − tused if t > tused and 0 otherwise). For each specification,
a different set of critical values is required, and these can be found in Banerjee
et al. (1992).

Perron (1997) proposes an extension of the Perron (1989) technique but using
a sequential procedure that estimates the test statistic allowing for a break at any
point during the sample to be determined by the data. This technique is very
similar to that of Zivot and Andrews, except that his is more flexible, and therefore
arguably preferable, since it allows for a break under both the null and alternative
hypotheses, whereas according to Zivot and Andrews’ model it can only arise
under the alternative.

A further extension would be to allow for more than one structural break
in the series – for example, Lumsdaine and Papell (1997) enhance the Zivot and
Andrews (1992) approach to allow for two structural breaks. It is also possible to
allow for structural breaks in the cointegrating relationship between series using
an extension of the first step in the Engle-Granger approach – see Gregory and
Hansen (1996).
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Table 8.2 Recursive unit root tests for interest rates allowing for
structural breaks

Recursive statistics Sequential statistics

Maturity tDF t̂ max
DF t̂ min

DF t̂ diff
DF t̃ min

DF,trend t̃ min
DF,mean

Short rate −2.44 −1.33 −3.29 1.96 −2.99 −4.79

7-days −1.95 −1.33 −3.19 1.86 −2.44 −5.65

1-month −1.82 −1.07 −2.90 1.83 −2.32 −4.78

3-months −1.80 −1.02 −2.75 1.73 −2.28 −4.02

6-months −1.86 −1.00 −2.85 1.85 −2.28 −4.10

1-year −1.97 −0.74 −2.88 2.14 −2.35 −4.55

Critical values −3.13 −1.66 −3.88 3.21 −4.11 −4.58

Notes: Source: Brooks and Rew (2002), taken from tables 1, 4 and 5. t̃ min
DF,trend denotes the sequen-

tial test statistic allowing for a break in the trend, while t̃ min
DF,mean is the test statistic allowing for a

break in the level. The final row presents the 10% level critical values for each type of test obtained
from Banerjee et al. (1992, p. 278, table 2).

8.2.3 An example: testing for unit roots in EuroSterling interest rates

Section 8.12 discusses the expectations hypothesis of the term structure of interest
rates based on cointegration between the long and short rates. Clearly, key to
this analysis is the question as to whether the interest rates themselves are I(1)
or I(0) processes. Perhaps surprisingly, there is not a consensus in the empirical
literature on whether this is the case. Brooks and Rew (2002) examine whether
EuroSterling interest rates are best viewed as unit root process or not, allowing for
the possibility of structural breaks in the series.2 They argue that failure to account
for structural breaks that may be present in the data (caused, for example, by changes
in monetary policy or the removal of exchange rate controls) may lead to incorrect
inferences regarding the validity or otherwise of the expectations hypothesis. Their
sample covers the period 1 January 1981 to 1 September 1997 to total 4,348 data
points.

Brooks and Rew use the standard Dickey–Fuller test, the recursive and sequen-
tial tests of Banerjee et al. (1992), and their results are presented in table 8.2. They
also employ the rolling test, the Perron (1997) approach and several other tech-
niques that are not shown here due to space limitations.

The findings for the recursive tests are the same as those for the standard DF
test, and show that the unit root null should not be rejected at the 10% level for

2 EuroSterling interest rates are those at which money is loaned/borrowed in British pounds but
outside of the UK.
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any of the maturities examined. For the sequential tests, the results are slightly
more mixed with the break in trend model still showing no signs of rejecting the
null hypothesis, while it is rejected for the short, seven-day and the one-month
rates when a structural break is allowed for in the mean.

Brooks and Rew’s overall conclusion is that the weight of evidence across all
the tests they examine indicates that short term interest rates are best viewed as unit
root processes that have a structural break in their level around the time of ‘Black
Wednesday’ (16 September 1992) when the UK dropped out of the European
Exchange Rate Mechanism. The longer term rates, on the other hand, are I(1)
processes with no breaks.

8.2.4 Seasonal unit roots

As we will discuss in detail in chapter 10, many time series exhibit seasonal patterns.
One approach to capturing such characteristics would be to use deterministic
dummy variables at the frequency of the data (e.g., monthly dummy variables if the
data are monthly). However, if the seasonal characteristics of the data are themselves
changing over time so that their mean is not constant, then the use of dummy
variables will be inadequate. Instead, we can entertain the possibility that a series
may contain seasonal unit roots, so that it requires seasonal differencing to induce
stationarity. We would use the notation I (d , D) to denote a series that is integrated
of order d , D and requires differencing d times and seasonal differencing D times
to obtain a stationary process. Osborn (1990) develops a test for seasonal unit roots
based on a natural extension of the Dickey–Fuller approach. Groups of series with
seasonal unit roots may also be seasonally cointegrated. However, Osborn also
shows that only a small proportion of macroeconomic series exhibit seasonal unit
roots; the majority have seasonal patterns that can better be characterised using
dummy variables, which may explain why the concept of seasonal unit roots has
not been widely adopted.3

• • • • • • • • • • • • • • 8.3 Testing for unit roots in EViews

This example uses the same data on UK house prices as employed in previous
chapters. Assuming that the data have been loaded, and the variables are defined
as before, double click on the icon next to the name of the series that you want
to perform the unit root test on, so that a spreadsheet appears containing the
observations on that series. Open the raw house price series, ‘hp’ by clicking
on the hp icon. Next, click on the View button on the button bar above the
spreadsheet and then Unit Root Test. . . . You will then be presented with a
menu containing various options, as in screenshot 8.1.

3 For further reading on this topic, the book by Harris (1995) provides an extremely clear intro-
duction to unit roots and cointegration including a section on seasonal unit roots.
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Screenshot 8.1 Options menu for unit root tests

From this, choose the following options:

(1) Test Type Augmented Dickey–Fuller
(2) Test for Unit Root in Levels
(3) Include in test equation Intercept
(4) Maximum lags 12

and click OK.
This will obviously perform an ADF test with up to twelve lags of the depen-

dent variable in a regression equation on the raw data series with a constant but
no trend in the test equation. EViews presents a large number of options here –
for example, instead of the Dickey–Fuller series, we could run the Phillips–Perron
or KPSS tests as described above. Or, if we find that the levels of the series are
non-stationary, we could repeat the analysis on the first differences directly from
this menu rather than having to create the first differenced series separately. We
can also choose between various methods for determining the optimum lag length
in an augmented Dickey–Fuller test, with the Schwarz criterion being the default.
The results for the raw house price series would appear as in the following table.

The value of the test statistic and the relevant critical values given the type
of test equation (e.g. whether there is a constant and/or trend included) and
sample size, are given in the first panel of the output above. Schwarz’s criterion
has in this case chosen to include two lags of the dependent variable in the test
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Null Hypothesis: HP has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic based on SIC, MAXLAG=11)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −0.470202 0.8934

Test critical values: 1% level −3.454812
5% level −2.872203

10% level −2.572525

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(HP)
Method: Least Squares
Date: 07/07/13 Time: 14:59
Sample (adjusted): 1991M04 2013M05
Included observations: 266 after adjustments

Coefficient Std. Error t-Statistic Prob.

HP(-1) −0.000686 0.001459 −0.470202 0.6386
D(HP(-1)) 0.316199 0.058368 5.417290 0.0000
D(HP(-2)) 0.333239 0.058398 5.706296 0.0000

C 234.5155 176.8386 1.326156 0.1859

R-squared 0.308614 Mean dependent var 432.4012
Adjusted R-squared 0.300697 S.D. dependent var 1419.201
S.E. of regression 1186.798 Akaike info criterion 17.01083
Sum squared resid 3.69E+08 Schwarz criterion 17.06472
Log likelihood −2258.440 Hannan-Quinn criter. 17.03248
F-statistic 38.98292 Durbin-Watson stat 2.006505
Prob(F-statistic) 0.000000

regression. Clearly, the test statistic is not more negative than the critical value,
so the null hypothesis of a unit root in the house price series cannot be rejected.
The remainder of the output presents the estimation results. Since one of the
independent variables in this regression is non-stationary, it is not appropriate to
examine the coefficient standard errors or their t-ratios in the test regression.

Now repeat all of the above steps for the first difference of the house price
series (use the ‘First Difference’ option in the unit root testing window rather
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than using the level of the dhp series). The output would appear as in the following
table.

Null Hypothesis: D(HP) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic based on SIC, MAXLAG=15)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −5.857817 0.0000

Test critical values: 1% level −3.454812
5% level −2.872203

10% level −2.572525

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(HP,2)
Method: Least Squares
Date: 07/07/13 Time: 21:30
Sample (adjusted): 1991M04 2013M05
Included observations: 266 after adjustments

Coefficient Std. Error t-Statistic Prob.

D(HP(-1)) −0.351258 0.059964 −5.857817 0.0000
D(HP(-1),2) −0.332625 0.058297 −5.705656 0.0000

C 159.6672 76.90883 2.076058 0.0389

R-squared 0.343699 Mean dependent var 11.01290
Adjusted R-squared 0.338708 S.D. dependent var 1457.257
S.E. of regression 1185.039 Akaike info criterion 17.00415
Sum squared resid 3.69E+08 Schwarz criterion 17.04457
Log likelihood −2258.552 Hannan-Quinn criter. 17.02039
F-statistic 68.86536 Durbin-Watson stat 2.005980
Prob(F-statistic) 0.000000

In this case, as one would expect, the test statistic is more negative than the
critical value and hence the null hypothesis of a unit root in the first differences is
convincingly rejected. For completeness, run a unit root test on the levels of the
dhp series, which are the percentage changes rather than the absolute differences
in prices. You should find that these are also stationary.
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Finally, run the KPSS test on the hp levels series by selecting it from the ‘Test
Type’ box in the unit root testing window. You should observe now that the test
statistic exceeds the critical value, even at the 1% level, so that the null hypothesis
of a stationary series is strongly rejected, thus confirming the result of the unit root
test previously conducted on the same series.

• • • • • • • • • • • • • • 8.4 Cointegration

In most cases, if two variables that are I(1) are linearly combined, then the com-
bination will also be I(1). More generally, if a set of variables Xi,t with differing
orders of integration are combined, the combination will have an order of inte-
gration equal to the largest. If Xi,t ∼ I(di ) for i = 1, 2, 3, . . . , k so that there are
k variables each integrated of order di , and letting

zt =
k∑

i=1

αi Xi,t (8.44)

Then zt ∼ I(max di ). zt in this context is simply a linear combination of the k
variables Xi . Rearranging (8.44)

X1,t =
k∑

i=2

βi Xi,t + z′
t (8.45)

where βi = − αi
α1

, z′
t = zt

α1
, i = 2, . . . , k. All that has been done is to take one of

the variables, X1,t , and to rearrange (8.44) to make it the subject. It could also be
said that the equation has been normalised on X1,t . But viewed another way, (8.45)
is just a regression equation where z′

t is a disturbance term. These disturbances
would have some very undesirable properties: in general, z′

t will not be stationary
and is autocorrelated if all of the Xi are I(1).

As a further illustration, consider the following regression model containing
variables yt , x2t , x3t which are all I(1)

yt = β1 + β2x2t + β3x3t + ut (8.46)

For the estimated model, the SRF would be written

yt = β̂1 + β̂2x2t + β̂3x3t + û t (8.47)

Taking everything except the residuals to the LHS

yt − β̂1 − β̂2x2t − β̂3x3t = û t (8.48)

Again, the residuals when expressed in this way can be considered a linear combi-
nation of the variables. Typically, this linear combination of I(1) variables will itself
be I(1), but it would obviously be desirable to obtain residuals that are I(0). Under
what circumstances will this be the case? The answer is that a linear combination of
I(1) variables will be I(0), in other words stationary, if the variables are cointegrated.
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8.4.1 Definition of cointegration (Engle and Granger, 1987)

Let wt be a k × 1 vector of variables, then the components of wt are integrated of
order (d , b ) if:

(1) All components of wt are I(d )
(2) There is at least one vector of coefficients α such that

α′wt ∼ I(d − b )

In practice, many financial variables contain one unit root, and are thus I(1), so that
the remainder of this chapter will restrict analysis to the case where d = b = 1.
In this context, a set of variables is defined as cointegrated if a linear combination
of them is stationary. Many time series are non-stationary but ‘move together’
over time – that is, there exist some influences on the series (for example, market
forces), which imply that the two series are bound by some relationship in the long
run. A cointegrating relationship may also be seen as a long-term or equilibrium
phenomenon, since it is possible that cointegrating variables may deviate from
their relationship in the short run, but their association would return in the long
run.

8.4.2 Examples of possible cointegrating relationships in finance

Financial theory should suggest where two or more variables would be expected
to hold some long-run relationship with one another. There are many examples
in finance of areas where cointegration might be expected to hold, including:

● Spot and futures prices for a given commodity or asset
● Ratio of relative prices and an exchange rate
● Equity prices and dividends.

In all three cases, market forces arising from no-arbitrage conditions suggest that
there should be an equilibrium relationship between the series concerned. The
easiest way to understand this notion is perhaps to consider what would be the
effect if the series were not cointegrated. If there were no cointegration, there
would be no long-run relationship binding the series together, so that the series
could wander apart without bound. Such an effect would arise since all linear
combinations of the series would be non-stationary, and hence would not have a
constant mean that would be returned to frequently.

Spot and futures prices may be expected to be cointegrated since they are
obviously prices for the same asset at different points in time, and hence will
be affected in very similar ways by given pieces of information. The long-run
relationship between spot and futures prices would be given by the cost of carry.

Purchasing power parity (PPP) theory states that a given representative basket
of goods and services should cost the same wherever it is bought when converted
into a common currency. Further discussion of PPP occurs in section 8.10, but
for now suffice it to say that PPP implies that the ratio of relative prices in two
countries and the exchange rate between them should be cointegrated. If they
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did not cointegrate, assuming zero transactions costs, it would be profitable to buy
goods in one country, sell them in another, and convert the money obtained back
to the currency of the original country.

Finally, if it is assumed that some stock in a particular company is held to
perpetuity (i.e. for ever), then the only return that would accrue to that investor
would be in the form of an infinite stream of future dividend payments. Hence
the discounted dividend model argues that the appropriate price to pay for a share
today is the present value of all future dividends. Hence, it may be argued that
one would not expect current prices to ‘move out of line’ with future anticipated
dividends in the long run, thus implying that share prices and dividends should be
cointegrated.

An interesting question to ask is whether a potentially cointegrating regression
should be estimated using the levels of the variables or the logarithms of the levels
of the variables. Financial theory may provide an answer as to the more appropriate
functional form, but fortunately even if not, Hendry and Juselius (2000) note that
if a set of series is cointegrated in levels, they will also be cointegrated in log
levels.

• • • • • • • • • • • • • • 8.5 Equilibrium correction or error correction models

When the concept of non-stationarity was first considered in the 1970s, a usual
response was to independently take the first differences of each of the I(1) variables
and then to use these first differences in any subsequent modelling process. In the
context of univariate modelling (e.g. the construction of ARMA models), this is
entirely the correct approach. However, when the relationship between variables
is important, such a procedure is inadvisable. While this approach is statistically
valid, it does have the problem that pure first difference models have no long-run
solution. For example, consider two series, yt and xt , that are both I(1). The model
that one may consider estimating is

�yt = β�xt + ut (8.49)

One definition of the long run that is employed in econometrics implies that the
variables have converged upon some long-term values and are no longer changing,
thus yt = yt−1 = y; xt = xt−1 = x. Hence all the difference terms will be zero in
(8.49), i.e. �yt = 0; �xt = 0, and thus everything in the equation cancels. Model
(8.49) has no long-run solution and it therefore has nothing to say about whether
x and y have an equilibrium relationship (see chapter 5).

Fortunately, there is a class of models that can overcome this problem by using
combinations of first differenced and lagged levels of cointegrated variables. For
example, consider the following equation

�yt = β1�xt + β2(yt−1 − γ xt−1) + ut (8.50)

This model is known as an error correction model or an equilibrium correction model,
and yt−1 − γ xt−1 is known as the error correction term. Provided that yt and xt are
cointegrated with cointegrating coefficient γ , then (yt−1 − γ xt−1) will be I(0)
even though the constituents are I(1). It is thus valid to use OLS and standard
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procedures for statistical inference on (8.50). It is of course possible to have an
intercept in either the cointegrating term (e.g. yt−1 − α − γ xt−1) or in the model
for �yt (e.g. �yt = β0 + β1�xt + β2(yt−1 − γ xt−1) + ut ) or both. Whether a
constant is included or not could be determined on the basis of financial the-
ory, considering the arguments on the importance of a constant discussed in
chapter 5.

The error correction model is sometimes termed an equilibrium correction
model, and the two terms will be used synonymously for the purposes of this
book. Error correction models are interpreted as follows. y is purported to change
between t − 1 and t as a result of changes in the values of the explanatory variable(s),
x, between t − 1 and t , and also in part to correct for any disequilibrium that
existed during the previous period. Note that the error correction term (yt−1 −
γ xt−1) appears in (8.50) with a lag. It would be implausible for the term to appear
without any lag (i.e. as yt − γ xt ), for this would imply that y changes between t − 1
and t in response to a disequilibrium at time t . γ defines the long-run relationship
between x and y, while β1 describes the short-run relationship between changes
in x and changes in y. Broadly, β2 describes the speed of adjustment back to
equilibrium, and its strict definition is that it measures the proportion of last
period’s equilibrium error that is corrected for.

Of course, an error correction model can be estimated for more than two vari-
ables. For example, if there were three variables, xt , wt , yt , that were cointegrated,
a possible error correction model would be

�yt = β1�xt + β2�wt + β3(yt−1 − γ1xt−1 − γ2wt−1) + ut (8.51)

The Granger representation theorem states that if there exists a dynamic linear model
with stationary disturbances and the data are I(1), then the variables must be
cointegrated of order (1,1).

• • • • • • • • • • • • • • 8.6 Testing for cointegration in regression: a residuals-based approach

The model for the equilibrium correction term can be generalised further to
include k variables (y and the k − 1 xs)

yt = β1 + β2x2t + β3x3t + · · · + βkxkt + ut (8.52)

ut should be I(0) if the variables yt , x2t , . . . xkt are cointegrated, but ut will still
be non-stationary if they are not.

Thus it is necessary to test the residuals of (8.52) to see whether they are non-
stationary or stationary. The DF or ADF test can be used on û t , using a regression
of the form

�û t = ψ û t−1 + vt (8.53)

with vt an iid error term.
However, since this is a test on residuals of a model, û t , then the critical values

are changed compared to a DF or an ADF test on a series of raw data. Engle and
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Granger (1987) have tabulated a new set of critical values for this application and
hence the test is known as the Engle–Granger (EG) test. The reason that modified
critical values are required is that the test is now operating on the residuals of an
estimated model rather than on raw data. The residuals have been constructed
from a particular set of coefficient estimates, and the sampling estimation error in
those coefficients will change the distribution of the test statistic. Engle and Yoo
(1987) tabulate a new set of critical values that are larger in absolute value (i.e.
more negative) than the DF critical values, also given at the end of this book.
The critical values also become more negative as the number of variables in the
potentially cointegrating regression increases.

It is also possible to use the Durbin–Watson (DW ) test statistic or the Phillips–
Perron (PP) approach to test for non-stationarity of û t . If the DW test is applied
to the residuals of the potentially cointegrating regression, it is known as the
Cointegrating Regression Durbin Watson (CRDW ). Under the null hypothesis of
a unit root in the errors, CRDW ≈ 0, so the null of a unit root is rejected if the
CRDW statistic is larger than the relevant critical value (which is approximately
0.5).

What are the null and alternative hypotheses for any unit root test applied to
the residuals of a potentially cointegrating regression?

H0 : û t ∼ I(1)

H1 : û t ∼ I(0).

Thus, under the null hypothesis there is a unit root in the potentially cointegrating
regression residuals, while under the alternative, the residuals are stationary. Under
the null hypothesis, therefore, a stationary linear combination of the non-stationary
variables has not been found. Hence, if this null hypothesis is not rejected, there is
no cointegration. The appropriate strategy for econometric modelling in this case
would be to employ specifications in first differences only. Such models would have
no long-run equilibrium solution, but this would not matter since no cointegration
implies that there is no long-run relationship anyway.

On the other hand, if the null of a unit root in the potentially cointegrating
regression’s residuals is rejected, it would be concluded that a stationary linear
combination of the non-stationary variables had been found. Therefore, the vari-
ables would be classed as cointegrated. The appropriate strategy for econometric
modelling in this case would be to form and estimate an error correction model,
using a method described in the following section.

• • • • • • • • • • • • • • 8.7 Methods of parameter estimation in cointegrated systems

What should be the modelling strategy if the data at hand are thought to be non-
stationary and possibly cointegrated? There are (at least) three methods that could
be used: Engle–Granger, Engle–Yoo and Johansen. The first and third of these will
be considered in some detail below.
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8.7.1 The Engle–Granger 2-step method

This is a single equation technique, which is conducted as follows:

Step 1

Make sure that all the individual variables are I(1). Then estimate the cointegrating
regression using OLS. Note that it is not possible to perform any inferences on
the coefficient estimates in this regression – all that can be done is to estimate the
parameter values. Save the residuals of the cointegrating regression, û t . Test these
residuals to ensure that they are I(0). If they are I(0), proceed to Step 2; if they are
I(1), estimate a model containing only first differences.

Step 2

Use the step 1 residuals as one variable in the error correction model, e.g.

�yt = β1�xt + β2(û t−1) + vt (8.51)

where û t−1 = yt−1 − τ̂xt−1. The stationary, linear combination of non-stationary
variables is also known as the cointegrating vector. In this case, the cointegrating vector
would be [1 − τ̂ ]. Additionally, any linear transformation of the cointegrating
vector will also be a cointegrating vector. So, for example, −10yt−1 + 10τ̂xt−1
will also be stationary. In (8.48) above, the cointegrating vector would be [1 −
β̂1 − β̂2 − β̂3]. It is now valid to perform inferences in the second-stage regression,
i.e. concerning the parameters β1 and β2 (provided that there are no other forms
of misspecification, of course), since all variables in this regression are stationary.

The Engle–Granger 2-step method suffers from a number of problems:

(1) The usual finite sample problem of a lack of power in unit root and cointegration
tests discussed above.

(2) There could be a simultaneous equations bias if the causality between y and x runs
in both directions, but this single equation approach requires the researcher
to normalise on one variable (i.e. to specify one variable as the dependent
variable and the others as independent variables). The researcher is forced to
treat y and x asymmetrically, even though there may have been no theoretical
reason for doing so. A further issue is the following. Suppose that the following
specification had been estimated as a potential cointegrating regression

yt = α1 + β1xt + u1t (8.52)

What if instead the following equation was estimated?

xt = α2 + β2yt + u2t (8.53)

If it is found that u1t ∼ I(0), does this imply automatically that u2t ∼ I(0)?
The answer in theory is ‘yes’, but in practice different conclusions may be
reached in finite samples. Also, if there is an error in the model specification
at stage 1, this will be carried through to the cointegration test at stage 2, as a
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Box 8.2 Multiple cointegrating relationships

In the case where there are only two variables in an equation, yt , and xt ,

say, there can be at most only one linear combination of yt , and xt that is
stationary – i.e. at most one cointegrating relationship. However, suppose
that there are k variables in a system (ignoring any constant term), denoted
yt , x2t , . . . xkt . In this case, there may be up to r linearly independent
cointegrating relationships (where r ≤ k − 1). This potentially presents a
problem for the OLS regression approach described above, which is capable
of finding at most one cointegrating relationship no matter how many
variables there are in the system. And if there are multiple cointegrating
relationships, how can one know if there are others, or whether the ‘best’ or
strongest cointegrating relationship has been found? An OLS regression will
find the minimum variance stationary linear combination of the variables,
but there may be other linear combinations of the variables that have more
intuitive appeal.1 The answer to this problem is to use a systems approach
to cointegration, which will allow determination of all r cointegrating
relationships. One such approach is Johansen’s method – see section 8.9.

consequence of the sequential nature of the computation of the cointegration
test statistic.

(3) It is not possible to perform any hypothesis tests about the actual cointegrating
relationship estimated at stage 1.

(4) There may be more than one cointegrating relationship – see box 8.2.

Problems 1 and 2 are small sample problems that should disappear asymptotically.
Problem 3 is addressed by another method due to Engle and Yoo. There is also
another alternative technique, which overcomes problems 2 and 3 by adopting a
different approach based on estimation of a VAR system – see section 8.9.

8.7.2 The Engle and Yoo 3-step method

The Engle and Yoo (1987) 3-step procedure takes its first two steps from Engle–
Granger (EG). Engle and Yoo then add a third step giving updated estimates of the
cointegrating vector and its standard errors. The Engle and Yoo (EY) third step is
algebraically technical and additionally, EY suffers from all of the remaining prob-
lems of the EG approach. There is arguably a far superior procedure available to
remedy the lack of testability of hypotheses concerning the cointegrating relation-
ship – namely, the Johansen (1988) procedure. For these reasons, the Engle–Yoo

1 Readers who are familiar with the literature on hedging with futures will recognise that running
an OLS regression will minimise the variance of the hedged portfolio, i.e. it will minimise the
regression’s residual variance, and the situation here is analogous.
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procedure is rarely employed in empirical applications and is not considered further
here.

There now follows an application of the Engle–Granger procedure in the
context of spot and futures markets.

• • • • • • • • • • • • • • 8.8 Lead–lag and long-term relationships between spot and futures markets

8.8.1 Background

If the markets are frictionless and functioning efficiently, changes in the (log of
the) spot price of a financial asset and its corresponding changes in the (log of the)
futures price would be expected to be perfectly contemporaneously correlated and
not to be cross-autocorrelated. Mathematically, these notions would be represented
as

corr(�log( f t ), � ln(s t )) ≈ 1 (a)

corr(�log( f t ), � ln(s t−k)) ≈ 0 ∀ k > 0 (b)

corr(�log( f t− j ), � ln(s t )) ≈ 0 ∀ j > 0 (c)

In other words, changes in spot prices and changes in futures prices are expected
to occur at the same time (condition (a)). The current change in the futures price
is also expected not to be related to previous changes in the spot price (condition
(b)), and the current change in the spot price is expected not to be related to
previous changes in the futures price (condition (c)). The changes in the log of the
spot and futures prices are also of course known as the spot and futures returns.

For the case when the underlying asset is a stock index, the equilibrium
relationship between the spot and futures prices is known as the cost of carry model,
given by

F ∗
t = St e (r −d )(T−t ) (8.54)

where F ∗
t is the fair futures price, St is the spot price, r is a continuously com-

pounded risk-free rate of interest, d is the continuously compounded yield in
terms of dividends derived from the stock index until the futures contract matures,
and (T − t ) is the time to maturity of the futures contract. Taking logarithms of
both sides of (8.54) gives

f ∗
t = s t +(r − d )(T − t ) (8.55)

where f ∗
t is the log of the fair futures price and s t is the log of the spot price.

Equation (8.55) suggests that the long-term relationship between the logs of the
spot and futures prices should be one to one. Thus the basis, defined as the diff-
erence between the futures and spot prices (and if necessary adjusted for the cost
of carry) should be stationary, for if it could wander without bound, arbitrage
opportunities would arise, which would be assumed to be quickly acted upon by
traders such that the relationship between spot and futures prices will be brought
back to equilibrium.
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Table 8.3 DF tests on log-prices and returns for high frequency
FTSE data

Futures Spot

Dickey–Fuller statistics −0.1329 −0.7335

for log-price data

Dickey–Fuller statistics −84.9968 −114.1803

for returns data

The notion that there should not be any lead–lag relationships between the spot
and futures prices and that there should be a long-term one to one relationship
between the logs of spot and futures prices can be tested using simple linear
regressions and cointegration analysis. This book will now examine the results of
two related papers – Tse (1995), who employs daily data on the Nikkei Stock
Average (NSA) and its futures contract, and Brooks, Rew and Ritson (2001), who
examine high-frequency data from the FTSE 100 stock index and index futures
contract.

The data employed by Tse (1995) consists of 1,055 daily observations on NSA
stock index and stock index futures values from December 1988 to April 1993. The
data employed by Brooks et al. comprises 13,035 ten-minutely observations for all
trading days in the period June 1996–May 1997, provided by FTSE International.
In order to form a statistically adequate model, the variables should first be checked
as to whether they can be considered stationary. The results of applying a DF test
to the logs of the spot and futures prices of the ten-minutely FTSE data are shown
in table 8.3.

As one might anticipate, both studies conclude that the two log-price series
contain a unit root, while the returns are stationary. Of course, it may be necessary
to augment the tests by adding lags of the dependent variable to allow for autocor-
relation in the errors (i.e. an ADF test). Results for such tests are not presented,
since the conclusions are not altered. A statistically valid model would therefore
be one in the returns. However, a formulation containing only first differences has
no long-run equilibrium solution. Additionally, theory suggests that the two series
should have a long-run relationship. The solution is therefore to see whether there
exists a cointegrating relationship between f t and s t which would mean that it is
valid to include levels terms along with returns in this framework. This is tested
by examining whether the residuals, ẑt , of a regression of the form

s t = γ0 + γ1 f t + zt (8.56)

are stationary, using a DF test, where zt is the error term. The coefficient values
for the estimated (8.56) and the DF test statistic are given in table 8.4.
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Table 8.4 Estimated potentially cointegrating equation and test for
cointegration for high frequency FTSE data

Coefficient Estimated value

γ̂0 0.1345

γ̂1 0.9834

DF test on residuals Test statistic

ẑt −14.7303

Source: Brooks, Rew and Ritson (2001).

Table 8.5 Estimated error correction model for high frequency
FTSE data

Coefficient Estimated value t-ratio

β̂0 9.6713E−06 1.6083

δ̂ −0.8388 −5.1298

β̂1 0.1799 19.2886

α̂1 0.1312 20.4946

Source: Brooks, Rew and Ritson (2001).

Clearly, the residuals from the cointegrating regression can be considered sta-
tionary. Note also that the estimated slope coefficient in the cointegrating regres-
sion takes on a value close to unity, as predicted from the theory. It is not possible
to formally test whether the true population coefficient could be one, however,
since there is no way in this framework to test hypotheses about the cointegrat-
ing relationship.

The final stage in building an error correction model using the Engle–Granger
two-step approach is to use a lag of the first-stage residuals, ẑt , as the equilibrium
correction term in the general equation. The overall model is

� log s t = β0 + δẑt−1 + β1� ln s t−1 + α1� ln f t−1 + vt (8.57)

where vt is an error term. The coefficient estimates for this model are presented
in table 8.5.
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Table 8.6 Comparison of out-of-sample forecasting accuracy

ECM ECM-COC ARIMA VAR

RMSE 0.0004382 0.0004350 0.0004531 0.0004510

MAE 0.4259 0.4255 0.4382 0.4378

% Correct direction 67.69% 68.75% 64.36% 66.80%

Source: Brooks, Rew and Ritson (2001).

Consider first the signs and significances of the coefficients (these can now be
interpreted validly since all variables used in this model are stationary). α̂1 is positive
and highly significant, indicating that the futures market does indeed lead the spot
market, since lagged changes in futures prices lead to a positive change in the
subsequent spot price. β̂1 is positive and highly significant, indicating on average a
positive autocorrelation in spot returns. δ̂, the coefficient on the error correction
term, is negative and significant, indicating that if the difference between the logs
of the spot and futures prices is positive in one period, the spot price will fall
during the next period to restore equilibrium, and vice versa.

8.8.2 Forecasting spot returns

Both Brooks, Rew and Ritson (2001) and Tse (1995) show that it is possible to
use an error correction formulation to model changes in the log of a stock index.
An obvious related question to ask is whether such a model can be used to forecast
the future value of the spot series for a holdout sample of data not used previously
for model estimation. Both sets of researchers employ forecasts from three other
models for comparison with the forecasts of the error correction model. These are
an error correction model with an additional term that allows for the cost of carry,
an ARMA model (with lag length chosen using an information criterion) and an
unrestricted VAR model (with lag length chosen using a multivariate information
criterion).

The results are evaluated by comparing their root-mean squared errors, mean
absolute errors and percentage of correct direction predictions. The forecasting
results from the Brooks, Rew and Ritson paper are given in table 8.6.

It can be seen from table 8.6 that the error correction models have both
the lowest mean squared and mean absolute errors, and the highest proportion
of correct direction predictions. There is, however, little to choose between the
models, and all four have over 60% of the signs of the next returns predicted
correctly.

It is clear that on statistical grounds the out-of-sample forecasting performances
of the error correction models are better than those of their competitors, but
this does not necessarily mean that such forecasts have any practical use. Many
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studies have questioned the usefulness of statistical measures of forecast accuracy as
indicators of the profitability of using these forecasts in a practical trading setting
(see, for example, Leitch and Tanner, 1991). Brooks, Rew and Ritson (2001)
investigate this proposition directly by developing a set of trading rules based on
the forecasts of the error correction model with the cost of carry term, the best
statistical forecasting model. The trading period is an out-of-sample data series not
used in model estimation, running from 1 May–30 May 1997. The error correction
model with cost of carry (ECM-COC) model yields ten-minutely one-step-ahead
forecasts. The trading strategy involves analysing the forecast for the spot return,
and incorporating the decision dictated by the trading rules described below. It is
assumed that the original investment is £1,000, and if the holding in the stock
index is zero, the investment earns the risk-free rate. Five trading strategies are
employed, and their profitabilities are compared with that obtained by passively
buying and holding the index. There are of course an infinite number of strategies
that could be adopted for a given set of spot return forecasts, but Brooks, Rew
and Ritson use the following:

● Liquid trading strategy This trading strategy involves making a round-trip trade
(i.e. a purchase and sale of the FTSE 100 stocks) every ten minutes that the
return is predicted to be positive by the model. If the return is predicted to
be negative by the model, no trade is executed and the investment earns the
risk-free rate.

● Buy-and-hold while forecast positive strategy This strategy allows the trader to
continue holding the index if the return at the next predicted investment
period is positive, rather than making a round-trip transaction for each period.

● Filter strategy: better predicted return than average This strategy involves purchas-
ing the index only if the predicted returns are greater than the average positive
return (there is no trade for negative returns therefore the average is only taken
of the positive returns).

● Filter strategy: better predicted return than first decile This strategy is similar to
the previous one, but rather than utilising the average as previously, only the
returns predicted to be in the top 10% of all returns are traded on.

● Filter strategy: high arbitrary cutoff An arbitrary filter of 0.0075% is imposed,
which will result in trades only for returns that are predicted to be extremely
large for a ten-minute interval.

The results from employing each of the strategies using the forecasts for the spot
returns obtained from the ECM-COC model are presented in table 8.7.

The test month of May 1997 was a particularly bullish one, with a pure
buy-and-hold-the-index strategy netting a return of 4%, or almost 50% on an
annualised basis. Ideally, the forecasting exercise would be conducted over a much
longer period than one month, and preferably over different market conditions.
However, this was simply impossible due to the lack of availability of very high
frequency data over a long time period. Clearly, the forecasts have some market
timing ability in the sense that they seem to ensure trades that, on average, would
have invested in the index when it rose, but be out of the market when it fell. The
most profitable trading strategies in gross terms are those that trade on the basis
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Table 8.7 Trading profitability of the error correction model with
cost of carry

Terminal Terminal Return(%)
wealth Return(%) wealth (£) annualised Number

Trading strategy (£) annualised with slippage with slippage of trades

Passive investment 1040.92 4.09 1040.92 4.09 1

{49.08} {49.08}
Liquid trading 1156.21 15.62 1056.38 5.64 583

{187.44} {67.68}
Buy-and-hold while 1156.21 15.62 1055.77 5.58 383

forecast positive {187.44} {66.96}
Filter I 1144.51 14.45 1123.57 12.36 135

{173.40} {148.32}
Filter II 1100.01 10.00 1046.17 4.62 65

{120.00} {55.44}
Filter III 1019.82 1.98 1003.23 0.32 8

{23.76} {3.84}

Source: Brooks, Rew and Ritson (2001).

of every positive spot return forecast, and all rules except the strictest filter make
more money than a passive investment. The strict filter appears not to work well
since it is out of the index for too long during a period when the market is rising
strongly.

However, the picture of immense profitability painted thus far is somewhat
misleading for two reasons: slippage time and transactions costs. First, it is unrea-
sonable to assume that trades can be executed in the market the minute they are
requested, since it may take some time to find counterparties for all the trades
required to ‘buy the index’. (Note, of course, that in practice, a similar returns
profile to the index can be achieved with a very much smaller number of stocks.)
Brooks, Rew and Ritson therefore allow for ten minutes of ‘slippage time’, which
assumes that it takes ten minutes from when the trade order is placed to when it is
executed. Second, it is unrealistic to consider gross profitability, since transactions
costs in the spot market are non-negligible and the strategies examined suggested a
lot of trades. Sutcliffe (1997, p. 47) suggests that total round-trip transactions costs
for FTSE stocks are of the order of 1.7% of the investment.

The effect of slippage time is to make the forecasts less useful than they would
otherwise have been. For example, if the spot price is forecast to rise, and it does,
it may have already risen and then stopped rising by the time that the order is
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executed, so that the forecasts lose their market timing ability. Terminal wealth
appears to fall substantially when slippage time is allowed for, with the monthly
return falling by between 1.5% and 10%, depending on the trading rule.

Finally, if transactions costs are allowed for, none of the trading rules can
outperform the passive investment strategy, and all in fact make substantial losses.

8.8.3 Conclusions

If the markets are frictionless and functioning efficiently, changes in the spot price
of a financial asset and its corresponding futures price would be expected to be
perfectly contemporaneously correlated and not to be cross-autocorrelated. Many
academic studies, however, have documented that the futures market systematically
‘leads’ the spot market, reflecting news more quickly as a result of the fact that the
stock index is not a single entity. The latter implies that:

● Some components of the index are infrequently traded, implying that the
observed index value contains ‘stale’ component prices

● It is more expensive to transact in the spot market and hence the spot market
reacts more slowly to news

● Stock market indices are recalculated only every minute so that new informa-
tion takes longer to be reflected in the index.

Clearly, such spot market impediments cannot explain the inter-daily lead–lag
relationships documented by Tse (1995). In any case, however, since it appears
impossible to profit from these relationships, their existence is entirely consistent
with the absence of arbitrage opportunities and is in accordance with modern
definitions of the efficient markets hypothesis.

• • • • • • • • • • • • • • 8.9 Testing for and estimating cointegrating systems using the Johansen
technique based on VARs

Suppose that a set of g variables (g ≥ 2) are under consideration that are I(1) and
which are thought may be cointegrated. A VAR with k lags containing these
variables could be set up:

yt = β1yt−1 + β2yt−2 + · · · + βk yt−k + ut

g × 1 g × g g × 1 g × g g × 1 g × g g × 1 g × 1
(8.58)

In order to use the Johansen test, the VAR (8.58) above needs to be turned
into a vector error correction model (VECM) of the form

�yt = �yt−k + �1�yt−1 + �2�yt−2 + · · · + �k−1�yt−(k−1) + ut (8.59)

where � = (
∑k

i=1 βi ) − Ig and �i = (
∑i

j=1 β j ) − Ig
This VAR contains g variables in first differenced form on the LHS, and

k − 1 lags of the dependent variables (differences) on the RHS, each with a �

coefficient matrix attached to it. In fact, the Johansen test can be affected by the
lag length employed in the VECM, and so it is useful to attempt to select the
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lag length optimally, as outlined in chapter 6. The Johansen test centres around
an examination of the � matrix. � can be interpreted as a long-run coefficient
matrix, since in equilibrium, all the �yt−i will be zero, and setting the error terms,
ut , to their expected value of zero will leave �yt−k = 0. Notice the comparability
between this set of equations and the testing equation for an ADF test, which has a
first differenced term as the dependent variable, together with a lagged levels term
and lagged differences on the RHS.

The test for cointegration between the ys is calculated by looking at the rank
of the � matrix via its eigenvalues.2 The rank of a matrix is equal to the number of
its characteristic roots (eigenvalues) that are different from zero (see the appendix at
the end of this book for some algebra and examples). The eigenvalues, denoted λi
are put in ascending order λ1 ≥ λ2 ≥ . . . ≥ λg . If the λs are roots, in this context
they must be less than one in absolute value and positive, and λ1 will be the largest
(i.e. the closest to one), while λg will be the smallest (i.e. the closest to zero). If
the variables are not cointegrated, the rank of � will not be significantly different
from zero, so λi ≈ 0 ∀ i . The test statistics actually incorporate ln(1 − λi ), rather
than the λi themselves, but still, when λi = 0, ln(1 − λi ) = 0.

Suppose now that rank (�) = 1, then ln(1 − λ1) will be negative and ln(1 −
λi ) = 0 ∀ i > 1. If the eigenvalue i is non-zero, then ln(1 − λi ) < 0 ∀ i > 1. That
is, for � to have a rank of 1, the largest eigenvalue must be significantly non-zero,
while others will not be significantly different from zero.

There are two test statistics for cointegration under the Johansen approach,
which are formulated as

λtrace(r ) = −T
g∑

i=r +1

ln(1 − λ̂i ) (8.60)

and

λmax(r , r + 1) = −T ln(1 − λ̂r +1) (8.61)

where r is the number of cointegrating vectors under the null hypothesis and λ̂i is
the estimated value for the ith ordered eigenvalue from the � matrix. Intuitively,
the larger is λ̂i , the more large and negative will be ln(1 − λ̂i ) and hence the
larger will be the test statistic. Each eigenvalue will have associated with it a
different cointegrating vector, which will be an eigenvector. A significantly non-
zero eigenvalue indicates a significant cointegrating vector.

λtrace is a joint test where the null is that the number of cointegrating vectors
is less than or equal to r against an unspecified or general alternative that there
are more than r . It starts with p eigenvalues, and then successively the largest is
removed. λtrace = 0 when all the λi = 0, for i = 1, . . . , g .

λmax conducts separate tests on each eigenvalue, and has as its null hypothesis
that the number of cointegrating vectors is r against an alternative of r + 1.

2 Strictly, the eigenvalues used in the test statistics are taken from rank-restricted product moment
matrices and not of � itself.
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Johansen and Juselius (1990) provide critical values for the two statistics. The
distribution of the test statistics is non-standard, and the critical values depend
on the value of g − r , the number of non-stationary components and whether
constants are included in each of the equations. Intercepts can be included either in
the cointegrating vectors themselves or as additional terms in the VAR. The latter
is equivalent to including a trend in the data generating processes for the levels of
the series. Osterwald-Lenum (1992) provides a more complete set of critical values
for the Johansen test, some of which are also given in the appendix of statistical
tables at the end of this book.

If the test statistic is greater than the critical value from Johansen’s tables, reject
the null hypothesis that there are r cointegrating vectors in favour of the alternative
that there are r + 1 (for λmax) or more than r (for λtrace). The testing is conducted
in a sequence and under the null, r = 0, 1, . . . , g − 1 so that the hypotheses for
λtrace are

H0 : r = 0 versus H1 : 0 < r ≤ g
H0 : r = 1 versus H1 : 1 < r ≤ g
H0 : r = 2 versus H1 : 2 < r ≤ g

...
...

...
H0 : r = g − 1 versus H1 : r = g

The first test involves a null hypothesis of no cointegrating vectors (corresponding
to � having zero rank). If this null is not rejected, it would be concluded that
there are no cointegrating vectors and the testing would be completed. However, if
H0 : r = 0 is rejected, the null that there is one cointegrating vector (i.e. H0 : r =
1) would be tested and so on. Thus the value of r is continually increased until the
null is no longer rejected.

But how does this correspond to a test of the rank of the � matrix? r is
the rank of �. � cannot be of full rank (g ) since this would correspond to the
original yt being stationary. If � has zero rank, then by analogy to the univariate
case, �yt depends only on �yt− j and not on yt−1, so that there is no long-
run relationship between the elements of yt−1. Hence there is no cointegration.
For 1 < rank(�) < g , there are r cointegrating vectors. � is then defined as the
product of two matrices, α and β ′, of dimension (g × r ) and (r × g ), respectively,
i.e.

� = αβ ′ (8.62)

The matrix β gives the cointegrating vectors, while α gives the amount of each
cointegrating vector entering each equation of the VECM, also known as the
‘adjustment parameters’.

For example, suppose that g = 4, so that the system contains four variables.
The elements of the � matrix would be written

� =

⎛
⎜⎝

π11 π12 π13 π14
π21 π22 π23 π24
π31 π32 π33 π34
π41 π42 π43 π44

⎞
⎟⎠ (8.63)
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If r = 1, so that there is one cointegrating vector, then α and β will be (4 × 1)

� = αβ ′ =

⎛
⎜⎝

α11
α12
α13
α14

⎞
⎟⎠ (β11 β12 β13 β14) (8.64)

If r = 2, so that there are two cointegrating vectors, then α and β will be (4 × 2)

� = αβ ′ =

⎛
⎜⎝

α11 α21
α12 α22
α13 α23
α14 α24

⎞
⎟⎠(

β11 β12 β13 β14
β21 β22 β23 β24

)
(8.65)

and so on for r = 3, . . .
Suppose now that g = 4, and r = 1, as in (8.64) above, so that there are four

variables in the system, y1, y2, y3, and y4, that exhibit one cointegrating vector.
Then �yt−k will be given by

� =

⎛
⎜⎝

α11
α12
α13
α14

⎞
⎟⎠ (β11 β12 β13 β14 )

⎛
⎜⎝

y1
y2
y3
y4

⎞
⎟⎠

t−k

(8.66)

Equation (8.66) can also be written

� =

⎛
⎜⎝

α11
α12
α13
α14

⎞
⎟⎠ (β11y1 + β12y2 + β13y3 + β14y4)t−k (8.67)

Given (8.67), it is possible to write out the separate equations for each variable �yt .
It is also common to ‘normalise’ on a particular variable, so that the coefficient on
that variable in the cointegrating vector is one. For example, normalising on y1
would make the cointegrating term in the equation for �y1

α11

(
y1 + β12

β11
y2 + β13

β11
y3 + β14

β11
y4

)
t−k

, etc.

Finally, it must be noted that the above description is not exactly how the Johansen
procedure works, but is an intuitive approximation to it.

8.9.1 Hypothesis testing using Johansen

Engle–Granger did not permit the testing of hypotheses on the cointegrating rela-
tionships themselves, but the Johansen setup does permit the testing of hypothe-
ses about the equilibrium relationships between the variables. Johansen allows
a researcher to test a hypothesis about one or more coefficients in the cointe-
grating relationship by viewing the hypothesis as a restriction on the � matrix.
If there exist r cointegrating vectors, only these linear combinations or linear
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transformations of them, or combinations of the cointegrating vectors, will be
stationary. In fact, the matrix of cointegrating vectors β can be multiplied by any
non-singular conformable matrix to obtain a new set of cointegrating vectors.

A set of required long-run coefficient values or relationships between the
coefficients does not necessarily imply that the cointegrating vectors have to be
restricted. This is because any combination of cointegrating vectors is also a coin-
tegrating vector. So it may be possible to combine the cointegrating vectors thus
far obtained to provide a new one or, in general, a new set, having the required
properties. The simpler and fewer are the required properties, the more likely that
this recombination process (called renormalisation) will automatically yield cointe-
grating vectors with the required properties. However, as the restrictions become
more numerous or involve more of the coefficients of the vectors, it will eventually
become impossible to satisfy all of them by renormalisation. After this point, all
other linear combinations of the variables will be non-stationary. If the restriction
does not affect the model much, i.e. if the restriction is not binding, then the
eigenvectors should not change much following imposition of the restriction. A
test statistic to test this hypothesis is given by

test statistic = −T
r∑

i=1

[ln(1 − λi ) − ln(1 − λi
∗)] ∼ χ2(m ) (8.68)

where λ∗
i are the characteristic roots of the restricted model, λi are the characteristic

roots of the unrestricted model, r is the number of non-zero characteristic roots
in the unrestricted model and m is the number of restrictions.

Restrictions are actually imposed by substituting them into the relevant α or
β matrices as appropriate, so that tests can be conducted on either the cointe-
grating vectors or their loadings in each equation in the system (or both). For
example, considering (8.63)–(8.65) above, it may be that theory suggests that the
coefficients on the loadings of the cointegrating vector(s) in each equation should
take on certain values, in which case it would be relevant to test restrictions on
the elements of α (e.g. α11 = 1, α23 = −1, etc.). Equally, it may be of interest
to examine whether only a sub-set of the variables in yt is actually required to
obtain a stationary linear combination. In that case, it would be appropriate to test
restrictions of elements of β. For example, to test the hypothesis that y4 is not
necessary to form a long-run relationship, set β14 = 0, β24 = 0, etc.

For an excellent detailed treatment of cointegration in the context of both sin-
gle equation and multiple equation models, see Harris (1995). Several applications
of tests for cointegration and modelling cointegrated systems in finance will now
be given.

• • • • • • • • • • • • • • 8.10 Purchasing power parity

Purchasing power parity (PPP) states that the equilibrium or long-run exchange
rate between two countries is equal to the ratio of their relative price levels.
Purchasing power parity implies that the real exchange rate, Qt , is stationary. The
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real exchange rate can be defined as

Qt = Et Pt
∗

Pt
(8.69)

where Et is the nominal exchange rate in domestic currency per unit of foreign
currency, Pt is the domestic price level and Pt

∗ is the foreign price level. Taking
logarithms of (8.69) and rearranging, another way of stating the PPP relation is
obtained

e t − pt + pt
∗ = qt (8.70)

where the lower case letters in (8.70) denote logarithmic transforms of the cor-
responding upper case letters used in (8.69). A necessary and sufficient condition
for PPP to hold is that the variables on the LHS of (8.70) – that is the log of
the exchange rate between countries A and B, and the logs of the price levels in
countries A and B be cointegrated with cointegrating vector [1 − 1 1].

A test of this form is conducted by Chen (1995) using monthly data from
Belgium, France, Germany, Italy and the Netherlands over the period April 1973
to December 1990. Pair-wise evaluations of the existence or otherwise of cointe-
gration are examined for all combinations of these countries (ten country pairs).
Since there are three variables in the system (the log exchange rate and the two log
nominal price series) in each case, and that the variables in their log-levels forms
are non-stationary, there can be at most two linearly independent cointegrating
relationships for each country pair. The results of applying Johansen’s trace test are
presented in Chen’s table 1, adapted and presented here as table 8.8.

As can be seen from the results, the null hypothesis of no cointegrating vectors
is rejected for all country pairs, and the null of one or fewer cointegrating vectors is
rejected for France–Belgium, Germany–Italy, Germany–Belgium, Italy–Belgium,
Netherlands–Belgium. In no cases is the null of two or less cointegrating vectors
rejected. It is therefore concluded that the PPP hypothesis is upheld and that there
are either one or two cointegrating relationships between the series depending
on the country pair. Estimates of α1 and α2 are given in the last two columns of
table 8.8. PPP suggests that the estimated values of these coefficients should be 1
and −1, respectively. In most cases, the coefficient estimates are a long way from
these expected values. Of course, it would be possible to impose this restriction
and to test it in the Johansen framework as discussed above, but Chen does not
conduct this analysis.

• • • • • • • • • • • • • • 8.11 Cointegration between international bond markets

Often, investors will hold bonds from more than one national market in the
expectation of achieving a reduction in risk via the resulting diversification. If
international bond markets are very strongly correlated in the long run, diversifi-
cation will be less effective than if the bond markets operated independently of one
another. An important indication of the degree to which long-run diversification
is available to international bond market investors is given by determining whether
the markets are cointegrated. This book will now study two examples from the
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Table 8.8 Cointegration tests of PPP with European data

Tests for
cointegration between r = 0 r ≤ 1 r ≤ 2 α1 α2

FRF–DEM 34.63∗ 17.10 6.26 1.33 −2.50

FRF–ITL 52.69∗ 15.81 5.43 2.65 −2.52

FRF–NLG 68.10∗ 16.37 6.42 0.58 −0.80

FRF–BEF 52.54∗ 26.09∗ 3.63 0.78 −1.15

DEM–ITL 42.59∗ 20.76∗ 4.79 5.80 −2.25

DEM–NLG 50.25∗ 17.79 3.28 0.12 −0.25

DEM–BEF 69.13∗ 27.13∗ 4.52 0.87 −0.52

ITL–NLG 37.51∗ 14.22 5.05 0.55 −0.71

ITL–BEF 69.24∗ 32.16∗ 7.15 0.73 −1.28

NLG–BEF 64.52∗ 21.97∗ 3.88 1.69 −2.17

Critical values 31.52 17.95 8.18 – –

Notes: FRF – French franc; DEM – German mark; NLG – Dutch guilder; ITL – Italian lira; BEF –
Belgian franc.
Source: Chen (1995). Reprinted with the permission of Taylor and Francis Ltd (www.tandf.co.uk).

academic literature that consider this issue: Clare, Maras and Thomas (1995), and
Mills and Mills (1991).

8.11.1 Cointegration between international bond markets:
a univariate approach

Clare, Maras and Thomas (1995) use the Dickey–Fuller and Engle–Granger single-
equation method to test for cointegration using a pair-wise analysis of four coun-
tries’ bond market indices: US, UK, Germany and Japan. Monthly Salomon Broth-
ers’ total return government bond index data from January 1978 to April 1990
are employed. An application of the Dickey–Fuller test to the log of the indices
reveals the following results (adapted from their table 1), given in table 8.9.

Neither the critical values, nor a statement of whether a constant or trend
are included in the test regressions, are offered in the paper. Nevertheless, the
results are clear. Recall that the null hypothesis of a unit root is rejected if the test
statistic is smaller (more negative) than the critical value. For samples of the size
given here, the 5% critical value would be somewhere between −1.95 and −3.50.
It is thus demonstrated quite conclusively that the logarithms of the indices are
non-stationary, while taking the first difference of the logs (that is, constructing
the returns) induces stationarity.
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Table 8.9 DF tests for international bond indices

Panel A: test on log-index for country DF Statistic

Germany −0.395

Japan −0.799

UK −0.884

US 0.174

Panel B: test on log-returns for country

Germany −10.37

Japan −10.11

UK −10.56

US −10.64

Source: Clare, Maras and Thomas (1995). Reprinted with the permission of Blackwell Publishers.

Given that all logs of the indices in all four cases are shown to be I(1), the
next stage in the analysis is to test for cointegration by forming a potentially
cointegrating regression and testing its residuals for non-stationarity. Clare, Maras
and Thomas use regressions of the form

Bi = α0 + α1 Bj + u (8.71)

with time subscripts suppressed and where Bi and Bj represent the log-bond
indices for any two countries i and j . The results are presented in their tables 3
and 4, which are combined into table 8.10 here. They offer findings from apply-
ing seven different tests, while we present the results for only the Cointegrating
Regression Durbin Watson (CRDW), Dickey–Fuller and Augmented Dickey–
Fuller tests (although the lag lengths for the latter are not given in their paper).

In this case, the null hypothesis of a unit root in the residuals from regression
(8.71) cannot be rejected. The conclusion is therefore that there is no cointegration
between any pair of bond indices in this sample.

8.11.2 Cointegration between international bond markets:
a multivariate approach

Mills and Mills (1991) also consider the issue of cointegration or non-cointegration
between the same four international bond markets. However, unlike Clare
et al. (1995), who use bond price indices, Mills and Mills employ daily clos-
ing observations on the redemption yields. The latter’s sample period runs from
1 April 1986 to 29 December 1989, giving 960 observations. They employ a



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-08 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:11

394

•
•
•
•
•
•
•
•
• Modelling long-run relationships in finance

Table 8.10 Cointegration tests for pairs of international
bond indices

UK– UK– Germany– Germany– Japan– 5% Critical
Test Germany Japan UK–US Japan US US value

CRDW 0.189 0.197 0.097 0.230 0.169 0.139 0.386

DF 2.970 2.770 2.020 3.180 2.160 2.160 3.370

ADF 3.160 2.900 1.800 3.360 1.640 1.890 3.170

Source: Clare, Maras and Thomas (1995). Reprinted with the permission of Blackwell Publishers.

Table 8.11 Johansen tests for cointegration between international
bond yields

Critical values
r (number of cointegrating
vectors under the null hypothesis) Test statistic 10% 5%

0 22.06 35.6 38.6

1 10.58 21.2 23.8

2 2.52 10.3 12.0

3 0.12 2.9 4.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

Dickey–Fuller-type regression procedure to test the individual series for non-
stationarity and conclude that all four yields series are I(1).

The Johansen systems procedure is then used to test for cointegration between
the series. Unlike the Clare et al., Mills and Mills consider all four indices together
rather than investigating them in a pair-wise fashion. Therefore, since there are
four variables in the system (the redemption yield for each country), i.e. g = 4,
there can be at most three linearly independent cointegrating vectors, i.e., r ≤ 3.
The trace statistic is employed, and it takes the form

λtrace(r ) = −T
g∑

i=r +1

ln(1 − λ̂i ) (8.72)

where λi are the ordered eigenvalues. The results are presented in their table 2,
which is modified slightly here, and presented in table 8.11.
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Looking at the first row under the heading, it can be seen that the test statistic is
smaller than the critical value, so the null hypothesis that r = 0 cannot be rejected,
even at the 10% level. It is thus not necessary to look at the remaining rows of the
table. Hence, reassuringly, the conclusion from this analysis is the same as that of
Clare et al. – i.e. that there are no cointegrating vectors.

Given that there are no linear combinations of the yields that are stationary,
and therefore that there is no error correction representation, Mills and Mills then
continue to estimate a VAR for the first differences of the yields. The VAR is of
the form

�Xt =
k∑

i=1

�i �Xt−i + vt (8.73)

where:

Xt =

⎡
⎢⎣

X(US)t
X(UK)t
X(WG)t
X( JAP)t

⎤
⎥⎦ , �i =

⎡
⎢⎣

�11i �12i �13i �14i
�21i �22i �23i �24i
�31i �32i �33i �34i
�41i �42i �43i �44i

⎤
⎥⎦ , vt =

⎡
⎢⎣

v1t
v2t
v3t
v4t

⎤
⎥⎦

They set k, the number of lags of each change in the yield in each regression, to 8,
arguing that likelihood ratio tests rejected the possibility of smaller numbers of lags.
Unfortunately, and as one may anticipate for a regression of daily yield changes,
the R2 values for the VAR equations are low, ranging from 0.04 for the US to
0.17 for Germany. Variance decompositions and impulse responses are calculated
for the estimated VAR. Two orderings of the variables are employed: one based on
a previous study and one based on the chronology of the opening (and closing) of
the financial markets considered: Japan → Germany → UK → US. Only results
for the latter, adapted from tables 4 and 5 of Mills and Mills (1991), are presented
here. The variance decompositions and impulse responses for the VARs are given
in tables 8.12 and 8.13, respectively.

As one may expect from the low R2 of the VAR equations, and the lack
of cointegration, the bond markets seem very independent of one another. The
variance decompositions, which show the proportion of the movements in the
dependent variables that are due to their ‘own’ shocks, versus shocks to the other
variables, seem to suggest that the US, UK and Japanese markets are to a certain
extent exogenous in this system. That is, little of the movement of the US, UK
or Japanese series can be explained by movements other than their own bond
yields. In the German case, however, after twenty days, only 83% of movements
in the German yield are explained by German shocks. The German yield seems
particularly influenced by US (8.4% after twenty days) and UK (6.5% after twenty
days) shocks. It also seems that Japanese shocks have the least influence on the
bond yields of other markets.

A similar pattern emerges from the impulse response functions, which show
the effect of a unit shock applied separately to the error of each equation of
the VAR. The markets appear relatively independent of one another, and also
informationally efficient in the sense that shocks work through the system very
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Table 8.12 Variance decompositions for VAR of international
bond yields

Explained by movements in
Explaining Days
movements in ahead US UK Germany Japan

US 1 95.6 2.4 1.7 0.3

5 94.2 2.8 2.3 0.7

10 92.9 3.1 2.9 1.1

20 92.8 3.2 2.9 1.1

UK 1 0.0 98.3 0.0 1.7

5 1.7 96.2 0.2 1.9

10 2.2 94.6 0.9 2.3

20 2.2 94.6 0.9 2.3

Germany 1 0.0 3.4 94.6 2.0

5 6.6 6.6 84.8 3.0

10 8.3 6.5 82.9 3.6

20 8.4 6.5 82.7 3.7

Japan 1 0.0 0.0 1.4 100.0

5 1.3 1.4 1.1 96.2

10 1.5 2.1 1.8 94.6

20 1.6 2.2 1.9 94.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

quickly. There is never a response of more than 10% to shocks in any series three
days after they have happened; in most cases, the shocks have worked through
the system in two days. Such a result implies that the possibility of making excess
returns by trading in one market on the basis of ‘old news’ from another appears
very unlikely.

8.11.3 Cointegration in international bond markets: conclusions

A single set of conclusions can be drawn from both of these papers. Both approaches
have suggested that international bond markets are not cointegrated. This implies
that investors can gain substantial diversification benefits. This is in contrast to
results reported for other markets, such as foreign exchange (Baillie and Boller-
slev, 1989), commodities (Baillie, 1989) and equities (Taylor and Tonks, 1989).
Clare, Maras and Thomas (1995) suggest that the lack of long-term integration
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Table 8.13 Impulse responses for VAR of international bond yields

Response of US to innovations in

Days after shock US UK Germany Japan

0 0.98 0.00 0.00 0.00

1 0.06 0.01 −0.10 0.05

2 −0.02 0.02 −0.14 0.07

3 0.09 −0.04 0.09 0.08

4 −0.02 −0.03 0.02 0.09

10 −0.03 −0.01 −0.02 −0.01

20 0.00 0.00 −0.10 −0.01

Response of UK to innovations in

Days after shock US UK Germany Japan

0 0.19 0.97 0.00 0.00

1 0.16 0.07 0.01 −0.06

2 −0.01 −0.01 −0.05 0.09

3 0.06 0.04 0.06 0.05

4 0.05 −0.01 0.02 0.07

10 0.01 0.01 −0.04 −0.01

20 0.00 0.00 −0.01 0.00

Response of Germany to innovations in

Days after shock US UK Germany Japan

0 0.07 0.06 0.95 0.00

1 0.13 0.05 0.11 0.02

2 0.04 0.03 0.00 0.00

3 0.02 0.00 0.00 0.01

4 0.01 0.00 0.00 0.09

10 0.01 0.01 −0.01 0.02

20 0.00 0.00 0.00 0.00

(cont.)
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Table 8.13 (cont.)

Response of Japan to innovations in

Days after shock US UK Germany Japan

0 0.03 0.05 0.12 0.97

1 0.06 0.02 0.07 0.04

2 0.02 0.02 0.00 0.21

3 0.01 0.02 0.06 0.07

4 0.02 0.03 0.07 0.06

10 0.01 0.01 0.01 0.04

20 0.00 0.00 0.00 0.01

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

between the markets may be due to ‘institutional idiosyncrasies’, such as heteroge-
neous maturity and taxation structures, and differing investment cultures, issuance
patterns and macroeconomic policies between countries, which imply that the
markets operate largely independently of one another.

• • • • • • • • • • • • • • 8.12 Testing the expectations hypothesis of the term structure of interest rates

The following notation replicates that employed by Campbell and Shiller (1991)
in their seminal paper. The single, linear expectations theory of the term structure
used to represent the expectations hypothesis (hereafter EH), defines a relationship
between an n-period interest rate or yield, denoted R(n)

t , and an m-period interest
rate, denoted R(m )

t , where n > m . Hence R(n)
t is the interest rate or yield on

a longer-term instrument relative to a shorter-term interest rate or yield, R(m )
t .

More precisely, the EH states that the expected return from investing in an n-
period rate will equal the expected return from investing in m-period rates up
to n − m periods in the future plus a constant risk-premium, c , which can be
expressed as

R(n)
t = 1

q

q −1∑
i=0

Et R
(m )
t+mi + c (8.74)

where q = n/m . Consequently, the longer-term interest rate, R(n)
t , can be

expressed as a weighted-average of current and expected shorter-term interest
rates, R(m )

t , plus a constant risk premium, c . If (8.74) is considered, it can be seen
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that by subtracting R(m )
t from both sides of the relationship we have

R(n)
t − R(m )

t = 1
q

q −1∑
i=0

j=i∑
j=1

Et
[
�(m ) R(m )

t+ jm

] + c (8.75)

Examination of (8.75) generates some interesting restrictions. If the interest rates
under analysis, say R(n)

t and R(m )
t , are I(1) series, then, by definition, �R(n)

t and
�R(m )

t will be stationary series. There is a general acceptance that interest rates,
Treasury Bill yields, etc. are well described as I(1) processes and this can be seen
in Campbell and Shiller (1988) and Stock and Watson (1988). Further, since c
is a constant then it is by definition a stationary series. Consequently, if the EH
is to hold, given that c and �R(m )

t are I(0) implying that the RHS of (8.75) is
stationary, then R(n)

t − R(m )
t must by definition be stationary, otherwise we will

have an inconsistency in the order of integration between the RHS and LHS
of the relationship. R(n)

t − R(m )
t is commonly known as the spread between the

n-period and m-period rates, denoted S(n,m )
t , which in turn gives an indication

of the slope of the term structure. Consequently, it follows that if the EH is to
hold, then the spread will be found to be stationary and therefore R(n)

t and R(m )
t

will cointegrate with a cointegrating vector (1, −1) for [R(n)
t , R(m )

t ]. Therefore, the
integrated process driving each of the two rates is common to both and hence it
can be said that the rates have a common stochastic trend. As a result, since the EH
predicts that each interest rate series will cointegrate with the one-period interest
rate, it must be true that the stochastic process driving all the rates is the same as
that driving the one-period rate, i.e. any combination of rates formed to create a
spread should be found to cointegrate with a cointegrating vector (1, −1).

Many examinations of the expectations hypothesis of the term structure have
been conducted in the literature, and still no overall consensus appears to have
emerged concerning its validity. One such study that tested the expectations
hypothesis using a standard data-set due to McCulloch (1987) was conducted
by Shea (1992). The data comprises a zero coupon term structure for various
maturities from one month to twenty-five years, covering the period January
1952–February 1987. Various techniques are employed in Shea’s paper, while only
his application of the Johansen technique is discussed here. A vector Xt containing
the interest rate at each of the maturities is constructed

Xt = [
Rt R(2)

t . . . R(n)
t

]′
(8.76)

where Rt denotes the spot interest rate. It is argued that each of the elements of
this vector is non-stationary, and hence the Johansen approach is used to model
the system of interest rates and to test for cointegration between the rates. Both
the λmax and λtrace statistics are employed, corresponding to the use of the maximum
eigenvalue and the cumulated eigenvalues, respectively. Shea tests for cointegration
between various combinations of the interest rates, measured as returns to maturity.
A selection of Shea’s results is presented in table 8.14.
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Table 8.14 Tests of the expectations hypothesis using the US zero coupon yield
curve with monthly data

Lag length Hypothesis

Sample period Interest rates included of VAR is λmax λtrace

1952M1–1978M12 X t = [Rt R(6)
t ]′ 2 r = 0 47.54∗∗∗ 49.82∗∗∗

r ≤ 1 2.28 2.28

1952M1–1987M2 X t = [Rt R(120)
t ]′ 2 r = 0 40.66∗∗∗ 43.73∗∗∗

r ≤ 1 3.07 3.07

1952M1–1987M2 X t = [Rt R(60)
t R(120)

t ]′ 2 r = 0 40.13∗∗∗ 42.63∗∗∗

r ≤ 1 2.50 2.50

1973M5–1987M2 X t = [Rt R(60)
t R(120)

t R(180)
t R(240)

t ]′ 7 r = 0 34.78∗∗∗ 75.50∗∗∗

r ≤ 1 23.31∗ 40.72

r ≤ 2 11.94 17.41

r ≤ 3 3.80 5.47

r ≤ 4 1.66 1.66

Notes: ∗,∗∗ and ∗∗∗ denote significance at the 20%, 10% and 5% levels, respectively; r is the number of cointegrating
vectors under the null hypothesis.
Source: Shea (1992). Reprinted with the permission of American Statistical Association. All rights reserved.

The results below, together with the other results presented by Shea, seem
to suggest that the interest rates at different maturities are typically cointegrated,
usually with one cointegrating vector. As one may have expected, the cointegration
becomes weaker in the cases where the analysis involves rates a long way apart on
the maturity spectrum. However, cointegration between the rates is a necessary but
not sufficient condition for the expectations hypothesis of the term structure to be
vindicated by the data. Validity of the expectations hypothesis also requires that any
combination of rates formed to create a spread should be found to cointegrate with
a cointegrating vector (1,−1). When comparable restrictions are placed on the
β estimates associated with the cointegrating vectors, they are typically rejected,
suggesting only limited support for the expectations hypothesis.

• • • • • • • • • • • • • • 8.13 Testing for cointegration and modelling cointegrated
systems using EViews

The S&P500 spot and futures series that were discussed in chapters 3 and 4 will now
be examined for cointegration using EViews. If the two series are cointegrated,
this means that the spot and futures prices have a long-term relationship, which
prevents them from wandering apart without bound. To test for cointegration
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Screenshot 8.2 Actual, fitted and residual plot to check for stationarity

using the Engle–Granger approach, the residuals of a regression of the spot price
on the futures price are examined.3 Create two new variables, for the log of
the spot series and the log of the futures series, and call them ‘lspot’ and ‘lfutures’
respectively. Then generate a new equation object and run the regression:

LSPOT C LFUTURES

Note again that it is not valid to examine anything other than the coef-
ficient values in this regression. The residuals of this regression are found
in the object called RESID. From viewing the regression results, click
View/Actual,Fitted,Residual and then Actual,Fitted,Residual Graph and
then you will see a plot of the levels of the residuals (blue line), which looks much
more like a stationary series than the original spot series (the red line corresponding
to the actual values of y) does. Note how close together the actual and fitted lines
are – the two are virtually indistinguishable and hence the very small left-hand
scale for the residuals. The plot should appear as in screenshot 8.2.

3 Note that it is common to run a regression of the log of the spot price on the log of the futures
rather than a regression in levels; the main reason for using logarithms is that the differences of
the logs are returns, whereas this is not true for the levels.
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Generate a new series that will keep these residuals in an object for later use:

STATRESIDS = RESID

This is required since every time a regression is run, the RESID object is updated
(overwritten) to contain the residuals of the most recently conducted regression.
Perform the ADF Test on the residual series STATRESIDS. Assuming again
that up to twelve lags are permitted, that Schwarz’s criterion is used to select the
optimal lag length, and that a constant but not a trend are employed in a regression
on the levels of the series, the results are:

Null Hypothesis: STATRESIDS has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −1.738437 0.4096

Test critical values: 1% level −3.480425
5% level −2.883408

10% level −2.578510

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(STATRESIDS)
Method: Least Squares
Date: 08/05/13 Time: 16:36
Sample (adjusted): 2002M03 2013M04
Included observations: 132 after adjustments

Coefficient Std. Error t-Statistic Prob.

STATRESIDS(-1) −0.120172 0.069127 −1.738437 0.0845
D(STATRESIDS(-1)) −0.658848 0.083894 −7.853369 0.0000
D(STATRESIDS(-2)) −0.558155 0.074282 −7.513974 0.0000

C 7.97E-05 0.000193 0.412030 0.6810

R-squared 0.506131 Mean dependent var 3.78E-05
Adjusted R-squared 0.494556 S.D. dependent var 0.003124
S.E. of regression 0.002221 Akaike info criterion −9.351697
Sum squared resid 0.000632 Schwarz criterion −9.264340
Log likelihood 621.2120 Hannan-Quinn criter. −9.316199
F-statistic 43.72608 Durbin-Watson stat 2.010767
Prob(F-statistic) 0.000000
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Since the test statistic (−1.74) is not more negative than the critical values,
even at the 10% level, the null hypothesis of a unit root in the test regression
residuals cannot be rejected. We would thus conclude that the two series are not
cointegrated. This means that the most appropriate form of model to estimate
would be one containing only first differences of the variables as they have no
long-run relationship.

If instead we had found the two series to be cointegrated, an error correction
model (ECM) could have been estimated, as there would be a linear combination
of the spot and futures prices that would be stationary. The ECM would be the
appropriate model in that case rather than a model in pure first difference form
because it would enable us to capture the long-run relationship between the series
as well as the short-run one. We could estimate an error correction model by
running the regression

rspot c rfutures statresids(−1)

However, if you estimate the model, the estimate on the error correction term is
not really plausible and given that the two series are not cointegrated, a model of
the form

rspot c rfutures rspot(−1) rfutures(−1)

would be more appropriate. Note that we can either include or exclude the lagged
terms and either form would be valid from the perspective that all of the elements
in the equation are stationary.

Before moving on, we should note that this result is not an entirely stable
one – for instance, if we run the regression containing no lags (i.e. the pure
Dickey–Fuller test) or on a sub-sample of the data, we would find that the unit
root null hypothesis should be rejected, indicating that the series are cointegrated.
We thus need to be careful about drawing a firm conclusion in this case.

Although the Engle–Granger approach is evidently very easy to use, as outlined
above, one of its major drawbacks is that it can estimate only up to one cointegrating
relationship between the variables. In the spot-futures example, there can be at
most one cointegrating relationship since there are only two variables in the
system. But in other situations, if there are more variables, there could potentially
be more than one linearly independent cointegrating relationship. Thus, it is
appropriate instead to examine the issue of cointegration within the Johansen VAR
framework.

The application we will now examine centres on whether the yields on treasury
bills of different maturities are cointegrated. Re-open the ‘macro.wf1’ workfile
that was used in chapter 4. There are six interest rate series corresponding to three
and six months, and one, three, five and ten years. Each series has a name in the
file starting with the letters ‘ustb’. The first step in any cointegration analysis is
to ensure that the variables are all non-stationary in their levels form, so confirm
that this is the case for each of the six series, by running a unit root test on
each one.
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Screenshot 8.3 Johansen cointegration test

Next, to run the cointegration test, highlight the six series and then click
Quick/Group Statistics/Johansen Cointegration Test. A box should then
appear with the names of the six series in it. Click OK, and then the following list
of options will be seen (screenshot 8.3).

The differences between models 1 to 6 centre on whether an intercept or a
trend or both are included in the potentially cointegrating relationship and/or the
VAR. It is usually a good idea to examine the sensitivity of the result to the type
of specification used, so select Option 6 which will do this and click OK. The
results appear as in the following table.

The findings across the six types of model and the type of test (the ‘trace’ or
‘max’ statistics) are a little mixed concerning the number of cointegrating vectors
(the top panel), with the trace statistic always suggesting at least one cointegrating
vector but the max approach selecting between zero and two cointegrating vectors
dependent on the specification of the VAR model. We thus have an inconclusive
result regarding whether the six interest rate series are in fact cointegrated or not,
but the weight of evidence is slightly in favour that they are.

The following three panels all provide information that could be used to
determine the appropriate lag length for the VAR. The values of the log-likelihood
function could be used to run tests of whether a VAR of a given order could be
restricted to a VAR of lower order; AIC and SBIC values are provided in the final
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Date: 08/05/13 Time: 17:03
Sample: 1986M03 2013M04
Included observations: 321
Series: USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M
Lags interval: 1 to 4
Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend: None None Linear Linear Quadratic

Test Type No Intercept Intercept Intercept Intercept Intercept
No Trend No Trend No Trend Trend Trend

Trace 2 2 2 3 4
Max-Eig 2 0 0 1 1

∗Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend: None None Linear Linear Quadratic

Rank or No Intercept Intercept Intercept Intercept Intercept
No. of CEs No Trend No Trend No Trend Trend Trend

Log Likelihood by Rank (rows) and Model (columns)

0 1967.692 1967.692 1968.534 1968.534 1969.015
1 1986.205 1987.518 1988.32 1990.809 1991.289
2 2002.157 2003.584 2004.315 2009.071 2009.549
3 2012.684 2015.717 2016.425 2024.588 2025.059
4 2019.151 2022.448 2022.786 2035.103 2035.291
5 2021.371 2025.817 2026.083 2041.377 2041.461
6 2021.729 2026.855 2026.855 2044.069 2044.069

Akaike Information Criteria by Rank (rows) and Model (columns)

0 −11.36257 −11.36257 −11.33043 −11.33043 −11.29604
1 −11.40315 −11.40509 −11.37894 −11.38822 −11.36005
2 −11.42777 −11.42420 −11.40383 −11.42100 −11.39906
3 −11.41859 −11.41879 −11.40452 −11.43669∗ −11.42093
4 −11.38412 −11.37974 −11.36938 −11.42121 −11.40991
5 −11.32318 −11.31973 −11.31516 −11.37930 −11.37359
6 −11.25065 −11.24520 −11.24520 −11.31507 −11.31507

Schwarz Criteria by Rank (rows) and Model (columns)

0 −9.670705∗ −9.670705∗ −9.56807 −9.56807 −9.46319
1 −9.57030 −9.56050 −9.47559 −9.47313 −9.38622
2 −9.45393 −9.42686 −9.35950 −9.35317 −9.28423
3 −9.30376 −9.26872 −9.21920 −9.21612 −9.16511
4 −9.12830 −9.07693 −9.04308 −9.04790 −9.01311
5 −8.92638 −8.86418 −8.84786 −8.85325 −8.83580
6 −8.71286 −8.63691 −8.63691 −8.63629 −8.63629

405
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Date: 08/05/13 Time: 18:30
Sample (adjusted): 1986M07 2013M04
Included observations: 322 after adjustments
Trend assumption: Linear deterministic trend
Series: USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M
Lags interval (in first differences): 1 to 3

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.136950 142.4602 95.75366 0.0000
At most 1∗ 0.118267 95.03524 69.81889 0.0001
At most 2∗ 0.089649 54.50629 47.85613 0.0105
At most 3∗ 0.043899 24.26233 29.79707 0.1896
At most 4 0.024827 9.807123 15.49471 0.2959
At most 5 0.005303 1.712066 3.841466 0.1907

Trace test indicates 3 cointegrating eqn(s) at the 0.05 level
∗denotes rejection of the hypothesis at the 0.05 level
∗∗MacKinnon-Haug-Michelis (1999) p-values

two panels. AIC selects a VAR with either three or four lags depending on whether
intercepts and/or trends are incorporated, while SBIC always selects a VAR with
no lags. Note that the difference in optimal model order could be attributed to
the relatively small sample size available with this monthly sample compared with
the number of observations that would have been available were daily data used,
implying that the penalty term in SBIC is more severe on extra parameters in this
case.

So, in order to see the estimated models, click View/Cointegration Test/
Johansen System Cointegration Test. . . and select Option 3 (Intercept (no
trend) in CE and test VAR), changing the ‘Lag Intervals’ to 1 3, and clicking OK.
EViews produces a very large quantity of output, as shown in the following table.4

The first two panels of the table show the results for the λtrace and λmax statistics
respectively. The second column in each case presents the ordered eigenvalues, the
third column the test statistics, the fourth column the critical values and the final
column the p-values. Examining the trace test, if we look at the first row after the
headers, the statistic of 142.4602 considerably exceeds the critical value (of 95.75)
and so the null of no cointegrating vectors is rejected. If we then move to the next
row, the test statistic (95.03525) again exceeds the critical value so that the null
of at most one cointegrating vector is also rejected. This continues, and we also

4 Estimated cointegrating vectors and loadings are provided by EViews for 2–5 cointegrating vectors
as well, but these are not shown to preserve space.
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Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.136950 47.42496 40.07757 0.0063
At most 1∗ 0.118267 40.52895 33.87687 0.0070
At most 2∗ 0.089649 30.24396 27.58434 0.0222
At most 3∗ 0.043899 14.45521 21.13162 0.3289
At most 4 0.024827 8.095058 14.26460 0.3691
At most 5 0.005303 1.712066 3.841466 0.1907

Max-eigenvalue test indicates 3 cointegrating eqn(s) at the 0.05 level
∗denotes rejection of the hypothesis at the 0.05 level
∗∗MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b′∗S11∗b = I):

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

2.684473 −18.296340 −12.359460 10.792730 −8.712903 25.780170

−0.449156 2.335248 −0.630527 8.305166 −5.503590 −4.615958

−2.721505 8.091580 −6.936259 −14.941690 12.300630 4.363734

5.106830 4.395845 1.184519 5.364618 −11.363300 −4.452396

4.873386 −0.273274 −0.306956 2.703060 −6.990166 0.301395

0.745641 −0.345006 0.062957 −0.855164 0.641708 0.342586

Unrestricted Adjustment Coefficients (alpha):

D(USTB10Y) 0.019584 0.011721 −0.029932 0.022940 0.004912 −0.015252

D(USTB1Y) 0.021022 0.027672 −0.013588 0.006678 0.026106 −0.009241

D(USTB3M) 0.030206 0.045208 0.010914 0.007775 0.016975 −0.004310

D(USTB3Y) 0.014473 0.010067 −0.014191 0.023590 0.024070 −0.014902

D(USTB5Y) 0.019761 0.008199 −0.026057 0.030408 0.016818 −0.014461

D(USTB6M) 0.013243 0.043250 −0.006139 0.007435 0.021381 −0.006117

1 Cointegrating Equation(s): Log likelihood 1948.484

Normalized cointegrating coefficients (standard error in parentheses)

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M
1.000000 −6.815619 −4.604054 4.020428 −3.245667 9.603439

(1.05558) (0.76368) (0.89029) (0.56162) (1.42615)
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Adjustment coefficients (standard error in parentheses)

D(USTB10Y) 0.052573
(0.040990)

D(USTB1Y) 0.056434
(0.036520)

D(USTB3M) 0.081088
(0.031220)

D(USTB3Y) 0.038852
(0.044320)

D(USTB5Y) 0.053047
(0.044370)

D(USTB6M) 0.035550
(0.032430)

2 Cointegrating Equation(s): Log likelihood 1968.748

Normalized cointegrating coefficients (standard error in parentheses)

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M
1.000000 0.000000 20.727950 -90.896910 62.104930 12.443350

(16.897300) (19.780600) (14.172400) (21.355500)
0.000000 1.000000 3.716758 -13.926450 9.588359 0.416677

(2.491280) (2.916370) (2.089530) (3.148560)

Adjustment coefficients (standard error in parentheses)

D(USTB10Y) 0.047309 -0.330950
(0.041510) (0.281330)

D(USTB1Y) 0.044005 -0.320010
(0.036770) (0.249190)

D(USTB3M) 0.060783 -0.447095
(0.030850) (0.209070)

D(USTB3Y) 0.034330 -0.241293
(0.044910) (0.304330)

D(USTB5Y) 0.049364 -0.342399
(0.044970) (0.304730)

D(USTB6M) 0.016124 -0.141293
(0.032170) (0.218030)

Note: Table truncated.

reject the null of at most two cointegrating vectors, but we stop at the next row,
where we do not reject the null hypothesis of at most three cointegrating vectors
at the 5% level, and this is the conclusion. The ma x test, shown in the second
panel, confirms this result.
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Screenshot 8.4 VAR specification for Johansen tests

The unrestricted coefficient values are the estimated values of coefficients in
the cointegrating vector, and these are presented in the third panel. However, it is
sometimes useful to normalise the coefficient values to set the coefficient value on
one of them to unity, as would be the case in the cointegrating regression under
the Engle–Granger approach. The normalisation will be done by EViews with
respect to the first variable given in the variable list (i.e. whichever variable you
listed first in the system will by default be given a coefficient of 1 in the normalised
cointegrating vector). Panel 6 of the table presents the estimates if there were only
one cointegrating vector, which has been normalised so that the coefficient on
the ten-year bond yield is unity. The adjustment coefficients, or loadings in each
regression (the ‘amount of the cointegrating vector’ in each equation), are also
given in this panel. In the next panel, the same format is used (i.e. the normalised
cointegrating vectors are presented and then the adjustment parameters) but under
the assumption that there are two cointegrating vectors, and this proceeds until
the situation where there are five cointegrating vectors, the maximum number
possible for a system containing six variables.

In order to see the whole VECM model, select Proc/Make Vector Autore-
gression. . . . Starting on the default ‘Basics’ tab, in ‘VAR type’, select Vector
Error Correction, and in the ‘Lag Intervals for D(Endogenous):’ box, type 1 3.
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Then click on the cointegration tab and leave the default as 1 cointegrating
vector for simplicity in the ‘Rank’ box and option 3 to have an intercept but no
trend in the cointegrating equation and the VAR. When OK is clicked, the output
for the entire VECM will be seen.

It is sometimes of interest to test hypotheses about either the parameters in the
cointegrating vector or their loadings in the VECM. To do this from the ‘Vector
Error Correction Estimates’ screen, click the Estimate button and click on the
VEC Restrictions tab. In EViews, restrictions concerning the cointegrating
relationships embodied in β are denoted by B(i,j), where B(i,j) represents the j th
coefficient in the i th cointegrating relationship (screenshot 8.4).

In this case, we are allowing for only one cointegrating relationship, so suppose
that we want to test the hypothesis that the three-month and six-month yields do
not appear in the cointegrating equation. We could test this by specifying the
restriction that their parameters are zero, which in EViews terminology would be
achieved by writing B(1,3) = 0, B(1,6) = 0 in the ‘VEC Coefficient Restrictions’
box and clicking OK. EViews will then show the value of the test statistic, followed
by the restricted cointegrating vector and the VECM. To preseve space, only the
test statistic and restricted cointegrating vector are shown in the following table.

Vector Error Correction Estimates
Date: 08/06/13 Time: 07:25
Sample (adjusted): 1986M07 2013M04
Included observations: 322 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Cointegration Restrictions:
B(1,3) = 0, B(1,6) = 0

Convergence achieved after 12 iterations.
Not all cointegrating vectors are identified
LR test for binding restrictions (rank = 1):
Chi-square(2) 9.042452
Probability 0.010876

Cointegrating Eq: CointEq1

USTB10Y(-1) 0.459023
USTB1Y(-1) −1.950770
USTB3M(-1) 0.000000
USTB3Y(-1) 5.177136
USTB5Y(-1) −3.863573
USTB6M(-1) 0.000000
C 0.799548

Note: Table truncated
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There are two restrictions, so that the test statistic follows a χ2 distribution
with two degrees of freedom. Here, the p-value for the test is 0.010876, and so the
restrictions are not supported by the data at the 5% level and we would conclude
that the cointegrating relationship must also include the short end of the yield
curve.

When performing hypothesis tests concerning the adjustment coefficients (i.e.
the loadings in each equation), the restrictions are denoted by A(i, j ), which is the
coefficient on the cointegrating vector for the i th variable in the j th cointegrating
relation. For example, A(2, 1) = 0 would test the null that the equation for the
second variable in the order that they were listed in the original specification
(USTB1Y in this case) does not include the first cointegrating vector, and so on.
Examining some restrictions of this type is left as an exercise.

A note on long-memory models

It is widely believed that (the logs of) asset prices contain a unit root. However, asset
return series evidently do not possess a further unit root, although this does not
imply that the returns are independent. In particular, it is possible (and indeed, it has
been found to be the case with some financial and economic data) that observations
from a given series taken some distance apart, show signs of dependence. Such
series are argued to possess long memory. One way to represent this phenomenon
is using a ‘fractionally integrated’ model. In simple terms, a series is integrated of
a given order d if it becomes stationary on differencing a minimum of d times. In
the fractionally integrated framework, d is allowed to take on non-integer values.
This framework has been applied to the estimation of ARMA models (see, for
example, Mills and Markellos, 2008). Under fractionally integrated models, the
corresponding autocorrelation function (ACF) will decline hyperbolically, rather
than exponentially to zero. Thus, the ACF for a fractionally integrated model dies
away considerably more slowly than that of an ARMA model with d = 0. The
notion of long memory has also been applied to GARCH models (discussed in
chapter 9), where volatility has been found to exhibit long-range dependence. A
new class of models known as fractionally integrated GARCH (FIGARCH) have
been proposed to allow for this phenomenon (see Ding, Granger and Engle, 1993
or Bollerslev and Mikkelsen, 1996).

Key concepts

The key terms to be able to define and explain from this chapter are

• non-stationary • explosive process

• unit root • spurious regression

• augmented Dickey–Fuller test • cointegration

• error correction model • Engle–Granger 2-step approach

• Johansen technique • vector error correction model

• eigenvalues
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Self-study questions

1. (a) What kinds of variables are likely to be non-stationary? How can such
variables be made stationary?

(b) Why is it in general important to test for non-stationarity in time series
data before attempting to build an empirical model?

(c) Define the following terms and describe the processes that they represent
(i) Weak stationarity
(ii) Strict stationarity
(iii) Deterministic trend
(iv) Stochastic trend.

2. A researcher wants to test the order of integration of some time series data.
He decides to use the DF test. He estimates a regression of the form

�yt = μ + ψyt−1 + ut

and obtains the estimate ψ̂ = −0.02 with standard error = 0.31.
(a) What are the null and alternative hypotheses for this test?
(b) Given the data, and a critical value of −2.88, perform the test.
(c) What is the conclusion from this test and what should be the next

step?
(d) Why is it not valid to compare the estimated test statistic with the

corresponding critical value from a t-distribution, even though the test
statistic takes the form of the usual t-ratio?

3. Using the same regression as for question 2, but on a different set of
data, the researcher now obtains the estimate ψ̂ = −0.52 with standard
error = 0.16.
(a) Perform the test.
(b) What is the conclusion, and what should be the next step?
(c) Another researcher suggests that there may be a problem with this

methodology since it assumes that the disturbances (ut ) are white noise.
Suggest a possible source of difficulty and how the researcher might in
practice get around it.

4. (a) Consider a series of values for the spot and futures prices of a given
commodity. In the context of these series, explain the concept of
cointegration. Discuss how a researcher might test for cointegration
between the variables using the Engle–Granger approach. Explain also
the steps involved in the formulation of an error correction model.

(b) Give a further example from finance where cointegration between a set
of variables may be expected. Explain, by reference to the implication of
non-cointegration, why cointegration between the series might be
expected.

5. (a) Briefly outline Johansen’s methodology for testing for cointegration
between a set of variables in the context of a VAR.
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(b) A researcher uses the Johansen procedure and obtains the following test
statistics (and critical values):

r λmax 95% critical value
0 38.962 33.178
1 29.148 27.169
2 16.304 20.278
3 8.861 14.036
4 1.994 3.962

Determine the number of cointegrating vectors.
(c) ‘If two series are cointegrated, it is not possible to make inferences

regarding the cointegrating relationship using the Engle–Granger
technique since the residuals from the cointegrating regression are likely
to be autocorrelated.’ How does Johansen circumvent this problem to test
hypotheses about the cointegrating relationship?

(d) Give one or more examples from the academic finance literature of where
the Johansen systems technique has been employed. What were the main
results and conclusions of this research?

(e) Compare the Johansen maximal eigenvalue test with the test based on the
trace statistic. State clearly the null and alternative hypotheses in each
case.

6. (a) Suppose that a researcher has a set of three variables, yt (t = 1, . . . , T), i.e.
yt denotes a p-variate, or p × 1 vector, that she wishes to test for the
existence of cointegrating relationships using the Johansen procedure.

What is the implication of finding that the rank of the appropriate
matrix takes on a value of

(i) 0 (ii) 1 (iii) 2 (iv) 3?
(b) The researcher obtains results for the Johansen test using the variables

outlined in part (a) as follows:

r λmax 5% critical value
0 38.65 30.26
1 26.91 23.84
2 10.67 17.72
3 8.55 10.71

Determine the number of cointegrating vectors, explaining your answer.
7. Compare and contrast the Engle–Granger and Johansen methodologies for

testing for cointegration and modelling cointegrated systems. Which, in your
view, represents the superior approach and why?

8. In EViews, open the ‘currencies.wf1’ file that will be discussed in detail in
the following chapter. Determine whether the exchange rate series (in their
raw levels forms) are non-stationary. If that is the case, test for cointegration
between them using both the Engle–Granger and Johansen approaches.
Would you have expected the series to cointegrate? Why or why not?



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-08 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:11

414

•
•
•
•
•
•
•
•
• Modelling long-run relationships in finance

9. (a) What issues arise when testing for a unit root if there is a structural break
in the series under investigation?

(b) What are the limitations of the Perron (1989) approach for dealing with
structural breaks in testing for a unit root?
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Learning outcomes

In this chapter, you will learn how to

• Discuss the features of data that motivate the use of GARCH models

• Explain how conditional volatility models are estimated

• Test for ‘ARCH-effects’ in time series data

• Produce forecasts from GARCH models

• Contrast various models from the GARCH family

• Discuss the three hypothesis testing procedures available under maximum

likelihood estimation

• Construct multivariate conditional volatility models and compare between

alternative specifications

• Estimate univariate and multivariate GARCH models in EViews

• • • • • • • • • • • • • • 9.1 Motivations: an excursion into non-linearity land

All of the models that have been discussed in chapters 3–8 of this book have been
linear in nature – that is, the model is linear in the parameters, so that there is
one parameter multiplied by each variable in the model. For example, a structural
model could be something like

y = β1 + β2x2 + β3x3 + β4x4 + u (9.1)

or more compactly y = Xβ + u . It was additionally assumed that ut ∼ N(0, σ 2).
The linear paradigm as described above is a useful one. The properties of linear

estimators are very well researched and very well understood. Many models that
appear, prima facie, to be non-linear, can be made linear by taking logarithms or
some other suitable transformation. However, it is likely that many relationships in
finance are intrinsically non-linear. As Campbell, Lo and MacKinlay (1997) state,
the payoffs to options are non-linear in some of the input variables, and investors’
willingness to trade off returns and risks are also non-linear. These observations
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provide clear motivations for consideration of non-linear models in a variety of
circumstances in order to capture better the relevant features of the data.

Linear structural (and time series) models such as (9.1) are also unable to explain
a number of important features common to much financial data, including:

● Leptokurtosis – that is, the tendency for financial asset returns to have distribu-
tions that exhibit fat tails and excess peakedness at the mean.

● Volatility clustering or volatility pooling – the tendency for volatility in financial
markets to appear in bunches. Thus large returns (of either sign) are expected
to follow large returns, and small returns (of either sign) to follow small returns.
A plausible explanation for this phenomenon, which seems to be an almost
universal feature of asset return series in finance, is that the information arrivals
which drive price changes themselves occur in bunches rather than being
evenly spaced over time.

● Leverage effects – the tendency for volatility to rise more following a large price
fall than following a price rise of the same magnitude.

Campbell et al. (1997) broadly define a non-linear data generating process as one
where the current value of the series is related non-linearly to current and previous
values of the error term

yt = f (ut , ut−1, ut−2, . . .) (9.2)

where ut is an iid error term and f is a non-linear function. According to Campbell
et al., a more workable and slightly more specific definition of a non-linear model
is given by the equation

yt = g (ut−1, ut−2, . . .) + ut σ 2(ut−1, ut−2, . . .) (9.3)

where g is a function of past error terms only, and σ 2 can be interpreted as a
variance term, since it is multiplied by the current value of the error. Campbell
et al. usefully characterise models with non-linear g (•) as being non-linear in
mean, while those with non-linear σ (•)2 are characterised as being non-linear in
variance.

Models can be linear in mean and variance (e.g. the CLRM, ARMA models)
or linear in mean, but non-linear in variance (e.g. GARCH models). Models could
also be classified as non-linear in mean but linear in variance (e.g. bicorrelations
models, a simple example of which is of the following form (see Brooks and
Hinich, 1999))

yt = α0 + α1yt−1yt−2 + ut (9.4)

Finally, models can be non-linear in both mean and variance (e.g. the hybrid
threshold model with GARCH errors employed by Brooks, 2001).

9.1.1 Types of non-linear models

There are an infinite number of different types of non-linear model. However, only
a small number of non-linear models have been found to be useful for modelling
financial data. The most popular non-linear financial models are the ARCH
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or GARCH models used for modelling and forecasting volatility, and switching
models, which allow the behaviour of a series to follow different processes at
different points in time. Models for volatility and correlation will be discussed in
this chapter, with switching models being covered in chapter 9.

9.1.2 Testing for non-linearity

How can it be determined whether a non-linear model may potentially be appro-
priate for the data? The answer to this question should come at least in part from
financial theory: a non-linear model should be used where financial theory suggests
that the relationship between variables should be such as to require a non-linear
model. But the linear versus non-linear choice may also be made partly on statis-
tical grounds – deciding whether a linear specification is sufficient to describe all
of the most important features of the data at hand.

So what tools are available to detect non-linear behaviour in financial time
series? Unfortunately, ‘traditional’ tools of time series analysis (such as estimates
of the autocorrelation or partial autocorrelation function, or ‘spectral analysis’,
which involves looking at the data in the frequency domain) are likely to be of
little use. Such tools may find no evidence of linear structure in the data, but this
would not necessarily imply that the same observations are independent of one
another.

However, there are a number of tests for non-linear patterns in time series
that are available to the researcher. These tests can broadly be split into two types:
general tests and specific tests. General tests, also sometimes called ‘portmanteau’
tests, are usually designed to detect many departures from randomness in data. The
implication is that such tests will detect a variety of non-linear structures in data,
although these tests are unlikely to tell the researcher which type of non-linearity
is present! Perhaps the simplest general test for non-linearity is Ramsey’s RESET
test discussed in chapter 4, although there are many other popular tests available.
One of the most widely used tests is known as the BDS test (see Brock et al., 1996)
named after the three authors who first developed it. BDS is a pure hypothesis
test. That is, it has as its null hypothesis that the data are pure noise (completely
random), and it has been argued to have power to detect a variety of departures
from randomness – linear or non-linear stochastic processes, deterministic chaos,
etc. (see Brock et al., 1991). The BDS test follows a standard normal distribution
under the null hypothesis. The details of this test, and others, are technical and
beyond the scope of this book, although computer code for BDS estimation is
now widely available free of charge on the internet.

As well as applying the BDS test to raw data in an attempt to ‘see if there is
anything there’, another suggested use of the test is as a model diagnostic. The idea
is that a proposed model (e.g. a linear model, GARCH, or some other non-linear
model) is estimated, and the test applied to the (standardised) residuals in order
to ‘see what is left’. If the proposed model is adequate, the standardised residuals
should be white noise, while if the postulated model is insufficient to capture
all of the relevant features of the data, the BDS test statistic for the standardised
residuals will be statistically significant. This is an excellent idea in theory, but has
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difficulties in practice. First, if the postulated model is a non-linear one (such as
GARCH), the asymptotic distribution of the test statistic will be altered, so that
it will no longer follow a normal distribution. This requires new critical values to
be constructed via simulation for every type of non-linear model whose residuals
are to be tested. More seriously, if a non-linear model is fitted to the data, any
remaining structure is typically garbled, resulting in the test either being unable
to detect additional structure present in the data (see Brooks and Henry, 2000) or
selecting as adequate a model which is not even in the correct class for that data
generating process (see Brooks and Heravi, 1999).

The BDS test is available in EViews. To run it on a given series, simply open
the series to be tested (which may be a set of raw data or residuals from an estimated
model) so that it appears as a spreadsheet. Then select the View menu and BDS
Independence Test . . . . You will then be offered various options. Further details
are given in the EViews User’s Guide.

Other popular tests for non-linear structure in time series data include the
bispectrum test due to Hinich (1982), the bicorrelation test (see Hsieh, 1993;
Hinich, 1996; or Brooks and Hinich, 1999 for its multivariate generalisation).

Most applications of the above tests conclude that there is non-linear depen-
dence in financial asset returns series, but that the dependence is best characterised
by a GARCH-type process (see Hinich and Patterson, 1985; Baillie and Bollerslev,
1989; Brooks, 1996; and the references therein for applications of non-linearity
tests to financial data).

Specific tests, on the other hand, are usually designed to have power to find
specific types of non-linear structure. Specific tests are unlikely to detect other
forms of non-linearities in the data, but their results will by definition offer a class
of models that should be relevant for the data at hand. Examples of specific tests
will be offered later in this and subsequent chapters.

9.1.3 Chaos in financial markets

Econometricians have searched long and hard for chaos in financial, macroeco-
nomic and microeconomic data, with very limited success to date. Chaos theory
is a notion taken from the physical sciences that suggests that there could be a
deterministic, non-linear set of equations underlying the behaviour of financial
series or markets. Such behaviour will appear completely random to the standard
statistical tests developed for application to linear models. The motivation behind
this endeavour is clear: a positive sighting of chaos implies that while, by definition,
long-term forecasting would be futile, short-term forecastability and controllability
are possible, at least in theory, since there is some deterministic structure underly-
ing the data. Varying definitions of what actually constitutes chaos can be found
in the literature, but a robust definition is that a system is chaotic if it exhibits sen-
sitive dependence on initial conditions (SDIC). The concept of SDIC embodies
the fundamental characteristic of chaotic systems that if an infinitesimal change
is made to the initial conditions (the initial state of the system), then the corre-
sponding change iterated through the system for some arbitrary length of time will
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grow exponentially. Although several statistics are commonly used to test for the
presence of chaos, only one is arguably a true test for chaos, namely estimation
of the largest Lyapunov exponent. The largest Lyapunov exponent measures the
rate at which information is lost from a system. A positive largest Lyapunov expo-
nent implies sensitive dependence, and therefore that evidence of chaos has been
obtained. This has important implications for the predictability of the underlying
system, since the fact that all initial conditions are in practice estimated with some
error (owing either to measurement error or exogenous noise), will imply that
long-term forecasting of the system is impossible as all useful information is likely
to be lost in just a few time steps.

Chaos theory was hyped and embraced in both the academic literature and
in financial markets worldwide in the 1980s. However, almost without excep-
tion, applications of chaos theory to financial markets have been unsuccessful.
Consequently, although the ideas generate continued interest owing to the inter-
esting mathematical properties and the possibility of finding a prediction holy
grail, academic and practitioner interest in chaotic models for financial markets has
arguably almost disappeared. The primary reason for the failure of the chaos the-
ory approach appears to be the fact that financial markets are extremely complex,
involving a very large number of different participants, each with different objec-
tives and different sets of information – and, above all, each of whom are human
with human emotions and irrationalities. The consequence of this is that financial
and economic data are usually far noisier and ‘more random’ than data from other
disciplines, making the specification of a deterministic model very much harder
and possibly even futile.

9.1.4 Neural network models

Artificial neural networks (ANNs) are a class of models whose structure is broadly
motivated by the way that the brain performs computation. ANNs have been widely
employed in finance for tackling time series and classification problems. Recent
applications have included forecasting financial asset returns, volatility, bankruptcy
and takeover prediction. Applications are contained in the books by Trippi and
Turban (1993), Van Eyden (1996) and Refenes (1995). A technical collection of
papers on the econometric aspects of neural networks is given by White (1992),
while an excellent general introduction and a description of the issues surrounding
neural network model estimation and analysis is contained in Franses and van Dijk
(2000).

Neural networks have virtually no theoretical motivation in finance (they are
often termed a ‘black box’ technology), but owe their popularity to their ability to
fit any functional relationship in the data to an arbitrary degree of accuracy. The
most common class of ANN models in finance are known as feedforward network
models. These have a set of inputs (akin to regressors) linked to one or more outputs
(akin to the regressand) via one or more ‘hidden’ or intermediate layers. The size
and number of hidden layers can be modified to give a closer or less close fit to
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the data sample, while a feedforward network with no hidden layers is simply a
standard linear regression model.

Neural network models are likely to work best in situations where finan-
cial theory has virtually nothing to say about the likely functional form for the
relationship between a set of variables. However, their popularity has arguably
waned over the past five years or so as a consequence of several perceived problems
with their employment. First, the coefficient estimates from neural networks do
not have any real theoretical interpretation. Second, virtually no diagnostic or spec-
ification tests are available for estimated models to determine whether the model
under consideration is adequate. Third, ANN models can provide excellent fits
in-sample to a given set of ‘training’ data, but typically provide poor out-of-sample
forecast accuracy. The latter result usually arises from the tendency of neural net-
works to fit closely to sample-specific data features and ‘noise’, and therefore their
inability to generalise. Various methods of resolving this problem exist, including
‘pruning’ (removing some parts of the network) or the use of information criteria
to guide the network size. Finally, the non-linear estimation of neural network
models can be cumbersome and computationally time-intensive, particularly, for
example, if the model must be estimated rolling through a sample to produce a
series of one-step-ahead forecasts.

• • • • • • • • • • • • • • 9.2 Models for volatility

Modelling and forecasting stock market volatility has been the subject of vast
empirical and theoretical investigation over the past decade or so by academics
and practitioners alike. There are a number of motivations for this line of inquiry.
Arguably, volatility is one of the most important concepts in the whole of finance.
Volatility, as measured by the standard deviation or variance of returns, is often used
as a crude measure of the total risk of financial assets. Many value-at-risk models for
measuring market risk require the estimation or forecast of a volatility parameter.
The volatility of stock market prices also enters directly into the Black–Scholes
formula for deriving the prices of traded options.

The next few sections will discuss various models that are appropriate to
capture the stylised features of volatility, discussed below, that have been observed
in the literature.

• • • • • • • • • • • • • • 9.3 Historical volatility

The simplest model for volatility is the historical estimate. Historical volatility
simply involves calculating the variance (or standard deviation) of returns in the
usual way over some historical period, and this then becomes the volatility forecast
for all future periods. The historical average variance (or standard deviation) was
traditionally used as the volatility input to options pricing models, although there
is a growing body of evidence suggesting that the use of volatility predicted from
more sophisticated time series models will lead to more accurate option valuations
(see, for example, Akgiray, 1989; or Chu and Freund, 1996). Historical volatility is
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still useful as a benchmark for comparing the forecasting ability of more complex
time models.

• • • • • • • • • • • • • • 9.4 Implied volatility models

All pricing models for financial options require a volatility estimate or forecast as
an input. Given the price of a traded option obtained from transactions data, it is
possible to determine the volatility forecast over the lifetime of the option implied
by the option’s valuation. For example, if the standard Black–Scholes model is used,
the option price, the time to maturity, a risk-free rate of interest, the strike price
and the current value of the underlying asset, are all either specified in the details
of the options contracts or are available from market data. Therefore, given all of
these quantities, it is possible to use a numerical procedure, such as the method of
bisections or Newton–Raphson to derive the volatility implied by the option (see
Watsham and Parramore, 2004). This implied volatility is the market’s forecast of
the volatility of underlying asset returns over the lifetime of the option.

• • • • • • • • • • • • • • 9.5 Exponentially weighted moving average models

The exponentially weighted moving average (EWMA) is essentially a simple exten-
sion of the historical average volatility measure, which allows more recent observa-
tions to have a stronger impact on the forecast of volatility than older data points.
Under an EWMA specification, the latest observation carries the largest weight,
and weights associated with previous observations decline exponentially over time.
This approach has two advantages over the simple historical model. First, volatility
is in practice likely to be affected more by recent events, which carry more weight,
than events further in the past. Second, the effect on volatility of a single given
observation declines at an exponential rate as weights attached to recent events fall.
On the other hand, the simple historical approach could lead to an abrupt change
in volatility once the shock falls out of the measurement sample. And if the shock is
still included in a relatively long measurement sample period, then an abnormally
large observation will imply that the forecast will remain at an artificially high level
even if the market is subsequently tranquil. The exponentially weighted moving
average model can be expressed in several ways, e.g.

σ 2
t = (1 − λ)

∞∑
j=0

λ j (r t− j − r̄ )2 (9.5)

where σ 2
t is the estimate of the variance for period t , which also becomes the

forecast of future volatility for all periods, r̄ is the average return estimated over
the observations and λ is the ‘decay factor’, which determines how much weight
is given to recent versus older observations. The decay factor could be estimated,
but in many studies is set at 0.94 as recommended by RiskMetrics, producers of
popular risk measurement software. Note also that RiskMetrics and many academic
papers assume that the average return, r̄ , is zero. For data that is of daily frequency
or higher, this is not an unreasonable assumption, and is likely to lead to negligible
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loss of accuracy since it will typically be very small. Obviously, in practice, an
infinite number of observations will not be available on the series, so that the
sum in (9.5) must be truncated at some fixed lag. As with exponential smoothing
models, the forecast from an EWMA model for all prediction horizons is the most
recent weighted average estimate.

It is worth noting two important limitations of EWMA models. First, while
there are several methods that could be used to compute the EWMA, the crucial
element in each case is to remember that when the infinite sum in (9.5) is replaced
with a finite sum of observable data, the weights from the given expression will
now sum to less than one. In the case of small samples, this could make a large
difference to the computed EWMA and thus a correction may be necessary.
Second, most time series models, such as GARCH (see below), will have forecasts
that tend towards the unconditional variance of the series as the prediction horizon
increases. This is a good property for a volatility forecasting model to have, since it
is well known that volatility series are ‘mean-reverting’. This implies that if they are
currently at a high level relative to their historic average, they will have a tendency
to fall back towards their average level, while if they are at a low level relative to
their historic average, they will have a tendency to rise back towards the average.
This feature is accounted for in GARCH volatility forecasting models, but not by
EWMAs.

• • • • • • • • • • • • • • 9.6 Autoregressive volatility models

Autoregressive volatility models are a relatively simple example from the class of
stochastic volatility specifications. The idea is that a time series of observations on
some volatility proxy are obtained. The standard Box–Jenkins-type procedures for
estimating autoregressive (or ARMA) models can then be applied to this series.
If the quantity of interest in the study is a daily volatility estimate, two natural
proxies have been employed in the literature: squared daily returns, or daily range
estimators. Producing a series of daily squared returns trivially involves taking a
column of observed returns and squaring each observation. The squared return
at each point in time, t , then becomes the daily volatility estimate for day t . A
range estimator typically involves calculating the log of the ratio of the highest
observed price to the lowest observed price for trading day t , which then becomes
the volatility estimate for day t

σ 2
t = log

(
hight

lowt

)
(9.6)

Given either the squared daily return or the range estimator, a standard autore-
gressive model is estimated, with the coefficients βi estimated using OLS (or
maximum likelihood – see below). The forecasts are also produced in the usual
fashion discussed in chapter 6 in the context of ARMA models

σ 2
t = β0 +

p∑
j=1

β j σ
2
t− j + εt (9.7)
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Figure 9.1 Daily S&P returns for August 2003–August 2013

• • • • • • • • • • • • • • 9.7 Autoregressive conditionally heteroscedastic (ARCH) models

One particular non-linear model in widespread usage in finance is known as an
‘ARCH’ model (ARCH stands for ‘autoregressive conditionally heteroscedastic’).
To see why this class of models is useful, recall that a typical structural model could
be expressed by an equation of the form given in (9.1) above with ut ∼ N(0, σ 2).
The assumption of the CLRM that the variance of the errors is constant is known
as homoscedasticity (i.e. it is assumed that var(ut ) = σ 2). If the variance of the errors is
not constant, this would be known as heteroscedasticity. As was explained in chapter
5, if the errors are heteroscedastic, but assumed homoscedastic, an implication
would be that standard error estimates could be wrong. It is unlikely in the context
of financial time series that the variance of the errors will be constant over time,
and hence it makes sense to consider a model that does not assume that the variance
is constant, and which describes how the variance of the errors evolves.

Another important feature of many series of financial asset returns that provides
a motivation for the ARCH class of models, is known as ‘volatility clustering’ or
‘volatility pooling’. Volatility clustering describes the tendency of large changes in
asset prices (of either sign) to follow large changes and small changes (of either
sign) to follow small changes. In other words, the current level of volatility tends
to be positively correlated with its level during the immediately preceding periods.
This phenomenon is demonstrated in figure 9.1, which plots daily S&P500 returns
for August 2003–August 2013.

The important point to note from figure 9.1 is that volatility occurs in bursts.
There appears to have been a prolonged period of relative tranquillity in the
market during the 2003 to 2008 period until the financial crisis began, evidenced
by only relatively small positive and negative returns until that point. On the
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other hand, during mid-2008 to mid-2009, there was far more volatility, when
many large positive and large negative returns were observed during a short space
of time. Abusing the terminology slightly, it could be stated that ‘volatility is
autocorrelated’.

How could this phenomenon, which is common to many series of financial
asset returns, be parameterised (modelled)? One approach is to use an ARCH
model. To understand how the model works, a definition of the conditional vari-
ance of a random variable, ut , is required. The distinction between the conditional
and unconditional variances of a random variable is exactly the same as that of
the conditional and unconditional mean. The conditional variance of ut may be
denoted σ 2

t , which is written as

σ 2
t = var(ut | ut−1, ut−2, . . .) = E[(ut − E(ut ))2 | ut−1, ut−2, . . .] (9.8)

It is usually assumed that E(ut ) = 0, so

σ 2
t = var(ut | ut−1, ut−2, . . .) = E

[
u2

t |ut−1, ut−2, . . .
]

(9.9)

Equation (9.9) states that the conditional variance of a zero mean normally dis-
tributed random variable ut is equal to the conditional expected value of the
square of ut . Under the ARCH model, the ‘autocorrelation in volatility’ is mod-
elled by allowing the conditional variance of the error term, σ 2

t , to depend on the
immediately previous value of the squared error

σ 2
t = α0 + α1u2

t−1 (9.10)

The above model is known as an ARCH(1), since the conditional variance depends
on only one lagged squared error. Notice that (9.10) is only a partial model,
since nothing has been said yet about the conditional mean. Under ARCH, the
conditional mean equation (which describes how the dependent variable, yt , varies
over time) could take almost any form that the researcher wishes. One example of
a full model would be

yt = β1 + β2x2t + β3x3t + β4x4t + ut ut ∼ N
(
0, σ 2

t

)
(9.11)

σ 2
t = α0 + α1u2

t−1 (9.12)

The model given by (9.11) and (9.12) could easily be extended to the general case
where the error variance depends on q lags of squared errors, which would be
known as an ARCH(q ) model:

σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αq u2

t−q (9.13)

Instead of calling the conditional variance σ 2
t , in the literature it is often called ht ,

so that the model would be written

yt = β1 + β2x2t + β3x3t + β4x4t + ut ut ∼ N(0, ht ) (9.14)

ht = α0 + α1u2
t−1 + α2u2

t−2 + · · · + αq u2
t−q (9.15)
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The remainder of this chapter will use σ 2
t to denote the conditional variance at

time t , except for computer instructions where ht will be used since it is easier
not to use Greek letters.

9.7.1 Another way of expressing ARCH models

For illustration, consider an ARCH(1). The model can be expressed in two ways
that look different but are in fact identical. The first is as given in (9.11) and (9.12)
above. The second way would be as follows

yt = β1 + β2x2t + β3x3t + β4x4t + ut (9.16)

ut = vtσt vt ∼ N(0, 1) (9.17)

σ 2
t = α0 + α1u2

t−1 (9.18)

The form of the model given in (9.11) and (9.12) is more commonly presented,
although specifying the model as in (9.16)–(9.18) is required in order to use a
GARCH process in a simulation study (see chapter 13). To show that the two
methods for expressing the model are equivalent, consider that in (9.17), vt is
normally distributed with zero mean and unit variance, so that ut will also be
normally distributed with zero mean and variance σ 2

t .

9.7.2 Non-negativity constraints

Since ht is a conditional variance, its value must always be strictly positive; a
negative variance at any point in time would be meaningless. The variables on
the RHS of the conditional variance equation are all squares of lagged errors, and
so by definition will not be negative. In order to ensure that these always result
in positive conditional variance estimates, all of the coefficients in the conditional
variance are usually required to be non-negative. If one or more of the coefficients
were to take on a negative value, then for a sufficiently large lagged squared
innovation term attached to that coefficient, the fitted value from the model for
the conditional variance could be negative. This would clearly be nonsensical. So,
for example, in the case of (9.18), the non-negativity condition would be α0 ≥ 0
and α1 ≥ 0. More generally, for an ARCH(q ) model, all coefficients would be
required to be non-negative: αi ≥ 0 ∀ i = 0, 1, 2, . . . , q . In fact, this is a sufficient
but not necessary condition for non-negativity of the conditional variance (i.e. it
is a slightly stronger condition than is actually necessary).

9.7.3 Testing for ‘ARCH effects’

A test for determining whether ‘ARCH-effects’ are present in the residuals of an
estimated model may be conducted using the steps outlined in box 9.1.

Thus, the test is one of a joint null hypothesis that all q lags of the squared
residuals have coefficient values that are not significantly different from zero. If
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Box 9.1 Testing for ‘ARCH effects’

(1) Run any postulated linear regression of the form given in the equation
above, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + ut (9.19)

saving the residuals, û t .
(2) Square the residuals, and regress them on q own lags to test for ARCH

of order q , i.e. run the regression

û2
t = γ0 + γ1û2

t−1 + γ2û2
t−2 + · · · + γq û2

t−q + vt (9.20)

where vt is an error term.
Obtain R2 from this regression.

(3) The test statistic is defined as TR2 (the number of observations
multiplied by the coefficient of multiple correlation) from the last
regression, and is distributed as a χ2(q ).

(4) The null and alternative hypotheses are

H0 : γ1 = 0 and γ2 = 0 and γ3 = 0 and . . . and γq = 0

H1 : γ1 �= 0 or γ2 �= 0 or γ3 �= 0 or . . . or γq �= 0

the value of the test statistic is greater than the critical value from the χ2 dis-
tribution, then reject the null hypothesis. The test can also be thought of as a
test for autocorrelation in the squared residuals. As well as testing the residu-
als of an estimated model, the ARCH test is frequently applied to raw returns
data.

9.7.4 Testing for ‘ARCH effects’ in exchange rate returns using EViews

Before estimating a GARCH-type model, it is sensible first to compute the Engle
(1982) test for ARCH effects to make sure that this class of models is appropriate
for the data. This exercise (and the remaining exercises of this chapter), will
employ returns on the daily exchange rates (the file is ‘currencies.wf1’) where
there are 3,988 observations. Models of this kind are inevitably more data intensive
than those based on simple linear regressions, and hence, everything else being
equal, they work better when the data are sampled daily rather than at a lower
frequency.

A test for the presence of ARCH in the residuals is calculated by regressing
the squared residuals on a constant and p lags, where p is set by the user. As an
example, assume that p is set to 5. The first step is to estimate a linear model so
that the residuals can be tested for ARCH. From the main menu, select Quick
and then select Estimate Equation. In the Equation Specification Editor, input
rgbp c ar(1) ma(1) which will estimate an ARMA(1,1) for the pound-dollar



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-09 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:19

9.7 ARCH models

•
•
•
•
•
•
•
•
• 427

Heteroskedasticity Test: ARCH

F-statistic 49.31597 Prob. F(5,1814) 0.0000
Obs*R-squared 232.5277 Prob. Chi-Square(5) 0.0000

Test Equation:
Dependent Variable: RESID∧2
Method: Least Squares
Date: 08/06/13 Time: 07:35
Sample (adjusted): 6/06/2002 7/07/2007
Included observations: 3981 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 0.109478 0.009717 11.266640 0.000000
RESID∧2(-1) 0.117137 0.015797 7.414951 0.0000
RESID∧2(-2) 0.126761 0.015896 7.974218 0.0000
RESID∧2(-3) 0.043690 0.016007 2.729444 0.0064
RESID∧2(-4) 0.035868 0.015895 2.256530 0.0241
RESID∧2(-5) 0.089178 0.015774 5.653618 0.0000

R-squared 0.058409 Mean dependent var 0.186471
Adjusted R-squared 0.057225 S.D. dependent var 0.536205
S.E. of regression 0.520637 Akaike info criterion 1.533977
Sum squared resid 1077.473 Schwarz criterion 1.543456
Log likelihood −3047.381 Hannan-Quinn criter. 1.537338
F-statistic 49.31597 Durbin-Watson stat 2.016422
Prob(F-statistic) 0.000020

returns.1 Select the Least Squares (NLA and ARMA) procedure to estimate
the model, using the whole sample period and press the OK button (output not
shown).

The next step is to click on View from the Equation Window and to select
Residual Diagnostics and then Heteroskedasticity Tests . . . . In the ‘Test
type’ box, choose ARCH and the number of lags to include is 5, and press OK.
The output below shows the Engle test results. Both the F -version and the LM-
statistic are very significant, suggesting the presence of ARCH in the pound–dollar
returns.

1 Note that the (1,1) order has been chosen entirely arbitrarily at this stage. However, it is important
to give some thought to the type and order of model used even if it is not of direct interest in the
problem at hand (which will later be termed the ‘conditional mean’ equation), since the variance
is measured around the mean and therefore any mis-specification in the mean is likely to lead to
a mis-specified variance.
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9.7.5 Limitations of ARCH(q) models

ARCH provided a framework for the analysis and development of time series
models of volatility. However, ARCH models themselves have rarely been used in
the last decade or more, since they bring with them a number of difficulties:

● How should the value of q , the number of lags of the squared residual in the
model, be decided? One approach to this problem would be the use of a
likelihood ratio test, discussed later in this chapter, although there is no clearly
best approach.

● The value of q , the number of lags of the squared error that are required to
capture all of the dependence in the conditional variance, might be very large.
This would result in a large conditional variance model that was not parsi-
monious. Engle (1982) circumvented this problem by specifying an arbitrary
linearly declining lag length on an ARCH(4)

σ 2
t = γ0 + γ1

(
0.4û2

t−1 + 0.3û2
t−2 + 0.2û2

t−3 + 0.1û2
t−4

)
(9.21)

such that only two parameters are required in the conditional variance equation
(γ0 and γ1), rather than the five which would be required for an unrestricted
ARCH(4).

● Non-negativity constraints might be violated. Everything else equal, the more
parameters there are in the conditional variance equation, the more likely
it is that one or more of them will have negative estimated values.

A natural extension of an ARCH(q ) model which overcomes some of these
problems is a GARCH model. In contrast with ARCH, GARCH models are
extremely widely employed in practice.

• • • • • • • • • • • • • • 9.8 Generalised ARCH (GARCH) models

The GARCH model was developed independently by Bollerslev (1986) and Taylor
(1986). The GARCH model allows the conditional variance to be dependent upon
previous own lags, so that the conditional variance equation in the simplest case is
now

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (9.22)

This is a GARCH(1,1) model. σ 2
t is known as the conditional variance since it

is a one-period ahead estimate for the variance calculated based on any past
information thought relevant. Using the GARCH model it is possible to interpret
the current fitted variance, ht , as a weighted function of a long-term average
value (dependent on α0), information about volatility during the previous period
(α1u2

t−1) and the fitted variance from the model during the previous period (βσ 2
t−1).

Note that the GARCH model can be expressed in a form that shows that it is
effectively an ARMA model for the conditional variance. To see this, consider
that the squared return at time t relative to the conditional variance is given by

εt = u2
t − σ 2

t (9.23)
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or

σ 2
t = u2

t − εt (9.24)

Using the latter expression to substitute in for the conditional variance in (9.22)

u2
t − εt = α0 + α1u2

t−1 + β
(
u2

t−1 − εt−1
)

(9.25)

Rearranging

u2
t = α0 + α1u2

t−1 + βu2
t−1 − βεt−1 + εt (9.26)

so that

u2
t = α0 + (α1 + β)u2

t−1 − βεt−1 + εt (9.27)

This final expression is an ARMA(1,1) process for the squared errors.
Why is GARCH a better and therefore a far more widely used model than

ARCH? The answer is that the former is more parsimonious, and avoids overfitting.
Consequently, the model is less likely to breach non-negativity constraints. In order
to illustrate why the model is parsimonious, first take the conditional variance
equation in the GARCH(1,1) case, subtract 1 from each of the time subscripts of
the conditional variance equation in (9.22), so that the following expression would
be obtained

σ 2
t−1 = α0 + α1u2

t−2 + βσ 2
t−2 (9.28)

and subtracting 1 from each of the time subscripts again

σ 2
t−2 = α0 + α1u2

t−3 + βσ 2
t−3 (9.29)

Substituting into (9.22) for σ 2
t−1

σ 2
t = α0 + α1u2

t−1 + β
(
α0 + α1u2

t−2 + βσ 2
t−2

)
(9.30)

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + β2σ 2

t−2 (9.31)

Now substituting into (9.31) for σ 2
t−2

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + β2(α0 + α1u2

t−3 + βσ 2
t−3

)
(9.32)

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + α0β

2 + α1β
2u2

t−3 + β3σ 2
t−3 (9.33)

σ 2
t = α0(1 + β + β2) + α1u2

t−1(1 + βL + β2L2) + β3σ 2
t−3 (9.34)

An infinite number of successive substitutions of this kind would yield

σ 2
t = α0(1 + β + β2 + · · · ) + α1u2

t−1(1 + βL + β2L2 + · · · ) + β∞σ 2
0

(9.35)

The first expression on the RHS of (9.35) is simply a constant, and as the number
of observations tends to infinity, β∞ will tend to zero. Hence, the GARCH(1,1)
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model can be written as

σ 2
t = γ0 + α1u2

t−1(1 + βL + β2L2 + · · · ) (9.36)

= γ0 + γ1u2
t−1 + γ2u2

t−2 + · · · , (9.37)

which is a restricted infinite order ARCH model. Thus the GARCH(1,1) model,
containing only three parameters in the conditional variance equation, is a very
parsimonious model, that allows an infinite number of past squared errors to
influence the current conditional variance.

The GARCH(1,1) model can be extended to a GARCH(p ,q ) formulation,
where the current conditional variance is parameterised to depend upon q lags of
the squared error and p lags of the conditional variance

σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αq u2

t−q + β1σ
2
t−1

+ β2σ
2
t−2 + · · · + βpσ

2
t−p (9.38)

σ 2
t = α0 +

q∑
i=1

αi u2
t−i +

p∑
j=1

β j σ
2
t− j (9.39)

But in general a GARCH(1,1) model will be sufficient to capture the volatility
clustering in the data, and rarely is any higher order model estimated or even
entertained in the academic finance literature.

9.8.1 The unconditional variance under a GARCH specification

The conditional variance is changing, but the unconditional variance of ut is
constant and given by

var(ut ) = α0

1 − (α1 + β)
(9.40)

so long as α1 + β < 1. For α1 + β ≥ 1, the unconditional variance of ut is not
defined, and this would be termed ‘non-stationarity in variance’. α1 + β = 1
would be known as a ‘unit root in variance’, also termed ‘Integrated GARCH’
or IGARCH. Non-stationarity in variance does not have a strong theoretical
motivation for its existence, as would be the case for non-stationarity in the mean
(e.g. of a price series). Furthermore, a GARCH model whose coefficients imply
non-stationarity in variance would have some highly undesirable properties. One
illustration of these relates to the forecasts of variance made from such models.
For stationary GARCH models, conditional variance forecasts converge upon the
long-term average value of the variance as the prediction horizon increases (see
below). For IGARCH processes, this convergence will not happen, while for
α1 + β > 1, the conditional variance forecast will tend to infinity as the forecast
horizon increases.
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Box 9.2 Estimating an ARCH or GARCH model

(1) Specify the appropriate equations for the mean and the variance – e.g.
an AR(1)-GARCH(1,1) model

yt = μ + φyt−1 + ut , ut ∼ N
(
0, σ 2

t

)
(9.41)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (9.42)

(2) Specify the log-likelihood function (LLF) to maximise under a
normality assumption for the disturbances

L = −T
2

log(2π ) − 1
2

T∑
t=1

log
(
σ 2

t

)−1
2

T∑
t=1

(yt − μ − φyt−1)2/σ 2
t

(9.43)

(3) The computer will maximise the function and generate parameter
values that maximise the LLF and will construct their standard errors.

• • • • • • • • • • • • • • 9.9 Estimation of ARCH/GARCH models

Since the model is no longer of the usual linear form, OLS cannot be used for
GARCH model estimation. There are a variety of reasons for this, but the simplest
and most fundamental is that OLS minimises the RSS. The RSS depends only on
the parameters in the conditional mean equation, and not the conditional variance,
and hence RSS minimisation is no longer an appropriate objective.

In order to estimate models from the GARCH family, another technique
known as maximum likelihood is employed. Essentially, the method works by finding
the most likely values of the parameters given the actual data. More specifically,
a log-likelihood function (LLF) is formed and the values of the parameters that
maximise it are sought. Maximum likelihood estimation can be employed to find
parameter values for both linear and non-linear models. The steps involved in
actually estimating an ARCH or GARCH model are shown in box 9.2. The
following section will elaborate on points 2 and 3 presented in the box, explaining
how the LLF is derived.

9.9.1 Parameter estimation using maximum likelihood

As stated above, under maximum likelihood estimation, a set of parameter values
are chosen that are most likely to have produced the observed data. This is done by
first forming a likelihood function, denoted LF. LF will be a multiplicative function
of the actual data, which will consequently be difficult to maximise with respect
to the parameters. Therefore, its logarithm is taken in order to turn LF into an
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additive function of the sample data, i.e. the LLF. A derivation of the maximum
likelihood (ML) estimator in the context of the simple bivariate regression model
with homoscedasticity is given in the appendix to this chapter. Essentially, deriving
the ML estimators involves differentiating the LLF with respect to the parameters.
But how does this help in estimating heteroscedastic models? How can the method
outlined in the appendix for homoscedastic models be modified for application to
GARCH model estimation?

In the context of conditional heteroscedasticity models, the model is yt = μ +
φyt−1 + ut , ut ∼ N(0, σ 2

t ), so that the variance of the errors has been modified
from being assumed constant, σ 2, to being time-varying, σ 2

t , with the equation
for the conditional variance as previously. The LLF relevant for a GARCH model
can be constructed in the same way as for the homoscedastic case by replacing

T
2

log σ 2

with the equivalent for time-varying variance

1
2

T∑
t=1

log σ 2
t

and replacing σ 2 in the denominator of the last part of the expression with σ 2
t

(see the appendix to this chapter). Derivation of this result from first principles is
beyond the scope of this text, but the log-likelihood function for the above model
with time-varying conditional variance and normally distributed errors is given by
(9.43) in box 9.2.

Intuitively, maximising the LLF involves jointly minimising

T∑
t=1

log σ 2
t

and
T∑

t=1

(yt − μ − φyt−1)2

σ 2
t

(since these terms appear preceded with a negative sign in the LLF, and

−T
2

log(2π )

is just a constant with respect to the parameters). Minimising these terms jointly
also implies minimising the error variance, as described in chapter 3. Unfortunately,
maximising the LLF for a model with time-varying variances is trickier than in the
homoscedastic case. Analytical derivatives of the LLF in (9.43) with respect to the
parameters have been developed, but only in the context of the simplest examples
of GARCH specifications. Moreover, the resulting formulae are complex, so a
numerical procedure is often used instead to maximise the log-likelihood function.
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l(θ)

θ

Figure 9.2 The problem of local optima in maximum likelihood estimation

Essentially, all methods work by ‘searching’ over the parameter-space until
the values of the parameters that maximise the log-likelihood function are found.
EViews employs an iterative technique for maximising the LLF. This means that,
given a set of initial guesses for the parameter estimates, these parameter values are
updated at each iteration until the program determines that an optimum has been
reached. If the LLF has only one maximum with respect to the parameter values,
any optimisation method should be able to find it – although some methods will
take longer than others. A detailed presentation of the various methods available
is beyond the scope of this book. However, as is often the case with non-linear
models such as GARCH, the LLF can have many local maxima, so that different
algorithms could find different local maxima of the LLF. Hence readers should be
warned that different optimisation procedures could lead to different coefficient
estimates and especially different estimates of the standard errors (see Brooks,
Burke and Persand, 2001 or 2003 for details). In such instances, a good set of
initial parameter guesses is essential.

Local optima or multimodalities in the likelihood surface present potentially
serious drawbacks with the maximum likelihood approach to estimating the param-
eters of a GARCH model, as shown in figure 9.2.

Suppose that the model contains only one parameter, θ , so that the log-
likelihood function is to be maximised with respect to this one parameter. In
figure 9.2, the value of the LLF for each value of θ is denoted l (θ ). Clearly, l (θ )
reaches a global maximum when θ = C, and a local maximum when θ = A. This
demonstrates the importance of good initial guesses for the parameters. Any initial
guesses to the left of B are likely to lead to the selection of A rather than C. The
situation is likely to be even worse in practice, since the log-likelihood function
will be maximised with respect to several parameters, rather than one, and there
could be many local optima. Another possibility that would make optimisation
difficult is when the LLF is flat around the maximum. So, for example, if the peak
corresponding to C in figure 9.2, were flat rather than sharp, a range of values
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Box 9.3 Using maximum likelihood estimation in practice

(1) Set up the LLF.
(2) Use regression to get initial estimates for the mean parameters.
(3) Choose some initial guesses for the conditional variance parameters. In

most software packages, the default initial values for the conditional
variance parameters would be zero. This is unfortunate since zero
parameter values often yield a local maximum of the likelihood
function. So if possible, set plausible initial values away from zero.

(4) Specify a convergence criterion – either by criterion or by value. When ‘by
criterion’ is selected, the package will continue to search for ‘better’
parameter values that give a higher value of the LLF until the change
in the value of the LLF between iterations is less than the specified
convergence criterion. Choosing ‘by value’ will lead to the software
searching until the change in the coefficient estimates are small enough.
The default convergence criterion for EViews is 0.001, which means
that convergence is achieved and the program will stop searching if the
biggest percentage change in any of the coefficient estimates for the
most recent iteration is smaller than 0.1%.

for θ could lead to very similar values for the LLF, making it difficult to choose
between them.

So, to explain again in more detail, the optimisation is done in the way shown
in box 9.3. The optimisation methods employed by EViews are based on the
determination of the first and second derivatives of the log-likelihood function
with respect to the parameter values at each iteration, known as the gradient
and Hessian (the matrix of second derivatives of the LLF w.r.t the parameters),
respectively. An algorithm for optimisation due to Berndt, Hall, Hall and Hausman
(1974), known as BHHH, is available in EViews. BHHH employs only first
derivatives (calculated numerically rather than analytically) and approximations to
the second derivatives are calculated. Not calculating the actual Hessian at each
iteration at each time step increases computational speed, but the approximation
may be poor when the LLF is a long way from its maximum value, requiring
more iterations to reach the optimum. The Marquardt algorithm, available in
EViews, is a modification of BHHH (both of which are variants on the Gauss–
Newton method) that incorporates a ‘correction’, the effect of which is to push the
coefficient estimates more quickly to their optimal values. All of these optimisation
methods are described in detail in Press et al. (1992).

9.9.2 Non-normality and maximum likelihood

Recall that the conditional normality assumption for ut is essential in specifying
the likelihood function. It is possible to test for non-normality using the following
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representation

ut = vtσt,vt ∼ N
(
0, 1

)
(9.44)

σt =
√

α0 + α1u2
t−1 + βσ 2

t−1 (9.45)

Note that one would not expect ut to be normally distributed – it is a N(0, σ 2
t )

disturbance term from the regression model, which will imply it is likely to have
fat tails. A plausible method to test for normality would be to construct the statistic

vt = ut

σt
(9.46)

which would be the model disturbance at each point in time t divided by the
conditional standard deviation at that point in time. Thus, it is the vt that are
assumed to be normally distributed, not ut . The sample counterpart would be

v̂t = û t

σ̂t
(9.47)

which is known as a standardised residual. Whether the v̂t are normal can be
examined using any standard normality test, such as the Bera–Jarque. Typically, v̂t
are still found to be leptokurtic, although less so than the û t . The upshot is that
the GARCH model is able to capture some, although not all, of the leptokurtosis
in the unconditional distribution of asset returns.

Is it a problem if v̂t are not normally distributed? Well, the answer is ‘not really’.
Even if the conditional normality assumption does not hold, the parameter esti-
mates will still be consistent if the equations for the mean and variance are correctly
specified. However, in the context of non-normality, the usual standard error esti-
mates will be inappropriate, and a different variance–covariance matrix estimator
that is robust to non-normality, due to Bollerslev and Wooldridge (1992), should
be used. This procedure (i.e. maximum likelihood with Bollerslev–Wooldridge
standard errors) is known as quasi-maximum likelihood, or QML.

9.9.3 Estimating GARCH models in EViews

To estimate a GARCH-type model, open the equation specification dialog
box by selecting Quick/Estimate Equation or by selecting Object/New
Object/Equation . . . . Select ARCH from the ‘Estimation Settings Method’
selection box. The window in screenshot 9.1 will open.
It is necessary to specify both the mean and the variance equations, as well as the
estimation technique and sample.

The mean equation

The specification of the mean equation should be entered in the dependent variable
edit box. Enter the specification by listing the dependent variable followed by the
regressors. The constant term ‘C’ should also be included. If your specification
includes an ARCH-M term (see later in this chapter), you should click on the
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Screenshot 9.1 Estimating a GARCH-type model

appropriate button in the upper RHS of the dialog box to select the conditional
standard deviation, the conditional variance, or the log of the conditional variance.

The variance equation

The edit box labelled ‘Variance regressors’ is where variables that are to be included
in the variance specification should be listed. Note that EViews will always include
a constant in the conditional variance, so that it is not necessary to add ‘C’ to the
variance regressor list. Similarly, it is not necessary to include the ARCH or
GARCH terms in this box as they will be dealt with in other parts of the dialog
box. Instead, enter here any exogenous variables or dummies that you wish to
include in the conditional variance equation, or (as is usually the case), just leave
this box blank.

Variance and distribution specification

Under the ‘Variance and distribution Specification’ label, choose the number of
ARCH and GARCH terms. The default is to estimate with one ARCH and one
GARCH term (i.e. one lag of the squared errors and one lag of the conditional
variance, respectively). To estimate the standard GARCH model, leave the default
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Screenshot 9.2 GARCH model estimation options

‘GARCH/TARCH’. The other entries in this box describe more complicated
variants of the standard GARCH specification, which are described in later sections
of this chapter.

Estimation options

EViews provides a number of optional estimation settings. Clicking on the
Options tab gives the options in screenshot 9.2 to be filled out as required. The
Heteroskedasticity Consistent Covariance option is used to compute the QML
covariances and standard errors using the methods described by Bollerslev and
Wooldridge (1992). This option should be used if you suspect that the residuals
are not conditionally normally distributed. Note that the parameter estimates will
be (virtually) unchanged if this option is selected; only the estimated covariance
matrix will be altered.

The log-likelihood functions for ARCH models are often not well behaved
so that convergence may not be achieved with the default estimation settings. It
is possible in EViews to select the iterative algorithm (Marquardt, BHHH/Gauss
Newton), to change starting values, to increase the maximum number of itera-
tions or to adjust the convergence criteria. For example, if convergence is not
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achieved, or implausible parameter estimates are obtained, it is sensible to re-do
the estimation using a different set of starting values and/or a different optimisation
algorithm.

Once the model has been estimated, EViews provides a variety of pieces of
information and procedures for inference and diagnostic checking. For example,
the following options are available on the View button:

● Actual, Fitted, Residual
The residuals are displayed in various forms, such as table, graphs and stan-
dardised residuals.

● GARCH graph
This graph plots the one-step ahead standard deviation, σt , or the conditional
variance, σ 2

t for each observation in the sample.
● Covariance Matrix
● Coefficient Tests
● Residual Tests/Correlogram-Q statistics
● Residual Tests/Correlogram Squared Residuals
● Residual Tests/Histogram-Normality Test
● Residual Tests/ARCH LM Test.

ARCH model procedures

These options are all available by pressing the ‘Proc’ button following the estimation
of a GARCH-type model:

● Make Residual Series
● Make GARCH Variance Series
● Forecast.

Estimating the GARCH(1,1) model for the yen–dollar (‘rjpy’) series using the
instructions as listed above, and the default settings elsewhere would yield the
results:

Dependent Variable: RJPY
Method: ML – ARCH (Marquardt) – Normal distribution
Date: 08/06/13 Time: 18:02
Sample (adjusted): 7/08/2002 6/06/2013
Included observations: 3987 after adjustments
Convergence achieved after 24 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)∗RESID(−1)∧2 + C(4)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

C 0.002664 0.006491 0.410491 0.6814
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Variance Equation

C 0.004404 0.000453 9.713821 0.0000
RESID(−1)∧2 0.046623 0.003476 13.41392 0.0000
GARCH(−1) 0.933667 0.005074 184.0124 0.0000

R-squared −0.000243 Mean dependent var −0.004699
Adjusted R-squared −0.000243 S.D. dependent var 0.471950
S.E. of regression 0.472008 Akaike info criterion 1.235623
Sum squared resid 888.0459 Schwarz criterion 1.241935
Log likelihood −2459.215 Hannan-Quinn criter. 1.237861
Durbin-Watson stat 1.705253

The coefficients on both the lagged squared residual and lagged conditional
variance terms in the conditional variance equation are highly statistically signifi-
cant. Also, as is typical of GARCH model estimates for financial asset returns data,
the sum of the coefficients on the lagged squared error and lagged conditional
variance is very close to unity (approximately 0.98). This implies that shocks to
the conditional variance will be highly persistent. This can be seen by consider-
ing the equations for forecasting future values of the conditional variance using a
GARCH model given in a subsequent section. A large sum of these coefficients
will imply that a large positive or a large negative return will lead future forecasts
of the variance to be high for a protracted period. The individual conditional
variance coefficients are also as one would expect. The variance intercept term
‘C’ is very small, and the ‘ARCH parameter’ is around 0.05 while the coefficient
on the lagged conditional variance (‘GARCH’) is larger at 0.93.

• • • • • • • • • • • • • • 9.10 Extensions to the basic GARCH model

Since the GARCH model was developed, a huge number of extensions and
variants have been proposed. A couple of the most important examples will be
highlighted here. Interested readers who wish to investigate further are directed to
a comprehensive survey by Bollerslev et al. (1992).

Many of the extensions to the GARCH model have been suggested as a con-
sequence of perceived problems with standard GARCH(p, q ) models. First, the
non-negativity conditions may be violated by the estimated model. The only way
to avoid this for sure would be to place artificial constraints on the model coeffi-
cients in order to force them to be non-negative. Second, GARCH models can-
not account for leverage effects (explained below), although they can account for
volatility clustering and leptokurtosis in a series. Finally, the model does not allow
for any direct feedback between the conditional variance and the conditional mean.

Some of the most widely used and influential modifications to the model will
now be examined. These may remove some of the restrictions or limitations of
the basic model.
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• • • • • • • • • • • • • • 9.11 Asymmetric GARCH models

One of the primary restrictions of GARCH models is that they enforce a sym-
metric response of volatility to positive and negative shocks. This arises since the
conditional variance in equations such as (9.39) is a function of the magnitudes
of the lagged residuals and not their signs (in other words, by squaring the lagged
error in (9.39), the sign is lost). However, it has been argued that a negative shock
to financial time series is likely to cause volatility to rise by more than a positive
shock of the same magnitude. In the case of equity returns, such asymmetries are
typically attributed to leverage effects, whereby a fall in the value of a firm’s stock
causes the firm’s debt to equity ratio to rise. This leads shareholders, who bear the
residual risk of the firm, to perceive their future cashflow stream as being relatively
more risky.

An alternative view is provided by the ‘volatility-feedback’ hypothesis. Assum-
ing constant dividends, if expected returns increase when stock price volatility
increases, then stock prices should fall when volatility rises. Although asymmetries
in returns series other than equities cannot be attributed to changing leverage,
there is equally no reason to suppose that such asymmetries only exist in equity
returns.

Two popular asymmetric formulations are explained below: the GJR model,
named after the authors Glosten, Jagannathan and Runkle (1993), and the expo-
nential GARCH (EGARCH) model proposed by Nelson (1991).

• • • • • • • • • • • • • • 9.12 The GJR model

The GJR model is a simple extension of GARCH with an additional term added
to account for possible asymmetries. The conditional variance is now given by

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 + γ u2

t−1 It−1 (9.48)

where It−1 = 1 if ut−1 < 0
= 0 otherwise

For a leverage effect, we would see γ > 0. Notice now that the condition for non-
negativity will be α0 > 0, α1 > 0, β ≥ 0, and α1 + γ ≥ 0. That is, the model is
still admissible, even if γ < 0, provided that α1 + γ ≥ 0.

Example 9.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

To offer an illustration of the GJR approach, using monthly S&P500 returns from
December 1979 until June 1998, the following results would be obtained, with t -ratios in
parentheses

yt = 0.172 (9.49)

(3.198)

σ 2
t = 1.243 + 0.015u2

t−1 + 0.498σ 2
t−1 + 0.604u2

t−1 It−1 (9.50)

(16.372) (0.437) (14.999) (5.772)
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Note that the asymmetry term, γ , has the correct sign and is significant. To see how
volatility rises more after a large negative shock than a large positive one, suppose
that σ 2

t−1 = 0.823, and consider û t−1 = ±0.5. If û t−1 = 0.5, this implies that σ 2
t = 1.65.

However, a shock of the same magnitude but of opposite sign, û t−1 = −0.5, implies
that the fitted conditional variance for time t will be σ 2

t = 1.80.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 9.13 The EGARCH model

The exponential GARCH model was proposed by Nelson (1991). There are
various ways to express the conditional variance equation, but one possible speci-
fication is given by

ln
(
σ 2

t

) = ω + β ln
(
σ 2

t−1

) + γ
ut−1√
σ 2

t−1

+ α

⎡
⎣ |ut−1|√

σ 2
t−1

−
√

2
π

⎤
⎦ (9.51)

The model has several advantages over the pure GARCH specification. First,
since the log(σ 2

t ) is modelled, then even if the parameters are negative, σ 2
t will be

positive. There is thus no need to artificially impose non-negativity constraints on
the model parameters. Second, asymmetries are allowed for under the EGARCH
formulation, since if the relationship between volatility and returns is negative, γ ,
will be negative.

Note that in the original formulation, Nelson assumed a generalised error
distribution (GED) structure for the errors. GED is a very broad family of distri-
butions that can be used for many types of series. However, owing to its com-
putational ease and intuitive interpretation, almost all applications of EGARCH
employ conditionally normal errors as discussed above rather than using GED.

• • • • • • • • • • • • • • 9.14 GJR and EGARCH in EViews

The main menu screen for GARCH estimation demonstrates that a number of
variants on the standard GARCH model are available. Arguably most important
of these are asymmetric models, such as the TGARCH (‘threshold’ GARCH),
which is also known as the GJR model, and the EGARCH model. To esti-
mate a GJR model in EViews, from the GARCH model equation specification
screen (screenshot 9.1 above), change the ‘Threshold Order’ number from 0 to
1. To estimate an EGARCH model, change the ‘GARCH/TARCH’ model
estimation default to ‘EGARCH’.

Coefficient estimates for each of these specifications using the daily Japanese
yen–US dollar returns data are given in the next two output tables, respectively. For
the GJR specification, the asymmetry term (‘(RESID(−1)∧2∗RESID(−1)<0)’)
is positive and highly significant, while for the EGARCH model, the estimate on
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‘RESID(−1)/SQRT(GARCH(−1))’ is highly significant but has a negative sign.
So for the GJR model, the estimate indicates that negative shocks imply a higher
next period conditional variance than negative shocks of the same sign, whereas
the opposite is true for the EGARCH. Clearly, then, we must exercise caution
when interpreting the estimates from GARCH-type models since the optimisation
routine converged on an optimum in both cases and the estimates appear to be
otherwise entirely plausible.

Dependent Variable: RJPY
Method: ML – ARCH (Marquardt) – Normal distribution
Date: 08/06/13 Time: 13:23
Sample (adjusted): 7/08/2002 6/06/2013
Included observations: 3987 after adjustments
Convergence achieved after 21 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)∗RESID(−1)∧2 + C(4)∗RESID(−1)∧2∗(RESID(−1)<0)

+ C(5)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

C −0.001220 0.006679 −0.182713 0.8550

Variance Equation

C 0.003897 0.000445 8.766881 0.0000
RESID(−1)∧2 0.024975 0.003703 6.743803 0.0000

RESID(−1)∧2∗(RESID(-1)<0) 0.038199 0.004978 7.673294 0.0000
GARCH(−1) 0.938557 0.005137 182.7135 0.0000

R-squared −0.000054 Mean dependent var −0.004699
Adjusted R-squared −0.000054 S.D. dependent var 0.471950
S.E. of regression 0.471963 Akaike info criterion 1.229490
Sum squared resid 887.8779 Schwarz criterion 1.237379
Log likelihood −2445.989 Hannan-Quinn criter. 1.232287
Durbin-Watson stat 1.705575

The result for the EGARCH asymmetry term is the opposite to what would have
been expected in the case of the application of a GARCH model to a set of stock
returns. But arguably, neither the leverage effect or volatility feedback explanations for
asymmetries in the context of stocks apply here. For a positive return shock, this
implies more yen per dollar and therefore a strengthening dollar and a weakening
yen. Thus the EGARCH results suggest that a strengthening dollar (weakening
yen) leads to higher next period volatility than when the yen strengthens by the
same amount (vice versa for the GJR).
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Dependent Variable: RJPY
Method: ML – ARCH (Marquardt) – Normal distribution
Date: 08/06/13 Time: 13:32
Sample (adjusted): 7/08/2002 6/06/2013
Included observations: 3987 after adjustments
Convergence achieved after 41 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)∗ABS(RESID(−1)/ SQRT(GARCH(−1)))

+ C(4)∗RESID(−1)/ SQRT(GARCH(−1)) + C(5)∗LOG(GARCH(−1))

Coefficient Std. Error z-Statistic Prob.

C −0.001259 0.006459 −0.194903 0.8455

Variance Equation

C(2) −0.107729 0.008416 −12.80063 0.0000
C(3) 0.107247 0.007361 14.56981 0.0000
C(4) −0.037184 0.004177 −8.903008 0.0000
C(5) 0.979445 0.002488 393.6791 0.0000

R-squared −0.000053 Mean dependent var −0.004699
Adjusted R-squared −0.000053 S.D. dependent var 0.471950
S.E. of regression 0.471963 Akaike info criterion 1.227398
Sum squared resid 887.8769 Schwarz criterion 1.235287
Log likelihood −2441.818 Hannan-Quinn criter. 1.230195
Durbin-Watson stat 1.705577

• • • • • • • • • • • • • • 9.15 Tests for asymmetries in volatility

Engle and Ng (1993) have proposed a set of tests for asymmetry in volatility,
known as sign and size bias tests. The Engle and Ng tests should thus be used to
determine whether an asymmetric model is required for a given series, or whether
the symmetric GARCH model can be deemed adequate. In practice, the Engle–
Ng tests are usually applied to the residuals of a GARCH fit to the returns data.
Define S−

t−1 as an indicator dummy that takes the value 1 if û t−1 < 0 and zero
otherwise. The test for sign bias is based on the significance or otherwise of φ1 in

û2
t = φ0 + φ1S−

t−1 + υt (9.52)

where υt is an iid error term. If positive and negative shocks to û t−1 impact
differently upon the conditional variance, then φ1 will be statistically significant.

It could also be the case that the magnitude or size of the shock will affect
whether the response of volatility to shocks is symmetric or not. In this case, a
negative size bias test would be conducted, based on a regression where S−

t−1 is
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now used as a slope dummy variable. Negative size bias is argued to be present if
φ1 is statistically significant in the regression

û2
t = φ0 + φ1S−

t−1ut−1 + υt (9.53)

Finally, defining S+
t−1 = 1 − S−

t−1, so that S+
t−1 picks out the observations with

positive innovations, Engle and Ng propose a joint test for sign and size bias based
on the regression

û2
t = φ0 + φ1S−

t−1 + φ2S−
t−1ut−1 + φ3S+

t−1ut−1 + υt (9.54)

Significance of φ1 indicates the presence of sign bias, where positive and negative
shocks have differing impacts upon future volatility, compared with the symmetric
response required by the standard GARCH formulation. On the other hand, the
significance of φ2 or φ3 would suggest the presence of size bias, where not only the
sign but the magnitude of the shock is important. A joint test statistic is formulated
in the standard fashion by calculating TR2 from regression (9.54), which will
asymptotically follow a χ2 distribution with three degrees of freedom under the
null hypothesis of no asymmetric effects.

9.15.1 News impact curves

A pictorial representation of the degree of asymmetry of volatility to positive
and negative shocks is given by the news impact curve introduced by Pagan and
Schwert (1990). The news impact curve plots the next-period volatility (σ 2

t ) that
would arise from various positive and negative values of ut−1, given an estimated
model. The curves are drawn by using the estimated conditional variance equation
for the model under consideration, with its given coefficient estimates, and with
the lagged conditional variance set to the unconditional variance. Then, successive
values of ut−1 are used in the equation to determine what the corresponding values
of σ 2

t derived from the model would be. For example, consider the GARCH and
GJR model estimates given above for the S&P500 data from EViews. Values of
ut−1 in the range (−1, +1) are substituted into the equations in each case to
investigate the impact on the conditional variance during the next period. The
resulting news impact curves for the GARCH and GJR models are given in
figure 9.3.

As can be seen from figure 9.3, the GARCH news impact curve (the grey
line) is of course symmetrical about zero, so that a shock of given magnitude will
have the same impact on the future conditional variance whatever its sign. On
the other hand, the GJR news impact curve (the black line) is asymmetric, with
negative shocks having more impact on future volatility than positive shocks of the
same magnitude. It can also be seen that a negative shock of given magnitude will
have a bigger impact under GJR than would be implied by a GARCH model,
while a positive shock of given magnitude will have more impact under GARCH
than GJR. The latter result arises as a result of the reduction in the value of α1,
the coefficient on the lagged squared error, when the asymmetry term is included
in the model.
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Figure 9.3 News impact curves for S&P500 returns using coefficients implied from
GARCH and GJR model estimates

• • • • • • • • • • • • • • 9.16 GARCH-in-mean

Most models used in finance suppose that investors should be rewarded for taking
additional risk by obtaining a higher return. One way to operationalise this concept
is to let the return of a security be partly determined by its risk. Engle, Lilien
and Robins (1987) suggested an ARCH-M specification, where the conditional
variance of asset returns enters into the conditional mean equation. Since GARCH
models are now considerably more popular than ARCH, it is more common to
estimate a GARCH-M model. An example of a GARCH-M model is given by
the specification

yt = μ + δσt−1 + ut , ut ∼ N
(
0, σ 2

t

)
(9.55)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (9.56)

If δ is positive and statistically significant, then increased risk, given by an increase
in the conditional variance, leads to a rise in the mean return. Thus δ can be
interpreted as a risk premium. In some empirical applications, the conditional
variance term, σ 2

t−1, appears directly in the conditional mean equation, rather than
in square root form, σt−1. Also, in some applications the term is contemporaneous,
σ 2

t , rather than lagged.
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9.16.1 GARCH-M estimation in EViews

The GARCH-M model with the conditional standard deviation term in the mean,
estimated using the rjpy data in EViews from the main GARCH menu as described
above, with no asymmetries would give the following results:

Dependent Variable: RJPY
Method: ML – ARCH (Marquardt) – Normal distribution
Date: 08/06/13 Time: 16:06
Sample (adjusted): 7/08/2002 6/06/2013
Included observations: 3987 after adjustments
Convergence achieved after 28 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)∗RESID(−1)∧2 + C(5)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

SQRT(GARCH) −0.052260 0.076468 −0.683433 0.4943
C 0.024755 0.032632 0.758621 0.4481

Variance Equation

C 0.004326 0.000457 9.461929 0.0000
RESID(−1)∧2 0.046511 0.003485 13.34539 0.0000
GARCH(−1) 0.934156 0.005041 185.3095 0.0000

R-squared −0.000344 Mean dependent var −0.004699
Adjusted R-squared −0.000595 S.D. dependent var 0.471950
S.E. of regression 0.472091 Akaike info criterion 1.236012
Sum squared resid 888.1354 Schwarz criterion 1.243901
Log likelihood −2458.989 Hannan-Quinn criter. 1.238809
Durbin-Watson stat 1.705155

In this case, the estimated parameter on the mean equation has a negative sign
but is not statistically significant. We would thus conclude that for these currency
returns, there is no feedback from the conditional variance to the conditional
mean.

• • • • • • • • • • • • • • 9.17 Uses of GARCH-type models including volatility forecasting

Essentially GARCH models are useful because they can be used to model the
volatility of a series over time. It is possible to combine together more than one of
the time series models that have been considered so far in this book, to obtain more
complex ‘hybrid’ models. Such models can account for a number of important
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features of financial series at the same time – e.g. an ARMA–EGARCH(1,1)-M
model; the potential complexity of the model is limited only by the imagination!

GARCH-type models can be used to forecast volatility. GARCH is a model
to describe movements in the conditional variance of an error term, ut , which
may not appear particularly useful. But it is possible to show that

var (yt | yt−1, yt−2, . . .) = var (ut | ut−1, ut−2, . . .) (9.57)

So the conditional variance of y, given its previous values, is the same as the
conditional variance of u , given its previous values. Hence, modelling σ 2

t will give
models and forecasts for the variance of yt as well. Thus, if the dependent variable in
a regression, yt is an asset return series, forecasts of σ 2

t will be forecasts of the future
variance of yt . So one primary usage of GARCH-type models is in forecasting
volatility. This can be useful in, for example, the pricing of financial options where
volatility is an input to the pricing model. For example, the value of a ‘plain vanilla’
call option is a function of the current value of the underlying, the strike price, the
time to maturity, the risk free interest rate and volatility. The required volatility, to
obtain an appropriate options price, is really the volatility of the underlying asset
expected over the lifetime of the option. As stated previously, it is possible to use
a simple historical average measure as the forecast of future volatility, but another
method that seems more appropriate would be to use a time series model such
as GARCH to compute the volatility forecasts. The forecasting ability of various
models is considered in a paper by Day and Lewis (1992), discussed in detail
below.

Producing forecasts from models of the GARCH class is relatively simple, and
the algebra involved is very similar to that required to obtain forecasts from ARMA
models. An illustration is given by example 9.2.

Example 9.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Consider the following GARCH(1,1) model

yt = μ + ut , ut ∼ N(0, σ 2
t ) (9.58)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (9.59)

Suppose that the researcher had estimated the above GARCH model for a series of
returns on a stock index and obtained the following parameter estimates: μ̂ = 0.0023,
α̂0 = 0.0172, β̂ = 0.7811, α̂1 = 0.1251. If the researcher has data available up to and
including time T, write down a set of equations in σ 2

t and u2
t and their lagged values,

which could be employed to produce one-, two-, and three-step-ahead forecasts for
the conditional variance of yt .

What is needed is to generate forecasts of σT+1
2|�T, σT+2

2|�T, . . . , σT+s
2|�T

where �T denotes all information available up to and including observation T. For
time T, the conditional variance equation is given by (9.59). Adding one to each of the
time subscripts of this equation, and then two, and then three would yield equations
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(9.60)–(9.62)

σT+1
2 = α0 + α1u2

T + βσ 2
T (9.60)

σT+2
2 = α0 + α1u2

T+1 + βσ 2
T+1 (9.61)

σT+3
2 = α0 + α1u2

T+2 + βσ 2
T+2 (9.62)

Let σ
f 2

1,T be the one-step-ahead forecast for σ 2 made at time T. This is easy to calculate

since, at time T, the values of all the terms on the RHS are known. σ f 2

1,T would be
obtained by taking the conditional expectation of (9.60).

Given σ
f 2

1,T , how is σ
f 2

2,T , the two-step-ahead forecast for σ 2 made at time T,
calculated?

σ
f 2

1,T = α0 + α1u2
T + βσ 2

T (9.63)

From (9.61), it is possible to write

σ
f 2

2,T = α0 + α1E(u2
T+1 | �T) + βσ

f 2

1,T (9.64)

where E(u2
T+1 | �T) is the expectation, made at time T, of u2

T+1, which is the squared
disturbance term. It is necessary to find E(u2

T+1 | �T), using the expression for the
variance of a random variable ut . The model assumes that the series ut has zero mean,
so that the variance can be written

var (ut ) = E[(ut − E(ut ))2] = E
(
u2

t

)
. (9.65)

The conditional variance of ut is σ 2
t , so

σ 2
t | �t = E(ut )2 (9.66)

Turning this argument around, and applying it to the problem at hand

E(uT+1 | �t )2 = σ 2
T+1 (9.67)

but σ 2
T+1 is not known at time T, so it is replaced with the forecast for it, σ f 2

1,T , so that
(9.64) becomes

σ
f 2

2,T = α0 + α1σ
f 2

1,T + βσ
f 2

1,T (9.68)

σ
f 2

2,T = α0 + (α1 + β)σ f 2

1,T (9.69)

What about the three-step-ahead forecast?
By similar arguments,

σ
f 2

3,T = ET
(
α0 + α1u2

T+2 + βσ 2
T+2

)
(9.70)

σ
f 2

3,T = α0 + (α1 + β)σ f 2
2,T (9.71)

σ
f 2

3,T = α0 + (α1 + β)
[
α0 + (α1 + β)σ f 2

1,T

]
(9.72)

σ
f 2

3,T = α0 + α0(α1 + β) + (α1 + β)2σ f 2

1,T (9.73)
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Any s -step-ahead forecasts would be produced by

σ
f 2

s ,T = α0

s−1∑
i=1

(α1 + β)i−1 + (α1 + β)s−1σ
f 2

1,T (9.74)

for any value of s ≥ 2.
It is worth noting at this point that variances, and therefore variance forecasts, are

additive over time. This is a very useful property. Suppose, for example, that using
daily foreign exchange returns, one-, two-, three-, four-, and five-step-ahead variance
forecasts have been produced, i.e. a forecast has been constructed for each day of the
next trading week. The forecasted variance for the whole week would simply be the
sum of the five daily variance forecasts. If the standard deviation is the required
volatility estimate rather than the variance, simply take the square root of the variance
forecasts. Note also, however, that standard deviations are not additive. Hence, if daily
standard deviations are the required volatility measure, they must be squared to turn
them to variances. Then the variances would be added and the square root taken to
obtain a weekly standard deviation.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9.17.1 Forecasting from GARCH models with EViews

Forecasts from any of the GARCH models that can be estimated using EViews
are obtained by using only a sub-sample of available data for model estimation,
and then by clicking on the ‘Forecast’ button that appears after estimation of
the required model has been completed. Suppose, for example, we stopped the
estimation of the GARCH(1,1) model (with no asymmetries and no GARCH-
in-mean term) for the Japanese yen returns at 6 June 2011 so as to keep the last two
years of data for forecasting (i.e. the ‘Forecast sample’ is 6/07/2005 6/06/2013).
Then click on the Forecast tab above the estimation results and the dialog box in
screenshot 9.3 will then appear.

Again, several options are available, including providing a name for the con-
ditional mean and for the conditional variance forecasts, or whether to produce
static (a series of rolling single-step-ahead) or dynamic (multiple-step-ahead) fore-
casts. The dynamic and static forecast plots that would be produced are given in
screenshots 9.4 and 9.5.

GARCH(1,1) Dynamic forecasts (up to two years ahead)

The dynamic forecasts show a completely flat forecast structure for the mean (since
the conditional mean equation includes only a constant term), while at the end
of the in-sample estimation period, the value of the conditional variance was at a
historically low level relative to its unconditional average. Therefore, the forecasts
converge upon their long-term mean value from below as the forecast horizon
increases. Notice also that there are no ±2-standard error band confidence intervals
for the conditional variance forecasts; to compute these would require some kind
of estimate of the variance of variance, which is beyond the scope of this book
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Screenshot 9.5 Static forecasts of the conditional variance

(and beyond the capability of the built-in functions of the EViews software). The
conditional variance forecasts provide the basis for the standard error bands that
are given by the dotted red lines around the conditional mean forecast. Because
the conditional variance forecasts rise gradually as the forecast horizon increases,
so the standard error bands widen slightly. The forecast evaluation statistics that
are presented in the box to the right of the graphs are for the conditional mean
forecasts.

GARCH(1,1) Static forecasts (rolling one-day ahead)

It is evident that the variance forecasts have two spikes in mid- and late 2011 but
are fairly stable and historically quite low during 2012 before rising again during
2013. Since these are a series of rolling one-step ahead forecasts for the conditional
variance, they show much more volatility than for the dynamic forecasts. This
volatility also results in more variability in the standard error bars around the
conditional mean forecasts. Note that while the forecasts are updated daily based
on new information that feeds into the forecasts, the parameter estimates themselves
are not updated. Thus, towards the end of the sample the forecasts are based on
estimates almost two years old. If we wanted to update the model estimates as we
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Figure 9.4 Three approaches to hypothesis testing under maximum likelihood

rolled through the sample, we would need to write some code to do this within
a loop – it would also run much more slowly as we would be estimating a lot
of GARCH models rather than one. See chapter 13 for a discussion of how to
construct loops in EViews.

Predictions can be similarly produced for any member of the GARCH family
that is estimable with the software.

• • • • • • • • • • • • • • 9.18 Testing non-linear restrictions or testing hypotheses about
non-linear models

The usual t- and F-tests are still valid in the context of non-linear models, but
they are not flexible enough. For example, suppose that it is of interest to test a
hypothesis that α1β = 1. Now that the model class has been extended to non-linear
models, there is no reason to suppose that relevant restrictions are only linear.

Under OLS estimation, the F-test procedure works by examining the degree
to which the RSS rises when the restrictions are imposed. In very general terms,
hypothesis testing under ML works in a similar fashion – that is, the procedure
works by examining the degree to which the maximal value of the LLF falls
upon imposing the restriction. If the LLF falls ‘a lot’, it would be concluded that
the restrictions are not supported by the data and thus the hypothesis should be
rejected.

There are three hypothesis testing procedures based on maximum likelihood
principles: Wald, Likelihood ratio and Lagrange Multiplier. To illustrate briefly
how each of these operates, consider a single parameter, θ to be estimated, and
denote the ML estimate as θ̂ and a restricted estimate as θ̃ . Denoting the maximised
value of the LLF by unconstrained ML as L(θ̂ ) and the constrained optimum as
L(θ̃ ), the three testing procedures can be illustrated as in figure 9.4.
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The tests all require the measurement of the ‘distance’ between the points A
(representing the unconstrained maximised value of the log likelihood function)
and B (representing the constrained value). The vertical distance forms the basis of
the LR test. Twice this vertical distance is given by 2[L(θ̂ ) − L(θ̃ )] = 2ln[l (θ̂ )/l (θ̃ )],
where L denotes the log-likelihood function, and l denotes the likelihood function.
The Wald test is based on the horizontal distance between θ̂ and θ̃ , while the LM
test compares the slopes of the curve at A and B. At A, the unrestricted maximum
of the log-likelihood function, the slope of the curve is zero. But is it ‘significantly
steep’ at L(θ̃ ), i.e. at point B ? The steeper the curve is at B, the less likely the
restriction is to be supported by the data.

Expressions for LM test statistics involve the first and second derivatives of the
log-likelihood function with respect to the parameters at the constrained estimate.
The first derivatives of the log-likelihood function are collectively known as the
score vector, measuring the slope of the LLF for each possible value of the param-
eters. The expected values of the second derivatives comprise the information
matrix, measuring the peakedness of the LLF, and how much higher the LLF
value is at the optimum than in other places. This matrix of second derivatives is
also used to construct the coefficient standard errors. The LM test involves esti-
mating only a restricted regression, since the slope of the LLF at the maximum will
be zero by definition. Since the restricted regression is usually easier to estimate
than the unrestricted case, LM tests are usually the easiest of the three procedures
to employ in practice. The reason that restricted regressions are usually simpler is
that imposing the restrictions often means that some components in the model
will be set to zero or combined under the null hypothesis, so that there are fewer
parameters to estimate. The Wald test involves estimating only an unrestricted
regression, and the usual OLS t-tests and F-tests are examples of Wald tests (since
again, only unrestricted estimation occurs).

Of the three approaches to hypothesis testing in the maximum-likelihood
framework, the likelihood ratio test is the most intuitively appealing, and therefore
a deeper examination of it will be the subject of the following section; see Ghosh
(1991, section 10.3) for further details.

9.18.1 Likelihood ratio tests

Likelihood ratio (LR) tests involve estimation under the null hypothesis and under
the alternative, so that two models are estimated: an unrestricted model and a
model where the restrictions have been imposed. The maximised values of the
LLF for the restricted and unrestricted cases are ‘compared’. Suppose that the
unconstrained model has been estimated and that a given maximised value of
the LLF, denoted Lu , has been achieved. Suppose also that the model has been
estimated imposing the constraint(s) and a new value of the LLF obtained, denoted
Lr . The LR test statistic asymptotically follows a Chi-squared distribution and is
given by

LR = −2(Lr − Lu ) ∼ χ2(m ) (9.75)
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where m = number of restrictions. Note that the maximised value of the log-
likelihood function will always be at least as big for the unrestricted model as
for the restricted model, so that Lr ≤ Lu . This rule is intuitive and comparable
to the effect of imposing a restriction on a linear model estimated by OLS, that
RRSS ≥ URSS. Similarly, the equality between Lr and Lu will hold only when
the restriction was already present in the data. Note, however, that the usual F -
test is in fact a Wald test, and not a LR test – that is, it can be calculated using
an unrestricted model only. The F-test approach based on comparing RSS arises
conveniently as a result of the OLS algebra.

Example 9.3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A GARCH model is estimated and a maximised LLF of 66.85 is obtained. Suppose that
a researcher wishes to test whether β = 0 in (9.77)

yt = μ + φyt−1 + ut , ut ∼ N
(
0, σ 2

t

)
(9.76)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (9.77)

The model is estimated imposing the restriction and the maximised LLF falls to 64.54. Is
the restriction supported by the data, which would correspond to the situation where
an ARCH(1) specification was sufficient? The test statistic is given by

LR = −2(64.54 − 66.85) = 4.62 (9.78)

The test follows a χ2(1) = 3.84 at 5%, so that the null is marginally rejected. It would
thus be concluded that an ARCH(1) model, with no lag of the conditional variance in
the variance equation, is not quite sufficient to describe the dependence in volatility
over time.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • 9.19 Volatility forecasting: some examples and results from the literature

There is a vast and relatively new literature that attempts to compare the accu-
racies of various models for producing out-of-sample volatility forecasts. Akgiray
(1989), for example, finds the GARCH model superior to ARCH, exponentially
weighted moving average and historical mean models for forecasting monthly
US stock index volatility. A similar result concerning the apparent superiority of
GARCH is observed by West and Cho (1995) using one-step-ahead forecasts of
dollar exchange rate volatility, although for longer horizons, the model behaves
no better than their alternatives. Pagan and Schwert (1990) compare GARCH,
EGARCH, Markov switching regime and three non-parametric models for fore-
casting monthly US stock return volatilities. The EGARCH followed by the
GARCH models perform moderately; the remaining models produce very poor
predictions. Franses and van Dijk (1996) compare three members of the GARCH
family (standard GARCH, QGARCH and the GJR model) for forecasting the
weekly volatility of various European stock market indices. They find that the
non-linear GARCH models were unable to beat the standard GARCH model.
Finally, Brailsford and Faff (1996) find GJR and GARCH models slightly superior
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to various simpler models for predicting Australian monthly stock index volatil-
ity. The conclusion arising from this growing body of research is that forecasting
volatility is a ‘notoriously difficult task’ (Brailsford and Faff, 1996, p. 419), although
it appears that conditional heteroscedasticity models are among the best that are
currently available. In particular, more complex non-linear and non-parametric
models are inferior in prediction to simpler models, a result echoed in an earlier
paper by Dimson and Marsh (1990) in the context of relatively complex versus
parsimonious linear models. Finally, Brooks (1998), considers whether measures
of market volume can assist in improving volatility forecast accuracy, finding that
they cannot.

A particularly clear example of the style and content of this class of research is
given by Day and Lewis (1992). The Day and Lewis study will therefore now be
examined in depth. The purpose of their paper is to consider the out-of-sample
forecasting performance of GARCH and EGARCH models for predicting stock
index volatility. The forecasts from these econometric models are compared with
those given from an ‘implied volatility’. As discussed above, implied volatility is
the market’s expectation of the ‘average’ level of volatility of an underlying asset
over the life of the option that is implied by the current traded price of the option.
Given an assumed model for pricing options, such as the Black–Scholes, all of
the inputs to the model except for volatility can be observed directly from the
market or are specified in the terms of the option contract. Thus, it is possible,
using an iterative search procedure such as the Newton–Raphson method (see,
for example, Watsham and Parramore, 2004), to ‘back out’ the volatility of the
underlying asset from the option’s price. An important question for research is
whether implied or econometric models produce more accurate forecasts of the
volatility of the underlying asset. If the options and underlying asset markets are
informationally efficient, econometric volatility forecasting models based on past
realised values of underlying volatility should have no incremental explanatory
power for future values of volatility of the underlying asset. On the other hand, if
econometric models do hold additional information useful for forecasting future
volatility, it is possible that such forecasts could be turned into a profitable trading
rule.

The data employed by Day and Lewis comprise weekly closing prices (Wednes-
day to Wednesday, and Friday to Friday) for the S&P100 Index option and the
underlying index from 11 March 1983–31 December 1989. They employ both
mid-week to mid-week returns and Friday to Friday returns to determine whether
weekend effects have any significant impact on the latter. They argue that Friday
returns contain expiration effects since implied volatilities are seen to jump on
the Friday of the week of expiration. This issue is not of direct interest to this
book, and consequently only the mid-week to mid-week results will be shown
here.

The models that Day and Lewis employ are as follows. First, for the conditional
mean of the time series models, they employ a GARCH-M specification for the
excess of the market return over a risk-free proxy

RMt − RF t = λ0 + λ1

√
ht + ut (9.79)
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where RMt denotes the return on the market portfolio, and RF t denotes the risk-
free rate. Note that Day and Lewis denote the conditional variance by h2

t , while
this is modified to the standard ht here. Also, the notation σ 2

t will be used to denote
implied volatility estimates. For the variance, two specifications are employed: a
‘plain vanilla’ GARCH(1,1) and an EGARCH

ht = α0 + α1u2
t−1 + β1ht−1 (9.80)

or

ln(ht ) = α0 + β1 ln(ht−1) + α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣∣ ut−1√
ht−1

∣∣∣∣∣ −
(

2

π

)1/2
])

(9.81)

One way to test whether implied or GARCH-type volatility models perform
best is to add a lagged value of the implied volatility estimate (σ 2

t−1) to (9.80)
and (9.81). A ‘hybrid’ or ‘encompassing’ specification would thus result. Equation
(9.80) becomes

ht = α0 + α1u2
t−1 + β1ht−1 + δσ 2

t−1 (9.82)

and (9.81) becomes

ln(ht ) = α0 + β1 ln(ht−1)

+ α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣ ut−1√
ht−1

∣∣∣∣ −
(

2

π

)1/2
])

+ δ ln
(
σ 2

t−1

)
(9.83)

The tests of interest are given by H0 : δ = 0 in (9.82) or (9.83). If these null
hypotheses cannot be rejected, the conclusion would be that implied volatil-
ity contains no incremental information useful for explaining volatility than that
derived from a GARCH model. At the same time, H0: α1 = 0 and β1 = 0 in
(9.82), and H0 : α1 = 0 and β1 = 0 and θ = 0 and γ = 0 in (9.83) are also tested.
If this second set of restrictions holds, then (9.82) and (9.83) collapse to

ht = α0 + δσ 2
t−1 (9.82′)

and

ln
(
ht

) = α0 + δ ln
(
σ 2

t−1

)
(9.83′)

These sets of restrictions on (9.82) and (9.83) test whether the lagged squared error
and lagged conditional variance from a GARCH model contain any additional
explanatory power once implied volatility is included in the specification. All of
these restrictions can be tested fairly easily using a likelihood ratio test. The results
of such a test are presented in table 9.1.

It appears from the coefficient estimates and their standard errors under the
specification (9.82) that the implied volatility term (δ) is statistically significant,
while the GARCH terms (α1 and β1) are not. However, the test statistics given
in the final column are both greater than their corresponding χ2 critical val-
ues, indicating that both GARCH and implied volatility have incremental power
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Table 9.1 GARCH versus implied volatility

RMt − RFt = λ0 + λ1
√

ht + ut (9.79)

ht = α0 + α1u2
t−1 + β1ht−1 (9.80)

ht = α0 + α1u2
t−1 + β1ht−1 + δσ2

t−1 (9.82)

ht = α0 + δσ2
t−1 (9.82′)

Equation for
variance λ0 λ1 α0 × 10−4 α1 β1 δ Log-L χ2

(9.80) 0.0072 0.071 5.428 0.093 0.854 − 767.321 17.77

(0.005) (0.01) (1.65) (0.84) (8.17)

(9.82) 0.0015 0.043 2.065 0.266 −0.068 0.318 776.204 −
(0.028) (0.02) (2.98) (1.17) (−0.59) (3.00)

(9.82′) 0.0056 −0.184 0.993 − − 0.581 764.394 23.62

(0.001) (−0.001) (1.50) (2.94)

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the loglikelihood function in each case. χ2

denotes the value of the test statistic, which follows a χ2(1) in the case of (9.82) restricted to (9.80), and a χ2(2) in
the case of (9.82) restricted to (9.82′).
Source: Day and Lewis (1992). Reprinted with the permission of Elsevier.

for modelling the underlying stock volatility. A similar analysis is undertaken in
Day and Lewis that compares EGARCH with implied volatility. The results are
presented here in table 9.2.

The EGARCH results tell a very similar story to those of the GARCH spec-
ifications. Neither the lagged information from the EGARCH specification nor
the lagged implied volatility terms can be suppressed, according to the likelihood
ratio statistics. In specification (9.83), both the EGARCH terms and the implied
volatility coefficients are marginally significant.

However, the tests given above do not represent a true test of the predictive
ability of the models, since all of the observations were used in both estimating
and testing the models. Hence the authors proceed to conduct an out-of-sample
forecasting test. There are a total of 729 data points in their sample. They use the
first 410 to estimate the models, and then make a one-step-ahead forecast of the
following week’s volatility. They then roll the sample forward one observation at a
time, constructing a new one-step-ahead forecast at each stage.

They evaluate the forecasts in two ways. The first is by regressing the realised
volatility series on the forecasts plus a constant

σ 2
t+1 = b0 + b1σ

2
f t + ξt+1 (9.84)
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Table 9.2 EGARCH versus implied volatility

RMt − RFt = λ0 + λ1
√

ht + ut (9.79)

ln(ht) = α0 + β1 ln(ht−1) + α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣ ut−1√
ht−1

∣∣∣∣ −
(

2
π

)1/2
])

(9.81)

ln(ht) = α0 + β1 ln(ht−1) + α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣ ut−1√
ht−1

∣∣∣∣ −
(

2
π

)1/2
])

+ δ ln
(
σ2

t−1

)
(9.83)

ln(ht) = α0 + δ ln
(
σ2

t−1

)
(9.83′)

Equation for
variance λ0 λ1 α0 × 10−4 β1 θ γ δ Log-L χ2

(9.81) −0.0026 0.094 −3.62 0.529 0.273 0.357 − 776.436 8.09

(−0.03) (0.25) (−2.90) (3.26) (−4.13) (3.17)

(9.83) 0.0035 −0.076 −2.28 0.373 −0.282 0.210 0.351 780.480 −
(0.56) (−0.24) (−1.82) (1.48) (−4.34) (1.89) (1.82)

(9.83′) 0.0047 −0.139 −2.76 − − − 0.667 765.034 30.89

(0.71) (−0.43) (−2.30) (4.01)

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the loglikelihood function in each case. χ2

denotes the value of the test statistic, which follows a χ2(1) in the case of (9.83) restricted to (9.81), and a χ2(3) in
the case of (9.83) restricted to (9.83′).
Source: Day and Lewis (1992). Reprinted with the permission of Elsevier.

where σ 2
t+1 is the ‘actual’ value of volatility at time t + 1, and σ 2

f t is the value fore-
casted for it during period t . Perfectly accurate forecasts would imply b0 = 0 and
b1 = 1. The second method is via a set of forecast encompassing tests. Essentially,
these operate by regressing the realised volatility on the forecasts generated by
several models. The forecast series that have significant coefficients are concluded
to encompass those of models whose coefficients are not significant.

But what is volatility? In other words, with what measure of realised or ‘ex post’
volatility should the forecasts be compared? This is a question that received very
little attention in the literature until recently. A common method employed is to
assume, for a daily volatility forecasting exercise, that the relevant ex post measure is
the square of that day’s return. For any random variable r t , its conditional variance
can be expressed as

var(r t ) = E[r t − E(r t )]2 (9.85)

As stated previously, it is typical, and not unreasonable for relatively high frequency
data, to assume that E(r t ) is zero, so that the expression for the variance reduces to

var(r t ) = E
[
r 2

t

]
(9.86)



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-09 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:19

9.19 Volatility forecasting

•
•
•
•
•
•
•
•
• 459

Andersen and Bollerslev (1998) argue that squared daily returns provide a very noisy
proxy for the true volatility, and a much better proxy for the day’s variance would be
to compute the volatility for the day from intra-daily data. For example, a superior
daily variance measure could be obtained by taking hourly returns, squaring them
and adding them up. The reason that the use of higher frequency data provides a
better measure of ex post volatility is simply that it employs more information. By
using only daily data to compute a daily volatility measure, effectively only two
observations on the underlying price series are employed. If the daily closing price
is the same one day as the next, the squared return and therefore the volatility
would be calculated to be zero, when there may have been substantial intra-day
fluctuations. Hansen and Lunde (2006) go further and suggest that even the ranking
of models by volatility forecast accuracy could be inconsistent if the evaluation uses
a poor proxy for the true, underlying volatility.

Day and Lewis use two measures of ex post volatility in their study (for which
the frequency of data employed in the models is weekly):

(1) The square of the weekly return on the index, which they call SR
(2) The variance of the week’s daily returns multiplied by the number of trading

days in that week, which they call WV.

The Andersen and Bollerslev argument implies that the latter measure is likely to
be superior, and therefore that more emphasis should be placed on those results.

The results for the separate regressions of realised volatility on a constant and
the forecast are given in table 9.3.

The coefficient estimates for b0 given in table 9.3 can be interpreted as indi-
cators of whether the respective forecasting approaches are biased. In all cases, the
b0 coefficients are close to zero. Only for the historic volatility forecasts and the
implied volatility forecast when the ex post measure is the squared weekly return,
are the estimates statistically significant. Positive coefficient estimates would sug-
gest that on average the forecasts are too low. The estimated b1 coefficients are in
all cases a long way from unity, except for the GARCH (with daily variance ex
post volatility) and EGARCH (with squared weekly variance as ex post measure)
models. Finally, the R2 values are very small (all less than 10%, and most less than
3%), suggesting that the forecast series do a poor job of explaining the variability
of the realised volatility measure.

The forecast encompassing regressions are based on a procedure due to Fair
and Shiller (1990) that seeks to determine whether differing sets of forecasts
contain different sets of information from one another. The test regression is of the
form

σ 2
t+1 = b0 + b1σ

2
I t + b2σ

2
Gt + b3σ

2
Et + b4σ

2
Ht + ξt+1 (9.87)

with results presented in table 9.4.
The sizes and significances of the coefficients in table 9.4 are of interest.

The most salient feature is the lack of significance of most of the forecast series.
In the first comparison, neither the implied nor the GARCH forecast series have
statistically significant coefficients. When historical volatility is added, its coefficient
is positive and statistically significant. An identical pattern emerges when forecasts
from implied and EGARCH models are compared: that is, neither forecast series
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Table 9.3 Out-of-sample predictive power for weekly volatility
forecasts

σ2
t+1 = b0 + b1σ

2
f t + ξt+1 (9.84)

Proxy for ex
Forecasting model post volatility b0 b1 R2

Historic SR 0.0004 0.129 0.094

(5.60) (21.18)

Historic WV 0.0005 0.154 0.024

(2.90) (7.58)

GARCH SR 0.0002 0.671 0.039

(1.02) (2.10)

GARCH WV 0.0002 1.074 0.018

(1.07) (3.34)

EGARCH SR 0.0000 1.075 0.022

(0.05) (2.06)

EGARCH WV −0.0001 1.529 0.008

(−0.48) (2.58)

Implied volatility SR 0.0022 0.357 0.037

(2.22) (1.82)

Implied volatility WV 0.0005 0.718 0.026

(0.389) (1.95)

Notes: ‘Historic’ refers to the use of a simple historical average of the squared returns to forecast
volatility; t-ratios in parentheses; SR and WV refer to the square of the weekly return on the
S&P100, and the variance of the week’s daily returns multiplied by the number of trading days in
that week, respectively.
Source: Day and Lewis (1992). Reprinted with the permission of Elsevier.

is significant, but when a simple historical average series is added, its coefficient
is significant. It is clear from this, and from the last row of table 9.4, that the
asymmetry term in the EGARCH model has no additional explanatory power
compared with that embodied in the symmetric GARCH model. Again, all of the
R2 values are very low (less than 4%).

The conclusion reached from this study (which is broadly in line with
many others) is that within sample, the results suggest that implied volatility
contains extra information not contained in the GARCH/EGARCH specifi-
cations. But the out-of-sample results suggest that predicting volatility is a difficult
task!
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Table 9.4 Comparisons of the relative information content of out-of-sample
volatility forecasts

σ 2
t+1 = b0 + b1σ

2
I t + b2σ

2
G t

+ b2σ
2
G t + b3σ

2
E t + b4σ

2
H t + ξt+1 (9.87)

Forecast comparisons b0 b1 b2 b3 b4 R2

Implied versus GARCH −0.00010 0.601 0.298 − − 0.027

(−0.09) (1.03) (0.42)

Implied versus GARCH 0.00018 0.632 −0.243 − 0.123 0.038

versus Historical (1.15) (1.02) (−0.28) (7.01)

Implied versus EGARCH −0.00001 0.695 − 0.176 − 0.026

(−0.07) (1.62) (0.27)

Implied versus EGARCH 0.00026 0.590 −0.374 − 0.118 0.038

versus Historical (1.37) (1.45) (−0.57) (7.74)

GARCH versus EGARCH 0.00005 − 1.070 −0.001 − 0.018

(0.370) (2.78) (−0.00)

Notes: t-ratios in parentheses; the ex post measure used in this table is the variance of the week’s daily returns
multiplied by the number of trading days in that week.
Source: Day and Lewis (1992). Reprinted with the permission of Elsevier.

• • • • • • • • • • • • • • 9.20 Stochastic volatility models revisited

Autoregressive models were discussed above in section 9.6 and these are special cases
of a more general class of models known as stochastic volatility (SV) models. It is
a common misconception that GARCH-type specifications are sorts of stochastic
volatility models. However, as the name suggests, stochastic volatility models differ
from GARCH principally in that the conditional variance equation of a GARCH
specification is completely deterministic given all information available up to that
of the previous period. In other words, there is no error term in the variance
equation of a GARCH model, only in the mean equation.

Stochastic volatility models contain a second error term, which enters into
the conditional variance equation. The autoregressive volatility specification is
simple to understand and simple to estimate, because it requires that we have an
observable measure of volatility which is then simply used as any other variable
in an autoregressive model. However, the term ‘stochastic volatility’ is usually
associated with a different formulation, a possible example of which would be

yt = μ + utσt , ut ∼ N(0, 1) (9.88)

log
(
σ 2

t

) = α0 + β1 log
(
σ 2

t−1

) + σηηt (9.89)
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where ηt is another N(0,1) random variable that is independent of ut . Here the
volatility is latent rather than observed, and so is modelled indirectly.

Stochastic volatility models are closely related to the financial theories used in
the options pricing literature. Early work by Black and Scholes (1973) had assumed
that volatility is constant through time. Such an assumption was made largely for
simplicity, although it could hardly be considered realistic. One unappealing side-
effect of employing a model with the embedded assumption that volatility is fixed, is
that options deep in-the-money and far out-of-the-money are underpriced relative
to actual traded prices. This empirical observation provided part of the genesis for
stochastic volatility models, where the logarithm of an unobserved variance process
is modelled by a linear stochastic specification, such as an autoregressive model.
The primary advantage of stochastic volatility models is that they can be viewed as
discrete time approximations to the continuous time models employed in options
pricing frameworks (see, for example, Hull and White, 1987). However, such
models are hard to estimate. For reviews of (univariate) stochastic volatility models,
see Taylor (1994), Ghysels et al. (1995) or Shephard (1996) and the references
therein.

While stochastic volatility models have been widely employed in the mathe-
matical options pricing literature, they have not been popular in empirical discrete-
time financial applications, probably owing to the complexity involved in the pro-
cess of estimating the model parameters (see Harvey, Ruiz and Shephard, 1994).
So, while GARCH-type models are further from their continuous time theoretical
underpinnings than stochastic volatility, they are much simpler to estimate using
maximum likelihood. A relatively simple modification to the maximum likeli-
hood procedure used for GARCH model estimation is not available, and hence
stochastic volatility models are not discussed further here.

9.20.1 Higher moment models

Research over the past two decades has moved from examination purely of the first
moment of financial time series (i.e. estimating models for the returns themselves),
to consideration of the second moment (models for the variance). While this clearly
represents a large step forward in the analysis of financial data, it is also evident that
conditional variance specifications are not able to fully capture all of the relevant
time series properties. For example, GARCH models with normal (0,1) standard-
ised disturbances cannot generate sufficiently fat tails to model the leptokurtosis
that is actually observed in financial asset returns series. One proposed approach
to this issue has been to suggest that the standardised disturbances are drawn from
a Student’s t distribution rather than a normal. However, there is also no reason to
suppose that the fatness of tails should be constant over time, which it is forced to
be by the GARCH-t model.

Another possible extension would be to use a conditional model for the
third or fourth moments of the distribution of returns (i.e. the skewness and
kurtosis, respectively). Under such a specification, the conditional skewness or
kurtosis of the returns could follow a GARCH-type process that allows it to vary
through time. Harvey and Siddique (1999, 2000) have developed an autoregressive
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conditional skewness model, while a conditional kurtosis model was proposed
in Brooks, Burke, Heravi and Persand (2005). Such models could have many
other applications in finance, including asset allocation (portfolio selection), option
pricing, estimation of risk premia, and so on.

An extension of the analysis to moments of the return distribution higher than
the second has also been undertaken in the context of the capital asset pricing
model, where the conditional co-skewness and co-kurtosis of the asset’s returns
with the market’s are accounted for (e.g. Hung et al., 2004). A recent study by
Brooks et al. (2006) proposed a utility-based framework for the determination of
optimal hedge ratios that can allow for the impact of higher moments on the
hedging decision in the context of hedging commodity exposures with futures
contracts.

9.20.2 Tail models

It is widely known that financial asset returns do not follow a normal distribution,
but rather they are almost always leptokurtic, or fat-tailed. This observation has several
implications for econometric modelling. First, models and inference procedures
are required that are robust to non-normal error distributions. Second, the riskiness
of holding a particular security is probably no longer appropriately measured by its
variance alone. In a risk management context, assuming normality when returns
are fat-tailed will result in a systematic underestimation of the riskiness of the
portfolio. Consequently, several approaches have been employed to systematically
allow for the leptokurtosis in financial data, including the use of a Student’s t
distribution.

Arguably the simplest approach is the use of a mixture of normal distributions.
It can be seen that a mixture of normal distributions with different variances will
lead to an overall series that is leptokurtic. Second, a Student’s t distribution can
be used, with the usual degrees of freedom parameter estimated using maximum
likelihood along with other parameters of the model. The degrees of freedom
estimate will control the fatness of the tails fitted from the model. Other probability
distributions can also be employed, such as the ‘stable’ distributions that fall under
the general umbrella of extreme value theory (see Brooks, Clare, Dalle Molle and
Persand, 2005 for an application of this technique to value at risk modelling and
chapter 13 for an alternative approach).

• • • • • • • • • • • • • • 9.21 Forecasting covariances and correlations

A major limitation of the volatility models examined above is that they are entirely
univariate in nature – that is, they model the conditional variance of each series
entirely independently of all other series. This is potentially an important limitation
for two reasons. First, to the extent that there may be ‘volatility spillovers’ between
markets or assets (a tendency for volatility to change in one market or asset following
a change in the volatility of another), the univariate model will be misspecified.
For instance, using a multivariate model will allow us to determine whether the
volatility in one market leads or lags the volatility in others.
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Second, it is often the case in finance that the covariances between series are of
interest, as well as the variances of the individual series themselves. The calculation
of hedge ratios, portfolio value at risk estimates, CAPM betas, and so on, all require
covariances as inputs.

Multivariate GARCH models can potentially overcome both of these defi-
ciencies with their univariate counterparts. Multivariate extensions to GARCH
models can be used to forecast the volatilities of the component series, just as
with univariate models and since the volatilities of financial time series often move
together, a joint approach to modelling may be more efficient than treating each
separately. In addition, because multivariate models give estimates for the condi-
tional covariances as well as the conditional variances, they have a number of other
potentially useful applications.

Several papers have investigated the forecasting ability of various models incor-
porating correlations. Siegel (1997), for example, finds that implied correlation
forecasts from traded options encompass all information embodied in the histori-
cal returns (although he does not consider EWMA- or GARCH-based models).
Walter and Lopez (2000), on the other hand, find that implied correlation is gener-
ally less useful for predicting the future correlation between the underlying assets’
returns than forecasts derived from GARCH models. Finally, Gibson and Boyer
(1998) find that a diagonal GARCH and a Markov switching approach provide
better correlation forecasts than simpler models in the sense that the latter produce
smaller profits when the forecasts are employed in a trading strategy.

• • • • • • • • • • • • • • 9.22 Covariance modelling and forecasting in finance: some examples

9.22.1 The estimation of conditional betas

The CAPM beta for asset i is defined as the ratio of the covariance between the
market portfolio return and the asset return, to the variance of the market portfolio
return. Betas are typically constructed using a set of historical data on market
variances and covariances. However, like most other problems in finance, beta
estimation conducted in this fashion is backward-looking, when investors should
really be concerned with the beta that will prevail in the future over the time
that the investor is considering holding the asset. Multivariate GARCH models
provide a simple method for estimating conditional (or time-varying) betas. Then
forecasts of the covariance between the asset and the market portfolio returns and
forecasts of the variance of the market portfolio are made from the model, so that
the beta is a forecast, whose value will vary over time

βi,t = σim ,t

σ 2
m ,t

(9.90)

where βi,t is the time-varying beta estimate at time t for stock i , σim ,t is the
covariance between market returns and returns to stock i at time t and σ 2

m ,t is the
variance of the market return at time t .
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9.22.2 Dynamic hedge ratios

Although there are many techniques available for reducing and managing risk,
the simplest and perhaps the most widely used, is hedging with futures contracts.
A hedge is achieved by taking opposite positions in spot and futures markets
simultaneously, so that any loss sustained from an adverse price movement in one
market should to some degree be offset by a favourable price movement in the
other. The ratio of the number of units of the futures asset that are purchased
relative to the number of units of the spot asset is known as the hedge ratio. Since
risk in this context is usually measured as the volatility of portfolio returns, an
intuitively plausible strategy might be to choose that hedge ratio which minimises
the variance of the returns of a portfolio containing the spot and futures position;
this is known as the optimal hedge ratio. The optimal value of the hedge ratio may
be determined in the usual way, following Hull (2005) by first defining:

�S = change in spot price S, during the life of the hedge �F = change in futures
price, F, during the life of the hedge σs = standard deviation of �SσF = stan-
dard deviation of �F p = correlation coefficient between �S and �F h = hedge
ratio

For a short hedge (i.e. long in the asset and short in the futures contract), the
change in the value of the hedger’s position during the life of the hedge will be
given by (�S − h�F ), while for a long hedge, the appropriate expression will be
(h�F − �S).

The variances of the two hedged portfolios (long spot and short futures or
long futures and short spot) are the same. These can be obtained from

var(h�F − �S)

Remembering the rules for manipulating the variance operator, this can be written

var(�S) + var(h�F ) − 2cov(�S, h�F )

or

var(�S) + h2var(�F ) − 2hcov(�S, �F )

Hence the variance of the change in the value of the hedged position is given by

v = σ 2
s + h2σ 2

F − 2hpσs σF (9.91)

Minimising this expression w.r.t. h would give

h = p
σs

σF
(9.92)

Again, according to this formula, the optimal hedge ratio is time-invariant, and
would be calculated using historical data. However, what if the standard deviations
are changing over time? The standard deviations and the correlation between
movements in the spot and futures series could be forecast from a multivariate
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GARCH model, so that the expression above is replaced by

ht = pt
σs ,t

σF,t
(9.93)

Various models are available for covariance or correlation forecasting, and
several will be discussed below, which are grouped into simple models, multivariate
GARCH models, and specific correlation models.

• • • • • • • • • • • • • • 9.23 Simple covariance models

9.23.1 Historical covariance and correlation

In exactly the same fashion as for volatility, the historical covariance or correlation
between two series can be calculated in the standard way using a set of historical
data.

9.23.2 Implied covariance models

Implied covariances can be calculated using options whose payoffs are dependent
on more than one underlying asset. The relatively small number of such options
that exist limits the circumstances in which implied covariances can be calculated.
Examples include rainbow options, ‘crack-spread’ options for different grades of
oil, and currency options. In the latter case, the implied variance of the cross-
currency returns xy is given by

σ̃ 2(xy) = σ̃ 2(x) + σ̃ 2(y) − 2σ̃ (x, y) (9.94)

where σ̃ 2(x) and σ̃ 2(y) are the implied variances of the x and y returns, respec-
tively, and σ̃ (x, y) is the implied covariance between x and y. By substituting the
observed option implied volatilities of the three currencies into (9.94), the implied
covariance is obtained via

σ̃ (x, y) = σ̃ 2(x) + σ̃ 2(y) − σ̃ 2(xy)
2

(9.95)

So, for instance, if the implied covariance between USD/DEM and USD/JPY is
of interest, then the implied variances of the returns of USD/DEM and USD/JPY,
as well as the returns of the cross-currency DEM/JPY, are required so as to obtain
the implied covariance using (9.94).

9.23.3 Exponentially weighted moving average model for covariances

Again, as for the case of single series volatility modelling, a EWMA specification
is available that gives more weight in the calculation of covariance to recent
observations than the estimate based on the simple average. The EWMA model
estimates for variances and covariances at time t in the bivariate setup with two
returns series x and y may be written as

hi j,t = λhi j,t−1 + (1 − λ)xt−1yt−1 (9.96)
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where i �= j for the covariances and i = j ; x = y for the variance specifications.
As for the univariate case, the fitted values for h also become the forecasts for
subsequent periods. λ(0 < λ < 1) again denotes the decay factor determining the
relative weights attached to recent versus less recent observations. this parameter
could be estimated (for example, by maximum likelihood), but is often set arbi-
trarily (– for example, Riskmetrics use a decay factor of 0.97 for monthly data but
0.94 when the data are of daily frequency).

This equation can be rewritten as an infinite order function of only the returns
by successively substituting out the covariances

hi j,t = (1 − λ)
∞∑

i=0

λi xt−i yt−i (9.97)

While the EWMA model is probably the simplest way to allow for time-
varying variances and covariances, the model is a restricted version of an integrated
GARCH (IGARCH) specification, and it does not guarantee the fitted variance-
covariance matrix to be positive definite. As a result of the parallel with IGARCH,
EWMA models also cannot allow for the observed mean reversion in the volatilities
or covariances of asset returns that is particularly prevalent at lower frequencies of
observation.

• • • • • • • • • • • • • • 9.24 Multivariate GARCH models

Multivariate GARCH models are in spirit very similar to their univariate counter-
parts, except that the former also specify equations for how the covariances move
over time and are therefore by their nature inherently more complex to specify and
estimate. Several different multivariate GARCH formulations have been proposed
in the literature, the most popular of which are the VECH, the diagonal VECH
and the BEKK models. Each of these and several others is discussed in turn below;
for a more detailed discussion, see Kroner and Ng (1998). In each case, there are
N assets, whose return variances and covariances are to be modelled.

9.24.1 The VECH model

As with univariate GARCH models, the conditional mean equation may be param-
eterised in any way desired, although it is worth noting that, since the conditional
variances are measured about the mean, misspecification of the latter is likely to
imply misspecification of the former. To introduce some notation, suppose, that yt
(y1t y2t . . . yNt ), is an N × 1 vector of time series observations, C is an N(N + 1)/2
column vector of conditional variance and covariance intercepts, and A and B are
square parameter matrices of order N(N + 1)/2. A common specification of the
VECH model, initially due to Bollerslev, Engle and Wooldridge (1988), is

VECH(Ht ) = C + AVECH(�t−1�
′
t−1) + BVECH(Ht−1)

�t |ψt−1 ∼ N(0, Ht ), (9.98)
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where Ht is a N × N conditional variance–covariance matrix, �t is a N× 1
innovation (disturbance) vector, ψt−1 represents the information set at time t − 1,
and VECH (·) denotes the column-stacking operator applied to the upper portion
of the symmetric matrix. In the bivariate case (i.e. N = 2), C will be a 3 × 1
parameter vector, and A and B will be 3 × 3 parameter matrices.

The unconditional variance matrix for the VECH will be given by C[I −
A − B]−1, where I is an identity matrix of order N(N + 1)/2. Stationarity of
the VECH model requires that the eigenvalues of [A + B] are all less than one in
absolute value.

In order to gain a better understanding of how the VECH model works, the
elements for N = 2 are written out below. Define

Ht =
[
h11t h12t
h21t h22t

]
, �t =

[
u1t
u2t

]
, C =

⎡
⎣ c 11

c 21
c 31

⎤
⎦ ,

A =
⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ , B =

⎡
⎣ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦ ,

The VECH operator takes the ‘upper triangular’ portion of a matrix, and stacks
each element into a vector with a single column. For example, in the case of
VECH(Ht ), this becomes

VECH(Ht ) =
⎡
⎣h11t

h22t

h12t

⎤
⎦

where h iit represent the conditional variances at time t of the two-asset return
series (i = 1, 2) used in the model, and hi j t (i �= j ) represent the conditional
covariances between the asset returns. In the case of VECH(�t�

′
t ), this can be

expressed as

VECH(�t�
′
t ) = VECH

([
u1t
u2t

]
[u1t u2t ]

)

= VECH
(

u2
1t u1t u2t

u1t u2t u2
2t

)

=
⎡
⎣ u2

1t

u2
2t

u1t u2t

⎤
⎦
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The VECH model in full is given by

h11t = c 11 + a11u2
1t−1 + a12u2

2t−1 + a13u1t−1u2t−1 + b11h11t−1

+ b12h22t−1 + b13h12t−1 (9.99)

h22t = c 21 + a21u2
1t−1 + a22u2

2t−1 + a23u1t−1u2t−1 + b21h11t−1

+ b22h22t−1 + b23h12t−1 (9.100)

h12t = c 31 + a31u2
1t−1 + a32u2

2t−1 + a33u1t−1u2t−1 + b31h11t−1

+ b32h22t−1 + b33h12t−1 (9.101)

Thus, it is clear that the conditional variances and conditional covariances
depend on the lagged values of all of the conditional variances of, and conditional
covariances between, all of the asset returns in the series, as well as the lagged
squared errors and the error cross-products. This unrestricted model is highly
parameterised, and it is challenging to estimate. For N = 2 there are 21 parameters
(C has 3 elements, A and B each have 9 elements), while for N = 3 there are 78,
and N = 4 implies 210 parameters!

9.24.2 The diagonal VECH model

As the number of assets employed increases, estimation of the VECH
model can quickly become infeasible. Hence the VECH model’s conditional
variance–covariance matrix has been restricted to the form developed by Boller-
slev, Engle and Wooldridge (1988), in which A and B are assumed to be diagonal.
This restriction implies that there are no direct volatility spillovers from one series
to another, which considerably reduces the number of parameters to be estimated
to nine in the bivariate case (now A and B each have three elements) and 12 for a
trivariate system (i.e. if N = 3). The model, known as a diagonal VECH, is now
characterised by

hi j,t = ωi j + αi j u i,t−1u j,t−1 + βi j h i j,t−1 for i, j = 1, 2 (9.102)

where ωi j , αi j and βi j are parameters.
The diagonal VECH multivariate GARCH model could also be expressed as

an infinite order multivariate ARCH model, where the covariance is expressed as
a geometrically declining weighted average of past cross products of unexpected
returns, with recent observations carrying higher weights. An alternative solution
to the dimensionality problem would be to use orthogonal GARCH (see, for
example, Van der Weide, 2002) or factor GARCH models (see Engle, Ng and
Rothschild, 1990). A disadvantage of the VECH model is that there is no guarantee
of a positive semi-definite covariance matrix.

A variance–covariance or correlation matrix must always be ‘positive semi-
definite’, and in the case where all the returns in a particular series are all the
same so that their variance is zero is disregarded, then the matrix will be positive
definite. Among other things, this means that the variance–covariance matrix will



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-09 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:19

470

•
•
•
•
•
•
•
•
• Modelling volatility and correlation

have all positive numbers on the leading diagonal, and will be symmetrical about
this leading diagonal. These properties are intuitively appealing as well as important
from a mathematical point of view, for variances can never be negative, and the
covariance between two series is the same irrespective of which of the two series
is taken first, and positive definiteness ensures that this is the case.

A positive definite correlations matrix is also important for many applications
in finance – for example, from a risk management point of view. It is this property
which ensures that, whatever the weight of each series in the asset portfolio,
an estimated value-at-risk is always positive. Fortunately, this desirable property is
automatically a feature of time-invariant correlations matrices which are computed
directly using actual data. An anomaly arises when either the correlation matrix
is estimated using a non-linear optimisation procedure (as multivariate GARCH
models are), or when modified values for some of the correlations are used by
the risk manager. The resulting modified correlation matrix may or may not be
positive definite, depending on the values of the correlations that are put in, and
the values of the remaining correlations. If, by chance, the matrix is not positive
definite, the upshot is that for some weightings of the individual assets in the
portfolio, the estimated portfolio variance could be negative.

9.24.3 The BEKK model

The BEKK model (Engle and Kroner, 1995) addresses the difficulty with VECH
of ensuring that the H matrix is always positive definite.2 It is represented by

Ht = W ′W + A′Ht−1 A + B ′�t−1�
′
t−1 B (9.102)

where A, and B are N × N matrices of parameters and W is an upper triangular
matrix of parameters. The positive definiteness of the covariance matrix is ensured
owing to the quadratic nature of the terms on the equation’s RHS.

9.24.4 Model estimation for multivariate GARCH

Under the assumption of conditional normality, the parameters of the multivariate
GARCH models of any of the above specifications can be estimated by maximising
the log-likelihood function

�(θ ) = −TN
2

log 2π − 1
2

T∑
t=1

(
log |Ht | + �′

t H
−1
t �t

)
(9.103)

where θ denotes all the unknown parameters to be estimated, N is the number of
assets (i.e. the number of series in the system) and T is the number of observations
and all other notation is as above. The maximum-likelihood estimate for θ is
asymptotically normal, and thus traditional procedures for statistical inference are
applicable. Further details on maximum-likelihood estimation in the context of

2 The BEKK acronym arises from the fact that early versions of the paper also listed Baba and Krafts
as co-authors.
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multivariate GARCH models are beyond the scope of this book. But suffice to
say that the additional complexity and extra parameters involved compared with
univariate models make estimation a computationally more difficult task, although
the principles are essentially the same.

• • • • • • • • • • • • • • 9.25 Direct correlation models

The VECH and BEKK models specify the dynamics of the covariances between
a set of series, and the correlations between any given pair of series at each point
in time can be constructed by dividing the conditional covariances by the product
of the conditional standard deviations. A subtly different approach would be to
model the dynamics for the correlations directly – Bauwens et al. (2006) term
these ‘non-linear combinations of univariate GARCH models’ for reasons that
will become apparent in the following subsection.

9.25.1 The constant correlation model

An alternative method for reducing the number of parameters in the MGARCH
framework is to require the correlations between the disturbances, εt , (or equiva-
lently between the observed variables, yt ) to be fixed through time. Thus, although
the conditional covariances are not fixed, they are tied to the variances as proposed
in the constant conditional correlation (CCC) model due to Bollerslev (1990).
The conditional variances in the fixed correlation model are identical to those of
a set of univariate GARCH specifications (although they are estimated jointly)

hi i,t = c i + a i ε
2
i,t−i + b i h i i,t−1, i = 1, . . . , N (9.104)

The off-diagonal elements of Ht , hi j,t (i �= j ), are defined indirectly via the cor-
relations, denoted ρi j

h i j,t = ρi j h
1/2
i i,t h

1/2
j j,t , i, j = 1, . . . , N, i < j (9.105)

Is it empirically plausible to assume that the correlations are constant through
time? Several tests of this assumption have been developed, including a test based
on the information matrix due to Bera and Kim (2002) and a Lagrange Multiplier
test due to Tse (2000). The conclusions reached appear dependent on which test is
used, but there seems to be non-negligible evidence against constant correlations,
particularly in the context of stock returns.

9.25.2 The dynamic conditional correlation model

Several different formulations of the the dynamic conditional correlation (DCC)
model are available, but a popular specification is due to Engle (2002). The model
is related to the CCC formulation described above, but where the correlations are
allowed to vary over time. Define the variance-covariance matrix, Ht , as

Ht = Dt Rt Dt (9.106)

where Dt is a diagonal matrix containing the conditional standard deviations (i.e.
the square roots of the conditional variances from univariate GARCH model
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estimations on each of the N individual series) on the leading diagonal; Rt is the
conditional correlation matrix. Forcing Rt to be time-invariant would lead back
to the constant conditional correlation model.

Numerous explicit parameterisations of Rt are possible, including an expo-
nential smoothing approach discussed in Engle (2002). More generally, a model of
the MGARCH form could be specified as

Qt = S ◦ (ιι′ − A − B) + A ◦ ut−1u ′
t−1 + B ◦ Qt−1 (9.107)

where S is the unconditional correlation matrix of the vector of standardised
residuals (from the first stage estimation – see below), ut = D−1

t εt . ι is a vector of
ones, and Qt is an N × N symmetric positive definite variance-covariance matrix.
◦ denotes the Hadamard or element-by-element matrix multiplication procedure.
This specification for the intercept term simplifies estimation and reduces the
number of parameters to be estimated, but is not necessary. Engle (2002) proposes
a GARCH-esque formulation for dynamically modelling Qt with the conditional
correlation matrix, Rt , then constructed as

Rt = diag{Q∗
t }−1Qt d i a g {Q∗

t }−1 (9.108)

where diag(·) denotes a matrix comprising the main diagonal elements of (·) and
Q∗ is a matrix that takes the square roots of each element in Q. This operation is
effectively taking the covariances in Qt and dividing them by the product of the
appropriate standard deviations in Q∗

t to create a matrix of correlations.
A slightly different form of the DCC was proposed by Tse and Tsui (2002),

and equation (9.107) could also be simplified by specifying A and B each as single
scalars so that all the conditional correlations would follow the same process.

The model may be estimated in one single stage using maximum likelihood,
although this will still be a difficult exercise in the context of large systems. Con-
sequently, Engle advocates a two-stage estimation procedure where each variable
in the system is first modelled separately as a univariate GARCH process. A joint
log-likelihood function for this stage could be constructed, which would simply be
the sum (over N) of all of the log-likelihoods for the individual GARCH models.
Then, in the second stage, the conditional likelihood is maximised with respect to
any unknown parameters in the correlation matrix. The log-likelihood function
for the second stage estimation will be of the form

�(θ2|θ1) =
T∑

t=1

(
log |Rt | + u ′

t R
−1
t u t

)
(9.109)

where θ1 denotes all the unknown parameters that were estimated in the first stage
and θ2 denotes all those to be estimated in the second stage. Estimation using this
two-step procedure will be consistent but inefficient as a result of any parameter
uncertainty from the first stage being carried through to the second.

• • • • • • • • • • • • • • 9.26 Extensions to the basic multivariate GARCH model

Numerous extensions to the univariate specification have been proposed, and many
of these carry over to the multivariate case. For example, conditional variance or
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covariance terms can be included in the conditional mean equation (see, Bollerslev
et al., 1988, for instance). In the context of financial applications, where the yt are
returns, the parameters on these variables can be loosely interpreted as risk premia.

9.26.1 Asymmetric multivariate GARCH

Asymmetric models have become very popular in empirical applications, where
the conditional variances and/or covariances are permitted to react differently
to positive and negative innovations of the same magnitude. In the multivariate
context, this is usually achieved in the Glosten et al. (1993) framework, rather
than the EGARCH specification of Nelson (1991). Kroner and Ng (1998), for
example, suggest the following extension to the BEKK formulation (with obvious
related modifications for the VECH or diagonal VECH models)

Ht = W ′W + A′Ht−1 A + B ′�t−1�
′
t−1 B + D′zt−1z′

t−1 D (9.110)

where zt−1 is an N-dimensional column vector with elements taking the value
−εt−1 if the corresponding element of εt−1 is negative and zero otherwise. The
asymmetric properties of time-varying covariance matrix models are analysed by
Kroner and Ng (1998), who identify three possible forms of asymmetric behaviour.
First, the covariance matrix displays own variance asymmetry if the conditional
variance of one series is affected by the sign of the innovation in that series.
Second, the covariance matrix displays cross variance asymmetry if the conditional
variance of one series is affected by the sign of the innovation of another series.
Finally, if the conditional covariance is sensitive to the sign of the innovation in
return for either series, then the model is said to display covariance asymmetry.

9.26.2 Alternative distributional assumptions

As was the case for stochastic volatility and univariate GARCH models, an assump-
tion of (multivariate) conditional normality cannot generate sufficiently fat tails to
accurately model the distributional properties of financial data. A better approxima-
tion to the actual distributions of (especially financial) time series can be obtained
using a Student’s t distribution. Such a model can still be estimated using max-
imum likelihood but with a different (and more complex) likelihood function.
The standard formulation will involve estimating, as part of the process, a single
degree of freedom parameter which applies to all of the series in the system. An
additional potential drawback of this approach is that the tail fatness embodied in
the degrees of freedom parameter is fixed over time. Brooks, Burke et al. (2005)
propose a model where both of these limitations are removed. However, some
identifying restrictions are still required. A further issue is the extent to which
the unconditional distribution of the shocks is skewed. If this is the case, then a
model based on the Student’s t will be inadequate, and an alternative such as the
multivariate skew Student’s t of Bauwens and Laurent (2002) must be used.

Although many other extensions of the basic models may be conceived of,
such as periodic or seasonal MGARCH, the range of specifications employed in
the existing literature is narrower than for the corresponding univariate models. A
major drawback for even the more parsimonious of the models above is that they
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are too highly parameterised, and yet many potential applications in economics
and finance are in the context of high dimensional systems (such as asset allocation
among a number of stocks). Thus, an important innovation was the development
of orthogonal and factor models referenced above. Both have the same funda-
mental idea that by forcing some structure on the variance-covariance matrix, a
simplification can be achieved.

• • • • • • • • • • • • • • 9.27 A multivariate GARCH model for the CAPM with time-varying covariances

Bollerslev, Engle and Wooldridge (1988) estimate a multivariate GARCH model
for returns to US Treasury Bills, gilts and stocks. The data employed comprised
calculated quarterly excess holding period returns for six-month US Treasury
bills, twenty-year US Treasury bonds and a Center for Research in Security Prices
record of the return on the New York Stock Exchange (NYSE) value-weighted
index. The data run from 1959Q1 to 1984Q2 – a total of 102 observations.

A multivariate GARCH-M model of the diagonal VECH type is employed,
with coefficients estimated by maximum likelihood, and the Berndt et al. (1974)
algorithm is used. The coefficient estimates are easiest presented in the following
equations for the conditional mean and variance equations, respectively

∣∣∣∣∣∣
y1t
y2t
y3t

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

0.070
(0.032)

−4.342
(1.030)

−3.117
(0.710)

∣∣∣∣∣∣∣∣∣
+ 0.499

(0.160)

∑
j

ω j t−1

∣∣∣∣∣∣
h1 j t
h2 j t
h3 j t

∣∣∣∣∣∣ +
∣∣∣∣∣∣
ε1t
ε2t
ε3t

∣∣∣∣∣∣ (9.111)

∣∣∣∣∣∣∣∣∣∣∣

h11t
h12t
h22t
h13t
h23t
h33t

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.011
(0.004)

0.176
(0.062)

13.305
(6.372)

0.018
(0.009)

5.143
(2.820)

2.083
(1.466)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.445ε2
1t−1

(0.105)

0.233ε1t−1ε2t−1
(0.092)

0.188ε2
2t−1

(0.113)

0.197ε1t−1ε3t−1
(0.132)

0.165ε2t−1ε3t−1
(0.093)

0.078ε2
3t−1

(0.066)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.466h11t−1
(0.056)

0.598h12t−1
(0.052)

0.441h22t−1
(0.215)

−0.362h13t−1
(0.361)

−0.348h23t−1
(0.338)

0.469h33t−1
(0.333)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.112)

Source: Bollerslev, Engle and Wooldridge (1988). Reprinted with the permission of University of
Chicago Press.

where y j t are the returns, ω j t−1 are a set vector of value weights at time t − 1, i =
1, 2, 3, refers to bills, bonds and stocks, respectively and standard errors are given
in parentheses. Consider now the implications of the signs, sizes and significances
of the coefficient estimates in (9.111) and (9.112). The coefficient of 0.499 in the
conditional mean equation gives an aggregate measure of relative risk aversion,
also interpreted as representing the market trade-off between return and risk.
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This conditional variance-in-mean coefficient gives the required additional return
as compensation for taking an additional unit of variance (risk). The intercept
coefficients in the conditional mean equation for bonds and stocks are very negative
and highly statistically significant. The authors argue that this is to be expected since
favourable tax treatments for investing in longer-term assets encourages investors
to hold them even at relatively low rates of return.

The dynamic structure in the conditional variance and covariance equations
is strongest for bills and bonds, and very weak for stocks, as indicated by their
respective statistical significances. In fact, none of the parameters in the conditional
variance or covariance equations for the stock return equations is significant at the
5% level. The unconditional covariance between bills and bonds is positive, while
that between bills and stocks, and between bonds and stocks, is negative. This
arises since, in the latter two cases, the lagged conditional covariance parameters
are negative and larger in absolute value than those of the corresponding lagged
error cross-products.

Finally, the degree of persistence in the conditional variance (given by α1 + β),
which embodies the degree of clustering in volatility, is relatively large for the bills
equation, but surprisingly small for bonds and stocks, given the results of other
relevant papers in this literature.

• • • • • • • • • • • • • • 9.28 Estimating a time-varying hedge ratio for FTSE stock index returns

A paper by Brooks, Henry and Persand (2002) compared the effectiveness of
hedging on the basis of hedge ratios derived from various multivariate GARCH
specifications and other, simpler techniques. Some of their main results are dis-
cussed below.

9.28.1 Background

There has been much empirical research into the calculation of optimal hedge
ratios. The general consensus is that the use of multivariate GARCH (MGARCH)
models yields superior performances, evidenced by lower portfolio volatilities, than
either time-invariant or rolling OLS hedges. Cecchetti, Cumby and Figlewski
(1988), Myers and Thompson (1989) and Baillie and Myers (1991), for example,
argue that commodity prices are characterised by time-varying covariance matri-
ces. As news about spot and futures prices arrives to the market in discrete bunches,
the conditional covariance matrix, and hence the optimal hedging ratio, becomes
time-varying. Baillie and Myers (1991) and Kroner and Sultan (1993), inter alia,
employ MGARCH models to capture time-variation in the covariance matrix and
to estimate the resulting hedge ratio.

9.28.2 Notation

Let St and Ft represent the logarithms of the stock index and stock index
futures prices, respectively. The actual return on a spot position held from time
t − 1 to t is �St = St − St−1 similarly, the actual return on a futures position is
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�Ft = Ft − Ft−1. However at time t − 1 the expected return, Et−1(Rt ), of the
portfolio comprising one unit of the stock index and β units of the futures contract
may be written as

Et−1(Rt ) = Et−1(�St ) − βt−1Et−1(�Ft ) (9.113)

where βt−1 is the hedge ratio determined at time t − 1, for employment in period
t . The variance of the expected return, h p,t , of the portfolio may be written as

h p,t = hs ,t + β2
t−1h F,t − 2βt−1hSF, t (9.114)

where h p,t , hs ,t and h F,t represent the conditional variances of the portfolio and
the spot and futures positions, respectively and h SF,t represents the conditional
covariance between the spot and futures position. β∗

t−1, the optimal number of
futures contracts in the investor’s portfolio, i.e. the optimal hedge ratio, is given by

β∗
t−1 = −h SF,t

h F,t
(9.115)

If the conditional variance–covariance matrix is time-invariant (and if St and Ft
are not cointegrated) then an estimate of β∗, the constant optimal hedge ratio,
may be obtained from the estimated slope coefficient b in the regression

�St = a + b�Ft + ut (9.116)

The OLS estimate of the optimal hedge ratio could be given by b = h SF /h F .

9.28.3 Data and results

The data employed in the Brooks, Henry and Persand (2002) study comprises
3,580 daily observations on the FTSE 100 stock index and stock index futures
contract spanning the period 1 January 1985–9 April 1999. Several approaches to
estimating the optimal hedge ratio are investigated.

The hedging effectiveness is first evaluated in-sample, that is, where the hedges
are constructed and evaluated using the same set of data. The out-of-sample
hedging effectiveness for a one-day hedging horizon is also investigated by forming
one-step-ahead forecasts of the conditional variance of the futures series and the
conditional covariance between the spot and futures series. These forecasts are then
translated into hedge ratios using (9.115). The hedging performance of a BEKK
formulation is examined, and also a BEKK model including asymmetry terms (in
the same style as GJR models). The returns and variances for the various hedging
strategies are presented in table 9.5.

The simplest approach, presented in column (2), is that of no hedge at all. In
this case, the portfolio simply comprises a long position in the cash market. Such
an approach is able to achieve significant positive returns in sample, but with a large
variability of portfolio returns. Although none of the alternative strategies generate
returns that are significantly different from zero, either in-sample or out-of-sample,
it is clear from columns (3)–(5) of table 9.5 that any hedge generates significantly
less return variability than none at all.
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Table 9.5 Hedging effectiveness: summary statistics for portfolio
returns

In-sample

Symmetric Asymmetric
Unhedged Naive hedge time-varying hedge time-varying hedge

β = 0 β = −1 βt = hFS,t

hF,t
βt = hFS,t

hF,t

(1) (2) (3) (4) (5)

Return 0.0389 −0.0003 0.0061 0.0060

{2.3713} {−0.0351} {0.9562} {0.9580}
Variance 0.8286 0.1718 0.1240 0.1211

Out-of-sample

Symmetric Asymmetric
Unhedged Naive hedge time-varying hedge time-varying hedge

β = 0 β = −1 βt = hFS,t

hF,t
βt = hFS,t

hF,t

Return 0.0819 −0.0004 0.0120 0.0140

{1.4958} {0.0216} {0.7761} {0.9083}
Variance 1.4972 0.1696 0.1186 0.1188

Note: t-ratios displayed as {.}.
Source: Brooks, Henry and Persand (2002).

The ‘naive’ hedge, which takes one short futures contract for every spot unit,
but does not allow the hedge to time-vary, generates a reduction in variance of the
order of 80% in-sample and nearly 90% out-of-sample relative to the unhedged
position. Allowing the hedge ratio to be time-varying and determined from a
symmetric multivariate GARCH model leads to a further reduction as a proportion
of the unhedged variance of 5% and 2% for the in-sample and holdout sample,
respectively. Allowing for an asymmetric response of the conditional variance to
positive and negative shocks yields a very modest reduction in variance (a further
0.5% of the initial value) in-sample, and virtually no change out-of-sample.

Figure 9.5 graphs the time-varying hedge ratio from the symmetric and asym-
metric MGARCH models. The optimal hedge ratio is never greater than 0.96
futures contracts per index contract, with an average value of 0.82 futures con-
tracts sold per long index contract. The variance of the estimated optimal hedge
ratio is 0.0019. Moreover the optimal hedge ratio series obtained through the
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Figure 9.5 Time-varying hedge ratios derived from symmetric and asymmetric BEKK
models for FTSE returns

estimation of the asymmetric GARCH model appears stationary. An ADF test
of the null hypothesis β∗

t−1 ∼ I(1) (i.e. that the optimal hedge ratio from the
asymmetric BEKK model contains a unit root) was strongly rejected by the data
(ADF statistic = −5.7215, 5% Critical value = −2.8630). The time-varying hedge
requires the sale (purchase) of fewer futures contracts per long (short) index con-
tract and hence would save the firm wishing to hedge a short exposure money
relative to the time-invariant hedge. One possible interpretation of the better
performance of the dynamic strategies over the naive hedge is that the dynamic
hedge uses short-run information, while the naive hedge is driven by long-run
considerations and an assumption that the relationship between spot and futures
price movements is 1:1.

Brooks, Henry and Persand also investigate the hedging performances of the
various models using a modern risk management approach. They find, once
again, that the time-varying hedge results in a considerable improvement, but that
allowing for asymmetries results in only a very modest incremental reduction in
hedged portfolio risk.

• • • • • • • • • • • • • • 9.29 Multivariate stochastic volatility models

As in the univariate case, while the term ‘stochastic volatility’ is commonly used to
describe models from the multivariate GARCH family, strictly they do not fit well
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under this umbrella because the conditional variance and covariance equations are
deterministic given the information set up to the previous period. That is, there is
no additional source of noise in the conditional variance (or covariance) equation
of a multivariate GARCH model.

The multivariate stochastic volatility (MSV) model was initially proposed by
Harvey, Ruiz and Shephard (1994) and the notation here will closely follow theirs.
Let yt be the elements of an N × 1 vector of observations at time t on a series i ,
with time-varying variance σ 2

i , defined as

yi t = εi t (exp{hi t })1/2, i = 1, . . . , N; t = 1, . . . , T (9.117)

where ε = (ε1t , . . . , εNt ) is a vector of disturbances with zero mean and covariance
matrix �ε and where

hi t = log(σ 2
i t ) (9.118)

This covariance matrix, �ε is defined to have unity on the leading diagonal (and it
is therefore also a correlation matrix), while its off-diagonal elements are denoted
ρi j .

Under the stochastic volatility model, the hi t can be specified to evolve as an
autoregressive (AR) process of order P

hi t = γi +
P∑

p=1

ψi p h i,t−p + ηi t i = 1, . . . , N (9.119)

ηt = (η1t , . . . , ηNt ) is a vector of disturbances to the conditional variance having
zero mean and covariance matrix �η. It is usually further assumed that εi t and
ηi t are mutually independent and that each is multivariate normally distributed.
Usually, P = 1 is deemed sufficient so that the variance dynamics for each series
in the system are AR(1). Moving average terms or even exogenous variables could
be added to the variance specification but rarely are in practice.

It is worth noting that in this model, the correlations ρi j between the mean
equation disturbances are required to be fixed over time. Thus the covariances
across the N series evolve as functions of the variances rather than independently of
them. This formulation parallels the constant conditional correlation multivariate
GARCH model of Bollerslev (1990) discussed below, and represents an important
limitation of the model. It does, however, imply that MSV models are highly
parsimonious, and the number of parameters scales directly with the number of
variables in the system. For example, in the context of a bivariate MSV model,
there are eight parameters to estimate.3

Harvey et al. (1994) propose estimating the model using quasi-maximum
likelihood (QML) via the Kalman filter. However, Danielsson (1998) argues
that their QML approach results in inefficient estimation. An alternative
approach to estimating MSV models is to make use of Bayesian Markov Chain

3 This compares with nine for a diagonal VECH MGARCH model and 21 for the unrestricted
MGARCH.
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Screenshot 9.6 Making a system

Monte Carlo (MCMC) methods, as proposed by Jacquier, Polson and Rossi
(1995).4

• • • • • • • • • • • • • • 9.30 Estimating multivariate GARCH models using EViews

To estimate such a model, first you need to create a system that contains the
variables to be used. Highlight the three variables ‘reur’, ‘rgbp’, and ‘rjpy’
and then right click the mouse. Choose Open/as System. . . ,. Screenshot 9.6
will appear.

Since no explanatory variables will be used in the conditional mean equa-
tion, all of the default choices can be retained, so just click OK. A system
box containing the three equations with just intercepts will be seen. Then click
Proc/Estimate . . . for the ‘System Estimation’ window. Change the ‘Estimation
method’ to ARCH – Conditional Heteroscedasticity and screenshot 9.7 will
appear.

EViews permits the estimation of three important classes of multivariate
GARCH model: the diagonal VECH, the constant conditional correlation and
the diagonal BEKK models. For the error distribution, either a multivariate nor-
mal or a multivariate Student’s t can be used. Additional exogenous variables can
be incorporated into the variance equation, and asymmetries can be allowed for.

4 See Chib and Greenberg (1996) for an extensive but very technical discussion of the intricacies
of the MCMC technique.
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Screenshot 9.7 Multivariate GARCH estimation options

Clicking on the Options tab can allow the user to modify the settings used in
the optimisation, which can be useful in case there are problems with the model
estimation such as non-convergence or convergence to implausible parameter
estimates. Leaving all of these options as the defaults and clicking OK would yield
the following results.5

The first panel of the table presents the conditional mean estimates; in this
example, only intercepts were used in the mean equations. The next panel shows
the variance equation coefficients, followed by some measures of goodness of
fit for the model as a whole and then for each individual mean equation. The
final panel presents the transformed variance coefficients, which in this case are
identical to the panel of variance coefficients since no transformation is conducted
with normal errors (these would only be different if a Student’s t specification
were used). It is evident that the parameter estimates are all both plausible and
statistically significant.

There are a number of useful further steps that can be conducted once the
model has been estimated, all of which are available by clicking the ‘View’ button.
For example, we can plot the series of residuals, or estimate the correlations
between them. Or by clicking on ‘Conditional variance’, we can list or plot the
values of the conditional variances and covariances or correlations over time. We
can also test for autocorrelation and normality of the errors.

5 The complexity of this model means that it takes longer to estimate than any of the univariate
GARCH or other models examined previously.
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System: UNTITLED
Estimation Method: ARCH Maximum Likelihood (Marquardt)
Covariance specification: Diagonal VECH
Date: 08/06/13 Time: 05:50
Sample: 7/08/2002 6/06/2013
Included observations: 3987
Total system (balanced) observations 11961
Presample covariance: backcast (parameter = 0.7)
Convergence achieved after 15 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) −0.014665 0.006099 −2.404605 0.0162
C(2) −0.010580 0.005707 −1.853937 0.0637
C(3) 0.008758 0.006197 1.413283 0.1576

Variance Equation Coefficients

C(4) 0.000758 0.000142 5.333032 0.000
C(5) 0.000811 0.000118 6.893582 0.000
C(6) 0.000972 0.000138 7.057098 0.000
C(7) 0.000955 0.000151 6.329567 0.000
C(8) 0.000899 0.000134 6.729971 0.000
C(9) 0.005043 0.000437 11.53342 0.000
C(10) 0.029060 0.001835 15.83992 0.000
C(11) 0.025820 0.001535 16.81733 0.000
C(12) 0.034765 0.002368 14.67968 0.000
C(13) 0.030542 0.001972 15.48565 0.000
C(14) 0.036163 0.002608 13.86502 0.000
C(15) 0.054571 0.003427 15.92236 0.000
C(16) 0.967396 0.001849 523.0839 0.000
C(17) 0.966886 0.001784 542.0472 0.000
C(18) 0.953080 0.003015 316.1549 0.000
C(19) 0.963545 0.002291 420.5394 0.000
C(20) 0.946951 0.003561 265.9424 0.000
C(21) 0.923789 0.004770 193.6745 0.000

Log likelihood −4949.970 Schwarz criterion 2.526724
Avg. log likelihood −0.413842 Hannan-Quinn criter. 2.505336
Akaike info criterion 2.493589



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-09 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:19

Equation: REUR = C(1)

R-squared −0.000232 Mean dependent var −0.007413
Adjusted R-squared −0.000232 S.D. dependent var 0.476621
S.E. of regression 0.476676 Sum squared resid 905.6991
Prob(F-statistic) 1.694663

Equation: RGBP = C(2)

R-squared −0.000548 Mean dependent var −0.000226
Adjusted R-squared −0.000548 S.D. dependent var 0.442446
S.E. of regression 0.442568 Sum squared resid 780.7222
Prob(F-statistic) 1.580781

Equation: RJPY = C(3)

R-squared −0.000813 Mean dependent var −0.004699
Adjusted R-squared −0.000813 S.D. dependent var 0.471950
S.E. of regression 0.472142 Sum squared resid 888.5516
Prob(F-statistic) 1.704282

Covariance specification: Diagonal VECH
GARCH = M + A1.∗RESID(−1)∗RESID(−1)′ + B1.∗GARCH(−1)
M is an indefinite matrix
A1 is an indefinite matrix
B1 is an indefinite matrix

Transformed Variance Coefficients

Coefficient Std. Error z-Statistic Prob.

M(1,1) 0.000758 0.000142 5.333032 0.000
M(1,2) 0.000811 0.000118 6.893582 0.000
M(1,3) 0.000972 0.000138 7.057098 0.000
M(2,2) 0.000955 0.000151 6.329567 0.000
M(2,3) 0.000899 0.000134 6.729971 0.000
M(3,3) 0.005043 0.000437 11.53342 0.000
A1(1,1) 0.029060 0.001835 15.83992 0.000
A1(1,2) 0.025820 0.001535 16.81733 0.000
A1(1,3) 0.034765 0.002368 14.67968 0.000
A1(2,2) 0.030542 0.001972 15.48565 0.000
A1(2,3) 0.036163 0.002608 13.86502 0.000
A1(3,3) 0.054571 0.003427 15.92236 0.000
B1(1,1) 0.967396 0.001849 523.0839 0.000
B1(1,2) 0.966886 0.001784 542.0472 0.000
B1(1,3) 0.953080 0.003015 316.1549 0.000
B1(2,2) 0.963545 0.002291 420.5394 0.000
B1(2,3) 0.946951 0.003561 265.9424 0.000
B1(3,3) 0.923789 0.004770 193.6745 0.000

∗ Coefficient matrix is not PSD.

483
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Key concepts

The key terms to be able to define and explain from this chapter are

• non-linearity • GARCH model

• conditional variance • Wald test

• maximum likelihood • likelihood ratio test

• lagrange multiplier test • GJR specification

• asymmetry in volatility • exponentially weighted

• constant conditional correlation moving average

• diagonal VECH • BEKK model

• news impact curve • GARCH-in-mean

• volatility clustering

Appendix Parameter estimation using maximum likelihood

For simplicity, this appendix will consider by way of illustration the bivariate
regression case with homoscedastic errors (i.e. assuming that there is no ARCH
and that the variance of the errors is constant over time). Suppose that the linear
regression model of interest is of the form

yt = β1 + β2xt + ut (9A.1)

Assuming that ut ∼ N(0, σ 2), then yt ∼ N(β1 + β2xt , σ
2) so that the probability

density function for a normally distributed random variable with this mean and
variance is given by

f (yt | β1 + β2xt , σ
2) = 1

σ
√

2π
exp

{
−1

2
(yt − β1 − β2xt )2

σ 2

}
(9A.2)

The probability density is a function of the data given the parameters. Successive
values of yt would trace out the familiar bell-shaped curve of the normal distribu-
tion. Since the ys are iid, the joint probability density function (pdf) for all the ys
can be expressed as a product of the individual density functions

f (y1, y2, . . . , yT | β1 + β2x1, β1 + β2x2, . . . , β1 + β2xT, σ 2)

= f (y1 | β1 + β2x2, σ
2) f (y2 | β1 + β2x2, σ

2) . . . f (yT | β1 + β2xT, σ
2)

=
T∏

t=1

f (yt | β1 + β2xt , σ
2) for t = 1, . . . , T (9A.3)

The term on the LHS of this expression is known as the joint density and the
terms on the RHS are known as the marginal densities. This result follows from the
independence of the y values, in the same way as under elementary probability,
for three independent events A, B and C, the probability of A, B and C all
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happening is the probability of A multiplied by the probability of B multiplied
by the probability of C. Equation (9A.3) shows the probability of obtaining all of
the values of y that did occur. Substituting into (9A.3) for every yt from (9A.2),
and using the result that Ae x1 × Ae x2 × · · · Ae xT = AT(e x1 × e x2 × · · · × e xT ) =
ATe (x1+x2+ ···+xT ), the following expression is obtained

f (y1, y2, . . . , yT | β1 + β2xt , σ
2)

= 1

σ T(
√

2π )T
exp

{
−1

2

T∑
t=1

(yt − β1 − β2xt )2

σ 2

}
(9A.4)

This is the joint density of all of the ys given the values of xt , β1, β2 and σ 2.
However, the typical situation that occurs in practice is the reverse of the above
situation – that is, the xt and yt are given and β1, β2, σ 2 are to be estimated. If
this is the case, then f (•) is known as a likelihood function, denoted LF(β1, β2,
σ 2), which would be written

LF (β1, β2, σ
2) = 1

σ T(
√

2π )T
exp

{
−1

2

T∑
t=1

(yt − β1 − β2xt )2

σ 2

}
(9A.5)

Maximum likelihood estimation involves choosing parameter values (β1, β2, σ 2)
that maximise this function. Doing this ensures that the values of the parameters
are chosen that maximise the likelihood that we would have actually observed the
ys that we did. It is necessary to differentiate (9A.5) w.r.t. β1, β2, σ 2, but (9A.5) is
a product containing T terms, and so would be difficult to differentiate.

Fortunately, since max
x

f (x) = max
x

ln( f (x)), logs of (9A.5) can be taken, and

the resulting expression differentiated, knowing that the same optimal values for
the parameters will be chosen in both cases. Then, using the various laws for
transforming functions containing logarithms, the log-likelihood function, LLF is
obtained

LLF = −T ln σ − T
2

ln(2π ) − 1
2

T∑
t=1

(yt − β1 − β2xt )2

σ 2
(9A.6)

which is equivalent to

LLF = −T
2

ln σ 2 − T
2

ln(2π ) − 1
2

T∑
t=1

(yt − β1 − β2xt )2

σ 2
(9A.7)

Only the first part of the RHS of (9A.6) has been changed in (9A.7) to make σ 2

appear in that part of the expression rather than σ .
Remembering the result that

∂

∂x
(ln(x)) = 1

x
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and differentiating (9A.7) w.r.t. β1, β2, σ 2, the following expressions for the first
derivatives are obtained

∂LLF
∂β1

= −1
2

∑ (yt − β1 − β2xt ).2. − 1

σ 2
(9A.8)

∂LLF
∂β2

= −1
2

∑ (yt − β1 − β2xt ).2. − xt

σ 2
(9A.9)

∂LLF
∂σ 2

= −T
2

1

σ 2
+ 1

2

∑ (yt − β1 − β2xt )2

σ 4
(9A.10)

Setting (9A.8)–(9A.10) to zero to minimise the functions, and placing hats
above the parameters to denote the maximum likelihood estimators, from
(9A.8)∑

(yt − β̂1 − β̂2xt ) = 0 (9A.11)

∑
yt −

∑
β̂1 −

∑
β̂2xt = 0 (9A.12)

∑
yt − Tβ̂1 − β̂2

∑
xt = 0 (9A.13)

1
T

∑
yt − β̂1 − β̂2

1
T

∑
xt = 0 (9A.14)

Recall that

1
T

∑
yt = ȳt

the mean of y and similarly for x, an estimator for β̂1 can finally be derived

β̂1 = ȳ − β̂2x̄ (9A.15)

From (9A.9)∑
(yt − β̂1 − β̂2xt )xt = 0 (9A.16)

∑
yt xt −

∑
β̂1xt −

∑
β̂2x2

t = 0 (9A.17)

∑
yt xt − β̂1

∑
xt − β̂2

∑
x2

t = 0 (9A.18)

β̂2

∑
x2

t =
∑

yt xt − (ȳ − β̂2x̄)
∑

xt (9A.19)

β̂2

∑
x2

t =
∑

yt xt − Txy + β̂2Tx̄2 (9A.20)
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β̂2
(∑

x2
t −Tx̄2) =

∑
yt xt − Txy (9A.21)

β̂2 =
∑

yt xt − Txy(∑
x2

t −Tx̄2
) (9A.22)

From (9A.10)

T
σ̂ 2

= 1
σ̂ 4

∑
(yt − β̂1 − β̂2xt )2 (9A.23)

Rearranging,

σ̂ 2 = 1
T

∑
(yt − β̂1 − β̂2xt )2 (9A.24)

But the term in parentheses on the RHS of (9A.24) is the residual for time t (i.e.
the actual minus the fitted value), so

σ̂ 2 = 1
T

∑
û2

t (9A.25)

How do these formulae compare with the OLS estimators? (9A.15) and (9A.22) are
identical to those of OLS. So maximum likelihood and OLS will deliver identical
estimates of the intercept and slope coefficients. However, the estimate of σ̂ 2 in
(9A.25) is different. The OLS estimator was

σ̂ 2 = 1
T − k

∑
û2

t (9A.26)

and it was also shown that the OLS estimator is unbiased. Therefore, the ML
estimator of the error variance must be biased, although it is consistent, since as
T → ∞, T − k ≈ T.

Note that the derivation above could also have been conducted using matrix
rather than sigma algebra. The resulting estimators for the intercept and slope
coefficients would still be identical to those of OLS, while the estimate of the
error variance would again be biased. It is also worth noting that the ML estimator
is consistent and asymptotically efficient. Derivation of the ML estimator for the
GARCH LLF is algebraically difficult and therefore beyond the scope of this
book.

Self-study questions

1. (a) What stylised features of financial data cannot be explained using linear
time series models?

(b) Which of these features could be modelled using a GARCH(1,1) process?
(c) Why, in recent empirical research, have researchers preferred

GARCH(1,1) models to pure ARCH(p)?
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(d) Describe two extensions to the original GARCH model. What
additional characteristics of financial data might they be able to capture?

(e) Consider the following GARCH(1,1) model

yt = μ + ut , ut ∼ N
(
0, σ 2

t

)
(9.120)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (9.121)

If yt is a daily stock return series, what range of values are likely for the
coefficients μ, α0, α1 and β?

(f ) Suppose that a researcher wanted to test the null hypothesis that
α1 + β = 1 in the equation for part (e). Explain how this might be
achieved within the maximum likelihood framework.

(g) Suppose now that the researcher had estimated the above GARCH
model for a series of returns on a stock index and obtained the following
parameter estimates: μ̂ = 0.0023, α̂0 = 0.0172, β̂ = 0.9811, α̂1 =
0.1251. If the researcher has data available up to and including time T,
write down a set of equations in σ 2

t and u2
t their lagged values, which

could be employed to produce one-, two-, and three-step-ahead forecasts
for the conditional variance of yt .

(h) Suppose now that the coefficient estimate of β̂ for this model is 0.98
instead. By reconsidering the forecast expressions you derived in part (g),
explain what would happen to the forecasts in this case.

2. (a) Discuss briefly the principles behind maximum likelihood.
(b) Describe briefly the three hypothesis testing procedures that are available

under maximum likelihood estimation. Which is likely to be the easiest
to calculate in practice, and why?

(c) OLS and maximum likelihood are used to estimate the parameters of a
standard linear regression model. Will they give the same estimates?
Explain your answer.

3. (a) Distinguish between the terms ‘conditional variance’ and ‘unconditional
variance’. Which of the two is more likely to be relevant for producing:
i. one-step-ahead volatility forecasts
ii. twenty-step-ahead volatility forecasts.

(a) If ut follows a GARCH(1,1) process, what would be the likely result if a
regression of the form (9.120) were estimated using OLS and assuming a
constant conditional variance?

(b) Compare and contrast the following models for volatility, noting their
strengths and weaknesses:
i. Historical volatility
ii. EWMA
iii. GARCH(1,1)
iv. Implied volatility.

4. Suppose that a researcher is interested in modelling the correlation between
the returns of the NYSE and LSE markets.
(a) Write down a simple diagonal VECH model for this problem. Discuss

the values for the coefficient estimates that you would expect.
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(b) Suppose that weekly correlation forecasts for two weeks ahead are
required. Describe a procedure for constructing such forecasts from a set
of daily returns data for the two market indices.

(c) What other approaches to correlation modelling are available?
(d) What are the strengths and weaknesses of multivariate GARCH models

relative to the alternatives that you propose in part (c)?
5. (a) What is a news impact curve? Using a spreadsheet or otherwise, construct

the news impact curve for the following estimated EGARCH and
GARCH models, setting the lagged conditional variance to the value of
the unconditional variance (estimated from the sample data rather than
the mode parameter estimates), which is 0.096

σ 2
t = α0 + α1u2

t−1 + α2σ
2
t−1 (9.122)

log
(
σ 2

t

) = α0 + α1
ut−1√
σ 2

t−1

+ α2 log
(
σ 2

t−1

) + α3

⎡
⎣ |ut−1 |√

σ 2
t−1

−
√

2
π

⎤
⎦

(9.123)

GARCH EGARCH
μ −0.0130 −0.0278

(0.0669) (0.0855)
α0 0.0019 0.0823

(0.0017) (0.5728)
α1 0.1022∗∗ −0.0214

(0.0333) (0.0332)
α2 0.9050∗∗ 0.9639∗∗

(0.0175) (0.0136)
α3 − 0.2326∗∗

(0.0795)

(b) In fact, the models in part (a) were estimated using daily foreign exchange
returns. How can financial theory explain the patterns observed in the
news impact curves?

6. Using EViews, estimate a multivariate GARCH model for the spot and
futures returns series in ‘sandphedge.wf1’. Note that these series are
somewhat short for multivariate GARCH model estimation. Save the fitted
conditional variances and covariances, and then use these to construct the
time-varying optimal hedge ratios. Compare this plot with the unconditional
hedge ratio calculated in chapter 3.
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Learning outcomes

In this chapter, you will learn how to

• Use intercept and slope dummy variables to allow for seasonal behaviour in

time series

• Motivate the use of regime switching models in financial econometrics

• Specify and explain the logic behind Markov switching models

• Compare and contrast Markov switching and threshold autoregressive models

• Describe the intuition behind the estimation of regime switching models

• • • • • • • • • • • • • • 10.1 Motivations

Many financial and economic time series seem to undergo episodes in which
the behaviour of the series changes quite dramatically compared to that exhibited
previously. The behaviour of a series could change over time in terms of its mean
value, its volatility, or to what extent its current value is related to its previous
value. The behaviour may change once and for all, usually known as a ‘structural
break’ in a series. Or it may change for a period of time before reverting back to
its original behaviour or switching to yet another style of behaviour, and the latter
is typically termed a ‘regime shift’ or ‘regime switch’.

10.1.1 What might cause one-off fundamental changes in the
properties of a series?

Usually, very substantial changes in the properties of a series are attributed to
large-scale events, such as wars, financial panics – e.g. a ‘run on a bank’, significant
changes in government policy, such as the introduction of an inflation target, or the
removal of exchange controls, or changes in market microstructure – e.g. the ‘Big
Bang’, when trading on the London Stock Exchange (LSE) became electronic, or
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Figure 10.1 Sample time series plot illustrating a regime shift

a change in the market trading mechanism, such as the partial move of the LSE
from a quote-driven to an order-driven system in 1997.

However, it is also true that regime shifts can occur on a regular basis and at
much higher frequency. Such changes may occur as a result of more subtle factors,
but still leading to statistically important modifications in behaviour. An example
would be the intraday patterns observed in equity market bid–ask spreads (see
chapter 7). These appear to start with high values at the open, gradually narrowing
throughout the day, before widening again at the close.

To give an illustration of the kind of shifts that may be seen to occur, figure 10.1
gives an extreme example. As can be seen from the figure, the behaviour of the
series changes markedly at around observation 500. Not only does the series
become much more volatile than previously, its mean value is also substantially
increased. Although this is a severe case that was generated using simulated data,
clearly, in the face of such ‘regime changes’ a linear model estimated over the whole
sample covering the change would not be appropriate. One possible approach to
this problem would be simply to split the data around the time of the change
and to estimate separate models on each portion. It would be possible to allow a
series, yt to be drawn from two or more different generating processes at different
times. For example, if it was thought an AR(1) process was appropriate to capture
the relevant features of a particular series whose behaviour changed at observation
500, say, two models could be estimated:

yt = μ1 + φ1yt−1 + u1t before observation 500 (10.1)

yt = μ2 + φ2yt−1 + u2t after observation 500 (10.2)

In the context of figure 10.1, this would involve focusing on the mean shift
only. These equations represent a very simple example of what is known as a
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piecewise linear model – that is, although the model is globally (i.e. when it is
taken as a whole) non-linear, each of the component parts is a linear model.

This method may be valid, but it is also likely to be wasteful of informa-
tion. For example, even if there were enough observations in each sub-sample
to estimate separate (linear) models, there would be an efficiency loss in having
fewer observations in each of two samples than if all the observations were collected
together. Also, it may be the case that only one property of the series has changed –
for example, the (unconditional) mean value of the series may have changed, leav-
ing its other properties unaffected. In this case, it would be sensible to try to keep
all of the observations together, but to allow for the particular form of the structural
change in the model-building process. Thus, what is required is a set of models
that allow all of the observations on a series to be used for estimating a model, but
also that the model is sufficiently flexible to allow different types of behaviour at
different points in time. Two classes of regime switching models that potentially
allow this to occur are Markov switching models and threshold autoregressive models.

A first and central question to ask is: How can it be determined where the
switch(es) occurs? The method employed for making this choice will depend
upon the model used. A simple type of switching model is one where the switches
are made deterministically using dummy variables. One important use of this in
finance is to allow for ‘seasonality’ in financial data. In economics and finance
generally, many series are believed to exhibit seasonal behaviour, which results in a
certain element of partly predictable cycling of the series over time. For example, if
monthly or quarterly data on consumer spending are examined, it is likely that the
value of the series will rise rapidly in late November owing to Christmas-related
expenditure, followed by a fall in mid-January, when consumers realise that they
have spent too much before Christmas and in the January sales! Consumer spending
in the UK also typically drops during the August vacation period when all of the
sensible people have left the country. Such phenomena will be apparent in many
series and will be present to some degree at the same time every year, whatever
else is happening in terms of the long-term trend and short-term variability of the
series.

• • • • • • • • • • • • • • 10.2 Seasonalities in financial markets: introduction and literature review

In the context of financial markets, and especially in the case of equities, a number
of other ‘seasonal effects’ have been noted. Such effects are usually known as ‘cal-
endar anomalies’ or ‘calendar effects’. Examples include open- and close-of-market
effects, ‘the January effect’, weekend effects and bank holiday effects. Investigation
into the existence or otherwise of ‘calendar effects’ in financial markets has been
the subject of a considerable amount of recent academic research. Calendar effects
may be loosely defined as the tendency of financial asset returns to display system-
atic patterns at certain times of the day, week, month or year. One example of the
most important such anomalies is the day-of-the-week effect, which results in average
returns being significantly higher on some days of the week than others. Studies
by French (1980), Gibbons and Hess (1981) and Keim and Stambaugh (1984), for
example, have found that the average market close-to-close return in the US is
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significantly negative on Monday and significantly positive on Friday. By contrast,
Jaffe and Westerfield (1985) found that the lowest mean returns for the Japanese
and Australian stock markets occur on Tuesdays.

At first glance, these results seem to contradict the efficient markets hypothesis,
since the existence of calendar anomalies might be taken to imply that investors
could develop trading strategies which make abnormal profits on the basis of such
patterns. For example, holding all other factors constant, equity purchasers may
wish to sell at the close on Friday and to buy at the close on Thursday in order to
take advantage of these effects. However, evidence for the predictability of stock
returns does not necessarily imply market inefficiency, for at least two reasons.
First, it is likely that the small average excess returns documented by the above
papers would not generate net gains when employed in a trading strategy once the
costs of transacting in the markets has been taken into account. Therefore, under
many ‘modern’ definitions of market efficiency (e.g. Jensen, 1978), these markets
would not be classified as inefficient. Second, the apparent differences in returns
on different days of the week may be attributable to time-varying stock market
risk premiums.

If any of these calendar phenomena are present in the data but ignored by
the model-building process, the result is likely to be a misspecified model. For
example, ignored seasonality in yt is likely to lead to residual autocorrelation of
the order of the seasonality – e.g. fifth order residual autocorrelation if yt is a series
of daily returns.

• • • • • • • • • • • • • • 10.3 Modelling seasonality in financial data

As discussed above, seasonalities at various different frequencies in financial time
series data are so well documented that their existence cannot be doubted, even if
there is argument about how they can be rationalised. One very simple method
for coping with this and examining the degree to which seasonality is present is
the inclusion of dummy variables in regression equations. The number of dummy
variables that could sensibly be constructed to model the seasonality would
depend on the frequency of the data. For example, four dummy variables would
be created for quarterly data, twelve for monthly data, five for daily data and so
on. In the case of quarterly data, the four dummy variables would be defined as
follows:

D1t = 1 in quarter 1 and zero otherwise
D2t = 1 in quarter 2 and zero otherwise
D3t = 1 in quarter 3 and zero otherwise
D4t = 1 in quarter 4 and zero otherwise

How many dummy variables can be placed in a regression model? If an intercept
term is used in the regression, the number of dummies that could also be included
would be one less than the ‘seasonality’ of the data. To see why this is the case,
consider what happens if all four dummies are used for the quarterly series. The
following gives the values that the dummy variables would take for a period
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Box 10.1 How do dummy variables work?

The dummy variables as described above operate by changing the intercept,
so that the average value of the dependent variable, given all of the
explanatory variables, is permitted to change across the seasons. This is
shown in figure 10.2.

xtQ3

Q2

Q1

Q4

γ3

γ2

γ1

β1

yt

Figure 10.2 Use of intercept dummy variables for quarterly data

Consider the following regression

yt = β1 + γ1 D1t + γ2 D2t + γ3 D3t + β2x2t + · · · + ut (10.3)

During each period, the intercept will be changed. The intercept will be:

● β̂1 + γ̂1 in the first quarter, since D1 = 1 and D2 = D3 = 0 for all
quarter 1 observations

● β̂1 + γ̂2 in the second quarter, since D2 = 1 and D1 = D3 = 0 for all
quarter 2 observations.

● β̂1 + γ̂3 in the third quarter, since D3 = 1 and D1 = D2 = 0 for all
quarter 3 observations

● β̂1 in the fourth quarter, since D1 = D2 = D3 = 0 for all quarter 4
observations.
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during the mid-1980s, together with the sum of the dummies at each point in
time, presented in the last column:

D1 D2 D3 D4 Sum
1986 Q1 1 0 0 0 1

Q2 0 1 0 0 1
Q3 0 0 1 0 1
Q4 0 0 0 1 1

1987 Q1 1 0 0 0 1
Q2 0 1 0 0 1
Q3 0 0 1 0 1

etc.

The sum of the four dummies would be 1 in every time period. Unfortu-
nately, this sum is of course identical to the variable that is implicitly attached to
the intercept coefficient. Thus, if the four dummy variables and the intercept were
both included in the same regression, the problem would be one of perfect multi-
collinearity so that (X′X)−1 would not exist and none of the coefficients could be
estimated. This problem is known as the dummy variable trap. The solution would
be either to just use three dummy variables plus the intercept, or to use the four
dummy variables with no intercept.

The seasonal features in the data would be captured using either of these,
and the residuals in each case would be identical, although the interpretation
of the coefficients would be changed. If four dummy variables were used (and
assuming that there were no explanatory variables in the regression), the estimated
coefficients could be interpreted as the average value of the dependent variable
during each quarter. In the case where a constant and three dummy variables
were used, the interpretation of the estimated coefficients on the dummy variables
would be that they represented the average deviations of the dependent variables
for the included quarters from their average values for the excluded quarter, as
discussed in example 10.1 below.

Example 10.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Brooks and Persand (2001a) examine the evidence for a day-of-the-week effect in five
Southeast Asian stock markets: South Korea, Malaysia, the Philippines, Taiwan and
Thailand. The data, obtained from Primark Datastream, are collected on a daily
close-to-close basis for all weekdays (Mondays to Fridays) falling in the period 31
December 1989 to 19 January 1996 (a total of 1,581 observations). The first regressions
estimated, which constitute the simplest tests for day-of-the-week effects, are of the
form

r t = γ1 D1t + γ2 D2t + γ3 D3t + γ4 D4t + γ5 D5t + ut (10.4)

where r t is the return at time t for each country examined separately, D1t is a dummy
variable for Monday, taking the value 1 for all Monday observations and zero
otherwise, and so on. The coefficient estimates can be interpreted as the average
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Table 10.1 Values and significances of days of the week
coefficients

Thailand Malaysia Taiwan South Korea Philippines

Monday 0.49E-3 0.00322 0.00185 0.56E-3 0.00119

(0.6740) (3.9804)∗∗ (2.9304)∗∗ (0.4321) (1.4369)

Tuesday −0.45E-3 −0.00179 −0.00175 0.00104 −0.97E-4

(−0.3692) (−1.6834) (−2.1258)∗∗ (0.5955) (−0.0916)

Wednesday −0.37E-3 −0.00160 0.31E-3 −0.00264 −0.49E-3

(−0.5005) (−1.5912) (0.4786) (−2.107)∗∗ (−0.5637)

Thursday 0.40E-3 0.00100 0.00159 −0.00159 0.92E-3

(0.5468) (1.0379) (2.2886)∗∗ (−1.2724) (0.8908)

Friday −0.31E-3 0.52E-3 0.40E-4 0.43E-3 0.00151

(−0.3998) (0.5036) (0.0536) (0.3123) (1.7123)

Notes: Coefficients are given in each cell followed by t-ratios in parentheses; ∗ and ∗∗ denote
significance at the 5% and 1% levels, respectively.
Source: Brooks and Persand (2001a).

sample return on each day of the week. The results from these regressions are shown
in table 10.1.

Briefly, the main features are as follows. Neither South Korea nor the Philippines
have significant calendar effects; both Thailand and Malaysia have significant positive
Monday average returns and significant negative Tuesday returns; Taiwan has a
significant Wednesday effect.

Dummy variables could also be used to test for other calendar anomalies, such as
the January effect, etc. as discussed above, and a given regression can include
dummies of different frequencies at the same time. For example, a new dummy
variable D6t could be added to (10.4) for ‘April effects’, associated with the start of the
new tax year in the UK. Such a variable, even for a regression using daily data, would
take the value 1 for all observations falling in April and zero otherwise.

If we choose to omit one of the dummy variables and to retain the intercept, then
the omitted dummy variable becomes the reference category against which all the
others are compared. For example consider a model such as the one above, but
where the Monday dummy variable has been omitted

r t = α + γ2 D2t + γ3 D3t + γ4 D4t + γ5 D5t + ut (10.5)

The estimate of the intercept will be α̂ on Monday, α̂ + γ̂21 on Tuesday and so on. γ̂2

will now be interpreted as the difference in average returns between Monday and
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Tuesday. Similarly, γ̂3, . . . , γ̂5 can also be interpreted as the differences in average
returns between Wednesday, . . ., Friday, and Monday.

This analysis should hopefully have made it clear that by thinking carefully about
which dummy variable (or the intercept) to omit from the regression, we can control the
interpretation to test naturally the hypothesis that is of most interest. The same logic can
also be applied to slope dummy variables, which are described in the following section.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10.3.1 Slope dummy variables

As well as, or instead of, intercept dummies, slope dummy variables can also be
used. These operate by changing the slope of the regression line, leaving the
intercept unchanged. Figure 10.3 gives an illustration in the context of just one
slope dummy (i.e. two different ‘states’). Such a setup would apply if, for example,
the data were bi-annual (twice yearly) or bi-weekly or observations made at the
open and close of markets. Then Dt would be defined as Dt = 1 for the first half
of the year and zero for the second half.

A slope dummy changes the slope of the regression line, leaving the intercept
unchanged. In the above case, the intercept is fixed at α, while the slope varies
over time. For periods where the value of the dummy is zero, the slope will be β,
while for periods where the dummy is one, the slope will be β + γ .

Of course, it is also possible to use more than one dummy variable for the
slopes. For example, if the data were quarterly, the following setup could be used,
with D1t . . . D3t representing quarters 1–3.

yt = α + βxt + γ1 D1t xt + γ2 D2t xt + γ3 D3t xt + ut (10.6)

xt

yt

yt = α + βxt + γDtxt + ut

yt = α + βxt + ut

Figure 10.3 Use of slope dummy variables
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In this case, since there is also a term in xt with no dummy attached, the inter-
pretation of the coefficients on the dummies (γ1, etc.) is that they represent the
deviation of the slope for that quarter from the average slope over all quarters.
On the other hand, if the four slope dummy variables were included (and not
βxt ), the coefficients on the dummies would be interpreted as the average slope
coefficients during each quarter. Again, it is important not to include four quar-
terly slope dummies and the βxt in the regression together, otherwise perfect
multicollinearity would result.

Example 10.2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Returning to the example of day-of-the-week effects in Southeast Asian stock markets,
although significant coefficients in (10.4) will support the hypothesis of seasonality in
returns, it is important to note that risk factors have not been taken into account. Before
drawing conclusions on the potential presence of arbitrage opportunities or inefficient
markets, it is important to allow for the possibility that the market can be more or less
risky on certain days than others. Hence, low (high) significant returns in (10.4) might be
explained by low (high) risk. Brooks and Persand thus test for seasonality using the
empirical market model, whereby market risk is proxied by the return on the FTA
World Price Index. Hence, in order to look at how risk varies across the days of the
week, interactive (i.e. slope) dummy variables are used to determine whether risk
increases (decreases) on the day of high (low) returns. The equation, estimated
separately using time series data for each country can be written

r t =
(

5∑
i=1

αi Di t + βi Di t RWMt

)
+ ut (10.7)

where αi and βi are coefficients to be estimated, Dit is the i th dummy variable taking
the value 1 for day t = i and zero otherwise, and RWMt is the return on the world
market index. In this way, when considering the effect of market risk on seasonality,
both risk and return are permitted to vary across the days of the week. The results from
estimation of (10.6) are given in table 10.2. Note that South Korea and the Philippines
are excluded from this part of the analysis, since no significant calendar anomalies
were found to explain in table 10.1.

As can be seen, significant Monday effects in the Bangkok and Kuala Lumpur stock
exchanges, and a significant Thursday effect in the latter, remain even after the
inclusion of the slope dummy variables which allow risk to vary across the week. The
t -ratios do fall slightly in absolute value, however, indicating that the day-of-the-week
effects become slightly less pronounced. The significant negative average return for
the Taiwanese stock exchange, however, completely disappears. It is also clear that
average risk levels vary across the days of the week. For example, the betas for the
Bangkok stock exchange vary from a low of 0.36 on Monday to a high of over unity on
Tuesday. This illustrates that not only is there a significant positive Monday effect in this
market, but also that the responsiveness of Bangkok market movements to changes in
the value of the general world stock market is considerably lower on this day than on
other days of the week.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Table 10.2 Day-of-the-week effects with the inclusion of
interactive dummy variables with the risk proxy

Thailand Malaysia Taiwan

Monday 0.00322 0.00185 0.544E-3

(3.3571)∗∗ (2.8025)∗∗ (0.3945)

Tuesday −0.00114 −0.00122 0.00140

(−1.1545) (−1.8172) (1.0163)

Wednesday −0.00164 0.25E-3 −0.00263

(−1.6926) (0.3711) (−1.9188)

Thursday 0.00104 0.00157 −0.00166

(1.0913) (2.3515)∗ (−1.2116)

Friday 0.31E-4 −0.3752 −0.13E-3

(0.03214) (−0.5680) (−0.0976)

Beta-Monday 0.3573 0.5494 0.6330

(2.1987)∗ (4.9284)∗∗ (2.7464)∗∗

Beta-Tuesday 1.0254 0.9822 0.6572

(8.0035)∗∗ (11.2708)∗∗ (3.7078)∗∗

Beta-Wednesday 0.6040 0.5753 0.3444

(3.7147)∗∗ (5.1870)∗∗ (1.4856)

Beta-Thursday 0.6662 0.8163 0.6055

(3.9313)∗∗ (6.9846)∗∗ (2.5146)∗

Beta-Friday 0.9124 0.8059 1.0906

(5.8301)∗∗ (7.4493)∗∗ (4.9294)∗∗

Notes: Coefficients are given in each cell followed by t-ratios in parentheses; ∗ and ∗∗ denote
significance at the 5% and 1%, levels respectively.
Source: Brooks and Persand (2001a).

10.3.2 Dummy variables for seasonality in EViews

The most commonly observed calendar effect in monthly data is a January effect. In
order to examine whether there is indeed a January effect in a monthly time series
regression, a dummy variable is created that takes the value 1 only in the months
of January. This is easiest achieved by creating a new dummy variable called
JANDUM containing zeros everywhere, and then editing the variable entries
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manually, changing all of the zeros for January months to ones. Returning to
the Microsoft stock price example in the ‘macro.wf1’ workfile of chapters 4 and
5, Create this variable using the methodology described above, and run the
regression again including this new dummy variable as well. The results of this
regression are in the following table.

Dependent Variable: ERMSOFT
Method: Least Squares
Date: 07/08/13 Time: 06:30
Sample (adjusted): 1986M05 2013M04
Included observations: 324 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.222940 0.897978 −0.248269 0.8041
ERSANDP 1.386384 0.143283 9.675858 0.0000

DPROD −1.242103 1.206216 −1.029752 0.3039
DCREDIT −3.18E-05 6.97E-05 −0.456415 0.6484

DINFLATION 1.962921 2.242415 0.875360 0.3820
DMONEY −0.003737 0.034398 −0.108637 0.9136
DSPREAD 4.281578 6.333687 0.676001 0.4995

RTERM 4.622120 2.287478 2.020619 0.0442
FEB98DUM −65.65307 11.59806 −5.660694 0.0000
FEB03DUM −66.80029 11.57405 −5.771558 0.0000
JANDUM 4.127243 2.834769 1.455936 0.1464

R-squared 0.350457 Mean dependent var −0.311466
Adjusted R-squared 0.329705 S.D. dependent var 14.05871
S.E. of regression 11.51008 Akaike info criterion 7.757685
Sum squared resid 41466.86 Schwarz criterion 7.886043
Log likelihood −1245.745 Hannan-Quinn criter. 7.886043
F-statistic 16.88775 Durbin-Watson stat 2.153722
Prob(F-statistic) 0.000000

As can be seen, the dummy is just outside being statistically significant at the
10% level, and it has the expected positive sign. The coefficient value of 4.127,
suggests that on average and holding everything else equal, Microsoft stock returns
are around 4% higher in January than the average for other months of the year.

• • • • • • • • • • • • • • 10.4 Estimating simple piecewise linear functions

The piecewise linear model is one example of a general set of models known as
spline techniques. Spline techniques involve the application of polynomial functions
in a piecewise fashion to different portions of the data. These models are widely
used to fit yield curves to available data on the yields of bonds of different maturities
(see, for example, Shea, 1984).
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xt
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Threshold
value of x

Figure 10.4 Piecewise linear model with threshold x∗

A simple piecewise linear model could operate as follows. If the relationship
between two series, y and x, differs depending on whether x is smaller or larger
than some threshold value x∗, this phenomenon can be captured using dummy
variables. A dummy variable, Dt , could be defined, taking values

Dt =
{

0 if xt < x∗

1 if xt ≥ x∗ (10.8)

To offer an illustration of where this may be useful, it is sometimes the case that the
tick size limits vary according to the price of the asset. For example, according to
George and Longstaff (1993, see also chapter 6 of this book), the Chicago Board of
Options Exchange (CBOE) limits the tick size to be $(1/8) for options worth $3
or more, and $(1/16) for options worth less than $3. This means that the minimum
permissible price movements are $(1/8) and ($1/16) for options worth $3 or more
and less than $3, respectively. Thus, if y is the bid–ask spread for the option, and
x is the option price, used as a variable to partly explain the size of the spread, the
spread will vary with the option price partly in a piecewise manner owing to the
tick size limit. The model could thus be specified as

yt = β1 + β2xt + β3 Dt + β4 Dt xt + ut (10.9)

with Dt defined as above. Viewed in the light of the above discussion on seasonal
dummy variables, the dummy in (10.8) is used as both an intercept and a slope
dummy. An example showing the data and regression line is given by figure 10.4.

Note that the value of the threshold or ‘knot’ is assumed known at this stage.
Throughout, it is also possible that this situation could be generalised to the case
where yt is drawn from more than two regimes or is generated by a more complex
model.
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• • • • • • • • • • • • • • 10.5 Markov switching models

Although a large number of more complex, non-linear threshold models have been
proposed in the econometrics literature, only two kinds of model have had any
noticeable impact in finance (aside from threshold GARCH models of the type
alluded to in chapter 8). These are the Markov regime switching model associated
with Hamilton (1989, 1990), and the threshold autoregressive model associated
with Tong (1983, 1990). Each of these formulations will be discussed below.

10.5.1 Fundamentals of Markov switching models

Under the Markov switching approach, the universe of possible occurrences is split
into m states of the world, denoted s i , i = 1, . . . , m , corresponding to m regimes.
In other words, it is assumed that yt switches regime according to some unobserved
variable, s t , that takes on integer values. In the remainder of this chapter, it will
be assumed that m = 1 or 2. So if s t = 1, the process is in regime 1 at time t ,
and if s t = 2, the process is in regime 2 at time t . Movements of the state variable
between regimes are governed by a Markov process. This Markov property can be
expressed as

P[a < yt ≤ b | y1, y2, . . . , yt−1] = P[a < yt ≤ b | yt−1] (10.10)

In plain English, this equation states that the probability distribution of the state at
any time t depends only on the state at time t − 1 and not on the states that were
passed through at times t − 2, t − 3, . . . Hence Markov processes are not path-
dependent. The model’s strength lies in its flexibility, being capable of capturing
changes in the variance between state processes, as well as changes in the mean.

The most basic form of Hamilton’s model, also known as ‘Hamilton’s filter’
(see Hamilton, 1989), comprises an unobserved state variable, denoted zt , that is
postulated to evaluate according to a first order Markov process

prob[zt = 1|zt−1 = 1] = p11 (10.11)

prob[zt = 2|zt−1 = 1] = 1 − p11 (10.12)

prob[zt = 2|zt−1 = 2] = p22 (10.13)

prob[zt = 1|zt−1 = 2] = 1 − p22 (10.14)

where p11 and p22 denote the probability of being in regime 1, given that the
system was in regime 1 during the previous period, and the probability of being
in regime 2, given that the system was in regime 2 during the previous period,
respectively. Thus 1 − p11 defines the probability that yt will change from state 1
in period t − 1 to state 2 in period t , and 1 − p22 defines the probability of a shift
from state 2 to state 1 between times t − 1 and t . It can be shown that under this
specification, zt evolves as an AR(1) process

zt = (1 − p11) + ρzt−1 + ηt (10.15)
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where ρ = p11 + p22 − 1. Loosely speaking, zt can be viewed as a generalisation
of the dummy variables for one-off shifts in a series discussed above. Under the
Markov switching approach, there can be multiple shifts from one set of behaviour
to another.

In this framework, the observed returns series evolves as given by (10.15)

yt = μ1 + μ2zt + (σ 2
1 + φzt )1/2ut (10.16)

where ut ∼ N(0, 1). The expected values and variances of the series are μ1 and
σ 2

1 , respectively in state 1, and (μ1 + μ2) and σ 2
1 + φ in respectively, state 2. The

variance in state 2 is also defined, σ 2
2 = σ 2

1 + φ. The unknown parameters of the
model (μ1, μ2, σ

2
1 , σ 2

2 , p11, p22) are estimated using maximum likelihood. Details
are beyond the scope of this book, but are most comprehensively given in Engel
and Hamilton (1990).

If a variable follows a Markov process, all that is required to forecast the
probability that it will be in a given regime during the next period is the current
period’s probability and a set of transition probabilities, given for the case of two
regimes by (10.11)–(10.14). In the general case where there are m states, the
transition probabilities are best expressed in a matrix as

P =

⎡
⎢⎣

P11 P12 . . . P1m
P21 P22 . . . P2m
. . . . . . . . . . . .

Pm1 Pm2 . . . Pmm

⎤
⎥⎦ (10.17)

where Pi j is the probability of moving from regime i to regime j . Since, at any
given time, the variable must be in one of the m states, it must be true that

m∑
j=1

Pi j = 1 ∀ i (10.18)

A vector of current state probabilities is then defined as

πt = [π1 π2 . . . πm ] (10.19)

where πi is the probability that the variable y is currently in state i . Given πt and
P , the probability that the variable y will be in a given regime next period can be
forecast using

πt+1 = πt P (10.20)

The probabilities for S steps into the future will be given by

πt+s = πt P s (10.21)

• • • • • • • • • • • • • • 10.6 A Markov switching model for the real exchange rate

There have been a number of applications of the Markov switching model in
finance. Clearly, such an approach is useful when a series is thought to undergo
shifts from one type of behaviour to another and back again, but where the ‘forcing
variable’ that causes the regime shifts is unobservable.
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One such application is to modelling the real exchange rate. As discussed in
chapter 8, purchasing power parity (PPP) theory suggests that the law of one price
should always apply in the long run such that the cost of a representative basket of
goods and services is the same wherever it is purchased, after converting it into a
common currency. Under some assumptions, one implication of PPP is that the
real exchange rate (that is, the exchange rate divided by a general price index such
as the consumer price index (CPI)) should be stationary. However, a number of
studies have failed to reject the unit root null hypothesis in real exchange rates,
indicating evidence against the PPP theory.

It is widely known that the power of unit root tests is low in the presence of
structural breaks as the ADF test finds it difficult to distinguish between a stationary
process subject to structural breaks and a unit root process. In order to investigate
this possibility, Bergman and Hansson (2005) estimate a Markov switching model
with an AR(1) structure for the real exchange rate, which allows for multiple
switches between two regimes. The specification they use is

yt = μs t + φyt−1 + εt (10.22)

where yt is the real exchange rate, s t , (t = 1, 2) are the two states, and εt ∼
N(0, σ 2).1 The state variable s t is assumed to follow a standard 2-regime Markov
process as described above.

Quarterly observations from 1973Q2 to 1997Q4 (99 data points) are used on
the real exchange rate (in units of foreign currency per US dollar) for the UK,
France, Germany, Switzerland, Canada and Japan. The model is estimated using
the first seventy-two observations (1973Q2–1990Q4) with the remainder retained
for out-of-sample forecast evaluation. The authors use 100 times the log of the
real exchange rate, and this is normalised to take a value of one for 1973Q2 for
all countries. The Markov switching model estimates obtained using maximum
likelihood estimation are presented in table 10.3.

As the table shows, the model is able to separate the real exchange rates into
two distinct regimes for each series, with the intercept in regime 1 (μ1) being
positive for all countries except Japan (resulting from the phenomenal strength of
the yen over the sample period), corresponding to a rise in the log of the number of
units of the foreign currency per US dollar, i.e. a depreciation of the domestic cur-
rency against the dollar. μ2, the intercept in regime 2, is negative for all countries,
corresponding to a domestic currency appreciation against the dollar. The proba-
bilities of remaining within the same regime during the following period (p11 and
p22) are fairly low for the UK, France, Germany and Switzerland, indicating fairly
frequent switches from one regime to another for those countries’ currencies.

Interestingly, after allowing for the switching intercepts across the regimes, the
AR(1) coefficient, φ, in table 10.3 is a considerable distance below unity, indicating
that these real exchange rates are stationary. Bergman and Hansson simulate data
from the stationary Markov switching AR(1) model with the estimated parameters

1 The authors also estimate models that allow φ and σ 2 to vary across the states, but the restriction
that the parameters are the same across the two states cannot be rejected and hence the values
presented in the study assume that they are constant.
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Table 10.3 Estimates of the Markov switching model for real exchange rates

Parameter UK France Germany Switzerland Canada Japan

μ1 3.554 (0.550) 6.131 (0.604) 6.569 (0.733) 2.390 (0.726) 1.693 (0.230) −0.370 (0.681)

μ2 −5.096 (0.549) −2.845 (0.409) −2.676 (0.487) −6.556 (0.775) −0.306 (0.249) −8.932 (1.157)

φ 0.928 (0.027) 0.904 (0.020) 0.888 (0.023) 0.958 (0.027) 0.922 (0.021) 0.871 (0.027)

σ2 10.118 (1.698) 7.706 (1.293) 10.719 (1.799) 13.513 (2.268) 1.644 (0.276) 15.879 (2.665)

p11 0.672 0.679 0.682 0.792 0.952 0.911

p22 0.690 0.833 0.830 0.716 0.944 0.817

Note: Standard errors in parentheses.
Source: Bergman and Hansson (2005).
Reprinted with the permission of Elsevier.
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but they assume that the researcher conducts a standard ADF test on the artificial
data. They find that for none of the cases can the unit root null hypothesis be
rejected, even though clearly this null is wrong as the simulated data are stationary.
It is concluded that a failure to account for time-varying intercepts (i.e. structural
breaks) in previous empirical studies on real exchange rates could have been the
reason for the finding that the series are unit root processes when the financial
theory had suggested that they should be stationary.

Finally, the authors employ their Markov switching AR(1) model for forecast-
ing the remainder of the exchange rates in the sample in comparison with the
predictions produced by a random walk and by a Markov switching model with a
random walk. They find that for all six series, and for forecast horizons up to four
steps (quarters) ahead, their Markov switching AR model produces predictions
with the lowest mean squared errors; these improvements over the pure random
walk are statistically significant.

• • • • • • • • • • • • • • 10.7 A Markov switching model for the gilt–equity yield ratio

As discussed below, a Markov switching approach is also useful for modelling the
time series behaviour of the gilt–equity yield ratio (GEYR), defined as the ratio
of the income yield on long-term government bonds to the dividend yield on
equities. It has been suggested that the current value of the GEYR might be a
useful tool for investment managers or market analysts in determining whether to
invest in equities or whether to invest in gilts. Thus the GEYR is purported to
contain information useful for determining the likely direction of future equity
market trends. The GEYR is assumed to have a long-run equilibrium level, devia-
tions from which are taken to signal that equity prices are at an unsustainable level.
If the GEYR becomes high relative to its long-run level, equities are viewed as
being expensive relative to bonds. The expectation, then, is that for given levels
of bond yields, equity yields must rise, which will occur via a fall in equity prices.
Similarly, if the GEYR is well below its long-run level, bonds are considered
expensive relative to stocks, and by the same analysis, the price of the latter is
expected to increase. Thus, in its crudest form, an equity trading rule based on
the GEYR would say, ‘if the GEYR is low, buy equities; if the GEYR is high,
sell equities’. The paper by Brooks and Persand (2001b) discusses the usefulness
of the Markov switching approach in this context, and considers whether prof-
itable trading rules can be developed on the basis of forecasts derived from the
model.

Brooks and Persand (2001b) employ monthly stock index dividend yields and
income yields on government bonds covering the period January 1975 until August
1997 (272 observations) for three countries – the UK, the US and Germany. The
series used are the dividend yield and index values of the FTSE100 (UK), the
S&P500 (US) and the DAX (Germany). The bond indices and redemption yields
are based on the clean prices of UK government consols, and US and German
ten-year government bonds.

As an example, figure 10.5 presents a plot of the distribution of the GEYR
for the US (in bold), together with a normal distribution having the same mean
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Figure 10.5 Unconditional distribution of US GEYR together with a normal distribution
with the same mean and variance

and variance. Clearly, the distribution of the GEYR series is not normal, and the
shape suggests two separate modes: one upper part of the distribution embodying
most of the observations, and a lower part covering the smallest values of the
GEYR.

Such an observation, together with the notion that a trading rule should be
developed on the basis of whether the GEYR is ‘high’ or ‘low’, and in the absence
of a formal econometric model for the GEYR, suggests that a Markov switching
approach may be useful. Under the Markov switching approach, the values of
the GEYR are drawn from a mixture of normal distributions, where the weights
attached to each distribution sum to one and where movements between series are
governed by a Markov process. The Markov switching model is estimated using a
maximum likelihood procedure (as discussed in chapter 9), based on GAUSS code
supplied by James Hamilton. Coefficient estimates for the model are presented in
table 10.4.

The means and variances for the values of the GEYR for each of the two
regimes are given in columns headed (1)–(4) of table 10.4 with standard errors
associated with each parameter in parentheses. It is clear that the regime switching
model has split the data into two distinct samples – one with a high mean (of
2.43, 2.46 and 3.03 for the UK, US and Germany, respectively) and one with a
lower mean (of 2.07, 2.12, and 2.16), as was anticipated from the unconditional
distribution of returns. Also apparent is the fact that the UK and German GEYR
are more variable at times when it is in the high mean regime, evidenced by their
higher variance (in fact, it is around four and twenty times higher than for the low
GEYR state, respectively). The number of observations for which the probability
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Table 10.4 Estimated parameters for the Markov switching
models

μ1 μ2 σ2
1 σ2

2 p11 p22 N1 N2

Statistic (1) (2) (3) (4) (5) (6) (7) (8)

UK 2.4293 2.0749 0.0624 0.0142 0.9547 0.9719 102 170

(0.0301) (0.0367) (0.0092) (0.0018) (0.0726) (0.0134)

US 2.4554 2.1218 0.0294 0.0395 0.9717 0.9823 100 172

(0.0181) (0.0623) (0.0604) (0.0044) (0.0171) (0.0106)

Germany 3.0250 2.1563 0.5510 0.0125 0.9816 0.9328 200 72

(0.0544) (0.0154) (0.0569) (0.0020) (0.0107) (0.0323)

Notes: Standard errors in parentheses; N1 and N2 denote the number of observations deemed to be in regimes
1 and 2, respectively.
Source: Brooks and Persand (2001b).

that the GEYR is in the high mean state exceeds 0.5 (and thus when the GEYR is
actually deemed to be in this state) is 102 for the UK (37.5% of the total), while the
figures for the US are 100 (36.8%) and for Germany 200 (73.5%). Thus, overall,
the GEYR is more likely to be in the low mean regime for the UK and US, while
it is likely to be high in Germany.

The columns marked (5) and (6) of table 10.4 give the values of p11 and p22,
respectively, that is the probability of staying in state 1 given that the GEYR was in
state 1 in the immediately preceding month, and the probability of staying in state
2 given that the GEYR was in state 2 previously, respectively. The high values of
these parameters indicates that the regimes are highly stable with less than a 10%
chance of moving from a low GEYR to a high GEYR regime and vice versa for
all three series. Figure 10.6 presents a ‘q -plot’, which shows the value of GEYR
and probability that it is in the high GEYR regime for the UK at each point in
time.

As can be seen, the probability that the UK GEYR is in the ‘high’ regime
(the dotted line) varies frequently, but spends most of its time either close to zero
or close to one. The model also seems to do a reasonably good job of specifying
which regime the UK GEYR should be in, given that the probability seems to
match the broad trends in the actual GEYR (the full line).

Engel and Hamilton (1990) show that it is possible to give a forecast of the
probability that a series yt , which follows a Markov switching process, will be in
a particular regime. Brooks and Persand (2001b) use the first sixty observations
(January 1975–December 1979) for in-sample estimation of the model parameters
(μ1, μ2, σ 2

1 , σ 2
2 , p11, p22). Then a one step-ahead forecast is produced of the



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-10 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:22

10.7 A Markov switching model for the GEYR

•
•
•
•
•
•
•
•
• 509

Ju
l 1

98
0

M
ar

 8
1

N
ov

 8
1

Ju
l 8

2
M

ar
 8

3
N

ov
 8

3
Ju

l 8
4

M
ar

 8
5

N
ov

 8
5

Ju
l 8

6
M

ar
 8

7
N

ov
 8

7
Ju

l 8
8

M
ar

 8
9

N
ov

 8
9

Ju
l 9

0
M

ar
 9

1
N

ov
 9

1
Ju

l 9
2

M
ar

 9
3

N
ov

 9
3

Ju
l 9

4
M

ar
 9

5
N

ov
 9

5
Ju

l 9
6

M
ar

 9
7

Date

V
al

ue
 o

f 
G

E
Y

R

P
ro

ba
bi

li
t y

GEYR
st = 1

3.5

3.3

3.1

2.9

2.7

2.5

2.3

2.1

1.9

1.7

1.5

1.2

1

0.8

0.6

0.4

0.2

0

Figure 10.6 Value of GEYR and probability that it is in the High GEYR regime for the UK

probability that the GEYR will be in the high mean regime during the next
period. If the probability that the GEYR will be in the low regime during the
next period is forecast to be more that 0.5, it is forecast that the GEYR will be low
and hence equities are bought or held. If the probability that the GEYR is in the
low regime is forecast to be less than 0.5, it is anticipated that the GEYR will be
high and hence gilts are invested in or held. The model is then rolled forward one
observation, with a new set of model parameters and probability forecasts being
constructed. This process continues until 212 such probabilities are estimated with
corresponding trading rules.

The returns for each out-of-sample month for the switching portfolio are
calculated, and their characteristics compared with those of buy-and-hold equities
and buy-and-hold gilts strategies. Returns are calculated as continuously com-
pounded percentage returns on a stock (the FTSE in the UK, the S&P500 in the
US, the DAX in Germany) or on a long-term government bond. The profitability
of the trading rules generated by the forecasts of the Markov switching model
are found to be superior in gross terms compared with a simple buy-and-hold
equities strategy. In the UK context, the former yields higher average returns and
lower standard deviations. The switching portfolio generates an average return
of 0.69% per month, compared with 0.43% for the pure bond and 0.62% for
the pure equity portfolios. The improvements are not so clear-cut for the US
and Germany. The Sharpe ratio for the UK Markov switching portfolio is almost
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twice that of the buy-and-hold equities portfolio, suggesting that, after allowing
for risk, the switching model provides a superior trading rule. The improvement
in the Sharpe ratio for the other two countries is, on the contrary, only very
modest.

To summarise:

● The Markov switching approach can be used to model the gilt–equity yield
ratio

● The resulting model can be used to produce forecasts of the probability that
the GEYR will be in a particular regime

● Before transactions costs, a trading rule derived from the model produces a
better performance than a buy-and-hold equities strategy, in spite of inferior
predictive accuracy as measured statistically

● Net of transactions costs, rules based on the Markov switching model are not
able to beat a passive investment in the index for any of the three countries
studied.

• • • • • • • • • • • • • • 10.8 Estimating Markov switching models in EViews

Markov switching models can now be estimated easily in EViews.2 The example
we will now consider relates to the changes in house prices series used previ-
ously. So Re-open the ‘UKHP.wf1’ file, click Quick/Estimate Equation
and then under ‘Estimation Settings, Method’, Change LS Least squares (NLS
and ARMA) to the last option, SWITCHREG - Switching Regression and
complete the dialog box as in screenshot 10.1.

The first box will include the dependent variable followed by a list of regressors
that are allowed to vary across regimes. To estimate a simple switching model with
just a varying intercept in each state, include only the constant. Any variables whose
associated parameters should not be allowed to vary across regimes should be listed
in the second box. To allow the variances to be different across the regimes, tick
the ‘Regime specific error variances’ box. We could choose more regimes
but for now select ‘2’. As usual, there is an ‘Options’ tab which allows the user
to specify how the estimation and computation of standard errors is conducted.
However, this can be left at the default options so click OK and the results will
appear as in the following table.

Examining the results, it is clear that the model has successfully captured
the features of the data. Two distinct regimes have been identified: regime 1
has a high average price increase of 0.96% per month and a low standard devi-
ation, whereas regime 2 has a negative mean return (corresponding to a price
fall of 0.16% per month) and a much higher volatility. To see the transition

2 However, threshold autoregressive models with observed threshold variables of the type described
below cannot be estimated using the built-in procedures of EViews 8.
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Screenshot 10.1 Estimating a Markov switching model

probability matrix, click View/Regime Results/Transition Results. . . and
then select Summary and click OK. The regimes are fairly stable, with prob-
abilities of around 97% of remaining in a given regime in the next period. The
average durations are forty months for regime 1 and thirty-five months for regime
2, which is again indicative of the stability of the regimes. To examine the fitted
states over time, select View/Regime Results/Regime Probabilities. It is then
possible to choose the one-step ahead probabilities, or the filtered or smoothed
probabilities. The smoothed probabilities are estimated using the entire sample
whereas the filtered probabilities use a recursive approach using only informa-
tion available at time t to compute the probability of being in each regime at
time t . Selecting the smoothed probabilties on multiple graphs gives the plots in
screenshot 10.2.

The first thing to note is that of course the two figures are mirror images of
one another since the probabilities of being in regime 1 and in regime 2 must
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Dependent Variable: DHP
Method: Switching Regression (Markov Switching)
Date: 08/13/13 Time: 06:37
Sample (adjusted): 1991M02 2013M05
Included observations: 268 after adjustments
Number of states: 2
Initial probabilities obtained from ergodic solution
Ordinary standard errors & covariance using numeric Hessian
Random search: 25 starting values with 10 iterations using 1 standard

deviation (rng=kn, seed=151806152)
Convergence achieved after 8 iterations

Variable Coefficient Std. Error z-Statistic Prob.

Regime 1

C 0.958845 0.109325 8.770593 0.0000
LOG(SIGMA) −0.066307 0.063072 −1.051297 0.2931

Regime 2

C −0.204681 0.136676 −1.497556 0.1342
LOG(SIGMA) 0.160707 0.075853 2.118648 0.0341

Transition Matrix Parameters

P11-C 3.669935 0.809152 4.535532 0.0000
P21-C −3.528586 0.885610 −3.984359 0.0001

Mean of dependent var 0.437995 S.D. dependent var 1.200502
S.E. of regression 1.102850 Sum squared resid 321.0977
Durbin-Watson stat 1.708086 Log likelihood −404.3894
Akaike info criterion 3.062607 Schwarz criterion 3.143003
Hannan-Quinn criter. 3.094898

always sum to one. Examining how the graphs move over time, the probability
of being in regime 1 was close to zero until the mid-1990s, corresponding to
a period of low or negative house price growth. The behaviour then changed
and the probability of being in the low and negative growth state (regime 2)
fell to zero and the housing market enjoyed a period of good performance until
around 2005 when the regimes became less stable but tending increasingly towards
regime 2 until early 2013 when the market again appeared to have turned a
corner.
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Screenshot 10.2 Smoothed probabilities of being in regimes 1 and 2

• • • • • • • • • • • • • • 10.9 Threshold autoregressive models

Threshold autoregressive (TAR) models are one class of non-linear autoregressive
models. Such models are a relatively simple relaxation of standard linear autoregres-
sive models that allow for a locally linear approximation over a number of states.
According to Tong (1990, p. 99), the threshold principle ‘allows the analysis of a
complex stochastic system by decomposing it into a set of smaller sub-systems’.
The key difference between TAR and Markov switching models is that, under the
former, the state variable is assumed known and observable, while it is latent under
the latter. A very simple example of a threshold autoregressive model is given by
(10.23). The model contains a first order autoregressive process in each of two
regimes, and there is only one threshold. Of course, the number of thresholds will
always be the number of regimes minus one. Thus, the dependent variable yt is
purported to follow an autoregressive process with intercept coefficient μ1 and
autoregressive coefficient φ1 if the value of the state-determining variable lagged
k periods, denoted s t−k is lower than some threshold value r . If the value of
the state-determining variable lagged k periods, is equal to or greater than that
threshold value r , yt is specified to follow a different autoregressive process, with
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intercept coefficient μ2 and autoregressive coefficient φ2. The model would be
written

yt =
{

μ1 + φ1yt−1 + u1t if s t−k < r

μ2 + φ2yt−1 + u2t if s t−k ≥ r
(10.23)

But what is s t−k, the state-determining variable? It can be any variable that is
thought to make yt shift from one set of behaviour to another. Obviously, financial
or economic theory should have an important role to play in making this decision.
If k = 0, it is the current value of the state-determining variable that influences
the regime that y is in at time t , but in many applications k is set to 1, so that the
immediately preceding value of s is the one that determines the current value of
y.

The simplest case for the state determining variable is where it is the variable
under study, i.e. s t−k = yt−k. This situation is known as a self-exciting TAR, or a
SETAR, since it is the lag of the variable y itself that determines the regime that
y is currently in. The model would now be written

yt =
{

μ1 + φ1yt−1 + u1t if yt−k < r

μ2 + φ2yt−1 + u2t if yt−k ≥ r
(10.24)

The models of (10.23) or (10.24) can of course be extended in several directions.
The number of lags of the dependent variable used in each regime may be higher
than one, and the number of lags need not be the same for both regimes. The
number of states can also be increased to more than two. A general threshold
autoregressive model, that notationally permits the existence of more than two
regimes and more than one lag, may be written

xt =
J∑

j=1

I ( j )
t

(
φ

( j )
0 +

p j∑
i=1

φ
( j )
i xt−i + u ( j )

t

)
, r j−1 ≤ zt−d ≤ r j (10.25)

where I ( j )
t is an indicator function for the j th regime taking the value one if

the underlying variable is in state j and zero otherwise. zt−d is an observed
variable determining the switching point and u ( j )

t is a zero-mean independently
and identically distributed error process. Again, if the regime changes are driven
by own lags of the underlying variable, xt (i.e. zt−d = xt−d ), then the model is a
self-exciting TAR (SETAR).

It is also worth re-stating that under the TAR approach, the variable y is either
in one regime or another, given the relevant value of s , and there are discrete
transitions between one regime and another. This is in contrast with the Markov
switching approach, where the variable y is in both states with some probability
at each point in time. Another class of threshold autoregressive models, known
as smooth transition autoregressions (STAR), allows for a more gradual transition
between the regimes by using a continuous function for the regime indicator rather
than an on–off switch (see Franses and van Dijk, 2000, chapter 3).
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• • • • • • • • • • • • • • 10.10 Estimation of threshold autoregressive models

Estimation of the model parameters (φi , r j , d , p j ) is considerably more difficult
than for a standard linear autoregressive process, since in general they cannot
be determined simultaneously in a simple way, and the values chosen for one
parameter are likely to influence estimates of the others. Tong (1983, 1990) suggests
a complex non-parametric lag regression procedure to estimate the values of the
thresholds (r j ) and the delay parameter (d ).

Ideally, it may be preferable to endogenously estimate the values of the thresh-
old(s) as part of the non-linear least squares (NLS) optimisation procedure, but
this is not feasible. The underlying functional relationship between the variables is
discontinuous in the thresholds, such that the thresholds cannot be estimated at the
same time as the other components of the model. One solution to this problem
that is sometimes used in empirical work is to use a grid search procedure that
seeks the minimal residual sum of squares over a range of values of the threshold(s)
for an assumed model. Some sample code to achieve this is presented later in this
chapter.

10.10.1 Threshold model order (lag length) determination

A simple, although far from ideal, method for determining the appropriate lag
lengths for the autoregressive components for each of the regimes would be to
assume that the same number of lags are required in all regimes. The lag length
is then chosen in the standard fashion by determining the appropriate lag length
for a linear autoregressive model, and assuming that the lag length for all states of
the TAR is the same. While it is easy to implement, this approach is clearly not
a good one, for it is unlikely that the lag lengths for each state when the data are
drawn from different regimes would be the same as that appropriate when a linear
functional form is imposed. Moreover, it is undesirable to require the lag lengths
to be the same in each regime. This conflicts with the notion that the data behave
differently in different states, which was precisely the motivation for considering
threshold models in the first place.

An alternative and better approach, conditional upon specified threshold val-
ues, would be to employ an information criterion to select across the lag lengths
in each regime simultaneously. A drawback of this approach, that Franses and van
Dijk (2000) highlight, is that in practice it is often the case that the system will
be resident in one regime for a considerably longer time overall than the others.
In such situations, information criteria will not perform well in model selection
for the regime(s) containing few observations. Since the number of observations
is small in these cases, the overall reduction in the residual sum of squares as more
parameters are added to these regimes will be very small. This leads the criteria
to always select very small model orders for states containing few observations.
A solution, therefore, is to define an information criterion that does not penalise
the whole model for additional parameters in one state. Tong (1990) proposes a
modified version of Akaike’s information criterion (AIC) that weights σ̂ 2 for each
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regime by the number of observations in that regime. For the two-regime case,
the modified AIC would be written

AIC (p1, p2) = T1 ln σ̂ 2
1 + T2 ln σ̂ 2

2 + 2(p1 + 1) + 2(p2 + 1) (10.26)

where T1 and T2 are the number of observations in regimes 1 and 2, respectively,
p1 and p2 are the lag lengths and σ̂ 2

1 and σ̂ 2
2 are the residual variances. Similar

modifications can of course be developed for other information criteria.

10.10.2 Determining the delay parameter, d

The delay parameter, d , can be decided in a variety of ways. It can be determined
along with the lag orders for each of the regimes by an information criterion,
although of course this added dimension greatly increases the number of candidate
models to be estimated. In many applications, however, it is typically set to one
on theoretical grounds. It has been argued (see, for example, Kräger and Kugler,
1993) that in the context of financial markets, it is most likely that the most recent
past value of the state-determining variable would be the one to determine the
current state, rather than that value two, three, . . . periods ago.

Estimation of the autoregressive coefficients can then be achieved using NLS.
Further details of the procedure are discussed in Franses and van Dijk (2000,
chapter 3).

• • • • • • • • • • • • • • 10.11 Specification tests in the context of Markov switching and threshold
autoregressive models: a cautionary note

In the context of both Markov switching and TAR models, it is of interest to
determine whether the threshold models represent a superior fit to the data relative
to a comparable linear model. A tempting, but incorrect, way to examine this issue
would be to do something like the following: estimate the desired threshold model
and the linear counterpart, and compare the residual sums of squares using an F-
test. However, such an approach is not valid in this instance owing to unidentified
nuisance parameters under the null hypothesis. In other words, the null hypothesis
for the test would be that the additional parameters in the regime switching model
were zero so that the model collapsed to the linear specification, but under the
linear model, there is no threshold. The upshot is that the conditions required to
show that the test statistics follow a standard asymptotic distribution do not apply.
Hence analytically derived critical values are not available, and critical values must
be obtained via simulation for each individual case. Hamilton (1994) provides
substitute hypotheses for Markov switching model evaluation that can validly be
tested using the standard hypothesis testing framework, while Hansen (1996) offers
solutions in the context of TAR models.

This chapter will now examine two applications of TAR modelling in finance:
one to the modelling of exchange rates within a managed floating environment,
and one to arbitrage opportunities implied by the difference between spot and
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futures prices for a given asset. For a (rather technical) general survey of several
TAR applications in finance, see Yadav, Pope and Paudyal (1994).

• • • • • • • • • • • • • • 10.12 A SETAR model for the French franc–German mark exchange rate

During the 1990s, European countries which were part of the Exchange Rate
Mechanism (ERM) of the European Monetary System (EMS), were required to
constrain their currencies to remain within prescribed bands relative to other ERM
currencies. This seemed to present no problem by early in the new millennium
since European Monetary Union (EMU) was already imminent and conversion
rates of domestic currencies into Euros were already known. However, in the early
1990s, the requirement that currencies remain within a certain band around their
central parity forced central banks to intervene in the markets to effect either an
appreciation or a depreciation in their currency. A study by Chappell et al. (1996)
considered the effect that such interventions might have on the dynamics and
time series properties of the French franc–German mark (hereafter FRF–DEM)
exchange rate. ‘Core currency pairs’, such as the FRF–DEM were allowed to move
up to ±2.25% either side of their central parity within the ERM. The study used
daily data from 1 May 1990 until 30 March 1992. The first 450 observations are
used for model estimation, with the remaining 50 being retained for out-of-sample
forecasting.

A SETAR model was employed to allow for different types of behaviour
according to whether the exchange rate is close to the ERM boundary. The
argument is that, close to the boundary, the respective central banks will be
required to intervene in opposite directions in order to drive the exchange rate
back towards its central parity. Such intervention may be expected to affect the
usual market dynamics that ensure fast reaction to news and the absence of arbitrage
opportunities.

Let Et denote the log of the FRF–DEM exchange rate at time t . Chappell et al.
(1996) estimate two models: one with two thresholds and one with one threshold.
The former was anticipated to be most appropriate for the data at hand since
exchange rate behaviour is likely to be affected by intervention if the exchange
rate comes close to either the ceiling or the floor of the band. However, over the
sample period employed, the mark was never a weak currency, and therefore the
FRF–DEM exchange rate was either at the top of the band or in the centre, never
close to the bottom. Therefore, a model with one threshold is more appropriate
since any second estimated threshold was deemed likely to be spurious.

The authors show, using DF and ADF tests, that the exchange rate series is not
stationary. Therefore, a threshold model in the levels is not strictly valid for analysis.
However, they argue that an econometrically valid model in first difference would
lose its intuitive interpretation, since it is the value of the exchange rate that is
targeted by the monetary authorities, not its change. In addition, if the currency
bands are working effectively, the exchange rate is constrained to lie within them,
and hence in some senses of the word, it must be stationary, since it cannot
wander without bound in either direction. The model orders for each regime are
determined using AIC, and the estimated model is given in table 10.5.
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Table 10.5 SETAR model for FRF–DEM

Number of
Model For regime observations

Ê t = 0.0222 + 0.9962Et−1 Et−1 < 5.8306 344

(0.0458) (0.0079)

Ê t = 0.3486 + 0.4394Et−1 + 0.3057Et−2 + 0.1951Et−3 Et−1 ≥ 5.8306 103

(0.2391) (0.0889) (0.1098) (0.0866)

Source: Chappell et al. (1996). Reprinted with permission of John Wiley and Sons.

As can be seen, the two regimes comprise a random walk with drift under
normal market conditions, where the exchange rate lies below a certain threshold,
and an AR(3) model corresponding to much slower market adjustment when the
exchange rate lies on or above the threshold. The (natural log of) the exchange
rate’s central parity over the period was 5.8153, while the (log of the) ceiling of
the band was 5.8376. The estimated threshold of 5.8306 is approximately 1.55%
above the central parity, while the ceiling is 2.25% above the central parity. Thus,
the estimated threshold is some way below the ceiling, which is in accordance with
the authors’ expectations since the central banks are likely to intervene before the
exchange rate actually hits the ceiling.

Forecasts are then produced for the last fifty observations using the threshold
model estimated above, the SETAR model with two thresholds, a random walk
and an AR(2) (where the model order was chosen by in-sample minimisation of
AIC). The results are presented here in table 10.6.

For the FRF–DEM exchange rate, the one-threshold SETAR model is found
to give lower mean squared errors than the other three models for one-, two-,
three-, five- and ten-step-ahead forecasting horizons. Under the median squared
forecast error measure, the random walk is marginally superior to the one threshold
SETAR one and two steps ahead, while it has regained its prominence by three
steps ahead.

However, in a footnote, the authors also argue that the SETAR model was
estimated and tested for nine other ERM exchange rate series, but in every one
of these other cases, the SETAR models produced less accurate forecasts than
a random walk model. A possible explanation for this phenomenon is given in
section 10.14.

Brooks (2001) extends the work of Chappell et al. to allow the conditional
variance of the exchange rate series to be drawn from a GARCH process which
itself contains a threshold, above which the behaviour of volatility is different to that
below. He finds that the dynamics of the conditional variance are quite different
from one regime to the next, and that models allowing for different regimes can
provide superior volatility forecasts compared to those which do not.
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Table 10.6 FRF–DEM forecast accuracies

Steps ahead

1 2 3 5 10

Panel A: mean squared forecast error

Random walk 1.84E-07 3.49E-07 4.33E-07 8.03E-07 1.83E-06

AR(2) 3.96E-07 1.19E-06 2.33E-06 6.15E-06 2.19E-05

One-threshold SETAR 1.80E-07 2.96E-07 3.63E-07 5.41E-07 5.34E-07

Two-threshold SETAR 1.80E-07 2.96E-07 3.63E-07 5.74E-07 5.61E-07

Panel B: Median squared forecast error

Random walk 7.80E-08 1.04E-07 2.21E-07 2.49E-07 1.00E-06

AR(2) 2.29E-07 9.00E-07 1.77E-06 5.34E-06 1.37E-05

One-threshold SETAR 9.33E-08 1.22E-07 1.57E-07 2.42E-07 2.34E-07

Two-threshold SETAR 1.02E-07 1.22E-07 1.87E-07 2.57E-07 2.45E-07

Source: Chappell et al. (1996). Reprinted with permission of John Wiley and Sons.

• • • • • • • • • • • • • • 10.13 Threshold models and the dynamics of the FTSE 100 index and index
futures markets

One of the examples given in chapter 8 discussed the implications for the effective
functioning of spot and futures markets of a lead–lag relationship between the
two series. If the two markets are functioning effectively, it was also shown that a
cointegrating relationship between them would be expected.

If stock and stock index futures markets are functioning properly, price move-
ments in these markets should be best described by a first order vector error
correction model (VECM) with the error correction term being the price dif-
ferential between the two markets (the basis). The VECM could be expressed
as [

� f t
�s t

]
=

[
π11
π21

]
[ f t−1 − s t−1 ] +

[
u1t
u2t

]
(10.27)

where � f t and �s t are changes in the log of the futures and spot prices, respectively,
π11 and π21 are coefficients describing how changes in the spot and futures prices
occur as a result of the basis. Writing these two equations out in full, the following
would result

f t − f t−1 = π11[ f t−1 − s t−1] + u1t (10.28)

s t − s t−1 = π21[ f t−1 − s t−1] + u2t (10.29)
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Subtracting (10.29) from (10.28) would give the following expression

( f t − f t−1) − (s t − s t−1) = (π11 − π21)[ f t−1 − s t−1] + (u1t − u2t ) (10.30)

which can also be written as

( f t − s t ) − ( f t−1 − s t−1) = (π11 − π21)[ f t−1 − s t−1] + (u1t − u2t ) (10.31)

or, using the result that b t = f t − s t

b t − b t−1 = (π11 − π21)b t−1 + εt (10.32)

where εt = u1t − u2t . Taking b t−1 from both sides

b t = (π11 − π21 − 1)b t−1 + εt (10.33)

If the first order VECM is appropriate, then it is not possible to identify structural
equations for returns in stock and stock index futures markets with the obvious
implications for predictability and the two markets are indeed efficient. Hence, for
efficient markets and no arbitrage, there should be only a first order autoregressive
process describing the basis and no further patterns. Recent evidence suggests,
however, that there are more dynamics present than should be in effectively func-
tioning markets. In particular, it has been suggested that the basis up to three trading
days prior carries predictive power for movements in the FTSE 100 cash index,
suggesting the possible existence of unexploited arbitrage opportunities. The paper
by Brooks and Garrett (2002) analyses whether such dynamics can be explained as
the result of different regimes within which arbitrage is not triggered and outside
of which arbitrage will occur. The rationale for the existence of different regimes
in this context is that the basis (adjusted for carrying costs if necessary), which is
very important in the arbitrage process, can fluctuate within bounds determined
by transaction costs without actually triggering arbitrage. Hence an autoregressive
relationship between the current and previous values of the basis could arise and
persist over time within the threshold boundaries since it is not profitable for
traders to exploit this apparent arbitrage opportunity. Hence there will be thresh-
olds within which there will be no arbitrage activity but once these thresholds are
crossed, arbitrage should drive the basis back within the transaction cost bounds.
If markets are functioning effectively then irrespective of the dynamics of the
basis within the thresholds, once the thresholds have been crossed the additional
dynamics should disappear.

The data used by Brooks and Garrett (2002) are the daily closing prices for
the FTSE 100 stock index and stock index futures contract for the period January
1985–October 1992. The October 1987 stock market crash occurs right in the
middle of this period, and therefore Brooks and Garrett conduct their analysis on a
‘pre-crash’ and a ‘post-crash’ sample as well as the whole sample. This is necessary
since it has been observed that the normal spot/futures price relationship broke
down around the time of the crash (see Antoniou and Garrett, 1993). Table 10.7
shows the coefficient estimates for a linear AR(3) model for the basis.

The results for the whole sample suggest that all of the first three lags of the basis
are significant in modelling the current basis. This result is confirmed (although less
strongly) for the pre-crash and post-crash sub-samples. Hence, a linear specification
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Table 10.7 Linear AR(3) model for the basis

bt = φ0 + φ1bt−1 + φ2bt−2 + φ3bt−3 + εt

Parameter Whole sample Pre-crash sample Post-crash sample

φ1 0.7051∗∗ 0.7174∗∗ 0.6791∗∗

(0.0225) (0.0377) (0.0315)

φ2 0.1268∗∗ 0.0946∗ 0.1650∗∗

(0.0274) (0.0463) (0.0378)

φ3 0.0872∗∗ 0.1106∗∗ 0.0421

(0.0225) (0.0377) (0.0315)

Notes: Figures in parentheses are heteroscedasticity-robust standard errors; ∗ and ∗∗ denote
significance at the 5% and 1% levels, respectively.
Source: Brooks and Garrett (2002).

would seem to suggest that the basis is to some degree predictable, indicating
possible arbitrage opportunities.

In the absence of transactions costs, deviations of the basis away from zero in
either direction will trigger arbitrage. The existence of transactions costs, however,
means that the basis can deviate from zero without actually triggering arbitrage.
Thus, assuming that there are no differential transactions costs, there will be upper
and lower bounds within which the basis can fluctuate without triggering arbitrage.
Brooks and Garrett (2002) estimate a SETAR model for the basis, with two
thresholds (three regimes) since these should correspond to the upper and lower
boundaries within which the basis can fluctuate without causing arbitrage. Under
efficient markets, profitable arbitrage opportunities will not be present when r 0 ≤
b t−1 < r 1 where r 0 and r 1 are the thresholds determining which regime the basis
is in. If these thresholds are interpreted as transactions costs bounds, when the
basis falls below the lower threshold (r 0), the appropriate arbitrage transaction is to
buy futures and short stock. This applies in reverse when the basis rises above r 1.
When the basis lies within the thresholds, there should be no arbitrage transactions.
Three lags of the basis enter into each equation and the thresholds are estimated
using a grid search procedure. The one-period lag of the basis is chosen as the
state-determining variable. The estimated model for each sample period is given
in table 10.8.

The results show that, to some extent, the dependence in the basis is reduced
when it is permitted to be drawn from one of three regimes rather than a sin-
gle linear model. For the post-crash sample, and to some extent for the whole
sample and the pre-crash sample, it can be seen that there is considerably slower
adjustment, evidenced by the significant second and third order autoregressive
terms, between the thresholds than outside them. There still seems to be some
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Table 10.8 A two-threshold SETAR model for the basis

bt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0
1 +

3∑
i=1

φ1
i bt−i + ε1

t if bt−1 < r0

φ0
2 +

3∑
i=1

φ2
i bt−i + ε2

t if r0 ≤ bt−1 < r1

φ0
3 +

3∑
i=1

φ3
i bt−i + ε3

t if bt−1 ≥ r1

bt−1 < r0 r0 ≤ bt−1 < r1 bt−1 ≥ r1

Panel A: whole sample

φ1 0.5743∗∗ −0.6395 0.8380∗∗

(0.0415) (0.7549) (0.0512)

φ2 0.2088∗∗ −0.0594 0.0439

(0.0401) (0.0846) (0.0462)

φ3 0.1330∗∗ 0.2267∗∗ 0.0415

(0.0355) (0.0811) (0.0344)

r̂0 0.0138

r̂1 0.0158

Panel B: pre-crash sample

φ1 0.4745∗∗ 0.4482∗ 0.8536∗∗

(0.0808) (0.1821) (0.0720)

φ2 0.2164∗∗ 0.2608∗∗ −0.0388

(0.0781) (0.0950) (0.0710)

φ3 0.1142 0.2309∗∗ 0.0770

(0.0706) (0.0834) (0.0531)

r̂0 0.0052

r̂1 0.0117

Panel C: post-crash sample

φ1 0.5019∗∗ 0.7474∗∗ 0.8397∗∗

(0.1230) (0.1201) (0.0533)

φ2 0.2011∗ 0.2984∗∗ 0.0689

(0.0874) (0.0691) (0.0514)

φ3 0.0434 0.1412 0.0461

(0.0748) (0.0763) (0.0400)

r̂0 0.0080

r̂1 0.0140

Notes: Figures in parentheses are heteroscedasticity-robust standard errors, ∗ and ∗∗ denote
significance at the 5% and at 1% levels, respectively.
Source: Brooks and Garrett (2002).
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evidence of slow adjustment below the lower threshold, where the appropriate
trading strategy would be to go long the futures and short the stock. Brooks and
Garrett (2002) attribute this in part to restrictions on and costs of short-selling
the stock that prevent adjustment from taking place more quickly. Short-selling of
futures contracts is easier and less costly, and hence there is no action in the basis
beyond an AR(1) when it is above the upper threshold.

Such a finding is entirely in accordance with expectations, and suggests that,
once allowance is made for reasonable transactions costs, the basis may fluctuate
with some degree of flexibility where arbitrage is not profitable. Once the basis
moves outside the transactions costs-determined range, adjustment occurs within
one period as the theory predicted.

• • • • • • • • • • • • • • 10.14 A note on regime switching models and forecasting accuracy

Several studies have noted the inability of threshold or regime switching models
to generate superior out-of-sample forecasting accuracy than linear models or a
random walk in spite of their apparent ability to fit the data better in sample. A
possible reconciliation is offered by Dacco and Satchell (1999), who suggest that
regime switching models may forecast poorly owing to the difficulty of forecasting
the regime that the series will be in. Thus, any gain from a good fit of the model
within the regime will be lost if the model forecasts the regime wrongly. Such an
argument could apply to both the Markov switching and TAR classes of models.

Key concepts

The key terms to be able to define and explain from this chapter are
• seasonality • intercept dummy variable

• slope dummy variable • dummy variable trap

• regime switching • threshold autoregression (TAR)

• self-exciting TAR • delay parameter

• Markov process • transition probability

Self-study questions

1. A researcher is attempting to form an econometric model to explain daily
movements of stock returns. A colleague suggests that she might want to see
whether her data are influenced by daily seasonality.
(a) How might she go about doing this?
(b) The researcher estimates a model with the dependent variable as the daily

returns on a given share traded on the London stock exchange, and
various macroeconomic variables and accounting ratios as independent
variables. She attempts to estimate this model, together with five daily
dummy variables (one for each day of the week), and a constant term,
using EViews. EViews then tells her that it cannot estimate the
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parameters of the model. Explain what has probably happened, and how
she can fix it.

(c) A colleague estimates instead the following model for asset returns, r t is as
follows (with standard errors in parentheses)

r̂ t = 0.0034 − 0.0183D1t + 0.0155D2t − 0.0007D3t

(0.0146) (0.0068) (0.0231) (0.0179)

−0.0272D4t + other variables

(0.0193)

The model is estimated using 500 observations. Is there significant
evidence of any ‘day-of-the-week effects’ after allowing for the effects of
the other variables?

(d) Distinguish between intercept dummy variables and slope dummy
variables, giving an example of each.

(e) A financial researcher suggests that many investors rebalance their
portfolios at the end of each financial year to realise losses and
consequently reduce their tax liabilities. Develop a procedure to test
whether this behaviour might have an effect on equity returns.

2. (a) What is a switching model? Describe briefly and distinguish between
threshold autoregressive models and Markov switching models. How
would you decide which of the two model classes is more appropriate for
a particular application?

(b) Describe the following terms as they are used in the context of Markov
switching models
(i) The Markov property
(ii) A transition matrix.

(c) What is a SETAR model? Discuss the issues involved in estimating such a
model.

(d) What problem(s) may arise if the standard information criteria presented
in chapter 6 were applied to the determination of the orders of each
equation in a TAR model? How do suitably modified criteria overcome
this problem?

(e) A researcher suggests a reason that many empirical studies find that PPP
does not hold is the existence of transactions costs and other rigidities in
the goods markets. Describe a threshold model procedure that may be
used to evaluate this proposition in the context of a single good.

(f ) A researcher estimates a SETAR model with one threshold and three lags
in both regimes using maximum likelihood. He then estimates a linear
AR(3) model by maximum likelihood and proceeds to use a likelihood
ratio test to determine whether the non-linear threshold model is
necessary. Explain the flaw in this approach.

(f) ‘Threshold models are more complex than linear autoregressive models.
Therefore, the former should produce more accurate forecasts since they
should capture more relevant features of the data.’ Discuss.
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3. A researcher suggests that the volatility dynamics of a set of daily equity
returns are different:
● on Mondays relative to other days of the week
● if the previous day’s return volatility was bigger than 0.1% relative to

when the previous day’s return volatility was less than 0.1%.
Describe models that could be used to capture these reported features of the
data.

4. (a) Re-open the exchange rate returns series and test them for
day-of-the-week effects.

(b) Re-open the house price changes series and determine whether there is
any evidence of seasonality.
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Learning outcomes

In this chapter, you will learn how to

• Describe the key features of panel data and outline the advantages and

disadvantages of working with panels rather than other structures

• Explain the intuition behind seemingly unrelated regressions and propose

examples of where they may be usefully employed

• Contrast the fixed effect and random effect approaches to panel model

specification, determining which is the more appropriate in particular cases

• Estimate and interpret the results from panel unit root and cointegration tests

• Construct and estimate panel models in EViews

• • • • • • • • • • • • • • 11.1 Introduction – what are panel techniques and why are they used?

The situation often arises in financial modelling where we have data comprising
both time series and cross-sectional elements, and such a dataset would be known
as a panel of data or longitudinal data. A panel of data will embody information
across both time and space. Importantly, a panel keeps the same individuals or
objects (henceforth we will call these ‘entities’) and measures some quantity about
them over time.1 This chapter will present and discuss the important features of
panel analysis, and will describe the techniques used to model such data.

Econometrically, the setup we may have is as described in the following
equation

yi t = α + βxi t + ui t (11.1)

1 Hence, strictly, if the data are not on the same entities (for example, different firms or people)
measured over time, then this would not be panel data.
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where yi t is the dependent variable, α is the intercept term, β is a k× 1 vector of
parameters to be estimated on the explanatory variables, and xi t is a 1 × k vector
of observations on the explanatory variables, t = 1, . . . , T; i = 1, . . . , N.2

The simplest way to deal with such data would be to estimate a pooled regres-
sion, which would involve estimating a single equation on all the data together,
so that the dataset for y is stacked up into a single column containing all the
cross-sectional and time series observations, and similarly all of the observations
on each explanatory variable would be stacked up into single columns in the
x matrix. Then this equation would be estimated in the usual fashion using
OLS.

While this is indeed a simple way to proceed, and requires the estimation of
as few parameters as possible, it has some severe limitations. Most importantly,
pooling the data in this way implicitly assumes that the average values of the
variables and the relationships between them are constant over time and across all
of the cross-sectional units in the sample. We could, of course, estimate separate
time series regressions for each of objects or entities, but this is likely to be a
sub-optimal way to proceed since this approach would not take into account any
common structure present in the series of interest. Alternatively, we could estimate
separate cross-sectional regressions for each of the time periods, but again this may
not be wise if there is some common variation in the series over time. If we
are fortunate enough to have a panel of data at our disposal, there are important
advantages to making full use of this rich structure:

● First, and perhaps most importantly, we can address a broader range of issues
and tackle more complex problems with panel data than would be possible
with pure time series or pure cross-sectional data alone.

● Second, it is often of interest to examine how variables, or the relationships
between them, change dynamically (over time). To do this using pure time
series data would often require a long run of data simply to get a sufficient
number of observations to be able to conduct any meaningful hypothesis tests.
But by combining cross-sectional and time series data, one can increase the
number of degrees of freedom, and thus the power of the test, by employing
information on the dynamic behaviour of a large number of entities at the
same time. The additional variation introduced by combining the data in this
way can also help to mitigate problems of multicollinearity that may arise if
time series are modelled individually.

● Third, as will become apparent below, by structuring the model in an appro-
priate way, we can remove the impact of certain forms of omitted variables
bias in regression results.

2 Note that k is defined slightly differently in this chapter compared with others in the book.
Here, k represents the number of slope parameters to be estimated (rather than the total number
of parameters as it is elsewhere), which is equal to the number of explanatory variables in the
regression model.
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• • • • • • • • • • • • • • 11.2 What panel techniques are available?

One approach to making more full use of the structure of the data would be
to use the seemingly unrelated regression (SUR) framework initially proposed by
Zellner (1962). This has been used widely in finance where the requirement is to
model several closely related variables over time.3 A SUR is so called because the
dependent variables may seem unrelated across the equations at first sight, but a
more careful consideration would allow us to conclude that they are in fact related
after all. One example would be the flow of funds (i.e. net new money invested) to
portfolios (mutual funds) operated by two different investment banks. The flows
could be related since they are, to some extent, substitutes (if the manager of one
fund is performing poorly, investors may switch to the other). The flows are also
related because the total flow of money into all mutual funds will be affected
by a set of common factors (for example, related to people’s propensity to save
for their retirement). Although we could entirely separately model the flow of
funds for each bank, we may be able to improve the efficiency of the estimation
by capturing at least part of the common structure in some way. Under the
SUR approach, one would allow for the contemporaneous relationships between
the error terms in the two equations for the flows to the funds in each bank
by using a generalised least squares (GLS) technique. The idea behind SUR is
essentially to transform the model so that the error terms become uncorrelated. If
the correlations between the error terms in the individual equations had been zero
in the first place, then SUR on the system of equations would have been equivalent
to running separate OLS regressions on each equation. This would also be the case
if all of the values of the explanatory variables were the same in all equations –
for example, if the equations for the two funds contained only macroeconomic
variables.

However, the applicability of the technique is limited because it can be
employed only when the number of time series observations, T, per cross-sectional
unit i is at least as large as the total number of such units, N. A second problem
with SUR is that the number of parameters to be estimated in total is very large,
and the variance-covariance matrix of the errors (which will be a phenomenal
NT × NT ) also has to be estimated. For these reasons, the more flexible full panel
data approach is much more commonly used.

There are broadly two classes of panel estimator approaches that can be
employed in financial research: fixed effects models and random effects models.
The simplest types of fixed effects models allow the intercept in the regres-
sion model to differ cross-sectionally but not over time, while all of the slope
estimates are fixed both cross-sectionally and over time. This approach is evi-
dently more parsimonious than a SUR (where each cross-sectional unit would

3 For example, the SUR framework has been used to test the impact of the introduction of the
euro on the integration of European stock markets (Kim et al., 2005), in tests of the CAPM, and
in tests of the forward rate unbiasedness hypothesis (Hodgson et al., 2004).
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have different slopes as well), but it still requires the estimation of (N + k)
parameters.4

A first distinction we must draw is between a balanced panel and an unbalanced
panel. A balanced panel has the same number of time series observations for each
cross-sectional unit (or equivalently but viewed the other way around, the same
number of cross-sectional units at each point in time), whereas an unbalanced panel
would have some cross-sectional elements with fewer observations or observations
at different times to others. The same techniques are used in both cases, and
while the presentation below implicitly assumes that the panel is balanced, missing
observations should be automatically accounted for by the software package used
to estimate the model.

• • • • • • • • • • • • • • 11.3 The fixed effects model

To see how the fixed effects model works, we can take equation (11.1) above,
and decompose the disturbance term, ui t , into an individual specific effect, μi ,
and the ‘remainder disturbance’, vi t , that varies over time and entities (capturing
everything that is left unexplained about yi t ).

ui t = μi + vi t (11.2)

So we could rewrite equation (11.1) by substituting in for ui t from (11.2) to obtain

yi t = α + βxi t + μi + vi t (11.3)

We can think of μi as encapsulating all of the variables that affect yi t cross-
sectionally but do not vary over time – for example, the sector that a firm operates
in, a person’s gender, or the country where a bank has its headquarters, etc. This
model could be estimated using dummy variables, which would be termed the
least squares dummy variable (LSDV) approach

yi t = βxi t + μ1 D1i + μ2 D2i + μ3 D3i + · · · + μN DNi + vi t (11.4)

where D1i is a dummy variable that takes the value 1 for all observations on the first
entity (e.g. the first firm) in the sample and zero otherwise, D2i is a dummy variable
that takes the value 1 for all observations on the second entity (e.g. the second firm)
and zero otherwise, and so on. Notice that we have removed the intercept term
(α) from this equation to avoid the ‘dummy variable trap’ described in chapter
10 where we have perfect multicollinearity between the dummy variables and
the intercept. When the fixed effects model is written in this way, it is relatively
easy to see how to test for whether the panel approach is really necessary at all.
This test would be a slightly modified version of the Chow test described in

4 It is important to recognise this limitation of panel data techniques that the relationship between
the explained and explanatory variables is assumed constant both cross-sectionally and over time,
even if the varying intercepts allow the average values to differ. The use of panel techniques
rather than estimating separate time series regressions for each object or estimating separate cross-
sectional regressions for each time period thus implicitly assumes that the efficiency gains from
doing so outweigh any biases that may arise in the parameter estimation.
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chapter 5, and would involve incorporating the restriction that all of the intercept
dummy variables have the same parameter (i.e. H0 : μ1 = μ2 = · · · = μN). If this
null hypothesis is not rejected, the data can simply be pooled together and OLS
employed. If this null is rejected, however, then it is not valid to impose the
restriction that the intercepts are the same over the cross-sectional units and a
panel approach must be employed.

Now the model given by equation (11.4) has N + k parameters to estimate,
which would be a challenging problem for any regression package when N is large.
In order to avoid the necessity to estimate so many dummy variable parameters, a
transformation is made to the data to simplify matters. This transformation, known
as the within transformation, involves subtracting the time-mean of each entity away
from the values of the variable.5 So define yi = 1

T

∑T
t=1 yi t as the time-mean of

the observations on y for cross-sectional unit i , and similarly calculate the means
of all of the explanatory variables. Then we can subtract the time-means from
each variable to obtain a regression containing demeaned variables only. Note
that again, such a regression does not require an intercept term since now the
dependent variable will have zero mean by construction. The model containing
the demeaned variables is

yi t − yi = β(xi t − xi ) + ui t − ui (11.5)

which we could write as

ÿi t = β ẍi t + ü i t (11.6)

where the double dots above the variables denote the demeaned values.
An alternative to this demeaning would be to simply run a cross-sectional

regression on the time-averaged values of the variables, which is known as the
between estimator.6 A further possibility is that instead, the first difference operator
could be applied to equation (11.1) so that the model becomes one for explaining
the change in yi t rather than its level. When differences are taken, any variables
that do not change over time (i.e. the μi ) will again cancel out. Differencing
and the within transformation will produce identical estimates in situations where
there are only two time periods; when there are more, the choice between the two
approaches will depend on the assumed properties of the error term. Wooldridge
(2010) describes this issue in considerable detail.

Equation (11.6) can now be routinely estimated using OLS on the pooled
sample of demeaned data, but we do need to be aware of the number of degrees of
freedom which this regression will have. Although estimating the equation will use
only k degrees of freedom from the NT observations, it is important to recognise
that we also used a further N degrees of freedom in constructing the demeaned
variables (i.e. we lost a degree of freedom for every one of the N explanatory

5 It is known as the within transformation because the subtraction is made within each cross-sectional
object.

6 An advantage of running the regression on average values (the between estimator) over running it
on the demeaned values (the within estimator) is that the process of averaging is likely to reduce
the effect of measurement error in the variables on the estimation process.
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variables for which we were required to estimate the mean). Hence the number
of degrees of freedom that must be used in estimating the standard errors in an
unbiased way and when conducting hypothesis tests is NT − N − k. Any software
packages used to estimate such models should take this into account automatically.

The regression on the time-demeaned variables will give identical parameters
and standard errors as would have been obtained directly from the LSDV regression,
but without the hassle of estimating so many parameters! A major disadvantage of
this process, however, is that we lose the ability to determine the influences of all
of the variables that affect yi t but do not vary over time.

• • • • • • • • • • • • • • 11.4 Time-fixed effects models

It is also possible to have a time-fixed effects model rather than an entity-fixed
effects model. We would use such a model where we thought that the average
value of yi t changes over time but not cross-sectionally. Hence with time-fixed
effects, the intercepts would be allowed to vary over time but would be assumed to
be the same across entities at each given point in time. We could write a time-fixed
effects model as

yi t = α + βxi t + λt + vi t (11.7)

where λt is a time-varying intercept that captures all of the variables that affect yi t
and that vary over time but are constant cross-sectionally. An example would be
where the regulatory environment or tax rate changes part-way through a sample
period. In such circumstances, this change of environment may well influence y,
but in the same way for all firms, which could be assumed to all be affected equally
by the change.

Time variation in the intercept terms can be allowed for in exactly the same
way as with entity-fixed effects. That is, a least squares dummy variable model
could be estimated

yi t = βxi t + λ1 D1t + λ2 D2t + λ3 D3t + · · · + λT DTt + vi t (11.8)

where D1t , for example, denotes a dummy variable that takes the value 1 for the
first time period and zero elsewhere, and so on.

The only difference is that now, the dummy variables capture time variation
rather than cross-sectional variation. Similarly, in order to avoid estimating a model
containing all T dummies, a within transformation can be conducted to subtract
the cross-sectional averages from each observation

yi t − yt = β(xi t − xt ) + ui t − ut (11.9)

where yt = 1
N

∑N
i=1 yi t as the mean of the observations on y across the entities

for each time period. We could write this equation as

ÿi t = β ẍi t + ü i t (11.10)

where the double dots above the variables denote the demeaned values (but now
cross-sectionally rather than temporally demeaned).
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Finally, it is possible to allow for both entity-fixed effects and time-fixed
effects within the same model. Such a model would be termed a two-way error
component model, which would combine equations (11.3) and (11.7), and the
LSDV equivalent model would contain both cross-sectional and time dummies

yi t = βxi t + μ1 D1i + μ2 D2i + μ3 D3i + · · · + μN DNi + λ1 D1t

+ λ2 D2t + λ3 D3t + · · · + λT DTt + vi t (11.11)

However, the number of parameters to be estimated would now be k + N + T,
and the within transformation in this two-way model would be more complex.

• • • • • • • • • • • • • • 11.5 Investigating banking competition using a fixed effects model

The UK retail banking sector has been subject to a considerable change in structure
over the past thirty years as a result of deregulation, merger waves and new tech-
nology. The relatively high concentration of market share in retail banking among
a modest number of fairly large banks, combined with apparently phenomenal
profits that appear to be recurrent, have led to concerns that competitive forces in
British banking are not sufficiently strong.7 This is argued to go hand in hand with
restrictive practices, barriers to entry and poor value for money for consumers. A
study by Matthews, Murinde and Zhao (2007) investigates competitive conditions
in the UK between 1980 and 2004 using the ‘new empirical industrial organi-
sation’ approach pioneered by Panzar and Rosse (1982, 1987). The model posits
that if the market is contestable, entry to and exit from the market will be easy (even
if the concentration of market share among firms is high), so that prices will be
set equal to marginal costs. The technique used to examine this conjecture is to
derive testable restrictions upon the firm’s reduced form revenue equation.

The empirical investigation consists of deriving an index (the Panzar–Rosse
H-statistic) of the sum of the elasticities of revenues to factor costs (input prices).
If this lies between 0 and 1, we have monopolistic competition or a partially
contestable equilibrium, whereas H < 0 would imply a monopoly and H = 1
would imply perfect competition or perfect contestability. The key point is that if
the market is characterised by perfect competition, an increase in input prices will
not affect the output of firms, while it will under monopolistic competition. The
model Matthews et al. investigate is given by

lnREV i t = α0 + α1lnPLi t + α2lnPK i t + α3lnPF i t + β1lnRISKASSi t

+ β2lnASSET i t + β3lnBRi t + γ1GROWTH t + μi + vi t (11.12)

where ‘REVi t ’ is the ratio of bank revenue to total assets for firm i at time t
(i = 1, . . . , N; t = 1, . . . , T); ‘PL’ is personnel expenses to employees (the unit
price of labour); ‘PK’ is the ratio of capital assets to fixed assets (the unit price of
capital); and ‘PF’ is the ratio of annual interest expenses to total loanable funds
(the unit price of funds). The model also includes several variables that capture

7 Interestingly, while many casual observers believe that concentration in UK retail banking has
grown considerably, it actually fell slightly between 1986 and 2002.
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time-varying bank-specific effects on revenues and costs, and these are ‘RISKASS’,
the ratio of provisions to total assets; ‘ASSET’ is bank size, as measured by total
assets; ‘BR’ is the ratio of the bank’s number of branches to the total number of
branches for all banks. Finally, ‘GROWTHt ’ is the rate of growth of GDP, which
obviously varies over time but is constant across banks at a given point in time;
μi are bank-specific fixed effects and vi t is an idiosyncratic disturbance term. The
contestability parameter, H, is given as α1 + α2 + α3.

Unfortunately, the Panzar–Rosse approach is valid only when applied to a
banking market in long-run equilibrium. Hence the authors also conduct a test
for this, which centres on the regression

lnROAi t = α′
0 + α′

1lnPLi t + α′
2lnPK i t + α′

3lnPF i t + β ′
1lnRISKASSi t

+ β ′
2lnASSET i t + β ′

3lnBRi t + γ ′
1GROWTH t + ηi + wi t (11.13)

The explanatory variables for the equilibrium test regression (11.13) are iden-
tical to those of the contestability regression (11.12), but the dependent variable
is now the log of the return on assets (‘lnROA’). Equilibrium is argued to exist in
the market if α′

1 + α′
2 + α′

3 = 0.
The UK market is argued to be of particular international interest as a result

of its speed of deregulation and the magnitude of the changes in market structure
that took place over the sample period and therefore the study by Matthews et al.
focuses exclusively on the UK. They employ a fixed effects panel data model which
allows for differing intercepts across the banks, but assumes that these effects are
fixed over time. The fixed effects approach is a sensible one given the data analysed
here since there is an unusually large number of years (twenty-five) compared with
the number of banks (twelve), resulting in a total of 219 bank-years (observations).
The data employed in the study are obtained from banks’ annual reports and the
Annual Abstract of Banking Statistics from the British Bankers Association. The
analysis is conducted for the whole sample period, 1980–2004, and for two sub-
samples, 1980–91 and 1992–2004. The results for tests of equilibrium are given
first, in table 11.1.

The null hypothesis that the bank fixed effects are jointly zero (H0 : ηi = 0)
is rejected at the 1% significance level for the full sample and for the second sub-
sample but not at all for the first sub-sample. Overall, however, this indicates the
usefulness of the fixed effects panel model that allows for bank heterogeneity. The
main focus of interest in table 11.1 is the equilibrium test, and this shows slight
evidence of disequilibrium (E is significantly different from zero at the 10% level)
for the whole sample, but not for either of the individual sub-samples. Thus the
conclusion is that the market appears to be sufficiently in a state of equilibrium
that it is valid to continue to investigate the extent of competition using the
Panzar–Rosse methodology. The results of this are presented in table 11.2.8

The value of the contestability parameter, H, which is the sum of the input
elasticities, is given in the last row of table 11.2 and falls in value from 0.78 in the

8 A Chow test for structural stability reveals a structural break between the two sub-samples. No
other commentary on the results of the equilibrium regression is given by the authors.
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Table 11.1 Tests of banking market equilibrium with fixed effects
panel models

Variable 1980–2004 1980–91 1992–2004

Intercept 0.0230∗∗∗ 0.1034∗ 0.0252

(3.24) (1.87) (2.60)

lnPL −0.0002 0.0059 0.0002

(0.27) (1.24) (0.37)

lnPK −0.0014∗ −0.0020 −0.0016∗

(1.89) (1.21) (1.81)

lnPF −0.0009 −0.0034 0.0005

(1.03) (1.01) (0.49)

lnRISKASS −0.6471∗∗∗ −0.5514∗∗∗ −0.8343∗∗∗

(13.56) (8.53) (5.91)

lnASSET −0.0016∗∗∗ −0.0068∗∗ −0.0016∗∗

(2.69) (2.07) (2.07)

lnBR −0.0012∗ 0.0017 −0.0025

(1.91) (0.97) (1.55)

GROWTH 0.0007∗∗∗ 0.0004 0.0006∗

(4.19) (1.54) (1.71)

R2 within 0.5898 0.6159 0.4706

H0 : ηi = 0 F (11, 200) = 7.78∗∗∗ F (9, 66) = 1.50 F (11, 117) = 11.28∗∗∗

H0 : E = 0 F (1, 200) = 3.20∗ F (1, 66) = 0.01 F (1, 117) = 0.28

Notes: t-ratios in parentheses; ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels
respectively.
Source: Matthews et al. (2007). Reprinted with the permission of Elsevier.

first sub-sample to 0.46 in the second, suggesting that the degree of competition in
UK retail banking weakened over the period. However, the results in the two rows
above that show that the null hypotheses H = 0 and H = 1 can both be rejected
at the 1% significance level for both sub-samples, showing that the market is best
characterised by monopolistic competition rather than either perfect competition
(perfect contestability) or pure monopoly. As for the equilibrium regressions, the
null hypothesis that the fixed effects dummies (μi ) are jointly zero is strongly
rejected, vindicating the use of the fixed effects panel approach and suggesting that
the base levels of the dependent variables differ.
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Table 11.2 Tests of competition in banking with fixed effects panel
models

Variable 1980–2004 1980–91 1992–2004

Intercept −3.083 1.1033∗∗ −0.5455

(1.60) (2.06) (1.57)

lnPL −0.0098 0.164∗∗∗ −0.0164

(0.54) (3.57) (0.64)

lnPK 0.0025 0.0026 −0.0289

(0.13) (0.16) (0.91)

lnPF 0.5788∗∗∗ 0.6119∗∗∗ 0.5096∗∗∗

(23.12) (18.97) (12.72)

lnRISKASS 2.9886∗∗ 1.4147∗∗ 5.8986

(2.30) (2.26) (1.17)

lnASSET −0.0551∗∗∗ −0.0963∗∗∗ −0.0676∗∗

(3.34) (2.89) (2.52)

lnBR 0.0461∗∗∗ 0.00094 0.0809

(2.70) (0.57) (1.43)

GROWTH −0.0082∗ −0.0027 −0.0121

(1.91) (1.17) (1.00)

R2 within 0.9209 0.9181 0.8165

H0 : ηi = 0 F (11, 200) = 23.94∗∗∗ F (9, 66) = 21.97∗∗∗ F (11, 117) = 11.95∗∗∗

H0 : H = 0 F (1, 200) = 229.46∗∗∗ F (1, 66) = 205.89∗∗∗ F (1, 117) = 71.25∗∗∗

H1 : H = 1 F (1, 200) = 128.99∗∗∗ F (1, 66) = 16.59∗∗∗ F (1, 117) = 94.76∗∗∗

H 0.5715 0.7785 0.4643

Notes: t-ratios in parentheses; ∗, ∗∗ and ∗∗∗, denote significance at the 10%, 5% and 1% levels
respectively. The final set of asterisks in the table was added by the present author.
Source: Matthews et al. (2007). Reprinted with the permission of Elsevier.

Finally, the additional bank control variables all appear to have intuitively
appealing signs. The risk assets variable has a positive sign, so that higher risks
lead to higher revenue per unit of total assets; the asset variable has a negative
sign and is statistically significant at the 5% level or below in all three periods,
suggesting that smaller banks are relatively more profitable; the effect of having
more branches is to reduce profitability; and revenue to total assets is largely
unaffected by macroeconomic conditions – if anything, the banks appear to have
been more profitable when GDP was growing more slowly.
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• • • • • • • • • • • • • • 11.6 The random effects model

An alternative to the fixed effects model described above is the random effects
model, which is sometimes also known as the error components model. As with
fixed effects, the random effects approach proposes different intercept terms for
each entity and again these intercepts are constant over time, with the relationships
between the explanatory and explained variables assumed to be the same both
cross-sectionally and temporally.

However, the difference is that under the random effects model, the intercepts
for each cross-sectional unit are assumed to arise from a common intercept α

(which is the same for all cross-sectional units and over time), plus a random
variable εi that varies cross-sectionally but is constant over time. εi measures the
random deviation of each entity’s intercept term from the ‘global’ intercept term
α. We can write the random effects panel model as

yi t = α + βxi t + ωi t , ωi t = εi + vi t (11.14)

where xi t is still a 1 × k vector of explanatory variables, but unlike the fixed effects
model, there are no dummy variables to capture the heterogeneity (variation) in
the cross-sectional dimension. Instead, this occurs via the εi terms. Note that this
framework requires the assumptions that the new cross-sectional error term, εi ,
has zero mean, is independent of the individual observation error term (vi t ), has
constant variance σ 2

ε and is independent of the explanatory variables (xi t ).
The parameters (α and the β vector) are estimated consistently but inefficiently

by OLS, and the conventional formulae would have to be modified as a result of the
cross-correlations between error terms for a given cross-sectional unit at different
points in time. Instead, a generalised least squares procedure is usually used. The
transformation involved in this GLS procedure is to subtract a weighted mean of
the yi t over time (i.e. part of the mean rather than the whole mean, as was the case
for fixed effects estimation). Define the ‘quasi-demeaned’ data as y∗

i t = yi t − θ yi
and x∗

i t = xi t − θxi , where yi and xi are the means over time of the observations
on yi t and xi t , respectively.9 θ will be a function of the variance of the observation
error term, σ 2

v , and of the variance of the entity-specific error term, σ 2
ε

θ = 1 − σv√
Tσ 2

ε + σ 2
v

(11.15)

This transformation will be precisely that required to ensure that there are no
cross-correlations in the error terms, but fortunately it should automatically be
implemented by standard software packages.

Just as for the fixed effects model, with random effects it is also conceptually
no more difficult to allow for time variation than it is to allow for cross-sectional
variation. In the case of time variation, a time period-specific error term is included

yi t = α + βxi t + ωi t , ωi t = εt + vi t (11.16)

9 The notation used here is a slightly modified version of Kennedy (2003, p. 315).
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Box 11.1 Fixed or random effects?

It is often said that the random effects model is more appropriate when the
entities in the sample can be thought of as having been randomly selected
from the population, but a fixed effect model is more plausible when the
entities in the sample effectively constitute the entire population (for
instance, when the sample comprises all of the stocks traded on a particular
exchange). More technically, the transformation involved in the GLS
procedure under the random effects approach will not remove the
explanatory variables that do not vary over time, and hence their impact
on yi t can be enumerated. Also, since there are fewer parameters to be
estimated with the random effects model (no dummy variables or within
transformation to perform) and therefore degrees of freedom are saved, the
random effects model should produce more efficient estimation than the
fixed effects approach.

However, the random effects approach has a major drawback which
arises from the fact that it is valid only when the composite error term ωi t
is uncorrelated with all of the explanatory variables. This assumption is
more stringent than the corresponding one in the fixed effects case, because
with random effects we thus require both εi and vi t to be independent of
all of the xi t . This can also be viewed as a consideration of whether any
unobserved omitted variables (that were allowed for by having different
intercepts for each entity) are uncorrelated with the included explanatory
variables. If they are uncorrelated, a random effects approach can be used;
otherwise the fixed effects model is preferable.

A test for whether this assumption is valid for the random effects
estimator is based on a slightly more complex version of the Hausman test
described in section 6.6. If the assumption does not hold, the parameter
estimates will be biased and inconsistent. To see how this arises, suppose
that we have only one explanatory variable, x2i t , that varies positively with
yi t and also with the error term, ωi t . The estimator will ascribe all of any
increase in y to x when in reality some of it arises from the error term,
resulting in biased coefficients.

and again, a two-way model could be envisaged to allow the intercepts to vary
both cross-sectionally and over time. Box 11.1 discusses the choice between fixed
effects and random effects models.

• • • • • • • • • • • • • • 11.7 Panel data application to credit stability of banks in Central
and Eastern Europe

Banking has become increasingly global over the past two decades, with domes-
tic markets in many countries being increasingly penetrated by foreign-owned
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competitors. Foreign participants in the banking sector may improve competition
and efficiency to the benefit of the economy that they enter, and they may have a
stabilising effect on credit provision since they will probably be better diversified
than domestic banks and will therefore be more able to continue to lend when the
host economy is performing poorly. But it is also argued that foreign banks may
alter the credit supply to suit their own aims rather than those of the host economy,
and they may act more pro-cyclically than local banks, since they have alterna-
tive markets to withdraw their credit supply to when host market activity falls.
Moreover, worsening conditions in the home country may force the repatriation
of funds to support a weakened parent bank.

There may be differences in policies for credit provision dependent upon the
nature of the formation of the subsidiary abroad. If the subsidiary’s existence results
from a take-over of a domestic bank, it is likely that the subsidiary will continue to
operate the policies of, and in the same manner as, and with the same management
as, the original separate entity, albeit in a diluted form. However, when the foreign
bank subsidiary results from the formation of an entirely new startup operation
(a ‘greenfield investment’), the subsidiary is more likely to reflect the aims and
objectives of the parent institution from the outset, and may be more willing to
rapidly expand credit growth in order to obtain a sizeable foothold in the credit
market as quickly as possible.

A study by de Haas and van Lelyveld (2006) employs a panel regression using
a sample of around 250 banks from ten Central and East European countries to
examine whether domestic and foreign banks react differently to changes in home
or host economic activity and banking crises.

The data cover the period 1993–2000 and are obtained from BankScope. The
core model is a random effects panel regression of the form

g r it = α + β1Takeoverit + β2Greenfieldi + β3Crisisit + β4Macroit

+ β5Contrit + (μi + εit) (11.17)

where the dependent variable, ‘gri t ’, is the percentage growth in the credit of bank
i in year t ; ‘Takeoveri t ’ is a dummy variable taking the value 1 for foreign banks
resulting from a takeover at time t and zero otherwise; ‘Greenfieldi ’ is a dummy
taking the value 1 if bank i is the result of a foreign firm making a new banking
investment rather than taking over an existing one; ‘crisis’ is a dummy variable
taking the value 1 if the host country for bank i was subject to a banking disaster
in year t . ‘Macro’ is a vector of variables capturing the macroeconomic conditions
in the home country (the lending rate and the change in GDP for the home and
host countries, the host country inflation rate, and the differences in the home and
host country GDP growth rates and the differences in the home and host country
lending rates). ‘Contr’ is a vector of bank-specific control variables that may affect
the dependent variable irrespective of whether it is a foreign or domestic bank,
and these are: ‘weakness parent bank’, defined as loan loss provisions made by the
parent bank; ‘solvency’, the ratio of equity to total assets; ‘liquidity’, the ratio of
liquid assets to total assets; ‘size’, the ratio of total bank assets to total banking assets
in the given country; ‘profitability’, return on assets; and ‘efficiency’, net interest
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margin. α and the βs are parameters (or vectors of parameters in the cases of β4
and β5), μi ∼ I I D(0, σ 2

μ) is the unobserved random effect that varies across banks
but not over time, and εi t ∼ I I D(0, σ 2

ε ) is an idiosyncratic error term, i = 1, . . . ,
N; t = 1, . . . , Ti .

De Haas and van Lelyveld discuss the various techniques that could be
employed to estimate such a model. OLS is considered to be inappropriate since
it does not allow for differences in average credit market growth rates at the bank
level. A model allowing for entity-specific effects (i.e. a fixed effects model that
effectively allowed for a different intercept for each bank) would have been prefer-
able to OLS (used to estimate a pooled regression), but is ruled out on the grounds
that there are many more banks than time periods and thus too many parame-
ters would be required to be estimated. They also argue that these bank-specific
effects are not of interest to the problem at hand, which leads them to select the
random effects panel model, that essentially allows for a different error structure
for each bank. A Hausman test is conducted and shows that the random effects
model is valid since the bank-specific effects (μi ) are found, ‘in most cases not to
be significantly correlated with the explanatory variables’.

The results of the random effects panel estimation are presented in table 11.3.
Five separate regressions are conducted, with the results displayed in columns 2–6 of
the table.10 The regression is conducted on the full sample of banks and separately
on the domestic and foreign bank sub-samples. The specifications allow in separate
regressions for differences between host and home variables (denoted ‘I’, columns
2 and 5) and the actual values of the variables rather than the differences (denoted
‘II’, columns 3 and 6).

The main result is that during times of banking disasters, domestic banks sig-
nificantly reduce their credit growth rates (i.e. the parameter estimate on the crisis
variable is negative for domestic banks), while the parameter is close to zero and not
significant for foreign banks. There is a significant negative relationship between
home country GDP growth, but a positive relationship with host country GDP
growth and credit change in the host country. This indicates that, as the authors
expected, when foreign banks have fewer viable lending opportunities in their
own countries and hence a lower opportunity cost for the loanable funds, they
may switch their resources to the host country. Lending rates, both at home and
in the host country, have little impact on credit market share growth. Interest-
ingly, the greenfield and takeover variables are not statistically significant (although
the parameters are quite large in absolute value), indicating that the method of
investment of a foreign bank in the host country is unimportant in determining
its credit growth rate or that the importance of the method of investment varies
widely across the sample, leading to large standard errors. A weaker parent bank
(with higher loss provisions) leads to a statistically significant contraction of credit
in the host country as a result of the reduction in the supply of available funds.

10 De Haas and van Lelyveld employ corrections to the standard errors for heteroscedasticity and
autocorrelation. They additionally conduct regressions including interactive dummy variables,
although these are not discussed here.
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Table 11.3 Results of random effects panel regression for credit stability of
Central and East European banks

Explanatory Full Full Domestic Foreign Foreign
variables sample I sample II banks banks I banks II

Takeover −11.58 −5.65

(1.26) (0.29)

Greenfield 14.99 29.59 12.39 8.11

(1.29) (1.55) (0.88) (0.65)

Crisis −19.79∗∗∗ −14.42∗∗∗ −19.36∗∗∗ 0.31 −4.13

(4.30) (2.93) (3.43) (0.03) (0.33)

Host − home �GDP 8.08∗∗∗ 8.86∗∗∗

(4.18) (4.11)

Host �GDP 6.68∗∗∗ 6.74 ∗∗∗ 8.64∗∗∗

(7.39) (6.98) (2.93)

Home �GDP −6.04∗ −8.62∗∗∗

(1.89) (2.78)

Host − home lending 1.12∗∗ 0.85

rate (1.97) (0.88)

Host lending rate 0.28 0.34 1.50

(1.08) (1.36) (1.11)

Home lending rate 2.97∗∗∗ 1.11

(4.03) (1.15)

Host inflation −0.01 0.03 0.03 0.08 0.07

(0.37) (1.01) (0.12) (0.61) (0.44)

Weakness parent bank −0.19∗∗∗ −0.16∗∗∗ −0.23 ∗∗∗ −0.19∗∗∗

(4.37) (3.04) (7.00) (4.27)

Solvency 1.29∗∗∗ 1.25∗∗∗ 0.85∗∗∗ 3.33∗∗∗ 3.18∗∗∗

(5.34) (4.77) (3.24) (5.53) (5.30)

Liquidity −0.05∗∗ 0.02 0.02 −0.53 −0.43

(2.09) (0.78) (0.70) (1.40) (1.14)

Size −34.65∗∗ −29.14 −21.93 −108.00 −136.19

(1.96) (1.56) (1.16) (0.54) (0.72)

Profitability 1.09∗∗ 1.09∗∗ 1.21∗∗∗ 2.16 0.91

(2.18) (2.14) (2.81) (0.75) (0.29)

Interest margin 1.66∗∗∗ 1.90∗∗∗ 2.71∗∗∗ −3.42 −2.84

(2.90) (3.41) (4.96) (1.18) (0.94)

Observations 1003 1003 770 233 233

No. of banks 247 247 184 82 82

Hausman test statistic 0.66 0.94 0.76 0.58 0.92

R2 0.28 0.33 0.30 0.46 0.47

Notes: t-ratios in parentheses. Intercept and country dummy parameter estimates are not shown. Empty cells
occur when a particular variable is not included in a regression.
Source: de Haas and van Lelyveld (2006). Reprinted with the permission of Elsevier.
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Overall, both home-related (‘push’) and host-related (‘pull’) factors are found to
be important in explaining foreign bank credit growth.

• • • • • • • • • • • • • • 11.8 Panel data with EViews

The estimation of panel models, both fixed and random effects, is very easy with
EViews; the harder part is organising the data so that the software can recognise
that you have a panel of data and can apply the techniques accordingly. While
there are a number of different ways to construct a panel workfile in EViews, the
simplest way, which will be adopted in this example, is to use three stages:

(1) Set up a new workfile to hold the data with the appropriate number of
cross-sectional observations, the appropriate time period and the appropriate
frequency.

(2) Import the data as pooled variables with all observations on a given series in a
single column and with each column representing a separate variable.

(3) Structure the data within EViews so that the full panel framework is available.

The application to be considered here is that of a variant on an early test of the
capital asset pricing model due to Fama and MacBeth (1973), discussed in greater
detail in chapter 14. Their test involves a two-step estimation procedure: first, the
betas are estimated in separate time series regressions for each firm, and second,
for each separate point in time, a cross-sectional regression of the excess returns
on the betas is conducted

Ri t − Rf t = λ0 + λmβP i + ui (11.18)

where the dependent variable, Ri t − Rf t , is the excess return of the stock i at time
t and the independent variable is the estimated beta for the portfolio (P ) that the
stock has been allocated to. The betas of the firms themselves are not used on the
RHS, but rather, the betas of portfolios formed on the basis of firm size. If the
CAPM holds, then λ0 should not be significantly different from zero and λm should
approximate the (time average) equity market risk premium, Rm − Rf . Fama
and MacBeth proposed estimating this second stage (cross-sectional) regression
separately for each time period, and then taking the average of the parameter
estimates to conduct hypothesis tests. However, one could also achieve a similar
objective using a panel approach. We will use an example in the spirit of Fama–
MacBeth comprising the annual returns and ‘second pass betas’ for eleven years
on 2,500 UK firms.11

As described above, the first stage is to construct a workfile to hold the data, so
Open EViews and select File/New/Workfile. Then, in the ‘Workfile structure

11 Computation by Keith Anderson and the author. There would be some severe limitations of this
analysis if it purported to be a piece of original research, but the range of freely available panel
datasets is severely limited and so hopefully it will suffice as an example of how to estimate panel
models with EViews. No doubt readers, with access to a wider range of data, will be able to
think of much better applications.
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Screenshot 11.1 Panel workfile create window

type’ box, select Balanced Panel with Annual data, starting in 1996 and ending
in 2006 with 2500 cross-sections. The Workfile create window will appear and
should be completed as in screenshot 11.1.

Next, import the Excel file entitled ‘panelex.xls’ by selecting File/Import/
Read. Don’t forget to change the file type to Excel (∗.xls). Read the data By
Observation, with the data starting in Cell A2. In the ‘Name for Series or
Number . . . ’ box, enter 4 and click OK. This will import the data with the 4
variables in columns. It is obvious what two of the variables are: the returns series
and the beta series, but for panel data, we also need time (a variable that I have
called ‘year’) and cross-sectional (‘firm ident’) identifiers.

The final stage is now to structure the panel correctly. This can be achieved
by double clicking on the word ‘Range’ in the upper panel of the workfile
window, which will make the ‘Workfile structure’ window open; this window
should be filled in as in screenshot 11.2.

So in the ‘Cross section ID series:’ box, enter firm ident and in the ‘Date
series:’ box, enter year and then click OK. The panel is now set up and ready for
use. To estimate panel regressions, click Quick/Estimate Equation. . . and then
the Equation Estimation window will open. For the variables, enter return c beta
in the Equation Specification window. If you click on the Panel Options tab, you
will see a number of options specific to panel data models are available. The most
important of these is the first box, where either fixed or random effects can be
chosen. The default is for neither, which would effectively imply a simple pooled
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Screenshot 11.2 Panel workfile structure window

regression, so estimate a model with neither fixed nor random effects first.
The results would be as in the following table.

Dependent Variable: RETURN
Method: Panel Least Squares
Date: 08/15/13 Time: 06:41
Sample: 1996 2006
Periods included: 11
Cross-sections included: 1734
Total panel (unbalanced) observations: 8856

Coefficient Std. Error t-Statistic Prob.

C 0.001843 0.003075 0.599274 0.5490
BETA 0.000454 0.002735 0.166156 0.8680

R-squared 0.000003 Mean dependent var 0.002345
Adjusted R-squared −0.000110 S.D. dependent var 0.052282
S.E. of regression 0.052285 Akaike info criterion −3.063986
Sum squared resid 24.20443 Schwarz criterion −3.062385
Log likelihood 13569.33 Hannan-Quinn criter. −3.063441
F-statistic 0.027608 Durbin-Watson stat 1.639308
Prob(F-statistic) 0.868038



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-11 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:24

544

•
•
•
•
•
•
•
•
• Panel data

We can see that neither the intercept nor the slope is statistically significant.
The returns in this regression are in proportion terms rather than percentages, so
the slope estimate of 0.000454 corresponds to a risk premium of 0.0454% per
month, or around 0.5% per year, whereas the (unweighted average) excess return
for all firms in the sample is around −2% per year. But this pooled regression
assumes that the intercepts are the same for each firm and for each year. This
may be an inappropriate assumption, and we could instead estimate a model with
firm fixed and time-fixed effects, which will allow for latent firm-specific and
time-specific heterogeneity respectively, as shown in the following table.

Dependent Variable: RETURN
Method: Panel Least Squares
Date: 09/23/07 Time: 21:37
Sample: 1996 2006
Periods included: 11
Cross-sections included: 1734
Total panel (unbalanced) observations: 8856

Coefficient Std. Error t-Statistic Prob.

C 0.015393 0.004406 3.493481 0.0005
BETA −0.011800 0.003957 −2.981904 0.0029

Effects specification

Cross-section fixed (dummy variables)
Period fixed (dummy variables)

R-squared 0.303743 Mean dependent var 0.002345
Adjusted R-squared 0.132984 S.D. dependent var 0.052282
S.E. of regression 0.048682 Akaike info criterion −3.032388
Sum squared resid 16.85255 Schwarz criterion −1.635590
Log likelihood 15172.42 Hannan-Quinn criter. −2.556711
F-statistic 1.778776 Durbin-Watson stat 2.067530
Prob(F-statistic) 0.000000

We can see that the estimate on the beta parameter is now negative and
statistically significant, while the intercept is positive and statistically significant. If
we wish to see the fixed effects (i.e. to see the values of the dummy variables for
each firm and for each point in time), we could click on View/Fixed/Random
Effects and then either Cross-Section Effects or Period Effects (the latter are what
EViews calls time-fixed effects).

Next, it is worth determining whether the fixed effects are necessary or not by
running a redundant fixed effects test. To do this, click View/Fixed/Random
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Effects Testing and then Redundant Fixed Effects – Likelihood Ratio Test.
The output in the following table will be seen.

Redundant Fixed Effects Tests
Equation: Untitled
Test cross-section and period fixed effects

Effects test Statistic d.f. Prob.

Cross-section F 1.412242 (1733,7111) 0.0000
Cross-section Chi-square 2619.419 1733 0.0000
Period F 63.16944 (10,7111) 0.0000
Period Chi-square 753.7063 10 0.0000
Cross-Section/Period F 1.779779 (1743,7111) 0.0000
Cross-Section/Period Chi-square 3206.169 1743 0.0000

Note that EViews will also present the results for a restricted model where
only cross-sectional fixed effects and no period fixed effects are allowed for, and
then a restricted model where only period fixed effects are allowed for.12 Interest-
ingly, the cross-sectional only fixed effects model parameters are not qualitatively
different from those of the initial pooled regression, so it is the period fixed
effects that make a difference. Three different redundant fixed effects tests are
employed, each in both χ2 and F -test versions, for: (1) restricting the cross-
section fixed effects to zero; (2) restricting the period fixed effects to zero; and
(3) restricting both types of fixed effects to zero. In all three cases, the p-values
associated with the test statistics are zero to four decimal places, indicating that the
restrictions are not supported by the data and that a pooled sample could not be
employed.

Next, estimate a random effects model by selecting this from the panel
estimation option tab. As for fixed effects, the random effects could be along
either the cross-sectional or period dimensions, but select random effects for the
firms (i.e. cross-sectional) but not over time. The results are observed as in the
table.

The slope estimate is again of a different order of magnitude compared
with both the pooled and the fixed effects regressions. It is of interest to
determine whether the random effects model passes the Hausman test for the
random effects being uncorrelated with the explanatory variables. To do this,
click View/Fixed/Random Effects Testing/Correlated Random Effects –
Hausman Test. The following results are observed, with only the top panel

12 These models are not shown to preserve space.
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Dependent Variable: RETURN
Method: Panel EGLS (Cross-section random effects)
Date: 09/23/07 Time: 21:55
Sample: 1996 2006
Periods included: 11
Cross-sections included: 1734
Total panel (unbalanced) observations: 8856
Swamy and Arora estimator of component variances

Coefficient Std. Error t-Statistic Prob.

C 0.003281 0.003267 1.004366 0.3152
BETA −0.001499 0.002894 −0.518160 0.6044

Effects specification

S.D. Rho
Cross-section random 0.012366 0.0560
Idiosyncratic random 0.050763 0.9440

Weighted statistics

R-squared 0.000030 Mean dependent var 0.001663
Adjusted R-squared −0.000083 S.D. dependent var 0.051095
S.E. of regression 0.051106 Sum squared resid 23.12475
F-statistic 0.264896 Durbin-Watson stat 1.683253
Prob(F-statistic) 0.606781

Unweighted statistics

R-squared −0.000245 Mean dependent var 0.002345
Sum squared resid 24.21044 Durbin-Watson stat 1.638922

that reports the Hausman test results being reported here in the following
table.

Correlated Random Effects – Hausman Test
Equation: Untitled
Test cross-section random effects

Test summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.

Cross-section random 12.633579 1 0.0004
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The p-value for the test is less than 1%, indicating that the random effects
model is not appropriate and that the fixed effects specification is to be preferred.

• • • • • • • • • • • • • • 11.9 Panel unit root and cointegration tests

11.9.1 Background and motivation

The principle of unit root testing in the panel context is very similar to that
employed in single equations framework discussed in chapter 8. We noted there
that unit root tests of the Dickey–Fuller and Phillips–Perron types have low power,
especially for modest sample sizes. This provides a key motivation for using a
panel – the hope that more powerful versions of the tests can be employed when
time series and cross-sectional information is combined – as a result of the increase
in sample size. Of course, it would be easier to increase the number of observations
by simply increasing the length of the sample period, but this data may not
be available, or may be of limited use because of structural breaks in the time
series.

While the single series and panel approaches to unit root and stationarity testing
appear very similar on the surface, in fact a valid construction and application of
the test statistics is much more complex for panels than for single series. One
complication arises since different asymptotic distributions for the test statistics
may result depending on whether N is fixed and T tends to infinity, or vice versa,
or both T and N increase simultaneously in a fixed ratio.

Two important issues to consider are first, that the design and interpretation
of the null and alternative hypotheses needs careful thought in the panel arena and
second, there may be a problem of cross-sectional dependence in the errors across
the unit root testing regressions. Some of the literature refers to the early studies
that assumed cross-sectional independence as ‘first generation’ panel unit root tests,
while the more recent approaches that allow for some form of dependence are
termed ‘second generation’ tests.

A perhaps obvious starting point for unit root tests when one has a panel of
data would be to run separate regressions over time for each series but to use
Zellner’s SUR approach, which we might term the multivariate ADF (MADF)
test. This method can only be employed if T >> N, and Taylor and Sarno (1998)
provide an early application to tests for purchasing power parity. However, it is fair
to say that technique is now rarely used, researchers preferring instead to make use
of the full panel structure.

A key consideration is the dimensions of the panel – is the situation that T is
large or that N is large or both? If T is large and N small, the MADF approach
can be used, although as Breitung and Pesaran (2008) note, in such a situation one
may question whether it is worthwhile to adopt a panel approach at all, since for
sufficiently large T, separate ADF tests ought to be reliable enough to render the
panel approach hardly worth the additional complexity.
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11.9.2 Tests with common alternative hypotheses

Levin, Lin and Chu (2002) – LLC hereafter – develop a test based on the equation

�yi,t = αi + θt + δi t+ ρi yi,t−1 +
∑

αi �yt−i + vi,t

t = 1, 2, . . . , T; i = 1, 2, . . . , N. (11.19)

The model is very general since it allows for both entity-specific and time-specific
effects through αi and θt respectively as well as separate deterministic trends in
each series through δi t , and the lag structure to mop up autocorrelation in �y.
Of course, as for the Dickey–Fuller tests, any or all of these deterministic terms
can be omitted from the regression. The null hypothesis is H0 : ρi ≡ ρ = 0 ∀ i
and the alternative is H1 : ρ < 0 ∀ i .

One of the reasons that unit root testing is more complex in the panel frame-
work in practice is due to the plethora of ‘nuisance parameters’ in the equation
which are necessary to allow for the fixed effects (i.e. the αi , θt , δi t ). These nui-
sance parameters will affect the asymptotic distribution of the test statistics and
hence LLC propose that two auxiliary regressions are run to remove their impacts.
First, �yi t is regressed on its lags, �yi t− j , j = 1, . . . , pi and on the exogenous
variables (any or all from αi , θt , and δi t as desired); the residuals, u1i t are obtained.
Note that the numbers of lags of the dependent variables, pi , need not be the same
for each series in the panel. Next, the lagged level of y, yi t−1, is regressed on the
same variables to get the residuals, u2i t . Then the residuals from both regressions
are standardised by dividing them by the regression standard error, s i , which is
obtained from the augmented Dickey–Fuller regression (11.19)

ũ1i t = u1i t/s i (11.20)

and

ũ2i t = u2i t/s i (11.21)

Thus u1i t will be equivalent to �yi t but with the effects of the deterministic
components removed, and u2i t will be equivalent to yi t−1 but with the effects
of the deterministic components removed. Finally, u1i t is regressed on u2i t , and
the slope estimate from this test regression is then used to construct a test statistic
which is asymptotically distributed as a standard normal variate. The test statistic
will approach this ‘limiting’ normal distribution as T tends to infinity and as N
tends to infinity, although the convergence is faster for the former than the latter.

Breitung (2000) develops a modified version of the LLC test which does
not include the deterministic terms (i.e. the fixed effects and/or a deterministic
trend), and which standardises the residuals from the auxiliary regression in a more
sophisticated fashion.

It should be clear that under the LLC and Breitung approaches, only evidence
against the non-stationary null in one series is required before the joint null will
be rejected. Breitung and Pesaran (2008) suggest that the appropriate conclusion
when the null is rejected is that ‘a significant proportion of the cross-sectional units
are stationary’. Especially in the context of large N, this might not be very helpful
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since no information is provided on how many of the N series are stationary.
Often, the homogeneity assumption is not economically meaningful either, since
there is no theory suggesting that all of the series have the same autoregressive
dynamics and thus the same value of ρ.

11.9.3 Panel unit root tests with heterogeneous processes

The difficulty described at the end of the previous sub-section led Im, Pesaran
and Shin (2003) – hereafter IPS – to propose an alternative approach where, given
equation (11.19) as above, the null and alternative hypotheses are now H0 : ρi =
0 ∀ i and H1 : ρi < 0, i = 1, 2, . . . , N1; ρi = 0, i = N1 + 1, N1 + 2, . . . , N.

So the null hypothesis still specifies all series in the panel as non-stationary,
but under the alternative, a proportion of the series (N1/N) are stationary, and
the remaining proportion ((N − N1)/N) are non-stationary. But it is clear that no
restriction where all of the ρ are identical is imposed. The statistic for the panel
test in this case is constructed by conducting separate unit root tests for each series
in the panel, calculating the ADF t-statistic for each one in the standard fashion,
and then taking their cross-sectional average. This average is then transformed into
a standard normal variate under the null hypothesis of a unit root in all the series;
IPS develop an LM-test approach as well as the more familiar t-test.13 If the time
series dimension is sufficiently large, it is then possible to run separate unit root
tests on each series in order to determine the proportion for which the individual
tests cause a rejection, and thus how strong is the weight of evidence against the
joint null hypothesis.

It should be noted that while IPS’s heterogeneous panel unit root tests are
superior to the homogeneous case when N is modest relative to T, they may not
be sufficiently powerful when N is large and T is small, in which case the LLC
approach may be preferable.

Maddala and Wu (1999) and Choi (2001) developed a slight variant on the
IPS approach based on an idea dating back to Fisher (1932), where unit root
tests are again conducted separately on each series in the panel, and the p-values
associated with the test statistics are then combined. If we call these p-values
pvi , i = 1, 2, . . . , N, then under the null hypothesis of a unit root in each series,
each pvi will be distributed uniformly over the [0,1] interval and hence the
following will hold for given N as T → ∞

λ = −2
N∑

i=1

l n(pvi ) ∼ χ2
2N. (11.22)

The number of observations per series can differ in this case as the regressions are
run separately for each series and then only their p-values are combined in the test
statistic. Notice that the cross-sectional independence assumption is crucial here for
this sum to follow a χ2 distribution. Since the distribution of the ADF test statistic

13 Both tests presume that there is a balanced panel – that is, the number of time series observations
is the same for each cross-sectional entity.
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is non-standard and is dependent upon the inclusion of the nuisance parameters,
unfortunately the p-values for inclusion in this equation must be obtained from a
Monte Carlo simulation. Moreover, if the series under consideration have different
lag lengths for �yi t or there are different numbers of observations, each will require
a separate Monte Carlo!

As well as the χ2 statistic, Choi (2001) develops a variant of the test, still based
on the p-values, that is asymptotically standard normally distributed. It should be
evident that, like IPS, the Maddala-Wu-Choi approach does not require the same
parameter, ρ, to apply to all of the series since the ADF test is run separately on
each series in the panel.

11.9.4 Panel stationarity tests

The approaches described above are non-stationarity tests, and analogous to the
Dickey–Fuller approach, they have non-stationarity under the null hypothesis.
It is also possible, however, to construct a test where the null hypothesis is of
stationarity for all series in the panel, analogous to the KPSS test of Kwaitkowski
et al. (1992). In this case, the null hypothesis is that all of the series are stationary,
which is rejected if at least one of them is non-stationary. This approach in the
panel context was developed by Hadri (2000), and leads to a test statistic that is
asymptotically normally distributed. As in the univariate case, stationarity tests can
be useful as a way to check for the robustness of the conclusions from unit root
tests.

11.9.5 Allowing for cross-sectional heterogeneity

The assumption of cross-sectional independence of the error terms in the panel
regression is highly unrealistic and likely to be violated in practice. For example,
in the context of testing for whether purchasing power parity holds, there are
likely to be important unspecified factors that affect all exchange rates or groups
of exchange rates in the sample, and will result in correlated residuals. O’Connell
(1998) demonstrates the considerable size distortions that can arise when such
cross-sectional dependencies are present but not accounted for – that is, the null
hypothesis is rejected far too frequently when it is correct than should arise by
chance alone if the distributional assumption holds for the test statistic. If the
critical values employed in the tests are adjusted to remove the impacts of these
size distortions, then the power of the tests will fall such that in extreme cases
the benefit of using a panel structure could disappear completely. According to
Maddala and Wu (1999), tests based on the Fisher statistic are more robust in the
presence of unparameterised cross-sectional dependence than the IPS approach.

O’Connell proposes a feasible GLS estimator for ρ where an assumed non-
zero form for the correlations between the disturbances is employed. To overcome
the limitation that the correlation matrix must be specified (and this may be
troublesome because it is not clear what form it should take), Bai and Ng (2004)
propose an approach based on separating the data into a common factor component
that is highly correlated across the series and a specific part that is idiosyncratic; a
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further approach is to proceed with OLS but to employ modified standard errors –
so-called ‘panel corrected standard errors’ (PCSEs) – see, for example Breitung
and Das (2005).

Overall, however, it is clear that satisfactorily dealing with cross-sectional
dependence makes an already complex issue considerable harder still. In the pres-
ence of such dependencies, the test statistics are affected in a non-trivial way by the
nuisance parameters. As a result, despite their inferiority in theory, the first gener-
ation approaches that ignore cross-sectional dependence are still widely employed
in the empirical literature.

11.9.6 Panel cointegration

It is often remarked in the literature that the development of the techniques
for panel cointegration modelling is still in its infancy, while that for panel unit
root testing is already quite mature. Testing for cointegration in panels is a rather
complex issue, since one must consider the possibility of cointegration across
groups of variables (what we might term ‘cross-sectional cointegration’) as well as
within the groups. It is also possible that the parameters in the cointegrating series
and even the number of cointegrating relationships could differ across the panel.

Most of the work so far has relied upon a generalisation of the single equation
methods of the Engle–Granger type following the pioneering work by Pedroni
(1999, 2004). His setup is very general and allows for separate intercepts for each
group of potentially cointegrating variables and separate deterministic trends. For
a set of variables yi t and xm ,i,t that are individually integrated of order one and
thought to be cointegrated

yi t = αi + δi t + β1i x1i,t + β2i x2i,t + . . . + βMi xMi,t + ui,t (11.23)

where m = 1, . . . , M are the explanatory variables in the potentially cointegrating
regression; t = 1, . . . , T and i = 1, . . . , N.

The residuals from this regression, û i,t are then subjected to separate Dickey–
Fuller or augmented Dickey–Fuller type regressions for each group of variables to
determine whether they are I(1) – for example

ui,t = ρi u i,t−1 +
pi∑

j=1

ψi, j �ui,t− j + vi,t (11.24)

The null hypothesis is that the residuals from all of the test regressions are unit
root processes (H0 : ρi = 1), and therefore that there is no cointegration. Pedroni
proposes two possible alternative hypotheses – first, that all of the autoregressive
dynamics are the same stationary process (H1 : ρi = ρ < 1 ∀ i ) and second, that
the dynamics from each test equation follow a different stationary process (H1 :
ρi < 1 ∀ i ). Hence, in the first case no heterogeneity is permitted, while in the
second it is – analogous to the difference between LLC and IPS as described
above. Pedroni then constructs a raft of different test statistics based on standardised
versions of the usual t-ratio from equation (11.24). The standardisation required is
a function of whether an intercept or trend is included in (11.24), and the value
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of M. These standardised test statistics are each asymptotically standard normally
distributed.

Kao (1999) essentially develops a restricted version of Pedroni’s approach,
where the slope parameters in equation (11.23) are assumed to be fixed across the
groups, although the intercepts are still permitted to vary. Then the DF or ADF
test regression is run on a pooled sample assuming homogeneity in the value of ρ.
These restrictions allow some simplification in the testing approach.

As well as testing for cointegration using the residuals following these exten-
sions of Engle and Granger, it is also possible, although in general more compli-
cated, to use a generalisation of the Johansen technique. This approach is deployed
by Larsson et al. (2001), but a simpler alternative is to employ the Johansen approach
to each group of series separately, collect the p-values for the trace test and then
take −2 times the sum of their logs following Maddala and Wu (1999) as in (11.22)
above. A full systems approach based on a ‘global VAR’ is possible but with con-
siderable additional complexity – see Breitung and Pesaran (2008) and the many
references therein for further details.

11.9.7 An illustration of the use of panel unit root and cointegration tests: the
link between financial development and GDP growth

An important issue for developing countries from a policy perspective is the extent
to which economic growth and the sophistication of the country’s financial markets
are linked. It has been argued in the relevant literature that excessive government
regulations (such as limits on lending, restrictions on lending and borrowing interest
rates, the barring of foreign banks, etc.) may impede the development of the
financial markets and consequently economic growth will be slower than if the
financial markets were more vibrant. On the other hand, if economic agents are
able to borrow at reasonable rates of interest or raise funding easily on the capital
markets, this can increase the viability of real investment opportunities and allow
for a more efficient allocation of capital.

Both the theoretical and empirical research in this area has led to mixed
conclusions; the theoretical models arrive at different findings dependent upon
the framework employed and the assumptions made. And on the empirical side,
many existing studies in this area are beset by two issues: first, the direction of
causality between economic and financial development could go the other way: if
an economy grows, then the demand for financial products will itself increase. Thus
it is possible that economic growth leads to financial market development rather
than the other line of causality. Second, given that long time series are typically
unavailable for developing economies, traditional unit root and cointegration tests
that examine the link between these two variables suffer from low power. In
particular, while research has been able to identify a link between economic
growth and stock market development, such an effect could not be identified
for the sophistication of the banking sector. This provides a strong motivation
for the use of panel techniques, which are more powerful, and which constitute
the approach adopted by Christopoulos and Tsionas (2004). Some of the key
methodologies and findings of their paper will now be discussed.
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Table 11.4 Panel unit root test results for economic growth and
financial development

Levels First differences

Variables IPS Maddala–Wu IPS Maddala–Wu

Output (y) −0.18 27.12 −4.52∗∗∗ 58.33∗∗∗

Financial depth (F ) 2.71 14.77 −6.63∗∗∗ 83.64∗∗∗

Investment share (S) −0.04 30.37 −5.81∗∗∗ 62.98∗∗∗

Inflation (ṗ) −0.47 26.37 −5.19∗∗∗ 74.29∗∗∗

Notes: The critical value for the Maddala–Wu test is 37.57 at the 1% level. *** denotes rejection of
the null hypothesis of a unit root at the 1% level.
Source: Christopoulos and Tsionas (2004). Reprinted with the permission of Elsevier.

Defining real output for country i as yi t , financial ‘depth’ as F , the proportion
of total output that is investment as S, and the rate of inflation as ṗ , the core model
they employ is

yi t = β0i + β1i Fi t + β2i Si t + β3i ṗ i t + ui t . (11.25)

Financial depth, F , is proxied using the ratio of total bank liabilities to GDP.
Christopoulos and Tsionas obtain data from the IMF’s International Financial Statis-
tics for ten countries (Colombia, Paraguay, Peru, Mexico, Ecuador, Honduras,
Kenya, Thailand, the Dominican Republic and Jamaica) over the period 1970–
2000.

The regression in equation (11.25) has national output as the dependent
variable, and financial development as one of the independent variables, but
Christopoulos and Tsionas also investigate the reverse causality with F as the
dependent variable and y as one of the independent variables. They first apply
unit root tests to each of the individual series (output, financial depth, investment
share in GDP, and inflation) separately for the ten countries. The findings are
mixed, but show that most series are best characterised by unit root processes in
levels but are stationary in first differences. They then employ the panel unit root
tests of Im, Pesaran and Shin, and the Maddala–Wu chi-squared test separately for
each variable, but now using a panel comprising all ten countries. The number
of lags of �yi t is determined using AIC. The null hypothesis in all cases is that
the process is a unit root. Now the results, presented here in table 11.4, are much
stronger and show conclusively that all four series are non-stationary in levels but
stationary in differences.

The next stage is to test whether the series are cointegrated, and again this
is first conducted separately for each country and then using a panel approach.
Focusing on the latter, the LLC approach is used along with the Harris–Tzavalis
technique, which is broadly the same as LLC but has slightly different correction
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Table 11.5 Panel cointegration test results for economic growth
and financial development

LLC Harris–Tzavalis

Fixed effects Fixed effects + trend Fixed effects Fixed effects + trend

Dep. var.: y −8.36∗∗∗ 0.89 −77.13∗∗∗ −5.57∗∗∗

Dep. var.: F −1.2 0.5 −0.85 −1.65

r = 0 r ≤ 1 r ≤ 2 r ≤ 3

Fisher χ2 76.09∗∗∗ 30.73 28.91 23.26

Notes: ‘Dep. var.’ denotes the dependent variable; *** denotes rejection of the null hypothesis of
no cointegration at the 2% level. The critical values for the Fisher test are 37.57 and 31.41 at the
1% and 5% levels respectively.
Source: Christopoulos and Tsionas (2004). Reprinted with the permission of Elsevier.

factors in the limiting distribution owing to its assumption that T is fixed as N tends
to infinity. As discussed in the previous sub-section, these techniques are based on
a unit root test on the residuals from the potentially cointegrating regression, and
Christopoulos and Tsionis investigate the use of panel cointegration tests with
fixed effects, and with both fixed effects and a deterministic trend in the test
regressions. These are applied to the regressions both with y, and separately F , as
the dependent variables.

The results in table 11.5 quite strongly demonstrate that when the dependent
variable is output, the LLC approach rejects the null hypothesis of a unit root in the
potentially cointegrating regression residuals when fixed effects only are included
in the test regression, but not when a trend is also included. In the context of the
Harris–Tzavalis variant of the residuals-based test, for both the fixed effects and
the fixed effects + trend regressions, the null is rejected. When financial depth is
instead used as the dependent variable, none of these tests reject the null hypothesis.
Thus, the weight of evidence from the residuals-based tests is that cointegration
exists when output is the dependent variable, but it does not when financial depth
is. The authors dubiously interpret this result as implying that causality runs from
output to financial depth but not the other way around.

In the final row of table 11.5, a systems approach to testing for cointegration,
based on the sum of the logs of the p-values from the Johansen test, shows that the
null hypothesis of no cointegrating vectors (H0 : r = 0) is rejected, while (H0 :
r ≤ 1) and above are all not rejected. Thus the conclusion is that one cointegrating
relationship exists between the four variables across the panel. Note that in this
case, since cointegration is tested within a VAR system, all variables are treated in
parallel, and hence there are not separate results for different dependent variables.
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11.9.8 Testing for unit roots and cointegration in panels using EViews

EViews provides a range of tests for unit roots within a panel structure, but all
are based on the assumption of cross-sectional independence. Given that all of
the approaches can be simultaneously employed at the click of a mouse, it seems
preferable to do so in order to evaluate the sensitivity of the findings to the
methodology employed. This illustration will use the Treasury bill/bond yields
in ‘macro.wf1’ so re-open this workfile. We have already created a group to
conduct the Johansen tests (I called this ‘tbill johansen’). If you did not name
and save the group in the workfile, you will need to create a group again con-
taining the yields on the Treasury instruments for all maturities – 3-month,
6-month, 1-year, 3-year, 5-year and 10-year. You could do this by highlight-
ing the six series, then select Object/New Object/Group. The six series will
already be included in the box and you can simply name the group and save the
workfile.

Before running any panel unit root or cointegration tests, it is useful to start
by examining the results of individual unit root tests on each series, so run an
augmented Dickey–Fuller test on the levels of each yield series using a regres-
sion with an intercept but no deterministic trend, and use SIC to select the lag
lengths in each case. You should find that all of the test statistics are around −0.1,
with p-values of around 0.7-0.8, thus indicating that the unit root null hypothesis
cannot be rejected.

As we know from the discussion above, unit root tests have low power in the
presence of small samples, and so the panel unit root tests may provide different
results. To run these in EViews is easy, double click on the group that you
created so that the spreadsheet view containing the six series appears. Then click
View/Unit Root Test. . . and screenshot 11.3 will appear.

The default options can be retained, and include printing a summary of the
results from a range of panel unit root tests. Changing the test type box will enable
the selection of a specific type of test and in that case the results will be shown
with more detail including the test regression. If we simply examine the summary
results for now, just click OK, and we will see the following results.

Two lags were chosen on the basis of SIC for the ADF test including an
intercept but no trend. Several tests are presented – first, the LLC test that
assumes a common ρ for each series. The test statistic is 1.28 with p-value
0.9 and thus the unit root null is not rejected. Second, three tests that permit
separate values of ρ for each series are presented. These are the IPS test and
then two variants of the Fisher test proposed by Maddala and Wu (1999) and
Choi (2001) – one for the ADF test and one for the Phillips–Perron test. In
all cases, the test statistics are well below the critical values, indicating that the
series contain unit roots. Thus the conclusions from the panel unit root test are
the same as those of the individual ones – in this case using the panel did not
make any difference, perhaps because N = 6 is quite small, while T = 326 for
each series, is quite large and so the additional benefits from using a panel are
minimal.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-11 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 2:24

556

•
•
•
•
•
•
•
•
• Panel data

Screenshot 11.3 Panel unit root test window

Group unit root test: Summary
Series: USTB10Y, USTB1Y, USTB3M, USTB3Y, USTB5Y, USTB6M
Date: 08/15/13 Time: 06:41
Sample: 1986M03 2013M04
Exogenous variables: individual effects
Automatic selection of maximum lags
Automatic lag selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel

Cross-
Method Statistic Prob.∗∗ sections Obs

Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t∗ 1.28778 0.9011 6 1943

Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat 1.55966 0.9406 6 1943
ADF - Fisher Chi-square 3.27867 0.9932 6 1943

PP - Fisher Chi-square 4.13585 0.9809 6 1950

∗∗ Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other
tests assume asymptotic normality.
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If we wanted to run a panel cointegration test, this could be done simply
by selecting View/Cointegration Test from the group spreadsheet view. Then
either a Johansen-based system approach or a single equation approach can be
chosen.

• • • • • • • • • • • • • • 11.10 Further reading

Some readers may feel that further instruction in this area could be useful. If so, the
classic specialist references to panel data techniques are Baltagi (2005) and Hsiao
(2003) and further references are Arellano (2003) and Wooldridge (2010). All
four are extremely detailed and have excellent referencing to recent developments
in the theory of panel model specification, estimation and testing. However, all
also require a high level of mathematical and econometric ability on the part of
the reader. A more intuitive and accessible, but less detailed, treatment is given
in Kennedy (2003, chapter 17). Some examples of financial studies that employ
panel techniques and outline the methodology sufficiently descriptively to be
worth reading as aides to learning are given in the examples above. The book by
Maddala and Kim (1999) provides a fairly accessible treatment of unit roots and
cointegration generally, although the time of publication implies that the most
recent developments are excluded. Breitung and Pesaran (2008) is a more recent
survey and is comprehensive, but at a higher technical level.

Key concepts

The key terms to be able to define and explain from this chapter are

• pooled data • seemingly unrelated regression

• fixed effects • least squares dummy variable estimation

• random effects • Hausman test

• within transform • time-fixed effects

• between estimation • panel unit root test

• panel cointegration test

Self-study questions

1. (a) What are the advantages of constructing a panel of data, if one is
available, rather than using pooled data?

(b) What is meant by the term ‘seemingly unrelated regression’? Give
examples from finance of where such an approach may be used.

(c) Distinguish between balanced and unbalanced panels, giving examples of
each.

2. (a) Explain how fixed effects models are equivalent to an ordinary least
squares regression with dummy variables.
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(b) How does the random effects model capture cross-sectional
heterogeneity in the intercept term?

(c) What are the relative advantages and disadvantages of the fixed versus
random effects specifications and how would you choose between them
for application to a particular problem?

3. Find a further example of where panel regression models have been used in
the academic finance literature and do the following:
● Explain why the panel approach was used.
● Was a fixed effects or random effects model chosen and why?
● What were the main results of the study and is any indication given about

whether the results would have been different had a pooled regression
been employed instead in this or in previous studies?

4. (a) What are the advantages and disadvantages of conducting unit root tests
within a panel framework rather than series by series?

(b) Explain the differences between panel unit root tests based on a common
alternative hypothesis and those based on heterogeneous processes.
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12 Limited dependent variable models

Learning outcomes

In this chapter, you will learn how to

• Compare between different types of limited dependent variables and select

the appropriate model

• Interpret and evaluate logit and probit models

• Distinguish between the binomial and multinomial cases

• Deal appropriately with censored and truncated dependent variables

• Estimate limited dependent variable models using maximum likelihood in

EViews

• • • • • • • • • • • • • • 12.1 Introduction and motivation

Chapters 5 and 10 have shown various uses of dummy variables to numerically cap-
ture the information qualitative variables – for example, day-of-the-week effects,
gender, credit ratings, etc. When a dummy is used as an explanatory variable in a
regression model, this usually does not give rise to any particular problems (so long
as one is careful to avoid the dummy variable trap – see chapter 10). However, there
are many situations in financial research where it is the explained variable, rather
than one or more of the explanatory variables, that is qualitative. The qualitative
information would then be coded as a dummy variable and the situation would
be referred to as a limited dependent variable and needs to be treated differently. The
term refers to any problem where the values that the dependent variables may
take are limited to certain integers (e.g. 0, 1, 2, 3, 4) or even where it is a binary
number (only 0 or 1). There are numerous examples of instances where this may
arise, for example where we want to model:

● Why firms choose to list their shares on the NASDAQ rather than the NYSE
● Why some stocks pay dividends while others do not
● What factors affect whether countries default on their sovereign debt
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● Why some firms choose to issue new stock to finance an expansion while
others issue bonds

● Why some firms choose to engage in stock splits while others do not.

It is fairly easy to see in all these cases that the appropriate form for the depen-
dent variable would be a 0–1 dummy variable since there are only two possible
outcomes. There are, of course, also situations where it would be more useful to
allow the dependent variable to take on other values, but these will be considered
later in section 12.9. We will first examine a simple and obvious, but unfortunately
flawed, method for dealing with binary dependent variables, known as the linear
probability model.

• • • • • • • • • • • • • • 12.2 The linear probability model

The linear probability model (LPM) is by far the simplest way of dealing with
binary dependent variables, and it is based on an assumption that the probability
of an event occurring, Pi , is linearly related to a set of explanatory variables x2i ,
x3i , . . . , xki

Pi = p (yi = 1) = β1 + β2x2i + β3x3i + · · · + βkxki + ui , i = 1, . . . , N

(12.1)

The actual probabilities cannot be observed, so we would estimate a model where
the outcomes, yi (the series of zeros and ones), would be the dependent variable.
This is then a linear regression model and would be estimated by OLS. The set
of explanatory variables could include either quantitative variables or dummies
or both. The fitted values from this regression are the estimated probabilities for
yi = 1 for each observation i . The slope estimates for the linear probability model
can be interpreted as the change in the probability that the dependent variable will
equal 1 for a one-unit change in a given explanatory variable, holding the effect
of all other explanatory variables fixed. Suppose, for example, that we wanted to
model the probability that a firm i will pay a dividend (yi = 1) as a function of
its market capitalisation (x2i , measured in millions of US dollars), and we fit the
following line:

P̂i = −0.3 + 0.012x2i (12.2)

where P̂i denotes the fitted or estimated probability for firm i . This model suggests
that for every $1m increase in size, the probability that the firm will pay a dividend
increases by 0.012 (or 1.2%). A firm whose stock is valued at $50m will have a
−0.3 + 0.012 × 50 = 0.3 (or 30%) probability of making a dividend payment.
Graphically, this situation may be represented as in figure 12.1.

While the linear probability model is simple to estimate and intuitive to inter-
pret, the diagram should immediately signal a problem with this setup. For any
firm whose value is less than $25m, the model-predicted probability of dividend
payment is negative, while for any firm worth more than $88m, the probability is
greater than one. Clearly, such predictions cannot be allowed to stand, since the
probabilities should lie within the range (0,1). An obvious solution is to truncate
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Figure 12.1 The fatal flaw of the linear probability model

the probabilities at 0 or 1, so that a probability of −0.3, say, would be set to zero,
and a probability of, say, 1.2 would be set to 1. However, there are at least two
reasons why this is still not adequate:

(1) The process of truncation will result in too many observations for which the
estimated probabilities are exactly zero or one.

(2) More importantly, it is simply not plausible to suggest that the firm’s probability
of paying a dividend is either exactly zero or exactly one. Are we really certain
that very small firms will definitely never pay a dividend and that large firms will
always make a payout? Probably not, so a different kind of model is usually used
for binary dependent variables – either a logit or a probit specification. These
approaches will be discussed in the following sections. But before moving on,
it is worth noting that the LPM also suffers from a couple of more standard
econometric problems that we have examined in previous chapters. First,
since the dependent variable takes only one or two values, for given (fixed
in repeated samples) values of the explanatory variables, the disturbance term
will also take on only one of two values.1 Consider again equation (12.1). If
yi = 1, then by definition

ui = 1 − β1 − β2x2i − β3x3i − · · · − βkxki ;

but if yi = 0, then

ui = −β1 − β2x2i − β3x3i − · · · − βkxki .

Hence the error term cannot plausibly be assumed to be normally distributed.
Since ui changes systematically with the explanatory variables, the disturbances
will also be heteroscedastic. It is therefore essential that heteroscedasticity-
robust standard errors are always used in the context of limited dependent
variable models.

1 N.B. The discussion refers to the disturbance, ui , rather than the residual, û i .
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Figure 12.2 The logit model

• • • • • • • • • • • • • • 12.3 The logit model

Both the logit and probit model approaches are able to overcome the limitation
of the LPM that it can produce estimated probabilities that are negative or greater
than one. They do this by using a function that effectively transforms the regression
model so that the fitted values are bounded within the (0,1) interval. Visually, the
fitted regression model will appear as an S-shape rather than a straight line, as was
the case for the LPM. This is shown in figure 12.2.

The logistic function F , which is a function of any random variable, z, would
be

F (zi ) = e zi

1 + e zi
= 1

1 + e−zi
(12.3)

where e is the exponential under the logit approach. The model is so called because
the function F is in fact the cumulative logistic distribution. So the logistic model
estimated would be

Pi = 1

1 + e−(β1+β2x2i +···+βk xki +ui )
(12.4)

where again Pi is the probability that yi = 1.
With the logistic model, 0 and 1 are asymptotes to the function and thus the

probabilities will never actually fall to exactly zero or rise to one, although they
may come infinitesimally close. In equation (12.3), as zi tends to infinity, e−zi

tends to zero and 1/(1 + e−zi ) tends to 1; as zi tends to minus infinity, e−zi tends
to infinity and 1/(1 + e−zi ) tends to 0.

Clearly, this model is not linear (and cannot be made linear by a transformation)
and thus is not estimable using OLS. Instead, maximum likelihood is usually
used – this is discussed in section 12.7 and in more detail in the appendix to this
chapter.
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• • • • • • • • • • • • • • 12.4 Using a logit to test the pecking order hypothesis

This section examines a study of the pecking order hypothesis due to Helwege
and Liang (1996). The theory of firm financing suggests that corporations should
use the cheapest methods of financing their activities first (i.e. the sources of funds
that require payment of the lowest rates of return to investors) and switch to
more expensive methods only when the cheaper sources have been exhausted.
This is known as the ‘pecking order hypothesis’, initially proposed by Myers
(1984). Differences in the relative cost of the various sources of funds are argued
to arise largely from information asymmetries since the firm’s senior managers
will know the true riskiness of the business, whereas potential outside investors
will not.2 Hence, all else equal, firms will prefer internal finance and then, if
further (external) funding is necessary, the firm’s riskiness will determine the type
of funding sought. The more risky the firm is perceived to be, the less accurate
will be the pricing of its securities.

Helwege and Liang (1996) examine the pecking order hypothesis in the context
of a set of US firms that had been newly listed on the stock market in 1983, with
their additional funding decisions being tracked over the 1984–92 period. Such
newly listed firms are argued to experience higher rates of growth, and are more
likely to require additional external funding than firms which have been stock
market listed for many years. They are also more likely to exhibit information
asymmetries due to their lack of a track record. The list of initial public offerings
(IPOs) came from the Securities Data Corporation and the Securities and Exchange
Commission with data obtained from Compustat.

A core objective of the paper is to determine the factors that affect the proba-
bility of raising external financing. As such, the dependent variable will be binary –
that is, a column of 1s (firm raises funds externally) and 0s (firm does not raise any
external funds). Thus OLS would not be appropriate and hence a logit model is
used. The explanatory variables are a set that aims to capture the relative degree of
information asymmetry and degree of riskiness of the firm. If the pecking order
hypothesis is supported by the data, then firms should be more likely to raise
external funding the less internal cash they hold. Hence variable ‘deficit’ measures
(capital expenditures + acquisitions + dividends − earnings). ‘Positive deficit’ is
a variable identical to deficit but with any negative deficits (i.e. surpluses) set to
zero; ‘surplus’ is equal to the negative of deficit for firms where deficit is negative;
‘positive deficit × operating income’ is an interaction term where the two vari-
ables are multiplied together to capture cases where firms have strong investment
opportunities but limited access to internal funds; ‘assets’ is used as a measure of
firm size; ‘industry asset growth’ is the average rate of growth of assets in that
firm’s industry over the 1983–92 period; ‘firm’s growth of sales’ is the growth
rate of sales averaged over the previous five years; ‘previous financing’ is a dummy

2 ‘Managers have private information regarding the value of assets in place and investment opportu-
nities that cannot credibly be conveyed to the market. Consequently, any risky security offered by
the firm will not be priced fairly from the manager’s point of view’ (Helwege and Liang, p. 438).
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Table 12.1 Logit estimation of the probability of external financing

Variable (1) (2) (3)

Intercept −0.29 −0.72 −0.15

(−3.42) (−7.05) (−1.58)

Deficit 0.04 0.02

(0.34) (0.18)

Positive deficit −0.24

(−1.19)

Surplus −2.06

(−3.23)

Positive deficit × operating income −0.03

(−0.59)

Assets 0.0004 0.0003 0.0004

(1.99) (1.36) (1.99)

Industry asset growth −0.002 −0.002 −0.002

(−1.70) (−1.35) (−1.69)

Previous financing 0.79

(8.48)

Note: a blank cell implies that the particular variable was not included in that regression; t-ratios
in parentheses; only figures for all years in the sample are presented.
Source: Helwege and Liang (1996). Reprinted with the permission of Elsevier.

variable equal to 1 for firms that obtained external financing in the previous year.
The results from the logit regression are presented in table 12.1.

The key variable, ‘deficit,’ has a parameter that is not statistically significant
and hence the probability of obtaining external financing does not depend on
the size of a firm’s cash deficit.3 The parameter on the ‘surplus’ variable has the
correct negative sign, indicating that the larger a firm’s surplus, the less likely it is
to seek external financing, which provides some limited support for the pecking
order hypothesis. Larger firms (with larger total assets) are more likely to use the
capital markets, as are firms that have already obtained external financing during
the previous year.

3 Or an alternative explanation, as with a similar result in the context of a standard regression model,
is that the probability varies widely across firms with the size of the cash deficit so that the standard
errors are large relative to the point estimate.
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• • • • • • • • • • • • • • 12.5 The probit model

Instead of using the cumulative logistic function to transform the model, the
cumulative normal distribution is sometimes used instead. This gives rise to the
probit model. The function F in equation (12.3) is replaced by

F (zi ) = 1√
2π

∫ zi

−∞
e− z2

i
2 d z (12.5)

This function is the cumulative distribution function for a standard normally
distributed random variable. As for the logistic approach, this function provides a
transformation to ensure that the fitted probabilities will lie between zero and one.
Also as for the logit model, the marginal impact of a unit change in an explanatory
variable, x4i say, will be given by β4F (zi ), where β4 is the parameter attached to
x4i and zi = β1 + β2x2i + β3x3i + · · · + ui .

• • • • • • • • • • • • • • 12.6 Choosing between the logit and probit models

For the majority of the applications, the logit and probit models will give very
similar characterisations of the data because the densities are very similar. That is,
the fitted regression plots (such as figure 12.2) will be virtually indistinguishable
and the implied relationships between the explanatory variables and the probability
that yi = 1 will also be very similar. Both approaches are much preferred to the
linear probability model. The only instance where the models may give non-
negligibility different results occurs when the split of the yi between 0 and 1 is
very unbalanced – for example, when yi = 1 occurs only 10% of the time.

Stock and Watson (2006) suggest that the logistic approach was traditionally
preferred since the function does not require the evaluation of an integral and
thus the model parameters could be estimated faster. However, this argument is
no longer relevant given the computational speeds now achievable and the choice
of one specification rather than the other is now usually arbitrary.

• • • • • • • • • • • • • • 12.7 Estimation of limited dependent variable models

Given that both logit and probit are non-linear models, they cannot be estimated
by OLS. While the parameters could, in principle, be estimated using non-linear
least squares (NLS), maximum likelihood (ML) is simpler and is invariably used in
practice. As discussed in chapter 9, the principle is that the parameters are chosen
to jointly maximise a log-likelihood function (LLF). The form of this LLF will
depend upon whether the logit or probit model is used, but the general principles
for parameter estimation described in chapter 9 will still apply. That is, we form
the appropriate log-likelihood function and then the software package will find
the values of the parameters that jointly maximise it using an iterative search
procedure. A derivation of the ML estimator for logit and probit models is given
in the appendix to this chapter. Box 12.1 shows how to interpret the estimated
parameters from probit and logit models.
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Box 12.1 Parameter interpretation for probit and logit models

Standard errors and t-ratios will automatically be calculated by the
econometric software package used, and hypothesis tests can be conducted in
the usual fashion. However, interpretation of the coefficients needs slight care.
It is tempting, but incorrect, to state that a 1-unit increase in x2i , for example,
causes a β2% increase in the probability that the outcome corresponding to
yi = 1 will be realised. This would have been the correct interpretation for
the linear probability model.

However, for logit models, this interpretation would be incorrect because
the form of the function is not Pi = βi + β2xi + ui , for example, but rather
Pi = F (βi + β2xi + ui ), where F represents the (non-linear) logistic
function. To obtain the required relationship between changes in x2i and Pi ,
we would need to differentiate F with respect to x2i and it turns out that this
derivative is β2F (x2i ). So in fact, a 1-unit increase in x2i will cause a β2F (x2i )
increase in probability. Usually, these impacts of incremental changes in an
explanatory variable are evaluated by setting each of them to their mean
values. For example, suppose we have estimated the following logit model
with three explanatory variables using maximum likelihood

P̂i = 1
1 + e−(0.1+0.3x2i −0.6x3i +0.9x4i )

(12.6)

Thus we have β̂1 = 0.1, β̂2 = 0.3, β̂3 = −0.6, β̂4 = 0.9. We now need to
calculate F (zi ), for which we need the means of the explanatory variables,
where zi is defined as before. Suppose that these are x̄2 = 1.6, x̄3 = 0.2, x̄4 =
0.1, then the estimate of F (zi ) will be given by

P̂i = 1
1 + e−(0.1+0.3×1.6−0.6×0.2+0.9×0.1)

= 1
1 + e−0.55

= 0.63 (12.7)

Thus a 1-unit increase in x2 will cause an increase in the probability that the
outcome corresponding to yi = 1 will occur by 0.3 × 0.63 = 0.19. The
corresponding changes in probability for variables x3 and x4 are −0.6 ×
0.63 = −0.38 and 0.9 × 0.63 = 0.57, respectively. These estimates are
sometimes known as the marginal effects.

There is also another way of interpreting discrete choice models, known as
the random utility model. The idea is that we can view the value of y that is
chosen by individual i (either 0 or 1) as giving that person a particular level of
utility, and the choice that is made will obviously be the one that generates the
highest level of utility. This interpretation is particularly useful in the situation
where the person faces a choice between more than two possibilities as in
section 12.9 below.
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Once the model parameters have been estimated, standard errors can be calcu-
lated and hypothesis tests conducted. While t-test statistics are constructed in the
usual way, the standard error formulae used following the ML estimation are valid
asymptotically only. Consequently, it is common to use the critical values from a
normal distribution rather than a t distribution with the implicit assumption that
the sample size is sufficiently large.

• • • • • • • • • • • • • • 12.8 Goodness of fit measures for linear dependent variable models

While it would be possible to calculate the values of the standard goodness of fit
measures such as RSS, R2 or R̄2 for linear dependent variable models, these cease
to have any real meaning. The objective of ML is to maximise the value of the
LLF, not to minimise the RSS. Moreover, R2 and adjusted R2, if calculated in
the usual fashion, will be misleading because the fitted values from the model can
take on any value but the actual values will be only either 0 and 1. To illustrate,
suppose that we are considering a situation where a bank either grants a loan
(yi = 1) or it refuses (yi = 0). Does, say, P̂i = 0.8 mean the loan is offered or
not? In order to answer this question, sometimes, any value of P̂i > 0.5 would
be rounded up to one and any value <0.5 rounded down to zero. However, this
approach is unlikely to work well when most of the observations on the dependent
variable are one or when most are zero. In such cases, it makes more sense to use
the unconditional probability that y = 1 (call this ȳ) as the threshold rather than
0.5. So if, for example, only 20% of the observations have y = 1 (so ȳ = 0.2), then
we would deem the model to have correctly predicted the outcome concerning
whether the bank would grant the loan to the customer where P̂i > 0.2 and
yi = 1 and where P̂i < 0.2 and yi = 0.

Thus if yi = 1 and P̂i = 0.8, the model has effectively made the correct
prediction (either the loan is granted or refused – we cannot have any out-
come in between), whereas R2 and R̄2 will not give it full credit for this. Two
goodness of fit measures that are commonly reported for limited dependent vari-
able models are as follows.

(1) The percentage of yi values correctly predicted, defined as 100 × the number
of observations predicted correctly divided by the total number of observations:

Percent correct predictions = 100
N

N∑
i=1

yi I ( P̂i ) + (1 − yi )(1 − I ( P̂i ))

(12.8)
where I (ŷi ) = 1 if ŷi > ȳ and 0 otherwise.

Obviously, the higher this number, the better the fit of the model.
Although this measure is intuitive and easy to calculate, Kennedy (2003)
suggests that it is not ideal, since it is possible that a ‘nave predictor’ could
do better than any model if the sample is unbalanced between 0 and 1. For
example, suppose that yi = 1 for 80% of the observations. A simple rule that
the prediction is always 1 is likely to outperform any more complex model
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on this measure but is unlikely to be very useful. Kennedy (2003, p. 267) sug-
gests measuring goodness of fit as the percentage of yi = 1 correctly predicted
plus the percentage of yi = 0 correctly predicted. Algebraically, this can be
calculated as

Percent correct predictions = 100 ×
[∑

yi I ( P̂i )∑
yi

+
∑

(1 − yi )(1 − I ( P̂i ))
N − ∑

yi

]

(12.9)

Again, the higher the value of the measure, the better the fit of the model.
(2) A measure known as ‘pseudo-R2’, defined as

pseudo − R2 = 1 − LLF
LLF0

(12.10)

where LLF is the maximised value of the log-likelihood function for the logit
and probit model and LLF0 is the value of the log-likelihood function for
a restricted model where all of the slope parameters are set to zero (i.e. the
model contains only an intercept). Pseudo-R2 will have a value of zero for the
restricted model, as with the traditional R2, but this is where the similarity
ends. Since the likelihood is essentially a joint probability, its value must be
between zero and one, and therefore taking its logarithm to form the LLF
must result in a negative number. Thus, as the model fit improves, LLF will
become less negative and therefore pseudo-R2 will rise. The maximum value
of one could be reached only if the model fitted perfectly (i.e. all the P̂i were
either exactly zero or one corresponding to the actual values). This could
never occur in reality and therefore pseudo-R2 has a maximum value less than
one. We also lose the simple interpretation of the standard R2 that it measures
the proportion of variation in the dependent variable that is explained by the
model. Indeed, pseudo-R2 does not have any intuitive interpretation.

This definition of pseudo-R2 is also known as McFadden’s R2, but it is
also possible to specify the metric in other ways. For example, we could define
pseudo-R2 as [1 − (RSS/TSS)] where RSS is the residual sum of squares from
the fitted model and TSS is the total sum of squares of yi .

• • • • • • • • • • • • • • 12.9 Multinomial linear dependent variables

All of the examples that have been considered so far in this chapter have concerned
situations where the dependent variable is modelled as a binary (0,1) choice. But
there are also many instances where investors or financial agents are faced with
more alternatives. For example, a company may be considering listing on the
NYSE, the NASDAQ or the AMEX markets; a firm that is intending to take
over another may choose to pay by cash, with shares, or with a mixture of both; a
retail investor may be choosing between five different mutual funds; a credit ratings
agency could assign one of sixteen (AAA to B3/B−) different ratings classifications
to a firm’s debt.
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Notice that the first three of these examples are different from the last one. In
the first three cases, there is no natural ordering of the alternatives: the choice is
simply made between them. In the final case, there is an obvious ordering, because
a score of 1, denoting a AAA-rated bond, is better than a score of 2, denoting
a AA1/AA+-rated bond, and so on (see section 5.15 in chapter 5). These two
situations need to be distinguished and a different approach used in each case. In
the first (when there is no natural ordering), a multinomial logit or probit would
be used, while in the second (where there is an ordering), an ordered logit or
probit would be used. This latter situation will be discussed in the next section,
while multinomial models will be considered now.

When the alternatives are unordered, this is sometimes called a discrete choice
or multiple choice problem. The models used are derived from the principles of
utility maximisation – that is, the agent chooses the alternative that maximises
his utility relative to the others. Econometrically, this is captured using a simple
generalisation of the binary setup discussed earlier. When there were only two
choices (0,1), we required just one equation to capture the probability that one
or the other would be chosen. If there are now three alternatives, we would need
two equations; for four alternatives, we would need three equations. In general, if
there are m possible alternative choices, we need m − 1 equations.

The situation is best illustrated by first examining a multinomial linear prob-
ability model. This still, of course, suffers from the same limitations as it did in
the binary case (i.e. the same problems as the LPM), but it nonetheless serves as a
simple example by way of introduction.4 The multiple choice example most com-
monly used is that of the selection of the mode of transport for travel to work.5

Suppose that the journey may be made by car, bus, or bicycle (three alternatives),
and suppose that the explanatory variables are the person’s income (I ), total hours
worked (H), their gender (G) and the distance travelled (D).6 We could set up
two equations

BUSi = α1 + α2 Ii + α3 Hi + α4Gi + α5 Di + ui (12.11)

CARi = β1 + β2 Ii + β3 Hi + β4Gi + β5 Di + vi (12.12)

where BUSi = 1 if person i travels by bus and 0 otherwise; CARi = 1 if person i
travels by car and 0 otherwise.

There is no equation for travel by bicycle and this becomes a sort of reference
point, since if the dependent variables in the two equations are both zero, the person
must be travelling by bicycle.7 In fact, we do not need to estimate the third equation
(for travel by bicycle) since any quantity of interest can be inferred from the other
two. The fitted values from the equations can be interpreted as probabilities and so,
together with the third possibility, they must sum to unity. Thus, if, for a particular

4 Multinomial models are clearly explained with intuitive examples in Halcoussis (2005, chapter 12).
5 This illustration is used in Greene (2002) and Kennedy (2003), for example.
6 Note that the same variables must be used for all equations for this approach to be valid.
7 We are assuming that the choices are exhaustive and mutually exclusive – that is, one and only

one method of transport can be chosen!
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individual i , the probability of travelling by car is 0.4 and by bus is 0.3, then
the possibility that she will travel by bicycle must be 0.3 (1−0.4−0.3). Also, the
intercepts for the three equations (the two estimated equations plus the missing
one) must sum to zero across the three modes of transport.

While the fitted probabilities will always sum to unity by construction, as with
the binomial case, there is no guarantee that they will all lie between 0 and 1 – it is
possible that one or more will be greater than 1 and one or more will be negative. In
order to make a prediction about which mode of transport a particular individual
will use, given that the parameters in equations (12.11) and (12.12) have been
estimated and given the values of the explanatory variables for that individual, the
largest fitted probability would be set to 1 and the others set to 0. So, for example,
if the estimated probabilities of a particular individual travelling by car, bus and
bicycle are 1.1, 0.2 and −0.3, these probabilities would be rounded to 1, 0, and
0. So the model would predict that this person would travel to work by car.

Exactly as the LPM has some important limitations that make logit and probit
the preferred models, in the multiple choice context multinomial logit and probit
models should be used. These are direct generalisations of the binary cases, and
as with the multinomial LPM, m − 1 equations must be estimated where there
are m possible outcomes or choices. The outcome for which an equation is not
estimated then becomes the reference choice, and thus the parameter estimates
must be interpreted slightly differently. Suppose that travel by bus (B) or by car
(C) have utilities for person i that depend on the characteristics described above
(Ii , Hi , Gi , Di ), then the car will be chosen if

(β1 + β2 Ii + β3 Hi + β4Gi + β5 Di + vi )

> (α1 + α2 Ii + α3 Hi + α4Gi + α5 Di + ui ) (12.13)

That is, the probability that the car will be chosen will be greater than that of the
bus being chosen if the utility from going by car is greater. Equation (12.13) can
be rewritten as

(β1 − α1) + (β2 − α2) Ii + (β3 − α3) Hi

+ (β4 − α4) Gi + (β5 − α5) Di > (ui − vi ) (12.14)

If it is assumed that ui and vi independently follow a particular distribution, then
the difference between them will follow a logistic distribution.8 Thus we can write

P (Ci /Bi ) = 1
1 + e−zi

(12.15)

where zi is the function on the left hand side of (12.14), i.e. (β1 − α1) +
(β2 − α2) Ii + · · · and travel by bus becomes the reference category. P (Ci /Bi )
denotes the probability that individual i would choose to travel by car rather than
by bus.

Equation (12.15) implies that the probability of the car being chosen in pref-
erence to the bus depends upon the logistic function of the differences in the

8 In fact, they must follow independent log Weibull distributions.
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parameters describing the relationship between the utilities from travelling by each
mode of transport. Of course, we cannot recover both β2 and α2 for example,
but only the difference between them (call this γ2 = β2 − α2). These parameters
measure the impact of marginal changes in the explanatory variables on the prob-
ability of travelling by car relative to the probability of travelling by bus. Note that
a unit increase in Ii will lead to a γ2F (Ii ) increase in the probability and not a
γ2 increase – see equations (12.5) and (12.6) above. For this trinomial problem,
there would need to be another equation – for example, based on the difference
in utilities between travelling by bike and by bus. These two equations would be
estimated simultaneously using maximum likelihood.

For the multinomial logit model, the error terms in the equations (ui and vi
in the example above) must be assumed to be independent. However, this creates
a problem whenever two or more of the choices are very similar to one another.
This problem is known as the ‘independence of irrelevant alternatives’. To illustrate
how this works, Kennedy (2003, p. 270) uses an example where another choice to
travel by bus is introduced and the only thing that differs is the colour of the bus.
Suppose that the original probabilities for the car, bus and bicycle were 0.4, 0.3
and 0.3. If a new green bus were introduced in addition to the existing red bus, we
would expect that the overall probability of travelling by bus should stay at 0.3 and
that bus passengers should split between the two (say, with half using each coloured
bus). This result arises since the new colour of the bus is irrelevant to those who
have already chosen to travel by car or bicycle. Unfortunately, the logit model will
not be able to capture this and will seek to preserve the relative probabilities of the
old choices (which could be expressed as 4

10 ,
3
10 and 3

10 respectively). These will
become 4

13 ,
3
13 ,

3
13 and 3

13 for car, green bus, red bus and bicycle respectively – a
long way from what intuition would lead us to expect.

Fortunately, the multinomial probit model, which is the multiple choice gen-
eralisation of the probit model discussed in section 12.5 above, can handle this.
The multinomial probit model would be set up in exactly the same fashion as
the multinomial logit model, except that the cumulative normal distribution is
used for (ui − vi ) instead of a cumulative logistic distribution. This is based on an
assumption that ui and vi are multivariate normally distributed but unlike the logit
model, they can be correlated. A positive correlation between the error terms can
be employed to reflect a similarity in the characteristics of two or more choices.
However, such a correlation between the error terms makes estimation of the
multinomial probit model using maximum likelihood difficult because multiple
integrals must be evaluated. Kennedy (2003, p. 271) suggests that this has resulted
in continued use of the multinomial logit approach despite the independence of
irrelevant alternatives problem.

• • • • • • • • • • • • • • 12.10 The pecking order hypothesis revisited – the choice between
financing methods

In section 12.4, a logit model was used to evaluate whether there was empirical
support for the pecking order hypothesis where the hypothesis boiled down to
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a consideration of the probability that a firm would seek external financing or
not. But suppose that we wish to examine not only whether a firm decides to
issue external funds but also which method of funding it chooses when there are a
number of alternatives available. As discussed above, the pecking order hypothesis
suggests that the least costly methods, which, everything else equal, will arise
where there is least information asymmetry, will be used first, and the method
used will also depend on the riskiness of the firm. Returning to Helwege and
Liang’s study, they argue that if the pecking order is followed, low-risk firms will
issue public debt first, while moderately risky firms will issue private debt and
the most risky companies will issue equity. Since there is more than one possible
choice, this is a multiple choice problem and consequently, a binary logit model
is inappropriate and instead, a multinomial logit is used. There are three possible
choices here: bond issue, equity issue and private debt issue. As is always the case
for multinomial models, we estimate equations for one fewer than the number
of possibilities, and so equations are estimated for equities and bonds, but not for
private debt. This choice then becomes the reference point, so that the coefficients
measure the probability of issuing equity or bonds rather than private debt, and a
positive parameter estimate in, say, the equities equation implies that an increase
in the value of the variable leads to an increase in the probability that the firm will
choose to issue equity rather than private debt.

The set of explanatory variables is slightly different now given the different
nature of the problem at hand. The key variable measuring risk is now the ‘unlev-
ered Z score’, which is Altman’s Z score constructed as a weighted average of
operating earnings before interest and taxes, sales, retained earnings and work-
ing capital. All other variable names are largely self-explanatory and so are not
discussed in detail, but they are divided into two categories – those measuring
the firm’s level of risk (unlevered Z-score, debt, interest expense and variance
of earnings) and those measuring the degree of information asymmetry (R&D
expenditure, venture-backed, age, age over fifty, plant property and equipment,
industry growth, non-financial equity issuance, and assets). Firms with heavy R&D
expenditure, those receiving venture capital financing, younger firms, firms with
less property, plant and equipment, and smaller firms are argued to suffer from
greater information asymmetry. The parameter estimates for the multinomial logit
are presented in table 12.2, with equity issuance as a (0,1) dependent variable in
the second column and bond issuance as a (0,1) dependent variable in the third
column.

Overall, the results paint a very mixed picture about whether the pecking order
hypothesis is validated or not. The positive (significant) and negative (insignificant)
estimates on the unlevered Z-score and interest expense variables respectively
suggest that firms in good financial health (i.e. less risky firms) are more likely
to issue equities or bonds rather than private debt. Yet the positive sign of the
parameter on the debt variable is suggestive that riskier firms are more likely to
issue equities or bonds; the variance of earnings variable has the wrong sign but
is not statistically significant. Almost all of the asymmetric information variables
have statistically insignificant parameters. The only exceptions are that firms having
venture backing are more likely to seek capital market financing of either type,
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Table 12.2 Multinomial logit estimation of the type of external
financing

Variable Equity equation Bonds equation

Intercept −4.67 −4.68

(−6.17) (−5.48)

Unlevered Z-score 0.14 0.26

(1.84) (2.86)

Debt 1.72 3.28

(1.60) (2.88)

Interest expense −9.41 −4.54

(−0.93) (−0.42)

Variance of earnings −0.04 −0.14

(−0.55) (−1.56)

R&D 0.61 0.89

(1.28) (1.59)

Venture-backed 0.70 0.86

(2.32) (2.50)

Age −0.01 −0.03

(−1.10) (−1.85)

Age over fifty 1.58 1.93

(1.44) (1.70)

Plant, property and equipment (0.62) 0.34

(0.94) (0.50)

Industry growth 0.005 0.003

(1.14) (0.70)

Non-financial equity issuance 0.008 0.005

(3.89) (2.65)

Assets −0.001 0.002

(−0.59) (4.11)

Notes: t-ratios in parentheses; only figures for all years in the sample are presented.
Source: Helwege and Liang (1996). Reprinted with the permission of Elsevier.
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as are non-financial firms. Finally, larger firms are more likely to issue bonds (but
not equity). Thus the authors conclude that the results ‘do not indicate that firms
strongly avoid external financing as the pecking order predicts’ and ‘equity is not
the least desirable source of financing since it appears to dominate bank loans’
(Helwege and Liang (1996), p. 458).

• • • • • • • • • • • • • • 12.11 Ordered response linear dependent variables models

Some limited dependent variables can be assigned numerical values that have a
natural ordering. The most common example in finance is that of credit ratings, as
discussed previously, but a further application is to modelling a security’s bid–ask
spread (see, for example, ap Gwilym et al., 1998). In such cases, it would not be
appropriate to use multinomial logit or probit since these techniques cannot take
into account any ordering in the dependent variables. Notice that ordinal variables
are still distinct from the usual type of data that were employed in the early chapters
in this book, such as stock returns, GDP, interest rates, etc. These are examples of
cardinal numbers, since additional information can be inferred from their actual
values relative to one another. To illustrate, an increase in house prices of 20%
represents twice as much growth as a 10% rise. The same is not true of ordinal
numbers, where (returning to the credit ratings example) a rating of AAA, assigned
a numerical score of 16, is not ‘twice as good’ as a rating of Baa2/BBB, assigned a
numerical score of 8. Similarly, for ordinal data, the difference between a score of,
say, 15 and of 16 cannot be assumed to be equivalent to the difference between the
scores of 8 and 9. All we can say is that as the score increases, there is a monotonic
increase in the credit quality. Since only the ordering can be interpreted with
such data and not the actual numerical values, OLS cannot be employed and a
technique based on ML is used instead. The models used are generalisations of
logit and probit, known as ordered logit and ordered probit.

Using the credit rating example again, the model is set up so that a particular
bond falls in the AA+ category (using Standard and Poor’s terminology) if its
unobserved (latent) creditworthiness falls within a certain range that is too low to
classify it as AAA and too high to classify it as AA. The boundary values between
each rating are then estimated along with the model parameters.

• • • • • • • • • • • • • • 12.12 Are unsolicited credit ratings biased downwards?
An ordered probit analysis

Modelling the determinants of credit ratings is one of the most important uses
of ordered probit and logit models in finance. The main credit ratings agencies
construct what may be termed solicited ratings, which are those where the issuer of
the debt contacts the agency and pays them a fee for producing the rating. Many
firms globally do not seek a rating (because, for example, the firm believes that
the ratings agencies are not well placed to evaluate the riskiness of debt in their
country or because they do not plan to issue any debt or because they believe that
they would be awarded a low rating), but the agency may produce a rating anyway.
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Such ‘unwarranted and unwelcome’ ratings are known as unsolicited ratings. All of
the major ratings agencies produce unsolicited ratings as well as solicited ones, and
they argue that there is a market demand for this information even if the issuer
would prefer not to be rated.

Companies in receipt of unsolicited ratings argue that these are biased down-
wards relative to solicited ratings and that they cannot be justified without the level
of detail of information that can be provided only by the rated company itself. A
study by Poon (2003) seeks to test the conjecture that unsolicited ratings are biased
after controlling for the rated company’s characteristics that pertain to its risk.

The data employed comprise a pooled sample of all companies that appeared
on the annual ‘issuer list’ of S&P during the years 1998–2000. This list contains
both solicited and unsolicited ratings covering 295 firms over fifteen countries
and totalling 595 observations. In a preliminary exploratory analysis of the data,
Poon finds that around half of the sample ratings were unsolicited, and indeed the
unsolicited ratings in the sample are on average significantly lower than the solicited
ratings.9 As expected, the financial characteristics of the firms with unsolicited
ratings are significantly weaker than those for firms that requested ratings. The
core methodology employs an ordered probit model with explanatory variables
comprising firm characteristics and a dummy variable for whether the firm’s credit
rating was solicited or not

R∗
i = Xi β + εi (12.16)

with

Ri =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if R∗
i ≤ μ0

2 if μ0 < R∗
i ≤ μ1

3 if μ1 < R∗
i ≤ μ2

4 if μ2 < R∗
i ≤ μ3

5 if R∗
i > μ3

where Ri are the observed ratings scores that are given numerical values as follows:
AA or above = 6, A = 5, BBB = 4, BB = 3, B = 2 and CCC or below =
1; R∗

i is the unobservable ‘true rating’ (or ‘an unobserved continuous variable
representing S&P’s assessment of the creditworthiness of issuer i ’), Xi is a vector
of variables that explains the variation in ratings; β is a vector of coefficients; μi
are the threshold parameters to be estimated along with β; and εi is a disturbance
term that is assumed normally distributed.

The explanatory variables attempt to capture the creditworthiness using pub-
licly available information. Two specifications are estimated: the first includes the
variables listed below, while the second additionally incorporates an interaction of
the main financial variables with a dummy variable for whether the firm’s rating
was solicited (SOL) and separately with a dummy for whether the firm is based in

9 We are assuming here that the broader credit rating categories, of which there are six, (AAA, AA,
A, BBB, BB, B) are being used rather than the finer categories used by Cantor and Packer (1996).
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Japan.10 The financial variables are ICOV – interest coverage (i.e. earnings inter-
est), ROA – return on assets, DTC – total debt to capital, and SDTD – short-term
debt to total debt. Three variables – SOVAA, SOVA and SOVBBB – are dummy
variables that capture the debt issuer’s sovereign credit rating.11 Table 12.3 presents
the results from the ordered probit estimation.

The key finding is that the SOL variable is positive and statistically significant
in Model 1 (and it is positive but insignificant in Model 2), indicating that even
after accounting for the financial characteristics of the firms, unsolicited firms
receive ratings on average 0.359 units lower than an otherwise identical firm that
had requested a rating. The parameter estimate for the interaction term between
the solicitation and Japanese dummies (SOL∗JP) is positive and significant in
both specifications, indicating strong evidence that Japanese firms soliciting ratings
receive higher scores. On average, firms with stronger financial characteristics
(higher interest coverage, higher return on assets, lower debt to total capital, or a
lower ratio of short-term debt to long-term debt) have higher ratings.

A major flaw that potentially exists within the above analysis is the self-selection
bias or sample selection bias that may have arisen if firms that would have received
lower credit ratings (because they have weak financials) elect not to solicit a rating.
If the probit equation for the determinants of ratings is estimated ignoring this
potential problem and it exists, the coefficients will be inconsistent. To get around
this problem and to control for the sample selection bias, Heckman (1979) proposed
a two-step procedure that in this case would involve first estimating a 0–1 probit
model for whether the firm chooses to solicit a rating and second estimating the
ordered probit model for the determinants of the rating. The first-stage probit
model is

Y∗
i = Zi γ + ξi (12.17)

where Yi = 1 if the firm has solicited a rating and 0 otherwise, and Y∗
i denotes the

latent propensity of issuer i to solicit a rating, Zi are the variables that explain the
choice to be rated or not, and γ are the parameters to be estimated. When this
equation has been estimated, the rating Ri as defined above in equation (12.16)
will be observed only if Yi = 1. The error terms from the two equations, εi and
ξi , follow a bivariate standard normal distribution with correlation ρεξ . Table 12.4
shows the results from the two-step estimation procedure, with the estimates from
the binary probit model for the decision concerning whether to solicit a rating in
panel A and the determinants of ratings for rated firms in panel B.

A positive parameter value in panel A indicates that higher values of the
associated variable increases the probability that a firm will elect to be rated. Of
the four financial variables, only the return on assets and the short-term debt as a

10 The Japanese dummy is used since a disproportionate number of firms in the sample are from
this country.

11 So SOVAA = 1 if the sovereign (i.e. the government of that country) has debt with a rating of
AA or above and 0 otherwise; SOVA has a value 1 if the sovereign has a rating of A; and SOVBBB
has a value 1 if the sovereign has a rating of BBB; any firm in a country with a sovereign whose
rating is below BBB is assigned a zero value for all three sovereign rating dummies.
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Table 12.3 Ordered probit model results for the determinants of credit ratings

Model 1 Model 2
Explanatory
variables Coefficient Test statistic Coefficient Test statistic

Intercept 2.324 8.960∗∗∗ 1.492 3.155∗∗∗

SOL 0.359 2.105∗∗ 0.391 0.647

JP −0.548 −2.949∗∗∗ 1.296 2.441∗∗

JP∗SOL 1.614 7.027∗∗∗ 1.487 5.183∗∗∗

SOVAA 2.135 8.768∗∗∗ 2.470 8.975∗∗∗

SOVA 0.554 2.552∗∗ 0.925 3.968∗∗∗

SOVBBB −0.416 −1.480 −0.181 −0.601

ICOV 0.023 3.466∗∗∗ −0.005 −0.172

ROA 0.104 10.306∗∗∗ 0.194 2.503∗∗

DTC −1.393 −5.736∗∗∗ −0.522 −1.130

SDTD −1.212 −5.228∗∗∗ 0.111 0.171

SOL∗ICOV – – 0.005 0.163

SOL∗ROA – – −0.116 −1.476

SOL∗DTC – – 0.756 1.136

SOL∗SDTD – – −0.887 −1.290

JP∗ICOV – – 0.009 0.275

JP∗ROA – – 0.183 2.200∗∗

JP∗DTC – – −1.865 −3.214∗∗∗

JP∗SDTD – – −2.443 −3.437∗∗∗

AA or above >5.095 >5.578

A >3.788 and ≤5.095 25.278∗∗∗ >4.147 and ≤5.578 23.294∗∗∗

BBB >2.550 and ≤3.788 19.671∗∗∗ >2.803 and ≤4.147 19.204∗∗∗

BB >1.287 and ≤2.550 14.342∗∗∗ >1.432 and ≤2.803 14.324∗∗∗

B >0 and ≤1.287 7.927∗∗∗ >0 and ≤1.432 7.910∗∗∗

CCC or below ≤0 ≤0

Note: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels respectively.
Source: Poon (2003). Reprinted with the permission of Elsevier.
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Table 12.4 Two-step ordered probit model allowing for selectivity
bias in the determinants of credit ratings

Explanatory variable Coefficient Test statistic

Panel A: Decision to be rated

Intercept 1.624 3.935∗∗∗

JP −0.776 −4.951∗∗∗

SOVAA −0.959 −2.706∗∗∗

SOVA −0.614 −1.794∗

SOVBBB −1.130 −2.899∗∗∗

ICOV −0.005 −0.922

ROA 0.051 6.537∗∗∗

DTC 0.272 1.019

SDTD −1.651 −5.320∗∗∗

Panel B: Rating determinant equation

Intercept 1.368 2.890∗∗∗

JP 2.456 3.141∗∗∗

SOVAA 2.315 6.121∗∗∗

SOVA 0.875 2.755∗∗∗

SOVBBB 0.306 0.768

ICOV 0.002 0.118

ROA 0.038 2.408∗∗

DTC −0.330 −0.512

SDTD 0.105 0.303

JP∗ICOV 0.038 1.129

JP∗ROA 0.188 2.104∗∗

JP∗DTC −0.808 −0.924

JP∗SDTD −2.823 −2.430∗∗

Estimated correlation −0.836 −5.723∗∗∗

AA or above >4.275

A >2.841 and ≤4.275 8.235∗∗∗

BBB >1.748 and ≤2.841 9.164∗∗∗

BB >0.704 and ≤1.748 6.788∗∗∗

B >0 and ≤0.704 3.316∗∗∗

CCC or below ≤0

Note: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels respectively.
Source: Poon (2003). Reprinted with the permission of Elsevier.
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proportion of total debt have correctly signed and significant (positive and negative
respectively) impacts on the decision to be rated. The parameters on the sovereign
credit rating dummy variables (SOVAA, SOVA and SOVB) are all significant and
negative in sign, indicating that any debt issuer in a country with a high sovereign
rating is less likely to solicit its own rating from S&P, other things equal.

These sovereign rating dummy variables have the opposite sign in the ratings
determinant equation (panel B) as expected, so that firms in countries where gov-
ernment debt is highly rated are themselves more likely to receive a higher rating.
Of the four financial variables, only ROA has a significant (and positive) effect on
the rating awarded. The dummy for Japanese firms is also positive and significant,
and so are three of the four financial variables when interacted with the Japan
dummy, indicating that S&P appears to attach different weights to the financial
variables when assigning ratings to Japanese firms compared with comparable firms
in other countries.

Finally, the estimated correlation between the error terms in the decision to
be rated equation and the ratings determinant equation, ρεξ , is significant and
negative (−0.836), indicating that the results in table 12.3 above would have been
subject to self-selection bias and hence the results of the two-stage model are to be
preferred. The only disadvantage of this approach, however, is that by construction
it cannot answer the core question of whether unsolicited ratings are on average
lower after allowing for the debt issuer’s financial characteristics, because only firms
with solicited ratings are included in the sample at the second stage!

• • • • • • • • • • • • • • 12.13 Censored and truncated dependent variables

Censored or truncated variables occur when the range of values observable for
the dependent variables is limited for some reason. Unlike the types of limited
dependent variables examined so far in this chapter, censored or truncated variables
may not necessarily be dummies. A standard example is that of charitable donations
by individuals. It is likely that some people would actually prefer to make negative
donations (that is, to receive from the charity rather than to donate to it), but since
this is not possible, there will be many observations at exactly zero. So suppose, for
example, that we wished to model the relationship between donations to charity
and people’s annual income, in pounds. The situation we might face is illustrated
in figure 12.3.

Given the observed data, with many observations on the dependent variable
stuck at zero, OLS would yield biased and inconsistent parameter estimates. An
obvious but flawed way to get around this would be just to remove all of the
zero observations altogether, since we do not know whether they should be truly
zero or negative. However, as well as being inefficient (since information would
be discarded), this would still yield biased and inconsistent estimates. This arises
because the error term, ui , in such a regression would not have an expected value
of zero, and it would also be correlated with the explanatory variable(s), violating
the assumption that Cov (ui , xki ) = 0 ∀ k.

The key differences between censored and truncated data are highlighted in
box 12.2. For both censored and truncated data, OLS will not be appropriate, and
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Figure 12.3 Modelling charitable donations as a function of income

an approach based on maximum likelihood must be used, although the model in
each case would be slightly different. In both cases, we can work out the marginal
effects given the estimated parameters, but these are now more complex than in
the logit or probit cases.

12.13.1 Censored dependent variable models

The approach usually used to estimate models with censored dependent variables
is known as tobit analysis, named after Tobin (1958). To illustrate, suppose that we
wanted to model the demand for privatisation IPO shares, as discussed above, as a
function of income (x2i ), age (x3i ), education (x4i ) and region of residence (x5i ).
The model would be

y∗
i = β1 + β2x2i + β3x3i + β4x4i + β5x5i + ui

yi = y∗
i for y∗

i < 250 (12.18)

yi = 250 for y∗
i ≥ 250

y∗
i represents the true demand for shares (i.e. the number of shares requested) and

this will be observable only for demand less than 250. It is important to note in this
model that β2, β3, etc. represent the impact on the number of shares demanded (of
a unit change in x2i , x3i , etc.) and not the impact on the actual number of shares
that will be bought (allocated).

An interesting financial application of the tobit approach is due to Haushalter
(2000), who employs it to model the determinants of the extent of hedging by oil
and gas producers using futures or options over the 1992–4 period. The dependent
variable used in the regression models, the proportion of production hedged, is
clearly censored because around half of all of the observations are exactly zero
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Box 12.2 The differences between censored and truncated
dependent variables

Although at first sight the two words might appear interchangeable, when
the terms are used in econometrics, censored and truncated data are
different.

● Censored data occur when the dependent variable has been ‘censored’ at
a certain point so that values above (or below) this cannot be observed.
Even though the dependent variable is censored, the corresponding
values of the independent variables are still observable.

● As an example, suppose that a privatisation IPO is heavily
oversubscribed, and you were trying to model the demand for the shares
using household income, age, education and region of residence as
explanatory variables. The number of shares allocated to each investor
may have been capped at, say, 250, resulting in a truncated distribution.

● In this example, even though we are likely to have many share
allocations at 250 and none above this figure, all of the observations on
the independent variables are present and hence the dependent variable
is censored, not truncated.

● A truncated dependent variable, meanwhile, occurs when the
observations for both the dependent and the independent variables are
missing when the dependent variable is above (or below) a certain
threshold. Thus the key difference from censored data is that we cannot
observe the xi s either, and so some observations are completely cut out
or truncated from the sample. For example, suppose that a bank were
interested in determining the factors (such as age, occupation and
income) that affected a customer’s decision as to whether to undertake
a transaction in a branch or online. Suppose also that the bank tried to
achieve this by encouraging clients to fill in an online questionnaire
when they log on. There would be no data at all for those who opted to
transact in person since they probably would not have even logged on
to the bank’s web-based system and so would not have the opportunity
to complete the questionnaire. Thus, dealing with truncated data is
really a sample selection problem because the sample of data that can be
observed is not representative of the population of interest – the sample
is biased, very likely resulting in biased and inconsistent parameter
estimates. This is a common problem, which will result whenever data
for buyers or users only can be observed while data for non-buyers or
non-users cannot. Of course, it is possible, although unlikely, that the
population of interest is focused only on those who use the internet for
banking transactions, in which case there would be no problem.
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(i.e. the firm does not hedge at all).12 The censoring of the proportion of produc-
tion hedged may arise because of high fixed costs that prevent many firms from
being able to hedge even if they wished to. Moreover, if companies expect the
price of oil or gas to rise in the future, they may wish to increase rather than reduce
their exposure to price changes (i.e. ‘negative hedging’), but this would not be
observable given the way that the data are constructed in the study.

The main results from the study are that the proportion of exposure hedged
is negatively related to creditworthiness, positively related to indebtedness, to the
firm’s marginal tax rate, and to the location of the firm’s production facility. The
extent of hedging is not, however, affected by the size of the firm as measured by
its total assets.

Before moving on, two important limitations of tobit modelling should be
noted. First, such models are much more seriously affected by non-normality and
heteroscedasticity than are standard regression models (see Amemiya, 1984), and
biased and inconsistent estimation will result. Second, as Kennedy (2003, p. 283)
argues, the tobit model requires it to be plausible that the dependent variable can
have values close to the limit. There is no problem with the privatisation IPO
example discussed above since the demand could be for 249 shares. However, it
would not be appropriate to use the tobit model in situations where this is not the
case, such as the number of shares issued by each firm in a particular month. For
most companies, this figure will be exactly zero, but for those where it is not, the
number will be much higher and thus it would not be feasible to issue, say, one or
three or fifteen shares. In this case, an alternative approach should be used.

12.13.2 Truncated dependent variable models

For truncated data, a more general model is employed that contains two equations –
one for whether a particular data point will fall into the observed or constrained
categories and another for modelling the resulting variable. The second equation
is equivalent to the tobit approach. This two-equation methodology allows for a
different set of factors to affect the sample selection (for example, the decision to
set up internet access to a bank account) from the equation to be estimated (for
example, to model the factors that affect whether a particular transaction will be
conducted online or in a branch). If it is thought that the two sets of factors will be
the same, then a single equation can be used and the tobit approach is sufficient.
In many cases, however, the researcher may believe that the variables in the sample
selection and estimation equations should be different. Thus the equations could
be

a ∗
i = α1 + α2z2i + α3z3i + · · · + αm zmi + εi (12.19)

y∗
i = β1 + β2x2i + β3x3i + · · · + βkxki + ui (12.20)

12 Note that this is an example of a censored rather than a truncated dependent variable because the
values of all of the explanatory variables are still available from the annual accounts even if a firm
does not hedge at all.
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where yi = y∗
i for a ∗

i > 0 and, yi is unobserved for a ∗
i ≤ 0. a ∗

i denotes the rela-
tive ‘advantage’ of being in the observed sample relative to the unobserved sample.

The first equation determines whether the particular data point i will be
observed or not, by regressing a proxy for the latent (unobserved) variable a ∗

i on
a set of factors, zi . The second equation is similar to the tobit model. Ideally, the
two equations (12.19) and (12.20) will be fitted jointly by maximum likelihood.
This is usually based on the assumption that the error terms, εi and ui , are mul-
tivariate normally distributed and allowing for any possible correlations between
them. However, while joint estimation of the equations is more efficient, it is
computationally more complex and hence a two-stage procedure popularised by
Heckman (1976) is often used. The Heckman procedure allows for possible cor-
relations between εi and ui while estimating the equations separately in a clever
way – see Maddala (1983).

• • • • • • • • • • • • • • 12.14 Limited dependent variable models in EViews

Estimating limited dependent variable models in EViews is very simple. The
example that will be considered here concerns whether it is possible to determine
the factors that affect the likelihood that a student will fail his/her MSc. The data
comprise a sample from the actual records of failure rates for five years of MSc
students in finance at the ICMA Centre, University of Reading contained in the
spreadsheet ‘MSc fail.xls’. While the values in the spreadsheet are all genuine, only
a sample of 100 students is included for each of five years who completed (or not as
the case may be!) their degrees in the years 2003 to 2007 inclusive. Therefore, the
data should not be used to infer actual failure rates on these programmes. The idea
for this example is taken from a study by Heslop and Varotto (2007) which seeks
to propose an approach to preventing systematic biases in admissions decisions.13

The objective here is to analyse the factors that affect the probability of failure
of the MSc. The dependent variable (‘fail’) is binary and takes the value 1 if that
particular candidate failed at first attempt in terms of his/her overall grade and 0
elsewhere. Therefore, a model that is suitable for limited dependent variables is
required, such as a logit or probit.

The other information in the spreadsheet that will be used includes the age
of the student, a dummy variable taking the value 1 if the student is female, a
dummy variable taking the value 1 if the student has work experience, a dummy
variable taking the value 1 if the student’s first language is English, a country
code variable that takes values from 1 to 10,14 a dummy variable that takes the
value 1 if the student already has a postgraduate degree, a dummy variable that
takes the value 1 if the student achieved an A-grade at the undergraduate level

13 Note that since this book uses only a sub-set of their sample and variables in the analysis, the
results presented below may differ from theirs. Since the number of fails is relatively small, I
deliberately retained as many fail observations in the sample as possible, which will bias the
estimated failure rate upwards relative to the true rate.

14 The exact identities of the countries involved are not revealed in order to avoid any embarrassment
for students from countries with high relative failure rates, except that Country 8 is the UK!
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Screenshot 12.1 Equation estimation window for limited dependent variables

(i.e. a first-class honours degree or equivalent), and a dummy variable that takes
the value 1 if the undergraduate grade was less than a B-grade (i.e. the student
received the equivalent of a lower second-class degree). The B-grade (or upper
second-class degree) is the omitted dummy variable and this will then become the
reference point against which the other grades are compared – see chapter 9. The
reason why these variables ought to be useful predictors of the probability of failure
should be fairly obvious and is therefore not discussed. To allow for differences
in examination rules and in average student quality across the five-year period,
year dummies for 2004, 2005, 2006 and 2007 are created and thus the year 2003
dummy will be omitted from the regression model.

First, open a new workfile that can accept ‘unstructured/undated’ series
of length 500 observations and then import the 13 variables. The data are
organised by observation and start in cell A2. The country code variable will
require further processing before it can be used but the others are already in
the appropriate format, so to begin, suppose that we estimate an LPM of fail on a
constant, age, English, female and work experience. This would be achieved simply
by running a linear regression in the usual way. While this model has a number
of very undesirable features as discussed above, it would nonetheless provide a
useful benchmark with which to compare the more appropriate models estimated
below.

Next, estimate a probit model and a logit model using the same depen-
dent and independent variables as above. Choose Quick and then Equation
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Screenshot 12.2 Equation estimation options for limited dependent variables

Estimation. Then type the dependent variable followed by the explanatory
variables

FAIL C AGE ENGLISH FEMALE WORK EXPERIENCE AGRADE
BELOWBGRADE PG DEGREE YEAR2004 YEAR2005 YEAR2006
YEAR2007

and then in the second window, marked ‘Estimation settings’, select BINARY –
Binary Choice (Logit, Probit, Extreme Value) with the whole sample 1 500.
The screen will appear as in screenshot 12.1.

You can then choose either the probit or logit approach. Note that EViews
also provides support for truncated and censored variable models and for multiple
choice models, and these can be selected from the drop-down menu by choosing
the appropriate method under ‘estimation settings’. Suppose that here we wish to
choose a probit model (the default). Click on the Options tab at the top of the
window and this enables you to select Robust Covariances and Huber/White.
This option will ensure that the standard error estimates are robust to heteroscedas-
ticity (see screenshot 12.2).

There are other options to change the optimisation method and convergence
criterion, as discussed in chapter 8. We do not need to make any modifications
from the default here, so click OK and the results will appear. Freeze and name
this table and then, for completeness, estimate a logit model. The results that
you should obtain for the probit model are in the following table.
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Dependent Variable: FAIL
Method: ML – Binary Probit (Quadratic hill climbing)
Date: 08/04/07 Time: 19:10
Sample: 1 500
Included observations: 500
Convergence achieved after 5 iterations
QML (Huber/White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

C −1.287210 0.609503 −2.111901 0.0347
AGE 0.005677 0.022559 0.251648 0.8013

ENGLISH −0.093792 0.156226 −0.600362 0.5483
FEMALE −0.194107 0.186201 −1.042460 0.2972

WORK EXPERIENCE −0.318247 0.151333 −2.102956 0.0355
AGRADE −0.538814 0.231148 −2.331038 0.0198

BELOWBGRADE 0.341803 0.219301 1.558601 0.1191
PG DEGREE 0.132957 0.225925 0.588502 0.5562
YEAR2004 0.349663 0.241450 1.448181 0.1476
YEAR2005 −0.108330 0.268527 −0.403422 0.6866
YEAR2006 0.673612 0.238536 2.823944 0.0047
YEAR2007 0.433785 0.24793 1.749630 0.0802

McFadden R-squared 0.088870 Mean dependent var 0.134000
S.D. dependent var 0.340993 S.E. of regression 0.333221
Akaike info criterion 0.765825 Sum squared resid 54.18582
Schwarz criterion 0.866976 Log likelihood −179.4563
Hannan-Quinn criter. 0.805517 Restr. log likelihood −196.9602
LR statistic 35.00773 Avg. log likelihood −0.358913
Prob(LR statistic) 0.000247

Obs with Dep=0 433 Total obs 500
Obs with Dep=1 67

As can be seen, the pseudo-R2 values are quite small at just below 9%, although this
is often the case for limited dependent variable models. Only the work experience
and A-grade variables and two of the year dummies have parameters that are
statistically significant, and the Below B-grade dummy is almost significant at the
10% level in the probit specification (although less so in the logit). As the final two
rows of the tables note, the proportion of fails in this sample is quite small, which
makes it harder to fit a good model than if the proportions of passes and fails had
been more evenly balanced. Various goodness of fit statistics can be examined by
(from the logit or probit estimation output window) clicking View/Goodness-
of-fit Test (Hosmer-Lemeshow). A further check on model adequacy is to
produce a set of ‘in-sample forecasts’ – in other words, to construct the fitted
values. To do this, click on the Forecast tab after estimating the probit model
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Figure 12.4 Fitted values from the failure probit regression

and then uncheck the forecast evaluation box in the ‘Output’ window as the
evaluation is not relevant in this case. All other options can be left as the default
settings and then the plot of the fitted values shown on figure 12.4 results.

The unconditional probability of failure for the sample of students we have is
only 13.4% (i.e. only 67 out of 500 failed), so an observation should be classified as
correctly fitted if either yi = 1 and ŷi > 0.134 or yi = 0 and ŷi < 0.134. The easi-
est way to evaluate the model in EViews is to click View/Actual,Fitted,Residual
Table from the logit or probit output screen. Then from this information we can
identify that of the 67 students that failed, the model correctly predicted 46 of
them to fail (and it also incorrectly predicted that 21 would pass). Of the 433
students who passed, the model incorrectly predicted 155 to fail and correctly pre-
dicted the remaining 278 to pass. Eviews can construct an ‘expectation-prediction
classification table’ automatically by clicking on View/Expectation-Prediction
Evaluation and then entering the unconditional probability of failure as the cutoff
when prompted (0.134). Overall, we could consider this a reasonable set of (in
sample) predictions with 64.8% of the total predictions correct, comprising 64.2%
of the passes correctly predicted as passes and 68.66% of the fails correctly predicted
as fails.

It is important to note that, as discussed above, we cannot interpret the param-
eter estimates in the usual way. In order to be able to do this, we need to calculate
the marginal effects. Unfortunately, EViews does not do this automatically, so the
procedure is probably best achieved in a spreadsheet using the approach described
in box 12.1 for the logit model and analogously for the probit model. If we did this,
we would end up with the statistics displayed in table 12.5, which are interestingly
quite similar in value to those obtained from the linear probability model.
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Table 12.5 Marginal effects for logit and probit models for
probability of MSc failure

Parameter Logit Probit

C −0.2433 −0.1646

AGE 0.0012 0.0007

ENGLISH −0.0178 −0.0120

FEMALE −0.0360 −0.0248

WORK EXPERIENCE −0.0613 −0.0407

AGRADE −0.1170 −0.0689

BELOWBGRADE 0.0606 0.0437

PG DEGREE 0.0229 0.0170

YEAR2004 0.0704 0.0447

YEAR2005 −0.0198 −0.0139

YEAR2006 0.1344 0.0862

YEAR2007 0.0917 0.0555

This table presents us with values that can be intuitively interpreted in terms of
how the variables affect the probability of failure. For example, an age parameter
value of 0.0012 implies that an increase in the age of the student by one year would
increase the probability of failure by 0.12%, holding everything else equal, while a
female student is around 2.5–3% (depending on the model) less likely than a male
student with otherwise identical characteristics to fail. Having an A-grade (first
class) in the bachelors degree makes a candidate either 6.89% or 12.7% (depending
on the model) less likely to fail than an otherwise identical student with a B-grade
(upper second-class degree). Finally, since the year 2003 dummy has been omitted
from the equations, this becomes the reference point. So students were more likely
in 2004, 2006 and 2007, but less likely in 2005, to fail the MSc than in 2003.

Key concepts

The key terms to be able to define and explain from this chapter are

• limited dependent variables • logit

• probit • censored variables

• truncated variables • ordered response

• multinomial logit • marginal effects

• pseudo-R2
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Self-study questions

1. Explain why the linear probability model is inadequate as a specification for
limited dependent variable estimation.

2. Compare and contrast the probit and logit specifications for binary choice
variables.

3. (a) Describe the intuition behind the maximum likelihood estimation
technique used for limited dependent variable models.

(b) Why do we need to exercise caution when interpreting the coefficients of
a probit or logit model?

(c) How can we measure whether a logit model that we have estimated fits
the data well or not?

(d) What is the difference, in terms of the model setup, in binary choice
versus multiple choice problems?

4. (a) Explain the difference between a censored variable and a truncated
variable as the terms are used in econometrics.

(b) Give examples from finance (other than those already described in this
book) of situations where you might meet each of the types of variable
described in part (a) of this question.

(c) With reference to your examples in part (b), how would you go about
specifying such models and estimating them?

5. Re-open the ‘fail xls’ spreadsheet for modelling the probability of MSc
failure and do the following:
(a) Take the country code series and construct separate dummy variables for

each country. Re-run the probit and logit regression above with all of the
other variables plus the country dummy variables. Set up the regression so
that the UK becomes the reference point against which the effect on
failure rate in other countries is measured. Is there evidence that any
countries have significantly higher or lower probabilities of failure than
the UK, holding all other factors in the model constant? In the case of the
logit model, use the approach given in box 12.1 to evaluate the
differences in failure rates between the UK and each other country.

(b) Suppose that a fellow researcher suggests that there may be a non-linear
relationship between the probability of failure and the age of the student.
Estimate a probit model with all of the same variables as above plus an
additional one to test this. Is there indeed any evidence of such a
nonlinear relationship?

Appendix The maximum likelihood estimator for logit and probit models

Recall that under the logit formulation, the estimate of the probability that yi = 1
will be given from equation (12.4), which was

Pi = 1

1 + e−(β1+β2x2i +...+βk xki +ui )
(12A.1)
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Set the error term, ui , to its expected value for simplicity and again, let zi =
β1 + β2x2i + · · · + βkxki , so that we have

Pi = 1
1 + e−zi

(12A.2)

We will also need the probability that yi �= 1 or equivalently the probability
that yi = 0. This will be given by 1 minus the probability in (12A.2).15 Given
that we can have actual zeros and ones only for yi rather than probabilities, the
likelihood function for each observation yi will be

Li =
(

1

1 + e−zi

)yi

×
(

1

1 + e zi

)(1−yi )

(12A.3)

The likelihood function that we need will be based on the joint probability
for all N observations rather than an individual observation i . Assuming that
each observation on yi is independent, the joint likelihood will be the product
of all N marginal likelihoods. Let L (θ |x2i , x3i , . . . , xki ; i = 1, N ) denote the
likelihood function of the set of parameters (β1, β2, . . . , βk) given the data. Then
the likelihood function will be given by

L (θ ) = N
�
i=1

(
1

1 + e−zi

)yi

×
(

1
1 + e zi

)(1−yi )

(12A.4)

As for maximum likelihood estimator of GARCH models, it is computation-
ally much simpler to maximise an additive function of a set of variables than a
multiplicative function, so long as we can ensure that the parameters required to
achieve this will be the same. We thus take the natural logarithm of equation
(12A.4) and this log-likelihood function is maximised

LLF = −
N∑

i=1

[yi ln(1 + e−zi ) + (1 − yi ) ln(1 + e zi )] (12A.5)

Estimation for the probit model will proceed in exactly the same way, except
that the form for the likelihood function in (12A.4) will be slightly different. It
will instead be based on the familiar normal distribution function described in the
appendix to chapter 9.

15 We can use the rule that

1 − 1
1 + e−zi

= 1 + e−zi − 1
1 + e−zi

= e−zi

1 + e−zi
= e−zi

1 + 1
e zi

= e−zi × e zi

1 + e zi
= 1

1 + e zi
.
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Learning outcomes

In this chapter, you will learn how to

• Design simulation frameworks to solve a variety of problems in finance

• Explain the difference between pure simulation and bootstrapping

• Describe the various techniques available for reducing Monte Carlo sampling

variability

• Implement a simulation analysis in EViews

• • • • • • • • • • • • • • 13.1 Motivations

There are numerous situations, in finance and in econometrics, where the
researcher has essentially no idea what is going to happen! To offer one illustration,
in the context of complex financial risk measurement models for portfolios con-
taining large numbers of assets whose movements are dependent on one another, it
is not always clear what will be the effect of changing circumstances. For example,
following full European Monetary Union (EMU) and the replacement of mem-
ber currencies with the euro, it is widely believed that European financial markets
have become more integrated, leading the correlation between movements in their
equity markets to rise. What would be the effect on the properties of a portfolio
containing equities of several European countries if correlations between the mar-
kets rose to 99%? Clearly, it is probably not possible to be able to answer such a
question using actual historical data alone, since the event (a correlation of 99%)
has not yet happened.

The practice of econometrics is made difficult by the behaviour of series and
inter-relationships between them that render model assumptions at best question-
able. For example, the existence of fat tails, structural breaks and bi-directional
causality between dependent and independent variables, etc. will make the pro-
cess of parameter estimation and inference less reliable. Real data is messy, and
no one really knows all of the features that lurk inside it. Clearly, it is important
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for researchers to have an idea of what the effects of such phenomena will be for
model estimation and inference.

By contrast, simulation is the econometrician’s chance to behave like a ‘real sci-
entist’, conducting experiments under controlled conditions. A simulations exper-
iment enables the econometrician to determine what the effect of changing one
factor or aspect of a problem will be, while leaving all other aspects unchanged.
Thus, simulations offer the possibility of complete flexibility. Simulation may be
defined as an approach to modelling that seeks to mimic a functioning system as it
evolves. The simulations model will express in mathematical equations the assumed
form of operation of the system. In econometrics, simulation is particularly useful
when models are very complex or sample sizes are small.

• • • • • • • • • • • • • • 13.2 Monte Carlo simulations

Simulations studies are usually used to investigate the properties and behaviour of
various statistics of interest. The technique is often used in econometrics when the
properties of a particular estimation method are not known. For example, it may
be known from asymptotic theory how a particular test behaves with an infinite
sample size, but how will the test behave if only fifty observations are available?
Will the test still have the desirable properties of being correctly sized and having
high power? In other words, if the null hypothesis is correct, will the test lead to
rejection of the null 5% of the time if a 5% rejection region is used? And if the
null is incorrect, will it be rejected a high proportion of the time?

Examples from econometrics of where simulation may be useful include:

● Quantifying the simultaneous equations bias induced by treating an endoge-
nous variable as exogenous

● Determining the appropriate critical values for a Dickey–Fuller test
● Determining what effect heteroscedasticity has upon the size and power of a

test for autocorrelation.

Simulations are also often extremely useful tools in finance, in situations such as:

● The pricing of exotic options, where an analytical pricing formula is unavail-
able

● Determining the effect on financial markets of substantial changes in the
macroeconomic environment

● ‘Stress-testing’ risk management models to determine whether they generate
capital requirements sufficient to cover losses in all situations.

In all of these instances, the basic way that such a study would be conducted (with
additional steps and modifications where necessary) is shown in box 13.1.

A brief explanation of each of these steps is in order. The first stage involves
specifying the model that will be used to generate the data. This may be a pure time
series model or a structural model. Pure time series models are usually simpler to
implement, as a full structural model would also require the researcher to specify
a data generating process for the explanatory variables as well. Assuming that a
time series model is deemed appropriate, the next choice to be made is of the
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Box 13.1 Conducting a Monte Carlo simulation

(1) Generate the data according to the desired data generating process
(DGP), with the errors being drawn from some given distribution

(2) Do the regression and calculate the test statistic
(3) Save the test statistic or whatever parameter is of interest
(4) Go back to stage 1 and repeat N times.

probability distribution specified for the errors. Usually, standard normal draws are
used, although any other empirically plausible distribution (such as a Student’s t)
could also be used.

The second stage involves estimation of the parameter of interest in the study.
The parameter of interest might be, for example, the value of a coefficient in a
regression, or the value of an option at its expiry date. It could instead be the value
of a portfolio under a particular set of scenarios governing the way that the prices
of the component assets move over time.

The quantity N is known as the number of replications, and this should be as
large as is feasible. The central idea behind Monte Carlo is that of random sampling
from a given distribution. Therefore, if the number of replications is set too small,
the results will be sensitive to ‘odd’ combinations of random number draws. It is
also worth noting that asymptotic arguments apply in Monte Carlo studies as well
as in other areas of econometrics. That is, the results of a simulation study will be
equal to their analytical counterparts (assuming that the latter exist) asymptotically.

• • • • • • • • • • • • • • 13.3 Variance reduction techniques

Suppose that the value of the parameter of interest for replication i is denoted
xi . If the average value of this parameter is calculated for a set of, say, N = 1,000
replications, and another researcher conducts an otherwise identical study with
different sets of random draws, a different average value of x is almost certain
to result. This situation is akin to the problem of selecting only a sample of
observations from a given population in standard regression analysis. The sampling
variation in a Monte Carlo study is measured by the standard error estimate,
denoted Sx

Sx =
√

var(x)
N

(13.1)

where var(x) is the variance of the estimates of the quantity of interest over the
N replications. It can be seen from this equation that to reduce the Monte Carlo
standard error by a factor of 10, the number of replications must be increased
by a factor of 100. Consequently, in order to achieve acceptable accuracy, the
number of replications may have to be set at an infeasibly high level. An alter-
native way to reduce Monte Carlo sampling error is to use a variance reduction
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technique. There are many variance reduction techniques available. Two of the
intuitively simplest and most widely used methods are the method of antithetic
variates and the method of control variates. Both of these techniques will now be
described.

13.3.1 Antithetic variates

One reason that a lot of replications are typically required of a Monte Carlo
study is that it may take many, many repeated sets of sampling before the entire
probability space is adequately covered. By their very nature, the values of the
random draws are random, and so after a given number of replications, it may be
the case that not the whole range of possible outcomes has actually occurred.1

What is really required is for successive replications to cover different parts of the
probability space – that is, for the random draws from different replications to
generate outcomes that span the entire spectrum of possibilities. This may take a
long time to achieve naturally.

The antithetic variate technique involves taking the complement of a set of
random numbers and running a parallel simulation on those. For example, if the
driving stochastic force is a set of TN(0, 1) draws, denoted ut , for each replication,
an additional replication with errors given by −ut is also used. It can be shown
that the Monte Carlo standard error is reduced when antithetic variates are used.
For a simple illustration of this, suppose that the average value of the parameter of
interest across two sets of Monte Carlo replications is given by

x̄ = (x1 + x2)/2 (13.2)

where x1 and x2 are the average parameter values for replications sets 1 and 2,
respectively. The variance of x̄ will be given by

var(x̄) = 1
4

(var(x1) + var(x2) + 2cov(x1, x2)) (13.3)

If no antithetic variates are used, the two sets of Monte Carlo replications will be
independent, so that their covariance will be zero, i.e.

var(x̄) = 1

4
(var(x1) + var(x2)) (13.4)

However, the use of antithetic variates would lead the covariance in (13.3) to be
negative, and therefore the Monte Carlo sampling error to be reduced.

It may at first appear that the reduction in Monte Carlo sampling variation
from using antithetic variates will be huge since, by definition, corr(ut , −ut ) =
cov(ut , −ut ) = −1. However, it is important to remember that the relevant
covariance is between the simulated quantity of interest for the standard replications

1 Obviously, for a continuous random variable, there will be an infinite number of possible values.
In this context, the problem is simply that if the probability space is split into arbitrarily small
intervals, some of those intervals will not have been adequately covered by the random draws that
were actually selected.
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and those using the antithetic variates. But the perfect negative covariance is
between the random draws (i.e. the error terms) and their antithetic variates. For
example, in the context of option pricing (discussed below), the production of
a price for the underlying security (and therefore for the option) constitutes a
non-linear transformation of ut . Therefore the covariances between the terminal
prices of the underlying assets based on the draws and based on the antithetic
variates will be negative, but not −1.

Several other variance reduction techniques that operate using similar prin-
ciples are available, including stratified sampling, moment-matching and low-
discrepancy sequencing. The latter are also known as quasi-random sequences of
draws. These involve the selection of a specific sequence of representative samples
from a given probability distribution. Successive samples are selected so that the
unselected gaps left in the probability distribution are filled by subsequent replica-
tions. The result is a set of random draws that are appropriately distributed across
all of the outcomes of interest. The use of low-discrepancy sequences leads the
Monte Carlo standard errors to be reduced in direct proportion to the number
of replications rather than in proportion to the square root of the number of
replications. Thus, for example, to reduce the Monte Carlo standard error by a
factor of 10, the number of replications would have to be increased by a factor of
100 for standard Monte Carlo random sampling, but only 10 for low-discrepancy
sequencing. Further details of low-discrepancy techniques are beyond the scope of
this text, but can be seen in Boyle (1977) or Press et al. (1992). The former offers
a detailed and relevant example in the context of options pricing.

13.3.2 Control variates

The application of control variates involves employing a variable similar to that
used in the simulation, but whose properties are known prior to the simulation.
Denote the variable whose properties are known by y, and that whose properties
are under simulation by x. The simulation is conducted on x and also on y, with
the same sets of random number draws being employed in both cases. Denoting
the simulation estimates of x and y by x̂ and ŷ, respectively, a new estimate of x
can be derived from

x∗ = y + (x̂ − ŷ) (13.5)

Again, it can be shown that the Monte Carlo sampling error of this quantity,
x∗, will be lower than that of x provided that a certain condition holds. The
control variates help to reduce the Monte Carlo variation owing to particular sets
of random draws by using the same draws on a related problem whose solution is
known. It is expected that the effects of sampling error for the problem under study
and the known problem will be similar, and hence can be reduced by calibrating
the Monte Carlo results using the analytic ones.

It is worth noting that control variates succeed in reducing the Monte Carlo
sampling error only if the control and simulation problems are very closely related.
As the correlation between the values of the control statistic and the statistic of
interest is reduced, the variance reduction is weakened. Consider again (13.5), and
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take the variance of both sides

var(x∗) = var(y + (x̂ − ŷ)) (13.6)

var(y) = 0 since y is a quantity which is known analytically and is therefore not
subject to sampling variation, so (13.6) can be written

var(x∗) = var(x̂) + var(ŷ) − 2cov(x̂, ŷ) (13.7)

The condition that must hold for the Monte Carlo sampling variance to be lower
with control variates than without is that var(x∗) is less than var(x̂). Taken from
(13.7), this condition can also be expressed as

var(ŷ) − 2cov(x̂, ŷ) < 0

or

cov(x̂, ŷ) >
1

2
var(ŷ)

Divide both sides of this inequality by the products of the standard deviations, i.e.
by (var(x̂), var(ŷ))1/2, to obtain the correlation on the LHS

corr(x̂, ŷ) >
1

2

√
var(ŷ)
var(x̂)

To offer an illustration of the use of control variates, a researcher may be
interested in pricing an arithmetic Asian option using simulation. Recall that an
arithmetic Asian option is one whose payoff depends on the arithmetic average
value of the underlying asset over the lifetime of the averaging; at the time of
writing, an analytical (closed-form) model is not yet available for pricing such
options. In this context, a control variate price could be obtained by finding the
price via simulation of a similar derivative whose value is known analytically –
e.g. a vanilla European option. Thus, the Asian and vanilla options would be
priced using simulation, as shown below, with the simulated price given by PA
and P ∗

BS, respectively. The price of the vanilla option, PBS is also calculated using an
analytical formula, such as Black–Scholes. The new estimate of the Asian option
price, P ∗

A, would then be given by

P ∗
A = (PA − PBS) + P ∗

BS (13.8)

13.3.3 Random number re-usage across experiments

Although of course it would not be sensible to re-use sets of random number
draws within a Monte Carlo experiment, using the same sets of draws across
experiments can greatly reduce the variability of the difference in the estimates
across those experiments. For example, it may be of interest to examine the power
of the Dickey–Fuller test for samples of size 100 observations and for different
values of φ (to use the notation of chapter 8). Thus, for each experiment involving
a different value of φ, the same set of standard normal random numbers could be
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used to reduce the sampling variation across experiments. However, the accuracy
of the actual estimates in each case will not be increased, of course.

Another possibility involves taking long series of draws and then slicing them
up into several smaller sets to be used in different experiments. For example, Monte
Carlo simulation may be used to price several options of different times to maturity,
but which are identical in all other respects. Thus, if six-month, three-month and
one-month horizons were of interest, sufficient random draws to cover six months
would be made. Then the six-months’ worth of draws could be used to construct
two replications of a three-month horizon, and six replications for the one-month
horizon. Again, the variability of the simulated option prices across maturities
would be reduced, although the accuracies of the prices themselves would not be
increased for a given number of replications.

Random number re-usage is unlikely to save computational time, for making
the random draws usually takes a very small proportion of the overall time taken
to conduct the whole experiment.

• • • • • • • • • • • • • • 13.4 Bootstrapping

Bootstrapping is related to simulation, but with one crucial difference. With simu-
lation, the data are constructed completely artificially. Bootstrapping, on the other
hand, is used to obtain a description of the properties of empirical estimators by
using the sample data points themselves, and it involves sampling repeatedly with
replacement from the actual data. Many econometricians were initially highly
sceptical of the usefulness of the technique, which appears at first sight to be some
kind of magic trick – creating useful additional information from a given sample.
Indeed, Davison and Hinkley (1997, p. 3), state that the term ‘bootstrap’ in this
context comes from an analogy with the fictional character Baron Munchhausen,
who got out from the bottom of a lake by pulling himself up by his bootstraps.

Suppose a sample of data, y= y1, y2, . . . , yT are available and it is desired to
estimate some parameter θ . An approximation to the statistical properties of θ̂T
can be obtained by studying a sample of bootstrap estimators. This is done by
taking N samples of size T with replacement from y and re-calculating θ̂ with
each new sample. A series of θ̂ estimates is then obtained, and their distribution
can be considered.

The advantage of bootstrapping over the use of analytical results is that it
allows the researcher to make inferences without making strong distributional
assumptions, since the distribution employed will be that of the actual data. Instead
of imposing a shape on the sampling distribution of the θ̂ value, bootstrapping
involves empirically estimating the sampling distribution by looking at the variation
of the statistic within-sample.

A set of new samples is drawn with replacement from the sample and the test
statistic of interest calculated from each of these. Effectively, this involves sampling
from the sample, i.e. treating the sample as a population from which samples can
be drawn. Call the test statistics calculated from the new samples θ̂∗. The samples
are likely to be quite different from each other and from the original θ̂ value,
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since some observations may be sampled several times and others not at all. Thus a
distribution of values of θ̂∗ is obtained, from which standard errors or some other
statistics of interest can be calculated.

Along with advances in computational speed and power, the number of boot-
strap applications in finance and in econometrics have increased rapidly in previous
years. For example, in econometrics, the bootstrap has been used in the context
of unit root testing. Scheinkman and LeBaron (1989) also suggest that the boot-
strap can be used as a ‘shuffle diagnostic’, where as usual the original data are
sampled with replacement to form new data series. Successive applications of this
procedure should generate a collection of data sets with the same distributional
properties, on average, as the original data. But any kind of dependence in the
original series (e.g. linear or non-linear autocorrelation) will, by definition, have
been removed. Applications of econometric tests to the shuffled series can then be
used as a benchmark with which to compare the results on the actual data or to
construct standard error estimates or confidence intervals.

In finance, an application of bootstrapping in the context of risk manage-
ment is discussed below. Another important recent proposed use of the boot-
strap is as a method for detecting data snooping (data mining) in the context of
tests of the profitability of technical trading rules. Data snooping occurs when
the same set of data is used to construct trading rules and also to test them. In
such cases, if a sufficient number of trading rules are examined, some of them
are bound, purely by chance alone, to generate statistically significant positive
returns. Intra-generational data snooping is said to occur when, over a long period
of time, technical trading rules that ‘worked’ in the past continue to be exam-
ined, while the ones that did not fade away. Researchers are then made aware of
only the rules that worked, and not the other, perhaps thousands, of rules that
failed.

Data snooping biases are apparent in other aspects of estimation and testing in
finance. Lo and MacKinlay (1990) find that tests of financial asset pricing models
(CAPM) may yield misleading inferences when properties of the data are used to
construct the test statistics. These properties relate to the construction of portfolios
based on some empirically motivated characteristic of the stock, such as market
capitalisation, rather than a theoretically motivated characteristic, such as dividend
yield.

Sullivan, Timmermann and White (1999) and White (2000) propose the use
of a bootstrap to test for data snooping. The technique works by placing the rule
under study in the context of a ‘universe’ of broadly similar trading rules. This
gives some empirical content to the notion that a variety of rules may have been
examined before the final rule is selected. The bootstrap is applied to each trading
rule, by sampling with replacement from the time series of observed returns for
that rule. The null hypothesis is that there does not exist a superior technical
trading rule. Sullivan, Timmermann and White show how a p-value of the ‘reality
check’ bootstrap-based test can be constructed, which evaluates the significance of
the returns (or excess returns) to the rule after allowing for the fact that the whole
universe of rules may have been examined.
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Box 13.2 Re-sampling the data

(1) Generate a sample of size T from the original data by sampling with
replacement from the whole rows taken together (that is, if observation
32 is selected, take y32 and all values of the explanatory variables for
observation 32).

(2) Calculate β̂∗, the coefficient matrix for this bootstrap sample.
(3) Go back to stage 1 and generate another sample of size T. Repeat these

stages a total of N times. A set of N coefficient vectors, β̂∗, will thus be
obtained and in general they will all be different, so that a distribution
of estimates for each coefficient will result.

13.4.1 An example of bootstrapping in a regression context

Consider a standard regression model

y = Xβ + u (13.9)

The regression model can be bootstrapped in two ways.

Re-sample the data

This procedure involves taking the data, and sampling the entire rows correspond-
ing to observation i together. The steps would then be as shown in box 13.2.

A methodological problem with this approach is that it entails sampling from
the regressors, and yet under the CLRM, these are supposed to be fixed in repeated
samples, which would imply that they do not have a sampling distribution. Thus,
resampling from the data corresponding to the explanatory variables is not in the
spirit of the CLRM.

As an alternative, the only random influence in the regression is the errors, u ,
so why not just bootstrap from those?

Re-sampling from the residuals

This procedure is ‘theoretically pure’ although harder to understand and to imple-
ment. The steps are shown in box 13.3.

13.4.2 Situations where the bootstrap will be ineffective

There are at least two situations where the bootstrap, as described above, will not
work well.
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Box 13.3 Re-sampling from the residuals

(1) Estimate the model on the actual data, obtain the fitted values ŷ, and
calculate the residuals, û

(2) Take a sample of size T with replacement from these residuals (and call
these û∗), and generate a bootstrapped-dependent variable by adding
the fitted values to the bootstrapped residuals

y∗ = ŷ + û∗ (13.10)

(3) Then regress this new dependent variable on the original X data to get
a bootstrapped coefficient vector, β̂∗

(4) Go back to stage 2, and repeat a total of N times.

Outliers in the data

If there are outliers in the data, the conclusions of the bootstrap may be affected. In
particular, the results for a given replication may depend critically on whether the
outliers appear (and how often) in the bootstrapped sample.

Non-independent data

Use of the bootstrap implicitly assumes that the data are independent of one another.
This would obviously not hold if, for example, there were autocorrelation in the
data. A potential solution to this problem is to use a ‘moving block bootstrap’.
Such a method allows for the dependence in the series by sampling whole blocks
of observations at a time. These, and many other issues relating to the theory and
practical usage of the bootstrap are given in Davison and Hinkley (1997); see also
Efron (1979, 1982).

It is also worth noting that variance reduction techniques are also available
under the bootstrap, and these work in a very similar way to those described above
in the context of pure simulation.

• • • • • • • • • • • • • • 13.5 Random number generation

Most econometrics computer packages include a random number generator. The
simplest class of numbers to generate are from a uniform (0,1) distribution. A
uniform (0,1) distribution is one where only values between zero and one are
drawn, and each value within the interval has an equal chance of being selected.
Uniform draws can be either discrete or continuous. An example of a discrete
uniform number generator would be a die or a roulette wheel. Computers generate
continuous uniform random number draws.
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Numbers that are a continuous uniform (0,1) can be generated according to
the following recursion

yi+1 = (a yi + c ) modulo m , i = 0, 1, . . . , T (13.11)

then

Ri+1 = yi+1/m for i = 0, 1, . . . , T (13.12)

for T random draws, where y0 is the seed (the initial value of y), a is a multiplier and
c is an increment. All three of these are simply constants. The ‘modulo operator’
simply functions as a clock, returning to one after reaching m .

Any simulation study involving a recursion, such as that described by (13.11) to
generate the random draws, will require the user to specify an initial value, y0, to get
the process started. The choice of this value will, undesirably, affect the properties of
the generated series. This effect will be strongest for y1, y2, . . . , but will gradually
die away. For example, if a set of random draws is used to construct a time series
that follows a GARCH process, early observations on this series will behave less
like the GARCH process required than subsequent data points. Consequently,
a good simulation design will allow for this phenomenon by generating more
data than are required and then dropping the first few observations. For example,
if 1,000 observations are required, 1,200 observations might be generated, with
observations 1 to 200 subsequently deleted and 201 to 1,200 used to conduct the
analysis.

These computer-generated random number draws are known as pseudo-random
numbers, since they are in fact not random at all, but entirely deterministic, since
they have been derived from an exact formula! By carefully choosing the values
of the user-adjustable parameters, it is possible to get the pseudo-random number
generator to meet all the statistical properties of true random numbers. Eventually,
the random number sequences will start to repeat, but this should take a long time
to happen. See Press et al. (1992) for more details and Fortran code, or Greene
(2002) for an example.

The U(0,1) draws can be transformed into draws from any desired distri-
bution – for example a normal or a Student’s t. Usually, econometric software
packages with simulations facilities would do this automatically.

• • • • • • • • • • • • • • 13.6 Disadvantages of the simulation approach to econometric or financial
problem solving

● It might be computationally expensive
That is, the number of replications required to generate precise solutions
may be very large, depending upon the nature of the task at hand. If each
replication is relatively complex in terms of estimation issues, the problem
might be computationally infeasible, such that it could take days, weeks or
even years to run the experiment. Although CPU time is becoming ever
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cheaper as faster computers are brought to market, the technicality of the
problems studied seems to accelerate just as quickly!

● The results might not be precise
Even if the number of replications is made very large, the simulation experi-
ments will not give a precise answer to the problem if some unrealistic assump-
tions have been made of the data generating process. For example, in the
context of option pricing, the option valuations obtained from a simulation
will not be accurate if the data generating process assumed normally distributed
errors while the actual underlying returns series is fat-tailed.

● The results are often hard to replicate
Unless the experiment has been set up so that the sequence of random draws
is known and can be reconstructed, which is rarely done in practice, the results
of a Monte Carlo study will be somewhat specific to the given investigation.
In that case, a repeat of the experiment would involve different sets of random
draws and therefore would be likely to yield different results, particularly if the
number of replications is small.

● Simulation results are experiment-specific
The need to specify the data generating process using a single set of equations
or a single equation implies that the results could apply to only that exact type
of data. Any conclusions reached may or may not hold for other data gener-
ating processes. To give one illustration, examining the power of a statistical
test would, by definition, involve determining how frequently a wrong null
hypothesis is rejected. In the context of DF tests, for example, the power of the
test as determined by a Monte Carlo study would be given by the percentage
of times that the null of a unit root is rejected. Suppose that the following data
generating process is used for such a simulation experiment

yt = 0.99yt−1 + ut , ut ∼ N(0, 1) (13.13)

Clearly, the null of a unit root would be wrong in this case, as is necessary to
examine the power of the test. However, for modest sample sizes, the null is
likely to be rejected quite infrequently. It would not be appropriate to conclude
from such an experiment that the DF test is generally not powerful, since in
this case the null (φ = 1) is not very wrong! This is a general problem with
many Monte Carlo studies. The solution is to run simulations using as many
different and relevant data generating processes as feasible. Finally, it should
be obvious that the Monte Carlo data generating process should match the
real-world problem of interest as far as possible.

To conclude, simulation is an extremely useful tool that can be applied to an
enormous variety of problems. The technique has grown in popularity over the
past decade, and continues to do so. However, like all tools, it is dangerous in
the wrong hands. It is very easy to jump into a simulation experiment without
thinking about whether such an approach is valid or not.
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• • • • • • • • • • • • • • 13.7 An example of Monte Carlo simulation in econometrics: deriving a set of
critical values for a Dickey–Fuller test

Recall, that the equation for a Dickey–Fuller (DF) test applied to some series yt is
the regression

yt = φyt−1 + ut (13.14)

so that the test is one of H0: φ = 1 against H1: φ < 1. The relevant test statistic is
given by

τ = φ̂ − 1

SE(φ̂)
(13.15)

Under the null hypothesis of a unit root, the test statistic does not follow a standard
distribution, and therefore a simulation would be required to obtain the relevant
critical values. Obviously, these critical values are well documented, but it is of
interest to see how one could generate them. A very similar approach could then
potentially be adopted for situations where there has been less research and where
the results are relatively less well known.

The simulation would be conducted in the four steps shown in box 13.4.
Some EViews code for conducting such a simulation is given below. The objec-
tive is to develop a set of critical values for Dickey–Fuller test regressions. The
simulation framework considers sample sizes of 1,000, 500 and 100 observations.
For each of these sample sizes, regressions with no constant or trend, a constant
but no trend, and a constant and trend are conducted. 50,000 replications are
used in each case, and the critical values for a one-sided test at the 1%, 5% and
10% levels are determined. The code can be found pre-written in a file entitled
‘dfcv.prg’.

EViews programs are simply sets of instructions saved as plain text, so that
they can be written from within EViews, or using a word processor or text editor.
EViews program files must have a ‘.PRG’ suffix. There are several ways to run the
programs once written, but probably the simplest is to write all of the instructions
first, and to save them. Then open the EViews software and choose File, Open
and Programs. . . , and when prompted select the directory and file for the
instructions. The program containing the instructions will then appear on the
screen. To run the program, click on the Run button. EViews will then open a
dialog box with several options, including whether to run the program in ‘Verbose’
or ‘Quiet’ mode. Choose Verbose mode to see the instruction line that is being
run at each point in its execution (i.e. the screen is continually updated). This
is useful for debugging programs or for running short programs. Choose Quiet
to run the program without updating the screen display as it is running, which
will make it execute (considerably) more quickly. The screen would appear as in
screenshot 13.1.

Then click OK and off it goes! The following lists the instructions that are
contained in the program, and the discussion below explains what each line does.
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Box 13.4 Setting up a Monte Carlo simulation

(1) Construct the data generating process under the null hypothesis – that
is, obtain a series for y that follows a unit root process. This would be
done by:
● Drawing a series of length T, the required number of observations,

from a normal distribution. This will be the error series, so that
ut ∼ N(0,1).

● Assuming a first value for y, i.e. a value for y at time t = 1.
● Constructing the series for y recursively, starting with y2, y3, and so

on

y2 = y1 + u2

y3 = y2 + u3 (13.16)

. . .

yT = yT−1 + uT

(2) Calculating the test statistic, τ .
(3) Repeating steps 1 and 2 N times to obtain N replications of the

experiment. A distribution of values for τ will be obtained across the
replications.

(4) Ordering the set of N values of τ from the lowest to the highest. The
relevant 5% critical value will be the 5th percentile of this distribution.

′NEW WORKFILE CREATED CALLED DF CV, UNDATED
′WITH 50000 OBSERVATIONS

WORKFILE DF CV U 50000
RNDSEED 12345
SERIES T1
SERIES T2
SERIES T3
SCALAR K1
SCALAR K2
SCALAR K3
SCALAR K4
SCALAR K5
SCALAR K6
SCALAR K7
SCALAR K8
SCALAR K9
!NREPS=50000
!NOBS=1000
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Screenshot 13.1 Running an EViews program

FOR !REPC=1 TO !NREPS
SMPL @FIRST @FIRST
SERIES Y1=0
SMPL @FIRST+1 !NOBS+200
SERIES Y1=Y1(−1)+NRND
SERIES DY1=Y1-Y1(−1)
SMPL @FIRST+200 !NOBS+200
EQUATION EQ1.LS DY1 Y1(−1)
T1(!REPC)=@TSTATS(1)
EQUATION EQ2.LS DY1 C Y1(−1)
T2(!REPC)=@TSTATS(2)
EQUATION EQ3.LS DY1 C @TREND Y1(−1)
T3(!REPC)=@TSTATS(3)
NEXT
SMPL @FIRST !NREPS
K1=@QUANTILE(T1,0.01)
K2=@QUANTILE(T1,0.05)
K3=@QUANTILE(T1,0.1)
K4=@QUANTILE(T2,0.01)
K5=@QUANTILE(T2,0.05)
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K6=@QUANTILE(T2,0.1)
K7=@QUANTILE(T3,0.01)
K8=@QUANTILE(T3,0.05)
K9=@QUANTILE(T3,0.1)

Although there are probably more efficient ways to structure the program than
that given above, this sample code has been written in a style to make it easy to
follow. The program would be run in the way described above. That is, it would
be opened from within EViews, and then the Run button would be pressed and
the mode of execution (Verbose or Quiet) chosen.

A first point to note is that comment lines are denoted by a ′ symbol in EViews.
The first line of code, ‘WORKFILE DF CV U 50000’ will set up a new EViews
workfile called DF CV.WK1, which will be undated (U) and will contain series of
length 50,000. This step is required for EViews to have a place to put the output
series since no other workfile will be opened by this program! In situations where
the program requires an already existing workfile containing data to be opened,
this line would not be necessary since any new results and objects created would
be appended to the original workfile. RNDSEED 12345 sets the random number
seed that will be used to start the random draws.

‘SERIES T1’ creates a new series T1 that will be filled with NA elements. The
series T1, T2 and T3, will hold the Dickey–Fuller test statistics for each replication,
for the three cases (no constant or trend, constant but no trend, constant and trend,
respectively). ‘SCALAR K1’ sets up a scalar (single number) K1. K1, . . . , K9 will
be used to hold the 1%, 5% and 10% critical values for each of the three cases.
!NREPS=50000 and !NOBS=1000 set the number of replications that will be
used to 50,000 and the number of observations to be used in each time series to
1,000. The exclamation marks enable the scalars to be used without previously
having to define them using the SCALAR instruction. Of course, these values
can be changed as desired. Loops in EViews are defined as FOR at the start and
NEXT at the end, in a similar way to visual basic code. Thus FOR !REPC=1
TO !NREPS starts the main replications loop, which will run from 1 to NREPS.

SMPL @FIRST @FIRST
SERIES Y1=0

The two lines above set the first observation of a new series Y1 to zero (so
@FIRST is EViews method of denoting the first observation in the series, and
the final observation is denoted by, you guessed it, @LAST). Then

SMPL @FIRST+1 !NOBS+200
SERIES Y1=Y1(−1)+NRND
SERIES DY1=Y1-Y1(−1)

will set the sample to run from observation 2 to observation !NOBS+200 (1200).
This enables the program to generate 200 additional startup observations. It is very
easy in EViews to construct a series following a random walk process, and this
is done by the second of the above three lines. The current value of Y1 is set
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to the previous value plus a standard normal random draw (NRND). In EViews,
draws can be taken from a wide array of distributions (see the User Guide).
SERIES DY1 . . . creates a new series called DY1 that contains the first difference
of Y.

SMPL @FIRST+200 !NOBS+200
EQUATION EQ1.LS DY1 Y1(−1)

The first of the two lines above sets the sample to run from observation 201 to
observation 1200, thus dropping the 200 startup observations. The following line
actually conducts an OLS estimation (‘.LS’), in the process creating an equation
object called EQ1. The dependent variable is DY1 and the independent variable
is the lagged value of Y, Y(−1).

Following the equation estimation, several new quantities will have been
created. These quantities are denoted by a ‘@’ in EViews. So the line
‘T1(!REPC)=@TSTATS(1)’ will take the t-ratio of the coefficient on the first
(and in this case only) independent variable, and will place it in the !REPC row
of the series T1. Similarly, the t-ratios on the lagged value of Y will be placed in
T2 and T3 for the regressions with constant and constant and trend respectively.
Finally, NEXT will finish the replications loop and SMPL @FIRST !NREPS will
set the sample to run from 1 to 50,000, and the 1%, 5%, and 10% critical values
for the no constant or trend case will then be found in K1, K2 and K3. The
‘@QUANTILE(T1,0.01)’ instruction will take the 1% quantile from the series
T1, which avoids sorting the series.

The critical value obtained by running the above instructions, which are
virtually identical to those found in the statistical tables at the end of this book, are
(to two decimal places)

1% 5% 10%

No constant or trend −2.58 −1.95 −1.63
Constant but no trend −3.45 −2.85 −2.56
Constant and trend −3.93 −3.41 −3.43

This is to be expected, for the use of 50,000 replications should ensure that
an approximation to the asymptotic behaviour is obtained. For example, the 5%
critical value for a test regression with no constant or trend and 500 observations is
−1.945 in this simulation, and −1.95 in Fuller (1976). Although the Dickey–Fuller
simulation was unnecessary in the sense that the critical values for the resulting test
statistics are already well known and documented, a very similar procedure could
be adopted for a variety of problems. For example, a similar approach could be
used for constructing critical values or for evaluating the performance of statistical
tests in various situations.
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Box 13.5 Simulating the price of an Asian option

(1) Specify a data generating process for the underlying asset. A random walk
with drift model is usually assumed. Specify also the assumed size of the
drift component and the assumed size of the volatility parameter.
Specify also a strike price K , and a time to maturity, T.

(2) Draw a series of length T, the required number of observations for the
life of the option, from a normal distribution. This will be the error
series, so that εt ∼ N(0, 1).

(3) Form a series of observations of length T on the underlying asset.
(4) Observe the price of the underlying asset at maturity observation T. For a call

option, if the value of the underlying asset on maturity date, PT ≤ K ,
the option expires worthless for this replication. If the value of the
underlying asset on maturity date, PT > K , the option expires in the
money, and has value on that date equal to PT − K , which should be
discounted back to the present day using the risk-free rate. Use of the
risk-free rate relies upon risk-neutrality arguments (see Duffie, 1996).

(5) Repeat steps 1 to 4 a total of N times, and take the average value of the
option over the N replications. This average will be the price of the
option.

• • • • • • • • • • • • • • 13.8 An example of how to simulate the price of a financial option

A simple example of how to use a Monte Carlo study for obtaining a price for
a financial option is shown below. Although the option used for illustration here
is just a plain vanilla European call option which could be valued analytically
using the standard Black–Scholes (1973) formula, again, the method is sufficiently
general that only relatively minor modifications would be required to value more
complex options. Boyle (1977) gives an excellent and highly readable introduction
to the pricing of financial options using Monte Carlo.

The steps involved are shown in box 13.5.

13.8.1 Simulating the price of a financial option using a fat-tailed
underlying process

A fairly limiting and unrealistic assumption in the above methodology for pricing
options is that the underlying asset returns are normally distributed, whereas in
practice, it is well know that asset returns are fat-tailed. There are several ways
to remove this assumption. First, one could employ draws from a fat-tailed dis-
tribution, such as a Student’s t , in step 2 above. Another method, which would
generate a distribution of returns with fat tails, would be to assume that the errors
and therefore the returns follow a GARCH process. To generate draws from a
GARCH process, do the steps shown in box 13.6.
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Box 13.6 Generating draws from a GARCH process

(1) Draw a series of length T, the required number of observations for the
life of the option, from a normal distribution. This will be the error
series, so that εt ∼ N(0, 1).

(2) Recall that one way of expressing a GARCH model is

r t = μ + ut ut = εtσt εt ∼ N(0, 1) (13.17)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (13.18)

A series of εt , have been constructed and it is necessary to specify
initialising values y1 and σ 2

1 and plausible parameter values for α0, α1,
β. Assume that y1 and σ 2

1 are set to μ and one, respectively, and
the parameters are given by α0 = 0.01, α1 = 0.15, β = 0.80. The
equations above can then be used to generate the model for r t as
described above.

13.8.2 Simulating the price of an Asian option

An Asian option is one whose payoff depends upon the average value of the
underlying asset over the averaging horizon specified in the contract. Most Asian
options contracts specify that arithmetic rather than geometric averaging should
be employed. Unfortunately, the arithmetic average of a unit root process with a
drift is not well defined. Additionally, even if the asset prices are assumed to be log-
normally distributed, the arithmetic average of them will not be. Consequently,
a closed-form analytical expression for the value of an Asian option has yet to
be developed. Thus, the pricing of Asian options represents a natural application
for simulations methods. Determining the value of an Asian option is achieved in
almost exactly the same way as for a vanilla call or put. The simulation is conducted
identically, and the only difference occurs in the very last step where the value of
the payoff at the date of expiry is determined.

13.8.3 Pricing Asian options using EViews

A sample of EViews code for determining the value of an Asian option is given
below. The example is in the context of an arithmetic Asian option on the FTSE
100, and two simulations will be undertaken with different strike prices (one that
is out of the money forward and one that is in the money forward). In each case,
the life of the option is six months, with daily averaging commencing immediately,
and the option value is given for both calls and puts in terms of index points. The
parameters are given as follows, with dividend yield and risk-free rates expressed
as percentages:
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Simulation 1: strike=6500, risk-free=6.24, dividend yield=2.42, ‘today’s’
FTSE=6289.70, forward price=6405.35, implied volatility=26.52

Simulation 2: strike=5500, risk-free=6.24, dividend yield=2.42, ‘today’s’
FTSE=6289.70, forward price=6405.35, implied volatility=34.33

Any other programming language or statistical package would be equally appli-
cable, since all that is required is a Gaussian random number generator, the ability
to store in arrays and to loop. Since no actual estimation is performed, differences
between packages are likely to be negligible. All experiments are based on 25,000
replications and their antithetic variates (total: 50,000 sets of draws) to reduce
Monte Carlo sampling error.

Some sample code for pricing an ASIAN option for Normally distributed
errors using EViews is given as follows:
′UNDATED WORKFILE CREATED CALLED ASIAN P
′WITH 50000 OBSERVATIONS
WORKFILE ASIAN P U 50000
RNDSEED 12345
!N=125
!TTM=0.5
!NREPS=50000
!IV=0.28
!RF=0.0624
!DY=0.0242
!DT=!TTM / !N
!DRIFT=(!RF-!DY-(!IVˆ2/2.0))∗!DT
!VSQRDT=!IV∗(!DTˆ0.5)
!K=5500
!S0=6289.7
SERIES APVAL
SERIES ACVAL
SERIES SPOT
SCALAR AV
SCALAR CALLPRICE
SCALAR PUTPRICE
SERIES RANDS
′GENERATES THE DATA
FOR !REPC=1 TO !NREPS STEP 2
RANDS=NRND
SERIES SPOT=0
SMPL @FIRST @FIRST
SPOT(1)=!S0∗EXP(!DRIFT+!VSQRDT∗RANDS(1))
SMPL 2 !N
SPOT=SPOT(−1)∗EXP(!DRIFT+!VSQRDT∗RANDS(!N))
′COMPUTE THE DAILY AVERAGE
SMPL @FIRST !N
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AV=@MEAN(SPOT)
IF AV>!K THEN

ACVAL(!REPC)=(AV-!K)∗EXP(-!RF∗!TTM)
ELSE

ACVAL(!REPC)=0
ENDIF
IF AV<!K THEN

APVAL(!REPC)=(!K-AV)∗EXP(-!RF∗!TTM)
ELSE

APVAL(!REPC)=0
ENDIF
RANDS=-RANDS
SERIES SPOT=0
SMPL @FIRST @FIRST
SPOT(1)=!S0∗EXP(!DRIFT+!VSQRDT∗RANDS(1))
SMPL 2 !N
SPOT=SPOT(−1)∗EXP(!DRIFT+!VSQRDT∗RANDS(!N))
′COMPUTE THE DAILY AVERAGE
SMPL @FIRST !N
AV=@MEAN(SPOT)
IF AV>!K THEN

ACVAL(!REPC+1)=(AV-!K)∗EXP(-!RF∗!TTM)
ELSE

ACVAL(!REPC+1)=0
ENDIF
IF AV<!K THEN

APVAL(!REPC+1)=(!K-AV)∗EXP(-!RF∗!TTM)
ELSE

APVAL(!REPC+1)=0
ENDIF
NEXT
SMPL @FIRST !NREPS
CALLPRICE=@MEAN(ACVAL)
PUTPRICE=@MEAN(APVAL)

Many parts of the program above use identical instructions to those given for
the DF critical value simulation, and so annotation will now focus on the con-
struction of the program and on previously unseen commands. The first block of
commands set up a new workfile called ‘ASIAN P’ that will hold all of the objects
and output. Then the following lines specify the parameters for the simulation
of the path of the price of the underlying asset (the drift, the implied volatility,
etc.).

‘!=DT=!TTM/!N’ splits the time to maturity (0.5 years) into N discrete
time periods. Since daily averaging is required, it is easiest to set N = 125 (the
approximate number of trading days in half a year), so that each time period
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DT represents one day. The model assumes under a risk-neutral measure that the
underlying asset price follows a geometric Brownian motion, which is given by

d S = (r f − d y) Sd t + σ Sd z (13.19)

where dz is the increment of a Brownian motion. Further details of this continuous
time representation of the movement of the underlying asset over time are beyond
the scope of this book. A treatment of this and many other useful option pricing
formulae and computer code are given in Haug (1998), and an accessible discussion
is given in Hull (2011). The discrete time approximation to this for a time step of
one can be written

St = St−1 exp
[(

r f − d y − 1
2
σ 2

)
d t + σ

√
d t ut

]
(13.20)

where ut is a white noise error process. The following instructions set up the arrays
for the underlying spot price (called ‘SPOT’), and for the discounted values of the
put (‘APVAL’) and call (‘ACVAL’). Note that by default, arrays of the length given
by the ‘workfile’ definition statement (50000) will be created.

The command ‘FOR !REPC=1 TO !NREPS DO REPC=1, NREPS,2’
starts the main do loop for the simulation, looping up to the number of replications,
in steps of 2. The loop ends at ‘END DO REPC’. Steps of 2 are used because
antithetic variates are also used for each replication, which will create another
simulated path for the underlying asset prices and option value.

The random N(0,1) draws are made, which are then constructed into a series of
future prices of the underlying asset for the next 125 days. ‘AV=@MEAN(SPOT)’
will compute the average price of the underlying over the lifetime of the option
(125 days). The following two statements construct the terminal payoffs for the
call and the put options respectively. For the call, ‘ACVAL’ is set to the average
underlying price less the strike price if the average is greater than the strike (i.e.
if the option expires in the money), and zero otherwise. Vice versa for the put.
The payoff at expiry is discounted back to the present using the risk-free rate, and
placed in the REPC row of the ‘ACVAL’ or ‘APVAL’ array for the calls and puts,
respectively.

The process then repeats using the antithetic variates, constructed using
‘RANDS = -RANDS’. The call and put present values for these paths are put
in the even rows of ‘ACVAL’ and ‘APVAL’.

This completes one cycle of the REPC loop, which starts again with REPC=3,
then 5, 7, 9, . . . , 49999. The result will be two arrays ‘ACVAL’ and ‘APVAL’,
which will contain 50,000 rows comprising the present value of the call and put
option for each simulated path. The option prices would then simply be given by
the averages over the 50,000 replications.

Note that both call values and put values can be calculated easily from a given
simulation, since the most computationally expensive step is in deriving the path
of simulated prices for the underlying asset. The results are given in table 10.1,
along with the values derived from an analytical approximation to the option price,
derived by Levy, and estimated using VBA code in Haug (1998, pp. 97–100).
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The main difference between the way that the simulation is conducted here
and the method used for EViews simulation of the Dickey–Fuller critical values
is that here, the random numbers are generated by opening a new series called
‘RANDS’ and filling it with the random number draws. The reason that this must
be done is so that the negatives of the elements of RANDS can later be taken
to form the antithetic variates. Finally, for each replication, the IF clause will set
out of the money call prices (where K>AV) and out of the money put prices
(K<AV) to zero. Then the call and put prices for each replication are discounted
back to the present using the risk-free rate, and outside the replications loop,
the options prices are the averages of these discounted prices across the 50,000
replications.

The workfile ‘ASIAN P’ will contain quite a few objects by the end of
the simulation, including the scalars CALLPRICE and PUTPRICE, which will
be the call and put prices. Also, the series ACVAL and APVAL will contain
the current value of the option for each of the 50,000 simulated paths. Hav-
ing the whole series across all replications can be useful for constructing stan-
dard errors, and for checking that the program appears to have been working
correctly.

Applying the instructions above (with K = 5500, and implied volatility at 28%)
gives simulated call and put prices as given in the following table.

Strike = 6500, IV = 26.52 Strike = 5500, IV = 34.33

CALL Price CALL Price

Analytical Approximation 203.45 Analytical Approximation 888.55
Monte Carlo Normal 204.22 Monte Carlo Normal 885.29

PUT Price PUT Price

Analytical Approximation 348.7 Analytical Approximation 64.52
Monte Carlo Normal 349.43 Monte Carlo Normal 61.52

In both cases, the simulated options prices are quite close to the analytical
approximations, although the Monte Carlo seems to overvalue the out-of-the-
money call and to undervalue the out-of-the-money put. Some of the errors in
the simulated prices relative to the analytical approximation may result from the
use of a discrete-time averaging process using only 125 points.

• • • • • • • • • • • • • • 13.9 An example of bootstrapping to calculate capital risk requirements

13.9.1 Financial motivation

Risk management modelling has, in this author’s opinion, been one of the most
rapidly developing areas of application of econometric techniques over the past
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decade or so. One of the most popular approaches to risk measurement is by
calculating what is known as an institution’s ‘value-at-risk’, denoted VaR. Broadly
speaking, value-at-risk is an estimation of the probability of likely losses which could
arise from changes in market prices. More precisely, it is defined as the money-loss of
a portfolio that is expected to occur over a pre-determined horizon and with a
pre-determined degree of confidence. The roots of VaR’s popularity stem from
the simplicity of its calculation, its ease of interpretation and from the fact that VaR
can be suitably aggregated across an entire firm to produce a single number which
broadly encompasses the risk of the positions of the firm as a whole. The value-
at-risk estimate is also often known as the position risk requirement or minimum
capital risk requirement (MCRR); the three terms will be used interchangeably
in the exposition below. There are various methods available for calculating value
at risk, including the ‘delta-normal’ method; historical simulation, involving the
estimation of the quantile of returns of the portfolio; and structured Monte Carlo
simulation; see Dowd (1998) or Jorion (2006) for thorough introductions to value-
at-risk.

The Monte Carlo approach involves two steps. First, a data generating process
is specified for the underlying assets in the portfolio. Second, possible future paths
are simulated for those assets over given horizons, and the value of the portfolio
at the end of the period is examined. Thus the returns for each simulated path are
obtained, and from this distribution across the Monte Carlo replications, the VaR
as a percentage of the initial value of the portfolio can be measured as the first or
fifth percentile.

The Monte Carlo method is clearly a very powerful and flexible method for
generating VaR estimates, since any stochastic process for the underlying assets can
be specified. The effect of increasing variances or correlations, etc. can easily be
incorporated into the simulation design. However, there are at least two drawbacks
with the use of Monte Carlo simulation for estimating VaR. First, for a large
portfolio, the computational time required to compute the VaR may be excessively
great. Second, and more fundamentally, the calculated VaR may be inaccurate if the
stochastic process that has been assumed for the underlying asset is inappropriate.
In particular, asset prices are often assumed to follow a random walk or a random
walk with drift, where the driving disturbances are random draws from a normal
distribution. Since it is well known that asset returns are fat-tailed, the use of
Gaussian draws in the simulation is likely to lead to a systematic underestimate of
the VaR, as extremely large positive or negative returns are more likely in practice
than would arise under a normal distribution. Of course, the normal random draws
could be replaced by draws from a t-distribution, or the returns could be assumed
to follow a GARCH process, both of which would generate an unconditional
distribution of returns with fat tails. However, there is still some concern as to
whether the distribution assumed in designing the simulations framework is really
appropriate.

An alternative approach, that could potentially overcome this criticism, would
be to use bootstrapping rather than Monte Carlo simulation. In this context, the
future simulated prices are generated using random draws with replacement from
the actual returns themselves, rather than artificially generating the disturbances
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from an assumed distribution. Such an approach is used in calculating MCRRs
by Hsieh (1993) and by Brooks, Clare and Persand (2000). The methodology
proposed by Hsieh will now be examined.

Hsieh (1993) employs daily log returns on foreign currency (against the US
dollar) futures series from 22 February 1985 until 9 March 1990 (1,275 observa-
tions) for the British pound (denoted BP), the German mark (GM), the Japanese
yen (JY) and the Swiss franc (SF). The first stage in setting up the bootstrapping
framework is to form a model that fits the data and adequately describes its fea-
tures. Hsieh employs the BDS test (discussed briefly in chapter 8) to determine
an appropriate class of models. An application of the test to the raw returns data
shows that the data are not random, and that there is some structure in the data.
The dependence in the series, shown in the rejection of randomness by the test
implies that there is either:

● a linear relationship between yt and yt−1, yt−2, . . . or
● a non-linear relationship between yt and yt−1, yt−2, . . .

The Box–Pierce Q test is applied to test for both, on the returns for the former,
and on the squared or absolute values of the returns for the latter. The results of
this test are not shown but effectively rule out the possibility of linear dependence
(so that, for example, an ARMA model would not be appropriate for the returns),
but there appears to be evidence of non-linear dependence in the series. There-
fore, a second question, is whether the non-linearity is in-mean or in-variance
(see chapter 8 for elucidation). Hsieh uses a bicorrelation test to show that there
is no evidence for non-linearity in-mean. Therefore, the most appropriate class of
models for the returns series is a model which has time-varying (conditional) vari-
ances. Hsieh employs two types of model: EGARCH and autoregressive volatility
(ARV) models. The coefficient estimates for the EGARCH model are reported in
table 13.1.

Several features of the EGARCH estimates are worth noting. First, as one
may anticipate for a set of currency futures returns, the asymmetry terms (i.e.
the estimated values of γ ) are not significant for any of the four series. The
high estimated values of β suggest a high degree of persistence in volatility in
all cases except the Japanese yen. Brooks, Clare and Persand (2000) suggest that
such persistence may be excessive in the sense that the volatility implied by the
estimated conditional variance is too persistent to reproduce the profile of the
volatility of the actual returns series. Such excessive volatility persistence could
lead to an overestimate of the VaR. Leaving this issue aside, Hsieh continues to
evaluate the effectiveness of the EGARCH models in capturing all of the non-
linear dependence in the data. This is achieved by reapplying the BDS test to
the standardised residuals, constructed by taking the residuals from the estimated
models, and dividing them by their respective conditional standard deviations. If
the model has captured all of the important features of the data, the standardised
residual series should be completely random. It is observed that the EGARCH
model cannot capture all of the non-linear dependence in the mark or franc series.

A second approach to modelling volatility is derived from a high/low volatility
estimator. A daily volatility series is thus constructed using a re-scaled estimate of
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Table 13.1 EGARCH estimates for currency futures returns

xt = μ + σtηt

ηt ∼ N(0, 1)

log σ 2
t = α + β log σ 2

t−1 + φ(|ηt−1| − (2/π )1/2) + γ ηt−1

Coefficient BP DM JY SF

μ 0.000319 0.000377 0.000232 0.000239

(0.000208) (0.000214) (0.000189) (0.000235)

α −0.688127 −1.072229 −4.438289 −0.993241

(0.030088) (0.041828) (0.756704) (0.032479)

β 0.928780 0.889511 0.550707 0.895527

(0.002995) (0.004386) (0.075851) (0.003508)

φ 0.135854 0.187005 0.282167 0.157669

(0.019961) (0.028388) (0.093357) (0.024013)

γ −0.110718 0.084173 0.313274 0.129035

(0.177458) (0.147279) (0.201531) (0.166507)

Notes: Standard errors in parentheses.
Source: Hsieh (1993). Reprinted with the permission of School of Business Administration,
University of Washington.

the range over the trading day

σP ,t = (0.361 × 1440/M)1/2log(Hight/Lowt ) (13.21)

where Hight and Lowt are the highest and lowest transacted prices on day t and M
is the number of trading minutes during the day. The volatility series, σP ,t can now
be modelled as any other series. A natural model to propose, given the dependence
(or persistence) in volatility over time, is an autoregressive model in the volatility.
The formulation used for the price series is known as an autoregressive volatility
(ARV) model

xt = σP ,t u t (13.22)

ln σP ,t = α +
∑

i

βi ln σP ,t−i + νt (13.23)

where νt is an error term. The appropriate lag length for the ARV model is
determined using Schwarz’s information criterion, which suggests that 8, 8, 5 and
8 lags should be used for the pound, mark, yen and franc series, respectively. The
coefficient estimates for the ARV models are given in table 13.2.
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Table 13.2 Autoregressive volatility estimates for currency
futures returns

xt = σP,t ut

ln σP,t = α + ∑
i

βi ln σP,t−i + νt

Coefficient BP DM JY SF

α −1.037 −1.139 −1.874 −1.219

(0.171) (0.187) (0.199) (0.193)

β1 0.192 0.153 0.208 0.115

(0.028) (0.028) (0.028) (0.028)

β2 0.134 0.111 0.137 0.106

(0.029) (0.028) (0.028) (0.028)

β3 0.062 0.052 0.058 0.068

(0.029) (0.028) (0.029) (0.028)

β4 0.069 0.092 0.109 0.091

(0.029) (0.028) (0.028) (0.028)

β5 0.137 0.091 0.112 0.118

(0.028) (0.028) (0.028) (0.028)

β6 0.027 0.072 0.074

(0.029) (0.028) (0.028)

β7 0.073 0.110 0.086

(0.028) (0.028) (0.028)

β8 0.088 0.079 0.078

(0.028) (0.028) (0.028)

R̄2 0.274 0.227 0.170 0.193

Source: Hsieh (1993). Reprinted with the permission of School of Business Administration,
University of Washington.

The degrees of persistence for each exchange rate series implied by the ARV
estimates is given by the sums of the β coefficients, which are 0.78, 0.76, 0.62, 0.74,
respectively. These figures are high, although less so than under the EGARCH
formulation. The standardised residuals from this model are given by xt/σ̂P ,t ,
where σ̂P ,t are the fitted values of volatility. An application of the BDS test to
these standardised residuals shows no evidence of further structure apart from
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in the Swiss franc case, where the test statistics are marginally significant. Thus,
since these standardised residuals are iid, it is valid to sample from them using the
bootstrap technique.

To summarise, it is concluded that both the EGARCH and ARV mod-
els present reasonable descriptions of the futures returns series, which are then
employed in conjunction with the bootstrap to estimate the value at risk estimates.
This is achieved by simulating the future values of the futures price series, using the
parameter estimates from the two models, and using disturbances obtained by sam-
pling with replacement from the standardised residuals (η̂t/ĥ1/2

t ) for the EGARCH
model and from ut and νt for ARV models. In this way, 10,000 possible future
paths of the series are simulated (i.e. 10,000 replications are used), and in each case,
the maximum drawdown (loss) can be calculated over a given holding period by

Q = (P0 − P1) ×number of contracts (13.24)

where P0 is the initial value of the position, and P1 is the lowest simulated price
(for a long position) or highest simulated price (for a short position) over the
holding period. The maximum loss is calculated assuming holding periods of 1, 5,
10, 15, 20, 25, 30, 60, 90 and 180 days. It is assumed that the futures position is
opened on the final day of the sample used to estimate the models, 9 March 1990.

The ninetieth percentile of these 10,000 maximum losses can be taken to
obtain a figure for the amount of capital required to cover losses on 90% of days.
It is important for firms to consider the maximum daily losses arising from their
futures positions, since firms will be required to post additional funds to their
margin accounts to cover such losses. If funds are not made available to the margin
account, the firm is likely to have to liquidate its futures position, thus destroying
any hedging effects that the firm required from the futures contracts in the first
place.

However, Hsieh (1993) uses a slightly different approach to the final stage,
which is as follows. Assuming (without loss of generality) that the number of
contracts held is 1, the following can be written for a long position

Q
x0

=
(

1 − x1

x0

)
(13.25)

or

Q
x0

=
(

x1

x0
− 1

)
(13.26)

for a short position. x1 is defined as the minimum price for a long position (or the
maximum price for a short position) over the horizon that the position is held.
In either case, since x0 is a constant, the distribution of Q will depend on the
distribution of x1. Hsieh (1993) assumes that prices are lognormally distributed,
i.e. that the logs of the ratios of the prices,

ln
(

x1

x0

)
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are normally distributed. This being the case, an alternative estimate of the fifth
percentile of the distribution of returns can be obtained by taking the relevant
critical value from the normal statistical tables, multiplying it by the standard
deviation and adding it to the mean of the distribution.

The MCRRs estimated using the ARV and EGARCH models are com-
pared with those estimated by bootstrapping from the price changes themselves,
termed the ‘unconditional density model’. The estimated MCRRs are given in
table 13.3.

The entries in table 13.3 refer to the amount of capital required to cover 90%
of expected losses, as percentages of the initial values of the positions. For example,
according to the EGARCH model, approximately 14% of the initial value of a
long position should be held in the case of the yen to cover 90% of expected losses
for a 180-day horizon. The results contain several interesting features. First, the
MCRRs derived from bootstrapping the price changes themselves (the ‘uncondi-
tional approach’) are in most cases higher than those generated from the other two
methods, especially at short investment horizons. This is argued to have occurred
owing to the fact that the level of volatility at the start of the MCRR calculation
period was low relative to its historical level. Therefore, the conditional estimation
methods (EGARCH and ARV) will initially forecast volatility to be lower than the
historical average. As the holding period increases from 1 towards 180 days, the
MCRR estimates from the ARV model converge upon those of the unconditional
densities. On the other hand, those of the EGARCH model do not converge,
even after 180 days (in fact, in some cases, the EGARCH MCRR seems oddly
to diverge from the unconditionally estimated MCRR as the horizon increases).
It is thus argued that the EGARCH model may be inappropriate for MCRR
estimation in this application.

It can also be observed that the MCRRs for short positions are larger than
those of comparative long positions. This could be attributed to an upward drift in
the futures returns over the sample period, suggesting that on average an upwards
move in the futures price was slightly more likely than a fall.

A further step in the analysis, which Hsieh did not conduct, but which is
shown in Brooks, Clare and Persand (2000), is to evaluate the performance of the
MCRR estimates in an out-of-sample period. Such an exercise would evaluate
the models by assuming that the MCRR estimated from the model had been
employed, and by tracking the change in the value of the position over time.
If the MCRR is adequate, the 90% nominal estimate should be sufficient to
cover losses on 90% of out-of-sample testing days. Any day where the MCRR is
insufficient to cover losses is termed an ‘exceedence’ or an ‘exception’. A model
that leads to more than 10% exceptions for a nominal 90% coverage is deemed
unacceptable on the grounds that on average, the MCRR was insufficient. Equally,
a model that leads to considerably less than the expected 10% exceptions would
also be deemed unacceptable on the grounds that the MCRR has been set at
an inappropriately high level, leading capital to be unnecessarily tied up in a
liquid and unprofitable form. Brooks, Clare and Persand (2000) observe, as Hsieh’s
results forewarn, that the MCRR estimates from GARCH-type models are too
high, leading to considerably fewer exceedences than the nominal proportion.
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Table 13.3 Minimum capital risk requirements for currency futures as
a percentage of the initial value of the position

Long position Short position

Unconditional Unconditional
No. of days AR density EGARCH AR density EGARCH

BP 1 0.73 0.91 0.93 0.80 0.98 1.05

5 1.90 2.30 2.61 2.18 2.76 3.00

10 2.83 3.27 4.19 3.38 4.22 4.88

15 3.54 3.94 5.72 4.45 5.48 6.67

20 4.10 4.61 6.96 5.24 6.33 8.43

25 4.59 5.15 8.25 6.20 7.36 10.46

30 5.02 5.58 9.08 7.11 8.33 12.06

60 7.24 7.44 14.50 11.64 12.87 20.71

90 8.74 8.70 17.91 15.45 16.90 28.03

180 11.38 10.67 24.25 25.81 27.36 48.02

DM 1 0.72 0.87 0.83 0.89 1.00 0.95

5 1.89 2.18 2.34 2.23 2.70 2.91

10 2.77 3.14 3.93 3.40 4.12 5.03

15 3.52 3.86 5.37 4.36 5.30 6.92

20 4.05 4.45 6.54 5.19 6.14 8.91

25 4.55 4.90 7.86 6.14 7.21 10.69

30 4.93 5.37 8.75 7.02 7.88 12.36

60 7.16 7.24 13.14 11.36 12.38 20.86

90 8.87 8.39 16.06 14.68 16.16 27.75

180 11.38 10.35 21.69 24.25 26.25 45.68

JY 1 0.56 0.74 0.72 0.68 0.87 0.86

5 1.61 1.99 2.22 1.92 2.36 2.73

10 2.59 2.82 3.46 3.06 3.53 4.41

15 3.30 3.46 4.37 4.11 4.60 5.79

20 3.95 4.10 5.09 5.13 5.45 6.77

25 4.42 4.58 5.78 5.91 6.30 7.98

30 4.95 4.92 6.34 6.58 6.85 8.81

60 6.99 6.84 8.72 10.53 10.74 13.58

90 8.43 8.00 10.51 13.61 14.00 17.63

180 10.97 10.27 13.99 21.86 22.21 27.39
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Table 13.3 (cont.)

Long position Short position

Unconditional Unconditional
No. of days AR density EGARCH AR density EGARCH

SF 1 0.82 0.97 0.89 0.93 1.12 0.98

5 1.99 2.51 2.48 2.23 2.93 2.98

10 2.87 3.60 4.12 3.37 4.53 5.09

15 3.67 4.35 5.60 4.22 5.67 7.03

20 4.24 5.10 6.82 5.09 6.69 8.86

25 4.81 5.65 8.12 5.90 7.77 10.93

30 5.23 6.20 9.12 6.70 8.47 12.50

60 7.69 8.41 13.73 10.55 13.10 21.27

90 9.23 9.93 16.89 13.60 17.06 27.80

180 12.18 12.57 22.92 21.72 27.45 45.47

Source: Hsieh (1993). Reprinted with the permission of School of Business Administration, University of
Washington.

13.9.2 VaR estimation using bootstrapping in EViews

Following the discussion above concerning the Hsieh (1993) and Brooks, Clare and
Persand (2000) approaches to calculating minimum capital risk requirements, the
following EViews code can be used to calculate the MCRR for a ten-day holding
period (the length that regulators require banks to employ) using daily S&P500
data, which is found in the file ‘sp500.wf1’. The code is presented, followed by an
annotated copy of some of the key lines.
′THIS PROGRAM APPLIES THE BOOTSTRAP TO THE
′CALCULATION OF
′MCRR FOR A 10-DAY HORIZON PERIOD
′LOAD WORKFILE
LOAD “D:\CHRIS\BOOK\SP500.WF1”
RNDSEED 12345
!NREPS=10000
SERIES RT
SERIES U
SERIES H
SERIES MIN
SERIES MAX
SERIES L1
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SERIES S1
SCALAR MCRRL
SCALAR MCRRS
RT=LOG(SP500/SP500(−1))
EQUATION EQ1.ARCH(M=100,C=1E-5) RT C
EQ1.MAKEGARCH H
EXPAND 1 10000
SERIES HSQ=Hˆ0.5
SERIES RESI=RT-@COEFS(1)
SERIES SRES=RESI/HSQ
EQ1.FORECAST RTF YSE HF
′BOOTSTRAP LOOP
FOR !Z=1 TO !NREPS

SMPL 3 2610
GROUP G1 SRES
G1.RESAMPLE
SMPL 2611 2620
RT=@COEFS(1)+@SQRT(HF(-2610))∗SRES B(−10)
SP500=SP500(−1)∗EXP(RT)

MIN(!Z)=@MIN(SP500)
MAX(!Z)=@MAX(SP500)
NEXT
SMPL 1 10000
′LONG POSITION
L1=LOG(MIN/1138.73)
MCRRL=1-(EXP((−1.645∗@STDEV(L1))+@MEAN(L1)))
′SHORT POSITION
S1=LOG(MAX/1138.73)
MCRRS=(EXP((1.645∗@STDEV(S1))+@MEAN(S1)))−1

Again, annotation of the EViews code above will concentrate on commands
that have not been discussed previously. The ‘SERIES . . .’ and ‘SCALAR . . .’
statements set up the arrays that will hold the series and the scalars (i.e. single
numbers) respectively.

Then ‘EQUATION EQ1.ARCH(M=100,C=1E-5) RT C’ estimates an
ARCH model, denoting the equation object created by ‘EQ1’, and allowing
the process to perform up to 100 iterations with a convergence criterion of 10−5,
with the dependent variable RT (which is the returns series) and the conditional
mean equation containing a constant only. The line ‘EQ1.MAKEGARCH H’
will generate a series of fitted conditional variance values, denoted by H. The
‘EXPAND 1 10000’ instruction will increase the size of the arrays in the workfile
to 10000 from the original length of the S&P series (2,610 observations).

The three lines SERIES HSQ=Hˆ0.5, SERIES RESI=RT-@COEFS(1) and
SERIES SRES=RESI/HSQ will construct a set of standardised residuals.

The next step is to forecast the conditional variances for ten observations
2611 to 2620 using the command ‘EQ1.FORECAST RTF YSE HF’, which will
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construct forecasts of the conditional mean (placed into RTF), the conditional
standard deviation (YSE) and the conditional variance (HF), respectively.

Next follows the core of the program, which is the bootstrap loop, Z. The
number of replications ‘!NREPS’ has been defined as 10,000. The instructions
GROUP G1 SRES and G1.RESAMPLE construct a group (in this case, containing
only one element SRES), which is then resampled. The re-sampled series is
then placed in SRES B. The future paths of the series over the ten-day holding
period are then constructed, and the maximum and minimum price achieved over
that period (observations 2611 to 2620) are saved in the arrays MAX and MIN,
respectively. Finally, NEXT finishes the bootstrapping loop.

The following SMPL instruction is necessary to reset the sample period used
to cover all observation numbers from 1 to 10,000 (i.e. to incorporate all of
the 10,000 bootstrap replications). By default, if this statement was not included,
EViews would have continued to use the most recent sample statement, conducting
analysis using only observations 2611 to 2620:

SMPL 1 10000

The following block of two commands generates the MCRR for the long position.
The first stage is to construct the log returns for the maximum loss over the ten-day
holding period. Notice that the command will automatically do this calculation
for every element of the ‘MIN’ array – i.e. for all 10,000 replications. In order to
use information from all of the replications, and under the assumption that the L1
statistic is normally distributed across the replications, the MCRR can be calculated
using the command given (rather than using the fifth percentile of the empirical
distribution). This works as follows. Assuming that ln( x1

x0
) is normally distributed

with some mean m and standard deviation sd, a standard normal variable can be
constructed by subtracting the mean and dividing by the standard deviation

ln
(

x1

x0

)
− m

s d
∼ N(0, 1).

The 5% lower tail critical value for a standard normal is −1.645, so to find the
fifth percentile

ln
(

x1

x0

)
− m

s d
= −1.645 (13.27)

Rearranging (13.27)

x1

x0
= exp [−1.645s d + m ] (13.28)

From (13.25), (13.28) can also be written

Q
x̄0

= 1 − exp [−1.645s d + m ] (13.29)
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which will give the maximum loss or draw down on a long position over the
simulated ten days. The maximum draw down for a short position will be given
by

Q
x̄0

= exp [−1.645s d + m ] − 1 (13.30)

The following two lines then repeat the above procedure, but replacing the
‘MIN’ array with ‘MAX’ to calculate the MCRR for a short position: The results
that would be generated by running the above program are approximately:

MCRR = 0.04035

MCRR = 0.04814

These figures represent the minimum capital risk requirement for a long and short
position, respectively, as a percentage of the initial value of the position for 95%
coverage over a ten-day horizon. This means that, for example, approximately 4%
of the value of a long position held as liquid capital will be sufficient to cover
losses on 95% of days if the position is held for ten days. The required capital
to cover 95% of losses over a ten-day holding period for a short position in the
S&P500 index would be around 4.8%. This is as one would expect since the index
had a positive drift over the sample period. Therefore, the index returns are not
symmetric about zero as positive returns are slightly more likely than negative
returns. Higher capital requirements are thus necessary for a short position since a
loss is more likely than for a long position of the same magnitude.

Key concepts

The key terms to be able to define and explain from this chapter are

• simulation • bootstrapping

• Monte Carlo sampling variability • pseudo-random number

• antithetic variates • control variates

Self-study questions

1. (a) Present two examples in finance and two in econometrics (ideally other
than those listed in this chapter!) of situations where a simulation approach
would be desirable. Explain in each case why simulations are useful.

(b) Distinguish between pure simulation methods and bootstrapping. What
are the relative merits of each technique? Therefore, which situations
would benefit more from one technique than the other?

(c) What are variance reduction techniques? Describe two such techniques
and explain how they are used.

(d) Why is it desirable to conduct simulations using as many replications of
the experiment as possible?
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(e) How are random numbers generated by a computer?
(f ) What are the drawbacks of simulation methods relative to analytical

approaches, assuming that the latter are available?
2. A researcher tells you that she thinks the properties of the Ljung–Box test (i.e.

the size and power) will be adversely affected by ARCH in the data. Design a
simulations experiment to test this proposition.

3. (a) Consider the following AR(1) model

yt = φyt−1 + ut

Design a simulation experiment (with code for EViews) to determine the
effect of increasing the value of φ from 0 to 1 on the distribution of the
t-ratios.

(b) Consider again the AR(1) model from part (a) of this question. As stated
in chapter 4, the explanatory variables in a regression model are assumed
to be non-stochastic, and yet yt−1 is stochastic. The result is that the
estimator for φ will be biased in small samples. Design a simulation
experiment to investigate the effect of the value of φ and the sample size
on the extent of the bias.

4. A barrier option is a path-dependent option whose payoff depends on
whether the underlying asset price traverses a barrier. A knock-out call is a
call option that ceases to exist when the underlying price falls below a given
barrier level H. Thus the payoff is given by

max[0, ST − K ] if St > H ∀ t ≤ T
0 if St ≤ H for any t ≤ T.

where ST is the underlying price at expiry date T, and K is the exercise
price. Suppose that a knock-out call is written on the FTSE 100 Index. The
current index value, S0 = 5000, K = 5100, time to maturity = 1 year, H =
4900, IV = 25%, risk-free rate = 5%, dividend yield = 2%.

Design a Monte Carlo simulation to determine the fair price to pay for
this option. Using the same set of random draws, what is the value of an
otherwise identical call without a barrier? Design computer code in EViews
to test your experiment.
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14 Conducting empirical research or
doing a project or dissertation in
finance

Learning outcomes

In this chapter, you will learn how to

• Choose a suitable topic for an empirical research project in finance

• Draft a research proposal

• Find appropriate sources of literature and data

• Determine a sensible structure for the dissertation

• Set up and conduct a valid event study

• Employ the Fama–MacBeth and Fama–French approaches to testing asset

pricing models and explaining the variation in asset returns

• • • • • • • • • • • • • • 14.1 What is an empirical research project and what is it for?

Many courses, at both the undergraduate and postgraduate levels, require or allow
the student to conduct a project. This may vary from being effectively an extended
essay to a full-scale dissertation or thesis of 10,000 words or more.

Students often approach this part of their degree with much trepidation,
although in fact doing a project gives students a unique opportunity to select
a topic of interest and to specify the whole project themselves from start to finish.
The purpose of a project is usually to determine whether students can define and
execute a piece of fairly original research within given time, resource and report-
length constraints. In terms of econometrics, conducting empirical research is one
of the best ways to get to grips with the theoretical material, and to find out what
practical difficulties econometricians encounter when conducting research. Con-
ducting the research gives the investigator the opportunity to solve a puzzle and
potentially to uncover something that nobody else has; it can be a highly reward-
ing experience. In addition, the project allows students to select a topic of direct
interest or relevance to them, and is often useful in helping students to develop
time-management and report-writing skills. The final document can in many cases
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provide a platform for discussion at job interviews, or act as a springboard to further
study at the taught postgraduate or doctoral level.

This chapter seeks to give suggestions on how to go about the process of
conducting empirical research in finance. Only general guidance is given, and
following this advice cannot necessarily guarantee high marks, for the objectives
and required level of the project will vary from one institution to another.1

• • • • • • • • • • • • • • 14.2 Selecting the topic

Following the decision or requirement to do a project, the first stage is to determine
an appropriate subject area. This is, in many respects, one of the most difficult and
most crucial parts of the whole exercise. Some students are immediately able to
think of a precise topic, but for most, it is a process that starts with specifying a
very general and very broad subject area, and subsequently narrowing it down to
a much smaller and manageable problem.

Inspiration for the choice of topic may come from a number of sources. A good
approach is to think rationally about your own interests and areas of expertise. For
example, you may have worked in the financial markets in some capacity, or you
may have been particularly interested in one aspect of a course unit that you have
studied. It is worth spending time talking to some of your instructors in order to
gain their advice on what are interesting and plausible topics in their subject areas.
At the same time, you may feel very confident at the quantitative end of finance,
pricing assets or estimating models for example, but you may not feel comfortable
with qualitative analysis where you are asked to give an opinion on particular issues
(e.g. ‘should financial markets be more regulated?’). In that case, a highly technical
piece of work may be appropriate.

Equally, many students find econometrics both difficult and uninteresting.
Such students may be better suited to more qualitative topics, or topics that involve
only elementary statistics, but where the rigour and value added comes from some
other aspect of the problem. A case-study approach that is not based on any
quantitative analysis may be entirely acceptable and indeed an examination of a set
of carefully selected case studies may be more appropriate for addressing particular
problems, especially in situations where hard data are not readily available, or where
each entity is distinct so that generalising from a model estimated on one set of
data may be inadvisable. Case studies are useful when the case itself is unusual or
unique or when each entity under study is very heterogeneous. They involve more
depth of study than quantitative approaches. Highly mathematical work that has
little relevance and which has been applied inappropriately may be much weaker
than a well constructed and carefully analysed case study.

Combining all of these inputs to the choice of topic should enable you at
the least to determine whether to conduct quantitative or non-quantitative work,
and to select a general subject area (e.g. pricing securities, market microstructure,
risk management, asset selection, operational issues, international finance, financial

1 Note that there is only one review question for this chapter and that is to write an excellent
research project.
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Box 14.1 Possible types of research project

● An empirical piece of work involving quantitative analysis of data
● A survey of business practice in the context of a financial firm
● A new method for pricing a security, or the theoretical development of

a new method for hedging an exposure
● A critical review of an area of literature
● An analysis of a new market or new asset class.

Each of these types of project requires a slightly different approach, and is
conducted with varying degrees of success. The remainder of this chapter
focuses upon the type of study which involves the formulation of an
empirical model using the tools developed in this book. This type of
project seems to be the one most commonly selected. It also seems to be a
lower risk strategy than others. For example, projects which have the bold
ambition to develop a new financial theory, or a whole new model for
pricing options, are likely to be unsuccessful and to leave the student with
little to write about. Also, critical reviews often lack rigour and are not
critical enough, so that an empirical application involving estimating an
econometric model appears to be a less risky approach, since the results can
be written up whether they are ‘good’ or not.

econometrics, etc.). The project may take one of a number of forms as illustrated
in box 14.1.

A good project or dissertation must have an element of originality, i.e. a ‘con-
tribution to knowledge’. It should add, probably a very small piece, to the overall
picture in that subject area, so that the body of knowledge is larger at the end
than before the project was started. This statement often scares students, for they
are unsure from where the originality will arise. In empirically based projects, this
usually arises naturally. For example, a project may employ standard techniques on
data from a different country or a new market or asset, or a project may develop
a new technique or apply an existing technique to a different area. Interesting
projects can often arise when ideas are taken from another field and applied to
finance – for example, you may be able to identify ideas or approaches from the
material that you studied from a different discipline as part of your undergraduate
degree.

A good project will also contain an in-depth analysis of the issues at hand,
rather than a superficial, purely descriptive presentation, as well as an individual
contribution. A good project will be interesting, and it will have relevance for one
or more user groups (although the user group may be other academic researchers
and not necessarily practitioners); it may or may not be on a currently fashionable
and newsworthy topic. The best research challenges prior beliefs and changes the
way that the reader thinks about the problem under investigation. Good projects
can be primarily of interest to other academics and they do not necessarily have to
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be of direct practical applicability. On the other hand, highly practical work must
also be well grounded in the academic approach to doing research.

The next stage is to transform this broad direction into a workably sized
topic that can be tackled within the constraints laid down by the institution. It is
important to ensure that the aims of the research are not so broad or substantive
that the questions cannot be addressed within the constraints on available time and
word limits. The objective of the project is usually not to solve the entire world’s
financial puzzles, but rather to form and address a small problem.

It is often advisable at this stage to browse through recent issues of the main
journals relevant to the subject area. This will show which ideas are relatively
fashionable, and how existing research has tackled particular problems. A list of
relevant journals is presented in table 14.1. They can be broadly divided into
two categories: practitioner-oriented and academic journals. Practitioner-oriented
journals are usually very focused in a particular area, and articles in these often
centre on very practical problems, and are typically less mathematical in nature
and less theory-based, than are those in academic journals. Of course, the divide
between practitioner and academic journals is not a total one, for many articles
in practitioner journals are written by academics and vice versa! The list given
in table 14.1 is by no means exhaustive and, particularly in finance, new journals
appear on a monthly basis.

Many web sites contain lists of journals in finance or links to finance journals.
Some useful ones are:

● www.cob.ohio-state.edu/dept/fin/overview.htm – the Virtual Finance
Library, with good links and a list of finance journals

● www.helsinki.fi/WebEc/journals.html – provides a list of journals in the eco-
nomics area, including finance, plus a number of finance-related resources

● www.people.hbs.edu/pgompers/finjourn.htm – provides a list of links to
finance journals

● www.numa.com/ref/journals.htm – the Numa directory of derivatives jour-
nals – lots of useful links and contacts for academic and especially practitioner
journals on derivatives

● www.aeaweb.org/econlit/journal list.php – provides a comprehensive list of
journals in the economics area, including finance

• • • • • • • • • • • • • • 14.3 Sponsored or independent research?

Some business schools are sufficiently well connected with industry that they
are able to offer students the opportunity to work on a specific research project
with a ‘sponsor’. The sponsor may choose the topic and offer additional expert
guidance from a practical perspective. Sponsorship may give the student an insight
into the kind of research problems that are of interest to practitioners, and will
probably ensure that the work is practically focused and of direct relevance in
the private sector. The sponsor may be able to provide access to proprietary or
confidential data, which will broaden the range of topics that could be tackled.
Most importantly, many students hope that if they impress the firm that they are
working with, a permanent job offer will follow.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-14 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 3:17

Table 14.1 Journals in finance and econometrics

Journals in finance Journals in econometrics and related

Applied Financial Economics Biometrika
Applied Mathematical Finance Econometrica
European Financial Management Econometric Reviews
European Journal of Finance Econometric Theory
Finance and Stochastics Econometrics Journal
Financial Analysts Journal International Journal of Forecasting
Financial Management Journal of Applied Econometrics
Financial Review Journal of Business and Economic Statistics
Global Finance Journal Journal of Econometrics
International Journal of Finance & Economics Journal of Forecasting
International Journal of Theoretical Journal of the American Statistical Association

and Applied Finance Journal of Financial Econometrics
Journal of Applied Corporate Finance Journal of the Royal Statistical Society (A to C)
International Review of Financial Analysis Journal of Time Series Analysis
Journal of Applied Finance Society for Nonlinear Dynamics and Econometrics
Journal of Asset Management
Journal of Banking and Finance
Journal of Business
Journal of Business Finance & Accounting
Journal of Computational Finance
Journal of Corporate Finance
Journal of Derivatives
Journal of Empirical Finance
Journal of Finance
Journal of Financial & Quantitative Analysis
Journal of Financial Economics
Journal of Financial Markets
Journal of Financial Research
Journal of Fixed Income
Journal of Futures Markets
Journal of International Financial

Markets, Institutions and Money
Journal of International Money and Finance
Journal of Money, Credit, and Banking
Journal of Portfolio Management
Journal of Risk
Journal of Risk and Insurance
Journal of Risk and Uncertainty
Mathematical Finance
Pacific Basin Finance Journal
Quarterly Review of Economics and Finance
Review of Asset Pricing Studies
Review of Behavioural Finance
Review of Corporate Finance Studies
Review of Finance
Review of Financial Studies
Risk

630
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The chance to work on a sponsored project is usually much sought after by
students but it is very much a double-edged sword, so that there are also a number
of disadvantages. First, most schools are not able to offer such sponsorships, and
even those that can are usually able to provide them to only a fraction of the
class. Second, the disappointing reality is that the problems of most interest and
relevance to practitioners are often (although admittedly not always) of less interest
to an academic audience – fundamentally, the objectives of the sponsor and of a
university may be divergent. For example, a stereotypical investment bank might
like to see a project that compares a number of technical trading rules and evaluates
their profitability; but many academics would argue that this area has been well
researched before and that finding a highly profitable rule does not constitute a
contribution to knowledge and is therefore weak as a research project. So if you
have the opportunity to undertake a sponsored project, ensure that your research
is of academic as well as practical value – after all, it will almost certainly be the
academic who grades the work.

• • • • • • • • • • • • • • 14.4 The research proposal

Some schools will require the submission of a research proposal which will be
evaluated and used to determine the appropriateness of the ideas and to select a
suitable supervisor. While the requirements for the proposal are likely to differ
widely from one institution to another, there are some general points that may be
universally useful. In some ways, the proposal should be structured as a miniature
version of the final report, but without the results or conclusions!

● The required length of the proposal will vary, but will usually be between one
and six sides of A4, typed with page numbering.

● The proposal should start by briefly motivating the topic – why is it interesting
or useful?

● There should be a brief review of the relevant literature, but this should not
cover more than around a third to one half of the total length of the proposal.

● The research questions or hypotheses to be tested should then be clearly stated.
● There should be a discussion of the data and methodology that you intend to

use.
● Some proposals also include a time-scale – i.e. which parts of the project do

you expect to have completed by what dates?

• • • • • • • • • • • • • • 14.5 Working papers and literature on the internet

Unfortunately, the lag between a paper being written and it actually being pub-
lished in a journal is often two–three years (and increasing fast), so that research
in even the most recent issues of the published journals will be somewhat dated.
Additionally, many securities firms, banks and central banks across the world, pro-
duce high quality research output in report form, which they often do not bother
to try to publish. Much of this is now available on the internet, so it is worth
conducting searches with keywords using readily available web search engines. A
few suggestions for places to start are given in table 14.2.
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Table 14.2 Useful internet sites for financial literature

Universities

Almost all universities around the world now make copies of their discussion

papers available electronically.

A few examples from finance departments are:

http://w4.stern.nyu.edu/finance – Department of Finance, Stern School, New York

University

http://fic.wharton.upenn.edu/fic/papers.html – Wharton Financial Institutions

Center

http://haas.berkeley.edu/finance/WP/rpf.html – University of California at

Berkeley

www.icmacentre.ac.uk/research/discussion-papers – ICMA Centre, University of

Reading, of course!

US Federal Reserve Banks and the Bank of England

www.bankofengland.co.uk – Bank of England – containing their working papers,

news and discussion

www.frbatlanta.org – Federal Reserve Bank of Atlanta – including information on

economic and research data and publications

www.stls.frb.org/fred – Federal Reserve Bank of St. Louis – a great deal of useful

US data, including monetary, interest rate, and financial data, available daily,

weekly, or monthly, including long time histories of data

www.chicagofed.org – Federal Reserve Bank of Chicago – including interest data

and useful links

www.dallasfed.org – Federal Reserve Bank of Dallas – including macroeconomic,

interest rate, monetary and bank data

www.federalreserve.gov/pubs/ifdp – Federal Reserve Board of Governors

International Finance Discussion Papers

www.ny.frb.org/research – Federal Reserve Bank of New York

International bodies

http://dsbb.imf.org – the International Monetary Fund (IMF) – including working

papers, forecasts, and IMF primary commodity price series

www.worldbank.org/reference – World Bank working papers in finance

www.oecd-ilibrary.org – Organisation for Economic Cooperation and

Development (OECD) working papers, data etc., searchable
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Table 14.2 (cont.)

Miscellaneous

www.nber.org – National Bureau of Economic Research (NBER) – huge database

of discussion papers and links including data sources

http://econpapers.repec.org – Econpapers (formerly WoPEc) – huge database of

working papers in areas of economics, including finance

www.ssrn.com – The Social Science Research Network – a huge and rapidly

growing searchable database of working papers and the abstracts of

published papers

The free data sources used in this book

www.nationwide.co.uk/default.htm – UK house price index, quarterly back to

1952, plus house prices by region and by property type

www.oanda.com/convert/fxhistory – historical exchange rate series for

an incredible range of currency pairs

www.bls.gov – US Bureau of Labor Statistics – US macroeconomic series

www.federalreserve.gov/econresdata/default.htm – US Federal Reserve Board

– more US macroeconomic series, interest rates, etc. and working papers

http://research.stlouisfed.org/fred2 – a vast array of US macroeconomic series

http://finance.yahoo.com – Yahoo! Finance – an incredible range of free

financial data, information, research and commentary

• • • • • • • • • • • • • • 14.6 Getting the data

Although there is more work to be done before the data are analysed, it is important
to think prior to doing anything further about what data are required to complete
the project. Many interesting and sensible ideas for projects fall flat owing to a lack
of availability of relevant data. For example, the data required may be confidential,
they may be available only at great financial cost, they may be too time-consuming
to collect from a number of different paper sources, and so on. So before finally
deciding on a particular topic, make sure that the data are going to be available.

The data may be available at your institution, either in paper form (for exam-
ple, from the IMF or World Bank reports), or preferably electronically. Many
universities have access to Reuters, Datastream or the Bloomberg. Many of the
URLs listed above include extensive databases and furthermore, many markets and
exchanges have their own web pages detailing data availability. One needs to be
slightly careful, however, in ensuring the accuracy of freely available data; ‘free’
data also sometimes turn out not to be!
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• • • • • • • • • • • • • • 14.7 Choice of computer software

Clearly, the choice of computer software will depend on the tasks at hand. Projects
that seek to offer opinions, to synthesise the literature and to provide a review, may
not require any specialist software at all. However, even for those conducting highly
technical research, project students rarely have the time to learn a completely new
programming language from scratch while conducting the research. Therefore, it
is usually advisable, if possible, to use a standard software package. It is also worth
stating that marks will hardly ever be awarded for students who ‘reinvent the
wheel’. Therefore, learning to program a multivariate GARCH model estimation
routine in C++ may be a valuable exercise for career development for those who
wish to be quantitative researchers, but is unlikely to attract high marks as part
of a research project unless there is some other value added. The best approach
is usually to conduct the estimation as quickly and accurately as possible to leave
time free for other parts of the work.

• • • • • • • • • • • • • • 14.8 Methodology

Good research is rarely purely empirical – the empirical model should arise from
an economic or financial theory and this theory should be presented and discussed
before the investigative work begins. We could define a theory as a system of
statements that encompass a number of hypotheses. Theory shows what features
in the data and what relationships would be expected based on some underlying
principles. Theory can give order and meaning to empirical results, and can ensure
that the findings are not the result of a data-mining exercise.

Assuming that the project is empirical in nature (i.e. it seeks to test a theory
or answer a particular question using actual data), then an important question
will concern the type of model to employ. This chapter will now discuss two
of the most important approaches to conducting research in finance that have
emerged over the past two or three decades: the event study methodology and the
Fama–French approach. Although neither of these requires any new econometric
tools that were not covered in previous chapters, the terminology employed is
quite specific to this part of the literature and thus a focused discussion of how to
implement these techniques may prove useful.

• • • • • • • • • • • • • • 14.9 Event studies

Event studies are very useful in finance research and as a result they are extremely
commonly employed in the literature. In essence, they represent an attempt to
gauge the effect of an identifiable event on a financial variable, usually stock returns.
So, for example, research has investigated the impact of various types of announce-
ments (e.g. dividends, stock splits, entry into or deletion from a stock index) on
the returns of the stocks concerned. Event studies are often considered to be tests
for market efficiency: if the financial markets are informationally efficient, there
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should be an immediate reaction to the event on the announcement date and no
further reaction on subsequent trading days.

MacKinlay (1997) argues that conducting event studies initially appears difficult
but is in fact easy; my view is that exactly the reverse is true: in principle, event
studies are simple to understand and to conduct, but to do so in a rigorous manner
requires a great deal of thought. There is a bewildering array of approaches that
can be deployed, and at first blush it is not at all clear which of them is appropriate
or optimal. The main groundwork for conducting modern event studies was
established by Ball and Brown (1968) and by Fama et al. (1969), but as MacKinlay
notes, something like them was conducted more than three decades earlier.

While there are now many useful survey papers that describe the various aspects
of event studies in considerable detail, unfortunately each has its own notation and
approach which can be confusing. Corrado (2011) is a recent example, although
Armitage (1995) and MacKinlay (1997) are particularly clearly explained and
more closely resemble the treatment given here. A similar discussion is offered by
Campbell et al. (1997) but using matrix notation.

14.9.1 Some notation and a description of the basic approach

We of course need to be able to define precisely the dates on which the events
occur, and the sample data are usually aligned with respect to this date. If we have
N events in the sample, we usually specify an ‘event window’, which is the period
of time over which we investigate the impact of the event. The length of this
window will be set depending on whether we wish to investigate the short- or
long-run effects of the event. It is common to examine a period comprising, say,
ten trading days before the event up to ten trading days after as a short-run event
window, while long-run windows can cover a month, a year, or even several years
after the event.

A first question to ask once the event has been identified is what frequency of
data should be employed in the analysis. MacKinlay (1997) shows that the power of
event studies to detect abnormal performance is much greater when daily data are
employed rather than weekly or monthly observations, so that the same power can
be achieved with a much smaller N, or for given N, the power will be much larger.
Although it would in some cases be possible to use intra-daily data, these are harder
to collect and may bring additional problems including nuisance microstructure
effects; this is perhaps why daily observations are the frequency of choice for most
studies in the literature.2

Define the return for each firm i on each day t during the event window as
Ri t . We can conduct the following approach separately for each day within the
event window – for example, we might investigate it for all of ten days before
the event up to ten days after (where t = 0 represents the date of the event
and t = −10, −9,−8, . . . ,−1, 0, 1, 2, . . . , 8, 9, 10). Note that we will need to

2 We need to be aware of the potential impacts that thin trading of stocks may have, leading to stale
prices and unrepresentative abnormal returns; however, this issue is not discussed further here.
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exercise care in the definition of the reference day t = 0 if the announcement is
made after the close of the market.

In most cases, we need to be able to separate the impact of the event from
other, unrelated movements in prices. For example, if it is announced that a firm
will become a member of a widely followed stock index and its share price that
day rises by 4%, but on average the prices of all other stocks also rise by 4%, it
would be unwise to conclude that all of the increase in the price of the stock under
study is attributable to the announcement. This motivates the idea of constructing
abnormal returns, denoted ARi t , which are calculated by subtracting an expected
return from the actual return

ARi t = Ri t − E(Ri t ) (14.1)

There are numerous ways that the expected returns can be calculated, but
usually this is achieved using a sample of data before the event window so that
the nature of the event is not allowed to ‘contaminate’ estimation of the expected
returns. Armitage (1995) suggests that estimation periods can comprise anything
from 100 to 300 days for daily observations and 24 to 60 months when the analysis
is conducted on a monthly basis. Longer estimation windows will in general
increase the precision of parameter estimation, although with it the likelihood of
a structural break and so there is a trade-off.

If the event window is very short (e.g. a day or a few days), then we need be far
less concerned about constructing an expected return since it is likely to be very
close to zero over such a short horizon. In such circumstances, it will probably be
acceptable to simply use the actual returns in place of abnormal returns.

It is further often the case that a gap is left between the estimation period
and the event window, to be completely sure that anticipation (i.e. ‘leakage’) of
the event does not affect estimation of the expected return equation. However, it
might well be the case that in practice we do not have the luxury of doing this
since the sample period available is insufficient. Clearly, what we would like to
do is to calculate the return that would have been expected for that stock if the
event did not happen at all so that we can isolate the impact of the event from any
unrelated incidents that may be occurring at the same time.

The simplest method for constructing expected returns (apart from setting
them to zero) is to assume a constant mean return, so that the expected return is
simply the average return for each stock i calculated at the same frequency over the
estimation window, which we might term R̄i . Brown and Warner (1980, 1985)
conduct a simulation experiment to compare methods of estimating expected
returns for event studies. They find that an approach simply using historical return
averages outperforms many more complicated approaches because of the estimation
error that comes with the latter.

A second, slightly more sophisticated approach, is to subtract the return on
a proxy for the market portfolio that day t from the individual return. This will
certainly overcome the impact of general market movements in a rudimentary
way, and is equivalent to the assumption that the stock’s beta in the market model
or the CAPM is unity.
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Probably the most common approach to constructing expected returns, how-
ever, is to use the market model. This in essence works by constructing the
expected return using a regression of the return to stock i on a constant and the
return to the market portfolio

Ri t = αi + βi Rmt + ui t (14.2)

The expected return for firm i on any day t during the event window would
then be calculated as the beta estimate from this regression multiplied by the actual
market return on day t .

An interesting question is whether the expected return should incorporate the
α from the estimation period in addition to β multiplied by the market return.
Most applications of event studies include this, and indeed the original study by
Fama et al. includes an alpha. However, we need to exercise caution when doing
so since if – either because of some unrelated incident affecting the price of the
stock or in anticipation of the event – the alpha is particularly high (particularly
low) during the estimation period, it will push up (down) the expected return.
Thus it may be preferable to assume an expected value of zero for the alpha and
to exclude it from the event period abnormal return calculation.

In most applications, a broad stock index such as the FTSE All-Share or the
S&P500 would be employed to proxy for the market portfolio. This equation can
be made as complicated as desired – for example, by allowing for firm size or other
characteristics – these would be included as additional factors in the regression
with the expected return during the event window being calculated in a similar
fashion. An approach based on the arbitrage pricing models of Chen et al. (1986)
or of Fama and French (1993) could also be employed – more discussion is made
of this issue in the following section.

A final further approach would be to set up a ‘control portfolio’ of firms that
have characteristics as close as possible to those of the event firm – for example,
matching on firm size, beta, industry, book-to-market ratio, etc. – and then using
the returns on this portfolio as the expected returns. Armitage (1995) reports the
results of several Monte Carlo simulations that compare the results of various model
frameworks that can be used for event studies.

The hypothesis testing framework is usually set up so that the null to be
examined is of the event having no effect on the stock price (i.e. an abnormal return
of zero). Under the null of no abnormal performance for firm i on day t during the
event window, we can construct test statistics based on the standardised abnormal
performance. These test statistics will be asymptotically normally distributed (as
the length of the estimation window, T, increases)

ARi t ∼ N(0, σ 2(ARi t ))

where σ 2(ARi t ) is the variance of the abnormal returns, which can be estimated
in various ways. A simple method, used by Brown and Warner (1980) among
others, is to use the time series of data from the estimation of the expected returns
separately for each stock. So we could define σ̂ 2(ARi t ) as being the equal to the
variance of the residuals from the market model, which could be calculated for
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example using

σ̂ 2(ARi t ) = 1
T − 2

T∑
t=2

û2
i t (14.3)

where T is the number of observations in the estimation period. If instead the
expected returns had been estimated using historical average returns, we would
simply use the variance of those.

Sometimes, an adjustment is made to σ̂ 2(ARi t ) that reflects the errors arising
from estimation of α and β in the market model. Including the adjustment, the
variance in the previous equation becomes

σ̂ 2(ARi t ) = 1
T − 2

T∑
t=2

(
û2

i t + 1
T

[
1 + Rmt − R̄m

σ̂ 2
m

])
(14.4)

where R̄m and σ̂ 2
m are the average and variance of the returns on the market

portfolio respectively during the estimation window. It should be clear that as the
length of the estimation period, T, increases, this adjustment will gradually shrink
to zero.

We can then construct a test statistic by taking the abnormal return and dividing
it by its corresponding standard error, which will asymptotically follow a standard
normal distribution3

ˆSARi t = ÂRi t

[σ̂ 2(ARi t )]1/2
∼ N(0, 1) (14.5)

where ˆSARi t stands for the standardised abnormal return, which is the test statistic
for each firm i and for each event day t .

It is likely that there will be quite a bit of variation of the returns across the days
within the event window, with the price rising on some days and then falling on
others. As such, it would be hard to identify the overall patterns. We may therefore
consider computing the time series cumulative average return over a multi-period
event window (for example, over ten trading days) by summing the average returns
over several periods, say from time T1 to T2

ˆCARi (T1, T2) =
T2∑

t=T1

ÂRi t (14.6)

Note that the time from T1 to T2 may constitute the entire event window or it
might just be a sub-set of it. The variance of this ˆCAR will be given by the number

3 Note that in some studies, since the sample variance has to be estimated, the test statistic is assumed
to follow a student’s t distribution with T − k degrees of freedom in finite samples, where k is the
number of parameters estimated in constructing the measure of expected returns (k = 2 for the
market model). Provided that the estimation window is of a reasonable length (e.g. six months
of trading days or more), it will be inconsequential whether the t or normal distributions are
employed.
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of observations in the event window plus one multiplied by the daily abnormal
return variance calculated in equation (14.4) above

σ̂ 2(CARi (T1, T2)) = (T2 − T1 + 1)σ̂ 2(ÂRi t ) (14.7)

This expression is essentially the sum of the individual daily variances over the days
in T1 to T2 inclusive.4

We can now construct a test statistic for the cumulative abnormal return in the
same way as we did for the individual dates, which will again be standard normally
distributed

ˆSCARi (T1, T2) =
ˆCARi (T1, T2)

[σ̂ 2(CARi (T1, T2))]1/2
∼ N(0, 1) (14.8)

It is common to examine a pre-event window (to consider whether there is
any anticipation of the event) and a post-event window – in other words, we sum
the daily returns for a given firm i for days t − 10 to t − 1, say, and separately
from t + 1 to t + 10, with the actual day of the event, t , being considered on its
own.

Typically, some of the firms will show a negative abnormal return around the
event when a positive figure was expected, and this is probably not very useful. But
if we have N firms or N events, it is usually of more interest whether the return
averaged across all firms is statistically different from zero than whether this is the
case for any specific individual firm. We could define this average across firms for
each separate day t during the event window as

ÂRt = 1
N

N∑
i=1

ÂRi t (14.9)

This firm-average abnormal return, ÂRt will have variance given by 1/N multi-
plied by the average of the variances of the individual firm returns

σ̂ 2(ARt ) = 1
N2

N∑
i=1

σ̂ 2(ARi t ) (14.10)

Thus the test statistic (the standardised return) for testing the null hypothesis
that the average (across the N firms) return on day t is zero will be given by

ˆSARt = ÂRt

[σ̂ 2(ARt )]1/2
=

1
N

∑N
i=1 ÂRi t

[ 1
N2

∑N
i=1 σ̂ 2(ARi t )]1/2

∼ N(0, 1) (14.11)

Finally, we can aggregate both across firms and over time to form a single
test statistic for examining the null hypothesis that the average multi-horizon (i.e.
cumulative) return across all firms is zero. We would get an equivalent statistic
whether we first aggregated over time and then across firms or the other way

4 The number of days during the period T1 to T2 including both the end points is T2 − T1 + 1.
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around. The CAR calculated by averaging across firms first and then cumulating
over time could be written

ˆCAR(T1, T2) =
T2∑

t=T1

ÂRt (14.12)

Or equivalently, if we started with the CARi (T1, T2) separately for each firm, we
would take the average of these over the N firms

ˆCAR(T1, T2) = 1
N

N∑
i=1

ˆCARi (T1, T2) (14.13)

To obtain the variance of this ˆCAR(T1, T2) we could take 1/N multiplied by the
average of the variances of the individual ˆCARi .

σ̂ 2(CAR(T1, T2)) = 1
N2

N∑
i=1

σ̂ 2(CARi (T1, T2)) (14.14)

And again we can construct a standard normally distributed test statistic as

ˆSCAR(T1, T2) =
ˆCAR(T1, T2)

[σ̂ 2(CAR(T1, T2))]1/2
∼ N(0, 1) (14.15)

14.9.2 Cross-sectional regressions

The methodologies and formulae presented above provide various tools for exam-
ining whether abnormal returns are statistically significant or not. However, it will
often be the case that we are interested in allowing for differences in the charac-
teristics of a sub-section of the events and also examining the link between the
characteristics and the magnitude of the abnormal returns. For example, does the
event have a bigger impact on small firms? Or on firms which are heavily traded
etc.? The simplest way to achieve this would be to calculate the abnormal returns
as desired using something like equation (14.2) above and then to use these as the
dependent variable in a cross-sectional regression of the form

ARi = γ0 + γ1x1i + γ2x2i + . . . + γMxMi + wi (14.16)

where ARi is the abnormal return for firm i measured over some horizon, and
xj i , ( j = 1, . . . , M) are a set of M characteristics that are thought to influence
the abnormal returns, γ j measures the impact of the corresponding variable j
on the abnormal return, and wi is an error term. We can examine the sign,
size and statistical significance of γ0 as a test for whether the average abnormal
return is significantly different from zero after allowing for the impacts of the M
characteristics. MacKinlay (1997) advocates the use of heteroscedasticity-robust
standard errors in the regression.

The abnormal return used in this equation would typically be measured over
several days (or perhaps even the whole event window), but it could also be based
on a single day.
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14.9.3 Complications when conducting event studies and their resolution

The above discussion presents the standard methodology that is commonly
employed when conducting event studies, and most of the time it will provide
appropriate inferences. However, as always in econometrics, the use of test statis-
tics requires a number of assumptions about the nature of the data and models
employed. Some of these assumptions will now be highlighted and their implica-
tions explored.

Cross-sectional dependence

A key assumption when the returns are aggregated across firms is that the events
are independent of one another. Often, this will not be the case, particularly when
the events are clustered through time. For example, if we were investigating the
impact of index recompositions on the prices of the stocks concerned, these index
constituents generally only change at specific times of the year. So, typically, a
bunch of stocks will enter into an index on the same day, and then there may be
no further such events for three or six months.

The impact of this clustering is that we cannot assume the returns to be
independent across firms, and as a result the variances in the aggregates across
firms (equations (14.10) and (14.14)) will not apply since these derivations have
effectively assumed the returns to be independent across firms so that all of the
covariances between returns across firms can be set to zero. An obvious solution to
this would be not to aggregate the returns across firms, but simply to construct the
test statistics on an event-by-event basis and then to undertake a summary analysis
of them (e.g. reporting their means, variances, percentage of significant events,
etc.).

A second solution would be to construct portfolios of firms having the event at
the same time and then the analysis would be done on each of the portfolios. The
standard deviation would be calculated using the cross-section of those portfolios’
returns on day t (or on days T1 to T2, as desired). This approach will allow for cross-
correlations since they will automatically be taken into account in constructing the
portfolio returns and the standard deviations of those returns. But a disadvantage
of this technique is that it cannot allow for different variances for each firm as all
are equally weighted within the portfolio; the standard method described above
would do so, however.

Changing variances of returns

It has been argued in the literature that often the variance of returns will increase
over the event window, but the variance figure used in the testing procedure will
have been calculated based on the estimation window, which is usually some time
before the event. Either the event itself or the factors that led to it are likely to
increase uncertainty and with it the volatility of returns. As a result, the measured
variance will be too low and the null hypothesis of no abnormal return during the
event will be rejected too often. To deal with this, Boehmer et al. (1991), among
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others, suggest estimating the variance of abnormal returns by employing the
cross-sectional variance of returns across firms during the event window. Clearly,
if we adopt this procedure we cannot estimate separate test statistics for each
firm (although arguably these are usually of little interest anyway). The variance
estimator in equation (14.10) would be replaced by

σ̂ 2(ARt ) = 1
N2

N∑
i=1

(ÂRi t − ÂRt )2 (14.17)

with the test statistic following as before. A similar adjustment could be made for
the variance of the cumulative abnormal return

σ 2(CAR(T1, T2)) = 1
N2

N∑
i=1

(
ˆCARi (T1, T2) − ˆCAR(T1, T2)

)
(14.18)

While this test statistic will allow for the variance to change over time, a
drawback is that it does not allow for differences in return variances across firms
and nor does it allow for cross-correlations in returns caused by event clustering.

Weighting the stocks

Another issue is that the approach as stated above will not give equal weight
to each stock’s return in the calculation. The steps outlined above construct the
cross-firm aggregate return (in equation (14.9)) and then standardise this using the
aggregate standard deviation (in equation (14.11)). An alternative method would
be to first standardise each firm’s abnormal return (dividing by its appropriate
standard deviation) and then aggregating these standardised abnormal returns. If
we take the standardised abnormal return for each firm, ˆSARi,t , from equation
(14.5), we can calculate the average of these across the N firms

ˆSARt = 1
N

N∑
i=1

ˆSARi t (14.19)

These SARs have already been standardised so there is no need to divide them
by the square root of the variance. If we take this SARt and multiply it by

√
N,

we will get a test statistic that is asymptotically normally distributed and which,
by construction, will give equal weight to each SAR (because we have taken an
unweighted average of them)

√
NSARt ∼ N(0, 1)

We could similarly take an unweighted average of the standardised cumulative
abnormal returns (SCAR)

ˆSCAR(T1, T2) = 1
N

N∑
i=1

ˆSCARi (T1, T2) (14.20)
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and√
NSCAR(T1, T2) ∼ N(0, 1)

If the true abnormal return is similar across securities, we would be better to
equally weight the abnormal returns in calculating the test statistics (as in equations
(14.19) and (14.20)), but if the abnormal return varies positively with its variance
measure, then it would be better to give more weight to stocks with lower return
variances (as in equation (14.15) for example).

Long event windows

Event studies are joint tests of whether the event-induced abnormal return is zero
and whether the model employed to construct expected returns is correct. If we
wish to examine the impact of an event over a long period (say, more than a few
months), we need to be more careful about the design of the model for expected
returns and also to ensure that this model appropriately allows for risk. Over short
windows, discrepancies between models are usually small and any errors in model
specification are almost negligible. But over the longer run, small errors in setting
up the asset pricing model can lead to large errors in the calculation of abnormal
returns and therefore the impact of the event.

A key question in conducting event studies to measure long-run impacts
is whether to use cumulative abnormal returns (CARs), as described above, or
buy-and-hold abnormal returns (BHARs). There are several important differences
between the two. First, BHARs employ geometric returns rather than arithmetic
returns (used in computing CARs) in calculating the overall return over the event
period of interest. Thus the BHAR can allow for compounding whereas the CAR
does not. The formula for calculating the BHAR is usually given by

ˆBH ARi = [�T2
t=T1

(1 + Ri t ) − 1] − [�T2
t=T1

(1 + E(Ri t )) − 1] (14.21)

where E(Ri t ) is the expected return. Usually, when constructing BHARs the
expected return is based on a non-event firm or portfolio of firms that is matched
in some way to the event firm (e.g. based on size, industry, etc.). Alternatively,
although less desirably, it could be obtained from a benchmark such as a stock
market index.

If desired, we can then sum the BH ARi across the N firms to construct
an aggregate measure. BHARs have been advocated, among others, by Barber
and Lyon (1997) and Lyon et al. (1999) because they better match the ‘investor
experience’ than CARs given the former’s use of geometric rather than arith-
metic averaging. CARs represent biased estimates of the actual returns received by
investors. However, by contrast, Fama (1998) in particular argues in favour of the
use of CARs rather than BHARs. The latter seem to be more adversely affected by
skewness in the sample of abnormal returns than the former because of the impact
of compounding in BHARs.5 In addition, Fama indicates that the average CAR

5 Although Lyon et al. (1999) propose a skewness-adjusted t-statistic with bootstrapping to mitigate
this problem.
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increases at a rate of (T2 − T1) with the number of months included in the sum,
whereas its standard error increases only at a rate

√
(T2 − T1). This is not true for

BHARs where the standard errors grow at the faster rate (T2 − T1) rather than its
square root. Hence any inaccuracies in measuring expected returns will be more
serious for BHARs as another consequence of compounding.

Event time versus calendar time analysis

All of the procedures discussed above have involved conducting analysis in event
time. There is, however, an alternative approach that involves using calendar time,
advocated by Fama (1998) and Mitchell and Stafford (2000) among others. In
essence, using a calendar time methodology involves running a time series regres-
sion and examining the intercept from that regression. The dependent variable is a
series of portfolio returns, which measure the average returns at each point in time
of the set of firms that have undergone the event of interest within a pre-defined
measurement period before that time. So, for example, we might choose to exam-
ine the returns of firms for a year after the event that they announce cessation
of their dividend payments. Then, for each observation t , the dependent variable
will be the average return on all firms that stopped paying dividends at any point
during the past year. One year after the event, by construction the firm will drop
out of the portfolio. Hence the number of firms within the portfolio will vary over
time (as the number of firms ceasing dividend payment varies) and the portfolio
will effectively be rebalanced each month. The explanatory variables may be risk
measures from the Carhart (1997) four-factor model for example – this will be
discussed in detail below.

The calendar time approach will weight each time period equally and thus the
weight on each individual firm in the sample will vary inversely with the number
of other firms that have undergone the event during the observation period. This
may be problematic and will result in a loss of power to detect an effect if managers
time their events to take advantage of misvaluations.

Small samples and non-normality

The test statistics presented in the previous section are all asymptotic, and problems
may arise either if the estimation window (T) is too short, or if the number of
firms (N) is too small when the firm-aggregated statistic is used. As we discussed
earlier in the book, it is well known that stock returns are leptokurtic and tend
to have longer lower tails than upper tails. And particularly with small samples,
the presence of outliers – for example, very large returns during the estimation
window affecting the market model parameter estimation or the residual variance
estimates – may also be problematic. One possible remedy would be to use a
bootstrap approach to computing the test statistics.

A second strategy for dealing with non-normality would be to use a non-
parametric test. Such tests are robust in the presence of non-normal distributions,
although they are usually less powerful than their parametric counterparts. In the
present context, we could test the null hypothesis that the proportion of positive
abnormal returns is not affected by the event. In other words, the proportion of
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positive abnormal returns across firms remains at the expected level. We could
then use the test statistic, Zp

Zp = [p − p∗]
[p∗(1 − p∗)/N]1/2

(14.22)

where p is the actual proportion of negative abnormal returns during the event
window and p∗ is the expected proportion of negative abnormal returns. Under
the null hypothesis, the test statistic follows a binomial distribution, which can be
approximated by the standard normal distribution. Sometimes p∗ is set to 0.5, but
this may not be appropriate if the return distribution is skewed, which is typically
the case. Instead, it is better to calculate p∗ based on the proportion of negative
abnormal returns during the estimation window. The Wilcoxon signed-rank test
can also be used.

Event studies – some further issues

A further implicit assumption in the standard event test methodology is that the
events themselves occur involuntarily. In practice, however, firms often have dis-
cretion about the extent, timing and presentational forms of the announcements
that they make. Thus they are likely to use any discretion they have to make
announcements when market reactions are going to be the most favourable. For
example, where the local regulatory rules allow discretion, firms may release bad
news when the markets are closed or when the media and investors are preoccu-
pied with other significant news items. Prabhala (1997) discusses the implications
of and solutions to the endogeneity of the firm’s decision about when (and perhaps
even whether) to make an announcement. When a firm chooses not to announce
at a particular time, we have a sort of truncated sample since we can observe events
only for firms who choose to make an announcement.

A way of simultaneously dealing with a number of the issues highlighted above
(i.e. differing return variances across firms, changing return variances over time,
and clustering of events across firms) is to use what has been termed generalised
least squares (GLS) in constructing the test statistics. In essence this works by
constructing a variance-covariance matrix from the abnormal returns and using
this to weight the returns in computing the aggregate test statistic – see Armitage
(1995) for further details.

We can see from the above that a range of procedures exists for conducting
event studies. The core of the approach is the same in each case, but they differ
according to how the aggregation is performed over time and across firms and
this affects the method of calculation of the standard deviations. So how do we
choose which approach to use? Hopefully, given the context and the nature of the
events under consideration, we can gain a reasonable idea of which approach is
likely to be the most justifiable. For example, is clustering an issue? Is it expectable
that the return variances will have changed over time? Is it important to allow for
the variances of returns to vary between firms? By answering these questions, we
can usually select the appropriate procedure. But if in doubt, it is always advisable
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to examine a range of methods and to compare the results as a robustness check.
With luck, the various calculation techniques will lead to the same conclusion.

14.9.4 Conducting an event study using Excel

This section will now use the core of the approaches described above in order
to conduct an event study. While this ought to be enough to get started and to
obtain some indicative results, it is important to note that there is far more that
can be done with event studies to make them more rigorous than the approach
presented here and readers are encouraged to consult the papers cited above for
further details.

The first step would be to decide which event to consider the impact of,
and there is certainly no shortage of possibilities (dividend announcements; stock
spit announcements; index composition changes; merger announcements; CEO
turnover; new contract announcements; macroeconomic announcements, etc.).
Once this is done and the data are collected, the time-consuming part is to
then organise them in a way to make them easy to work with. It would be
possible to conduct the analysis in any software package for data analysis, including
EViews. However, since the bulk of the task involves data arrangement and the
econometric part is usually not sophisticated (in most cases, a regression will not
even be conducted), it probably makes sense to revert back to Microsoft Excel or
a similar spreadsheet package.6

The starting point for the analysis conducted here are the abnormal returns
for N = 20 firms, which are given in the Excel file ‘Event.xls’, and have already
been calculated using the market model using equations (14.1) and (14.2). The
returns are given for days −259 to +263. The raw data are on the sheet ‘abnormal
returns’. The spreadsheet has been set up with the data are aligned on the event
day, so while the firms underwent the event on different days, the spreadsheet
is constructed so that day ‘0’ is the event day in the same row for all firms. The
estimation period is from day –259 to day –10 inclusive (249 days), while the event
periods examined are (T − 10, T − 1), day T itself, (T + 1, T + 10) and (T + 1,
T + 250). The first of these windows allows us to examine whether there was any
leakage of information that affected stock returns prior to the event. Whether there
is an immediate effect on the day that the event occurs will depend on whether
the announcement is made in advance or it is a ‘surprise’ to the markets. If the
event was known in advance to be happening on day T then the impact on the
markets that day may be muted since it could have already been reflected in prices.
Note that in this case the adjustment in equation (14.4) is not employed since the
estimation period (T = 249) is quite long and would render the adjustment term
negligible.

We first calculate the average return across all twenty firms for each day during
the estimation and event windows in column V of the ‘abnormal returns’ sheet
using the Excel AVERAGE formula in the usual way. All of the calculations of the

6 The example below uses a small sample of real data from a real event, but no details are given as
to the nature of the event so that they can be distributed freely with the book.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-14 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 3:17

14.9 Event studies

•
•
•
•
•
•
•
•
• 647

key statistics are done on a separate sheet which I have called ‘summary stats’. The
sheet first calculates the AR for day T and the CARs for the date ranges using
equations (14.1) and (14.6) respectively for each individual firm and also for the
average across all firms.

The next step is to calculate the variances of the abnormal returns or cumulative
abnormal returns. For day T, this is done using equation (14.3), which is simply
the time series variance of returns during the estimation window and placed in row
2 (and copied directly into row 11). For the multi-day event windows, the one-day
variance from (14.3) is scaled up by the number of days in the event window (10
or 250) using equation (14.7). Then the test statistics are calculated by dividing the
AR by its respective standard deviation (i.e. the square root of the variance) using
(14.5) or its CAR equivalent in (14.8). Finally, the easiest way to obtain p-values
for the tests is to use the TDIST function in Excel for a two-sided test and with a
large number of degrees of freedom (say, 1,000), so that it approximates the normal
distribution.

As discussed in the previous section, there are several potential issues with the
fairly simple event study methodology just described. So, for robustness, it is a
good idea to examine different ways of tackling the problem, and two possible
checks are given in columns X and Y of the ‘summary stats’ sheet. Both of these
procedures can only be undertaken based on the average across firms and not at
the individual firm level. The first tweak is to calculate the standard deviation
used in the test statistics cross-sectionally in order to allow for the possibility that
the return variances may have changed (typically, risen) around the time of the
event. Thus we simply take the variance across firms for the abnormal return or
cumulative abnormal return of interest, divide this by N (i.e. 20) and then proceed
in the usual way.

A further possibility examined in column Y is to equally weight firms by
calculating the average of the standardised abnormal returns as in equation (14.19)
or (14.20). Then the test statistic is simply this average multiplied by the square
root of the N.

If we now consider the results on this sheet, it is clear that there is little evidence
of a short-term reaction to the event. During the two trading weeks before the
event, (T − 10 to T − 1), only one firm has a significant abnormal return at the
5% level (firm 20 has a CAR of 15.43% with a test statistic of 2.02). None of the
individual firms have significant returns on the event date (T), and neither do any
of them show significance in the short post-event window (T + 1 to T + 10). It
is over the longer term – the next trading year – where there is some action. Now
five firms have statistically significant returns together with economically quite
large cumulative abnormal returns of 20% to 55%.

Examining the aggregate-level results, it is reassuring that the three slightly
different approaches in columns W to Y yield very similar conclusions. Here
the null hypothesis is that the average abnormal return (or average cumulative
abnormal return) is zero. There is again no discernible market reaction before,
on, or in the short-run after, the event. However, the long-run abnormal return
is positive and highly statistically significant whichever of the three approaches is
considered. Interestingly, the variance estimates before the event (at times t − 10
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to T − 1) are higher for the cross-sectional approach in (14.18), although they are
lower for cross-sectional approach during and after the event.

Finally, in the third sheet of the Event.xls workbook, labelled ‘non-parametric
test’, the non-parametric statistic Zp of equation (14.22) is calculated and then the
p-value is obtained using the TDIST function as above. This examines the null
hypothesis that the proportion of abnormal returns around the event is the same
as it was during the estimation window. So the first calculation row of the sheet
(row 2) calculates p∗, the expected proportion of negative returns based on data
from the estimation window. Then for each event period range, we calculate p ,
the actual proportion of negative returns.7

The expected proportion of negative returns varies from 0.43 for firm 18
to 0.55 for firm 8, but the actual proportions for the short pre- and post-event
windows are often much lower than that. For example, for firm 1, p was 0.3 (i.e.
negative returns on only three days from ten) before the event. Pre-event, six of
the twenty firms have significant differences between p and p∗, while for the two
weeks immediately after the event, only three of them show significant differences.
Over the long-run, however, there are no significant differences between the
expected and actual proportions of negative return days – either for any of the
individual firms or for the average.

• • • • • • • • • • • • • • 14.10 Tests of the CAPM and the Fama–French Methodology

14.10.1 Testing the CAPM

The basics

Before moving on to the more sophisticated multi-factor models, it may be useful
to review the standard approach that was developed for testing the CAPM. This
is not the place for a detailed discussion of the motivation for the CAPM or its
derivation – such a discussion can be found at an accessible level in Bodie et al.
(2011) or most other finance textbooks; alternatively, see Campbell et al. (1997)
for a more technical treatment. A good introduction to the general area of asset
pricing tests is given in the book by Cuthbertson and Nitzsche (2004).

The most commonly quoted equation for the CAPM is

E(Ri ) = Rf + βi [E(Rm ) − Rf ] (14.23)

So the CAPM states that the expected return on any stock i is equal to the risk-free
rate of interest, Rf , plus a risk premium. This risk premium is equal to the risk
premium per unit of risk, also known as the market risk premium, [E(Rm ) − Rf ],
multiplied by the measure of how risky the stock is, known as ‘beta’, βi . Beta is not
observable from the market and must be calculated, and hence tests of the CAPM
are usually done in two steps – first, estimating the stock betas and second, actually
testing the model. It is important to note that the CAPM is an equilibrium model,

7 Note of course that it is not possible to calculate Z for the event date by itself since the proportion
of negative returns, p would be either exactly zero or exactly one.
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or a model in terms of expectations. Thus, we would not expect the CAPM to
hold in every time period for every stock. But if it is a good model, then it should
hold ‘on average’. Usually, we will use a broad stock market index as a proxy for
the market portfolio and the yield on short-term Treasury bills as the risk-free rate.

A stock’s beta can be calculated in two ways – one approach is to calculate it
directly as the covariance between the stock’s excess return and the excess return on
the market portfolio, divided by the variance of the excess returns on the market
portfolio

βi = Cov(Re
i , Re

m )

Var(Re
m )

(14.24)

where the e superscript denotes excess returns (i.e. the return with the risk-free
rate subtracted from it). Alternatively, and equivalently, we can run a simple time
series regression of the excess stock returns on the excess returns to the market
portfolio separately for each stock, and the slope estimate will be the beta

Re
i,t = αi + βi Re

m ,t + ui,t , i = 1, . . . , N; t = 1, . . . , T (14.25)

where N is the total number of stocks in the sample and T is the number of time
series observations on each stock.

The intercept estimate (α̂i ) from this regression would be ‘Jensen’s alpha’
for the stock, which would measure how much the stock underperformed or
outperformed what would have been expected given its level of market risk. It is
probably not very interesting to examine the alpha for an individual stock, but we
could use exactly the same regression to test the performance of portfolios, trading
strategies and so on – all we would do would be to replace the excess returns that
comprise the dependent variable with those from the portfolio or trading rule.

Returning to testing the CAPM, suppose that we had a sample of 100 stocks
(N = 100) and their returns using five years of monthly data (T = 60). The first
step would be to run 100 time series regressions (one for each individual stock),
the regressions being run with the sixty monthly data points. Then the second
stage would involve a single cross-sectional regression of the average (over time) of
the stock returns on a constant and the betas

R̄i = λ0 + λ1βi + vi , i = 1, . . . , N (14.26)

where R̄i is the return for stock i averaged over the sixty months. Notice that,
unlike the first stage, this second stage regression now involves the actual returns
and not excess returns. Essentially, the CAPM says that stocks with higher betas are
more risky and therefore should command higher average returns to compensate
investors for that risk.

If the CAPM is a valid model, two key predictions arise which can be tested
using this second stage regression: λ0 = Rf and λ1 = [Rm − Rf ]. So, to find
support for the CAPM, we would expect to see the intercept estimate being
close to the risk-free rate of interest and the slope being close to the market risk
premium.

Two further implications of the CAPM being valid are first, that there is a
linear relationship between a stock’s return and its beta and second, that no other
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variables should help to explain the cross-sectional variation in returns. So, in other
words, any additional variable we add to the second stage regression (14.26) should
not have a statistically significant parameter estimate attached to it. We could thus
for example run the augmented regression

R̄i = λ0 + λ1βi + λ2β
2
i + λ3σ

2
i + vi (14.27)

where β2
i is the squared beta for stock i and σ 2

i is the variance of the residuals
from the first stage regression, which is a measure of idiosyncratic risk for stock
i . The squared beta term can capture whether there is any non-linearity in the
relationship between returns and beta. If the CAPM is a valid and complete model,
then we should see that λ2 = 0 and λ3 = 0.

However, research has indicated that the CAPM is not a complete model of
stock returns. In particular, it has been found that returns are systematically higher
for small capitalisation stocks than the CAPM would predict, and similarly, returns
are systematically higher for ‘value’ stocks (those with low market-to-book or
price-to-earnings ratios) than the CAPM would predict. We can test this directly
using a different augmented second stage regression

R̄i = λ0 + λ1βi + λ2MVi + λ3 BTMi + vi (14.28)

where MVi is the market capitalisation for stock i and BTMi is is the ratio of its
book value to its market value of equity.8 This is the kind of model employed by
Fama and French (1992), as discussed below. As for equation (14.27), the test for
the CAPM to be supported by the data would be λ2 = 0 and λ3 = 0.

Unfortunately, returns data are beset by problems that can render the results
from tests of the CAPM dubious or possibly even invalid. First, the familiar non-
normality of returns can lead to problems with tests in finite samples – while
normality is not a specific theoretical requirement of the CAPM, it is required
for valid hypothesis testing. Second, there is also likely to be heteroscedasticity
in the returns. More recent research testing the CAPM has used the generalised
method of moments (GMM), where estimators can be constructed that are robust
to these issues – see for, example, Cochrane (2005). A final important problem is
the measurement error in beta discussed extensively in section 5.13 of this book.
In order to minimise such measurement errors, the beta estimates can be based
on portfolios rather than individual securities. Alternatively, the Shanken (1992)
correction can be applied, where the standard deviation in the test statistic is
multiplied by a factor to adjust for the measurement error.

The Fama–MacBeth approach

Fama and MacBeth (1973) used the two stage approach to testing the CAPM
outlined above, but using a time series of cross-sections. The basics are exactly as
described above, but instead of running a single time-series regression for each

8 Note that many studies use the market-to-book ratio, which is simply one divided by the book-
to-market ratio – so value stocks have a low number for the former and a high number for the
latter.
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stock and then a single cross-sectional regression, the estimation is conducted with
a rolling window.

Fama and MacBeth employ five years of observations to estimate the CAPM
betas and the other risk measures (i.e. the standard deviation and squared beta) and
these are used as the explanatory variables in a set of cross-sectional regressions
each month for the following four years. The estimation period is then rolled
forward four years and the process continues until the end of the sample period
is reached.9 To illustrate, their initial time series estimation period for the betas
is January 1930 to December 1934. The cross-sectional regressions are run with
monthly returns on each stock as the dependent variable for January 1935, and
then separately for February 1935, . . . , to December 1938. The sample is then
rolled forward with the beta estimation from January 1934 to December 1938 and
the cross-sectional regressions now beginning January 1939. In this way, they end
up with a cross-sectional regression for every month in the sample (except for the
first five years used for the initial beta estimations).

Since we will have one estimate of the lambdas, λ̂ j,t ( j = 1, 2, 3, 4), for each
time period t , we can form a t-ratio for each of these as being the average over
t , denoted λ̂ j , divided by its standard error (which is the standard deviation over
time divided by the square root of the number of time series estimates of the λ̂ j,t ).

Thus the average value over t of λ̂ j,t can be calculated as

λ̂ j = 1
TF M B

TF M B∑
t=1

λ̂ j,t , j = 1, 2, 3, 4 (14.29)

where TF M B is the number of cross-sectional regressions used in the second stage
of the test, and the standard deviation is

σ̂ j =
√√√√ 1

TF M B − 1

TF M B∑
t=1

(λ̂ j,t − λ̂ j )2 (14.30)

The test statistic is then simply
√

TF M B λ̂ j /σ̂ j , which is asymptotically standard
normal, or follows a t distribution with TF M B − 1 degree of freedom in finite
samples. The key results from Fama and MacBeth corroborate other early evidence
by Black, Jensen and Scholes (1972), and are summarised in table 14.3.

We can compare the estimated values of the intercept and slope with the
actual values of the risk-free rate (Rf ) and the market risk premium [R̄m − R̄f ],
which are, for the full-sample corresponding to the results presented in the table,
0.013 and 0.143 respectively. The parameter estimates λ̂0 and λ̂1 have the correct
signs (both are positive). Thus the implied risk-free rate is positive and so is the
relationship between returns and beta – both parameters are significantly different
from zero, although they become insignificant when the other risk measures are

9 The main reason that the updating was only undertaken every four years was due to the lack
of computing power available at that time. More recent studies would do this annually or even
monthly.
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Table 14.3 Fama and MacBeth’s results on testing the CAPM

Model λ̂0 λ̂1 λ̂2 λ̂3

Model 1: CAPM 0.0061∗ 0.0085∗

(3.24) (2.57)

Model 2: Augmented CAPM 0.0020 0.0114 −0.0026 0.0516

(0.55) (1.85) (−0.86) (1.11)

Notes: t-ratios in parentheses; ∗ denotes significance at the 5% level.
Source: Fama and MacBeth (1973), numbers extracted from their Table 3.

included as in the second row of the table. Hence it has been argued that there
is qualitative support for the CAPM but not quantitative support as the intercept
and slope are not of the appropriate sizes, although the differences between the
estimated parameters and their expected values are not statistically significant for
Fama and MacBeth’s whole sample. It is also worth noting from the second row of
the table that squared beta and idiosyncratic risk have parameters that are even less
significant than beta itself in explaining the cross-sectional variation in returns.

14.10.2 Asset pricing tests – the Fama–French approach

Of all of the approaches to asset pricing tests that have been developed, the range
of techniques pioneered by Fama and French in a series of papers is by far the
most commonly employed. The ‘Fama–French methodology’ is not really a single
technique but rather a family of related approaches based on the notion that market
risk is insufficient to explain the cross-section of stock returns – in other words,
why some stocks generate higher average returns than others.

The Fama–French and Carhart models, described in detail below, seek to
measure abnormal returns after allowing for the impact of the characteristics of
the firms or portfolios under consideration. It is well-established in the finance
literature that certain types of stocks yield, on average, considerably higher returns
than others. For example, the stocks of small companies, value stocks (those with
low price-to-earnings ratios), and stocks with momentum (that have experienced
recent price increases), typically yield higher returns than those having the opposite
characteristics. This has important implications for asset pricing and for the way
that we think about risk and expected returns. If, for example, we wanted to
evaluate the performance of a fund manager, it would be important to take the
characteristics of these portfolios into account to avoid incorrectly labelling a
manager as having stock-picking skills when he routinely followed a strategy of
buying small, value stocks with momentum, which will on average outperform
the equity market as a whole.
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Fama–French (1992)

The Fama–French (1992) approach, like Fama and MacBeth (1973), is based on a
time series of cross-sections model. Here, we run a set of cross-sectional regressions
of the form

Ri,t = α0,t + α1,tβi,t + α2,t MVi,t + α3,t BTMi,t + ui,t (14.31)

where Ri,t are again the monthly returns, βi,t are the CAPM betas, MVi,t are
the market capitalisations, and BTMi,t are the book-to-price ratios, each for firm
i and month t . So the explanatory variables in the regressions here are the firm
characteristics themselves. Fama and French show that when we employ size and
book-to-market in the cross-sectional regressions, these are highly significantly
related to returns (with negative and positive signs respectively) so that small and
value stocks earn higher returns all else equal than growth or large stocks. They
also show that market beta is not significant in the regression (and even has the
wrong sign), providing very strong evidence against the CAPM.

Fama–French (1993)

Fama and French (1993) use a factor-based model in the context of a time series
regression which is now run separately on each portfolio i

Ri,t = αi + βi,M RM RFt + βi,SSM Bt + βi,V HMLt + εi,t (14.32)

where Ri,t is the return on stock or portfolio i at time t , RM RF , SM B, and
HML are the factor mimicking portfolio returns for market excess returns, firm size,
and value respectively.10

The factor mimicking portfolios are designed to have unit exposure to the
factor concerned and zero exposure to all other factors. In more detail, the factors
in the Fama and French (1993) model are constructed as follows. The excess market
return is measured as the difference in returns between the S&P500 index and the
yield on Treasury bills (RM RF ); SM B is the difference in returns between a
portfolio of small stocks and a portfolio of large stocks, termed ‘small minus big’
portfolio returns; HML is the difference in returns between a portfolio of value
stocks with high book-value to market-value ratios and a portfolio of growth stocks
with low book-value to market-value ratios, termed ‘high minus low’ portfolio
returns. One of the main reasons they use factor-mimicking portfolios rather than
continuing their (1992) approach is that they want to also include bonds in the
set of asset returns considered, and these do not have obvious analogues to market
capitalisation or the book-to-market ratio.

In Fama and French’s (1993) case, these time series regressions are run on
portfolios of stocks that have been two-way sorted according to their book-to-
market ratios and their market capitalisations. It is then possible to compare the
parameter estimates qualitatively across the portfolios i . The parameter estimates
from these time series regressions are known as factor loadings that measure the

10 While this model could be applied to individual stocks, it makes more sense in the context of
portfolios, although the principles are the same.
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sensitivity of each individual portfolio to each of the factors. We will obtain a
separate set of factor loadings for each portfolio i since each portfolio is the subject
of a different time series regression and will have different sensitivities to the risk
factors. Fama and French (1993) qualitatively compare these factor loadings across
a set of twenty-five portfolios that have been two-way sorted on their size and
book-to-market ratios.

Then, the second stage in this approach is to use the factor loadings from the
first stage as explanatory variables in a cross-sectional regression

R̄i = α + λMβi,M + λSβi,S + λVβi,V + e i (14.33)

We can interpret the second stage regression parameters, λM, λS, λV as factor risk
premia – in other words, they show the amount of extra return that is generated
on average from taking on an additional unit of that source of risk.

Since the factor loadings and risk premia have a tendency to vary over time, the
model is estimated using a rolling window. For example, the time series model in
equation (14.32) is typically estimated using five years of monthly data, and then
the λs would be estimated from equation (14.33) using separate cross-sectional
regressions with a monthly return for each of the following twelve months. The
sample would then be rolled forward by a year with a new set of βs being estimated
from (14.32) and then a new set of twelve estimates of λ produced and so on.
Alternatively, the rolling update could occur monthly. Either way, there will be
one estimate of each of the λs for every month after the initial five-year beta
estimation window, which we would then average to get the overall estimates of
the risk premia.

Fama and French (1993) apply the model to their twenty-five size- and value-
sorted portfolios and argue that the statistical significance of the lambdas in the
second stage regressions and the high R2 values are indicative of the importance
of size and value as explanators of the cross-sectional variation in returns.

Carhart (1997)

Since Carhart’s (1997) study on mutual fund performance persistence, it has
become customary to add a fourth factor to the equations above based on momen-
tum, measured as the difference between the returns on the best performing stocks
over the past year and the worst performing stocks – this factor is known as U M D –
‘up-minus-down’. Equation (14.32) then becomes

Ri,t = αi + βi,M RM RFt + βi,SSM Bt + βi,V HMLt + βi,UU M Dt + εi,t

(14.34)

And, if desired, equation (14.33) becomes11.

R̄i = α + λMβi,M + λSβi,S + λVβi,V + λUβi,U + e i (14.35)

11 Note that Carhart’s paper does not use this second-stage cross-sectional regression containing the
factor sensitivities.
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Carhart forms decile portfolios of mutual funds based on their one-year lagged
performance and runs the time series regression of equation (14.34) on each of
them. He finds that the mutual funds which performed best last year (in the top
decile) also had positive exposure to the momentum factor (U M D) while those
which performed worst had negative exposure. Hence a significant portion of the
momentum that exists at the fund level arises from momentum in the stocks that
those funds are holding.

14.10.3 The Fama–MacBeth procedure in EViews

It should be clear from the discussion above that there is nothing particularly
complex about the two-stage procedure – it only involves two sets of standard
linear regressions. The hard part is really in collecting and organising the data. If
we wished to do a more sophisticated study – for example, using a bootstrapping
procedure or using the Shanken correction, this would require more analysis than
is conducted in the illustration below. However, hopefully the EViews code and
explanation will be sufficient to demonstrate how to apply the procedures to any
set of data.

The example employed here is taken from the study by Gregory, Tharyan and
Chistidis (2013) that examines the performance of several different variants of the
Fama–French and Carhart models using the Fama–MacBeth methodology in the
UK following several earlier studies showing that these approaches appear to work
far less well for the UK than the US. The data required are provided by Gregory
et al. on their web site.12 Note that their data have been refined and further
cleaned since their paper was written (i.e. the web site data are not identical
to those used in the paper) and as a result the parameter estimates presented
here deviate slightly from theirs. However, given that the motivation for this
exercise is to demonstrate how the Fama–MacBeth approach can be used in
EViews, this difference should not be consequential. The two data files used are
‘monthlyfactors.csv’ and ‘vw sizebm 25groups.csv’. The former file includes the
time series of returns on all of the factors (SMB, HML, UMD, RMRF, the return
on the market portfolio (RM) and the return on the risk-free asset (RF)), while the
latter includes the time series of returns on twenty-five value-weighted portfolios
formed from a large universe of stocks, two-way sorted according to their sizes
and book-to-market ratios.

The first step in this analysis for conducting the Fama–French or Carhart
procedures using the methodology developed by Fama and MacBeth is to create a
new EViews workfile which I have called ‘ff example.wf1’ and to import the two
csv data files into it. The data in both cases run from October 1980 to December
2012, making a total of 387 data points. However, in order to obtain results as
close as possible to those of the original paper, when running the regressions, the
period is from October 1980 to December 2010 (363 data points). We then need
to set up a program file along the lines of those set up in the previous chapter – I
have called mine ‘FF PROG.prg’.

12 http://business-school.exeter.ac.uk/research/areas/centres/xfi/research/famafrench/files.
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The full code to run the tests is as follows, and annotated below.

′READ DATA
LOAD C:\ CHRIS\ BOOK\ BOOK3E\ DATA\ FF EXAMPLE.WF1

′TRANSFORM ACTUAL RETURNS INTO EXCESS RETURNS
SL=SL-RF
S2=S2-RF
S3=S3-RF
S4=S4-RF
SH=SH-RF
S2L=S2L-RF
S22=S22-RF
S23=S23-RF
S24=S24-RF
S2H=S2H-RF
M3L=M3L-RF
M32=M32-RF
M33=M33-RF
M34=M34-RF
M3H=M3H-RF
B4L=B4L-RF
B42=B42-RF
B43=B43-RF
B44=B44-RF
B4H=B4H-RF
BL=BL-RF
B2=B2-RF
B3=B3-RF
B4=B4-RF
BH=BH-RF

′DEFINE THE NUMBER OF TIME SERIES OBSERVATIONS
!NOBS=363

′CREATE SERIES TO PUT BETAS FROM STAGE 1
′AND LAMBDAS FROM STAGE 2 INTO
SERIES BETA C
SERIES BETA RMRF
SERIES BETA UMD
SERIES BETA HML
SERIES BETA SMB
SERIES LAMBDA C
SERIES LAMBDA RMRF
SERIES LAMBDA UMD
SERIES LAMBDA HML
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SERIES LAMBDA SMB
SERIES LAMBDA R2
SCALAR LAMBDA C MEAN
SCALAR LAMBDA C TRATIO
SCALAR LAMBDA RMRF MEAN
SCALAR LAMBDA RMRF TRATIO
SCALAR LAMBDA UMD MEAN
SCALAR LAMBDA UMD TRATIO
SCALAR LAMBDA HML MEAN
SCALAR LAMBDA HML TRATIO
SCALAR LAMBDA SMB MEAN
SCALAR LAMBDA SMB TRATIO
SCALAR LAMBDA R2 MEAN
′THIS LOOP CREATES THE SERIES TO PUT THE
′CROSS-SECTIONAL DATA IN
FOR !M = 1 TO 387
SERIES TIME{%M}
NEXT

′NOW RUN THE FIRST STAGE TIME-SERIES REGRESSIONS
′SEPARATELY FOR EACH PORTFOLIO AND
′PUT THE BETAS INTO THE APPROPRIATE SERIES
SMPL 1980:10 2010:12
!J=1
FOR %Y SL S2 S3 S4 SH S2L S22 S23 S24 S2H M3L M32 M33 M34 M3H

B4L B42 B43 B44 B4H BL B2 B3 B4 BH
′THE PREVIOUS COMMAND WITH VARIABLE NAMES
′NEEDS TO ALL GO ON ONE LINE
EQUATION EQ1.LS {%Y} C RMRF UMD HML SMB
BETA C(!J)=@COEFS(1)
BETA RMRF(!J)=@COEFS(2)
BETA UMD(!J)=@COEFS(3)
BETA HML(!J)=@COEFS(4)
BETA SMB(!J)=@COEFS(5)
!J=!J+1
NEXT

′NOW RESORT THE DATA SO THAT EACH COLUMN IS A
′MONTH AND EACH ROW IS RETURNS ON PORTFOLIOS
FOR !K=1 TO 387
TIME!K(1)=SL(!K)
TIME!K(2)=S2(!K)
TIME!K(3)=S3(!K)
TIME!K(4)=S4(!K)
TIME!K(5)=SH(!K)
TIME!K(6)=S2L(!K)
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TIME!K(7)=S22(!K)
TIME!K(8)=S23(!K)
TIME!K(9)=S24(!K)
TIME!K(10)=S2H(!K)
TIME!K(11)=M3L(!K)
TIME!K(12)=M32(!K)
TIME!K(13)=M33(!K)
TIME!K(14)=M34(!K)
TIME!K(15)=M3H(!K)
TIME!K(16)=B4L(!K)
TIME!K(17)=B42(!K)
TIME!K(18)=B43(!K)
TIME!K(19)=B44(!K)
TIME!K(20)=B4H(!K)
TIME!K(21)=BL(!K)
TIME!K(22)=B2(!K)
TIME!K(23)=B3(!K)
TIME!K(24)=B4(!K)
TIME!K(25)=BH(!K)
NEXT

′RUN 2ND STAGE CROSS-SECTIONAL REGRESSIONS
FOR !Z = 1 TO !NOBS
EQUATION EQ1.LS TIME!Z C BETA RMRF BETA UMD BETA HML

BETA SMB
LAMBDA C(!Z)=@COEFS(1)
LAMBDA RMRF(!Z)=@COEFS(2)
LAMBDA UMD(!Z)=@COEFS(3)
LAMBDA HML(!Z)=@COEFS(4)
LAMBDA SMB(!Z)=@COEFS(5)
LAMBDA R2(!Z)=@R2
NEXT

′FINALLY, ESTIMATE THE MEANS AND T-RATIOS
′FOR THE LAMBDA ESTIMATES IN THE SECOND STAGE
LAMBDA C MEAN =@MEAN(LAMBDA C)
LAMBDA C TRATIO=@SQRT(!NOBS)*@MEAN(LAMBDA C)/

@STDEV(LAMBDA C)
LAMBDA RMRF MEAN=@MEAN(LAMBDA RMRF)
LAMBDA RMRF TRATIO=@SQRT(!NOBS)*@MEAN(LAMBDA

RMRF)/@STDEV(LAMBDA RMRF)
LAMBDA UMD MEAN=@MEAN(LAMBDA UMD)
LAMBDA UMD TRATIO=@SQRT(!NOBS)*@MEAN(LAMBDA

UMD)/@STDEV(LAMBDA UMD)
LAMBDA HML MEAN=@MEAN(LAMBDA HML)
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LAMBDA HML TRATIO=@SQRT(!NOBS)*@MEAN(LAMBDA
HML)/@STDEV(LAMBDA HML)

LAMBDA SMB MEAN=@MEAN(LAMBDA SMB)
LAMBDA SMB TRATIO=@SQRT(!NOBS)*@MEAN(LAMBDA SMB)/

@STDEV(LAMBDA SMB)
LAMBDA R2 MEAN=@MEAN(LAMBDA R2)

We can think of this program as comprising of several sections. The first step is
to transform all of the raw portfolio returns into excess returns which are required
to compute the betas in the first stage of Fama–MacBeth. This is fairly simple to
do and writes over the original series with their excess return counterparts.

The line (!NOBS=363) ensures that the same sample period as the paper by
Gregory et al. is employed throughout. The next stage involves creating the arrays
to put the betas and lambdas in. These are set up as series since there will be one
entry for each regression. Then we also need the final estimates for each of the
lambda parameters, which will be the time series averages of the cross-sections.

We need to first run a set of time series regressions to estimate the betas but
we will later need to estimate a set of cross-sectional regressions. This presents a
problem because the data can only be organised in one way or the other in EViews.
So the following three lines

FOR !M = 1 TO 387
SERIES TIME{M}
NEXT

set up a set of 387 new series called TIME1, TIME2, . . . , TIME387 which we
will subsequently organise as cross-sectional data. !M in curly brackets is what tells
EViews to add the numbers 1, 2, . . . , onto the word TIME to create the names
for the new series. These three lines of code very efficiently replace 387 separate
lines of code that we would otherwise have had to have written such as SERIES
TIME1 etc.

Then we set up and run all of the first-stage time series regressions. We want to
run the Carhart 4-factor model separately for each of the twenty-five portfolios. It
would be possible to have twenty-five separate regression statements, but it seems
easier and more efficient to set these up in a loop. SMPL 1980:10 2010:12 runs
the regressions for the period 1980:10 to 2010:12 only rather than on the whole
sample period.

The statements
FOR %Y followed by the list of variable names
. . .
NEXT

constitute the main loop that runs over all the twenty-five series. Then the line

EQUATION EQ1.LS {%Y} C RMRF UMD HML SMB
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runs an OLS time series regression for each of the twenty-five series in the loop
defined in the previous line on a constant and the four variables RMRF UMD
HML SMB. This effectively uses equation (14.34) from above. We need to store
the estimates from these regressions into separate series for each parameter. The
lines beginning BETA C(!J)=@COEFS(1) do this. The letter J is an index which
is defined outside the loop to start with a value of 1 (the statement !J=1) and then
as each regression is run, the value of J is increased by 1 (the statement !J=!J+1
does this). So, the loop starts off with J=1 and the regression will be run with the
series SL as the dependent variable. The the intercept (i.e. the alpha) from this
regression will be placed as the first entry in BETA C (i.e. it will be BETA C(1)),
the parameter estimate on the RMRF term will be placed in BETA RMRF(1)
and so on. Then the value of J will be increased by 1 to 2, and the second
regression will have dependent variable S2. Its intercept estimate will be placed
in BETA C(2), the slope estimate on RMRF will be placed in BETA RMRF(2)
and so on. This will continue until the final regression is run on the twenty-fifth
series, which will be BH, with its intercept estimate being placed in BETA C(25).
We should thus note that while these BETA series were set up with the total
number of observations in the workfile (i.e. they will have 387 rows), only the first
twenty-five of those rows will be filled and the remainder will contain NA.

So now we have run the first step of the Fama–MacBeth methodology – we
have estimated all of the betas, also known as the factor exposures. The slope
parameter estimates for the regression of a given portfolio will show how sensitive
the returns on that portfolio are to the factors and the intercepts will be Jensen’s
alpha estimates. These intercept estimates in BETA C should be comparable to
those in the second panel of Table 6 in Gregory et al. – their column headed
‘Simple 4F’. Since the parameter estimates in all of their tables are expressed as
percentages, we need to multiply all of the figures given from the EViews output
by 100 to make them on the same scale. If the 4-factor model is a good one,
we should find that all of these alphas are statistically insignificant. We could test
this individually if we wished by adding an additional line of code in the loop to
save the t-ratios in the regressions (something like BETA T C(!J)=@TSTATS(2)
should do it). It would also be possible to test the joint null hypothesis that all of
the alphas are jointly zero using a test developed by Gibbons, Ross and Shanken
(1989) – the GRS test, but this is beyond the scope of this book.

The second stage of Fama–MacBeth is to run a separate cross-sectional regres-
sion for each point in time. An easy way to do this is to, effectively, rearrange
the data so that each column (while still in a time series workfile) is a set of
cross-sectional data. So the loop over K takes the observations in the twenty-five
portfolios and arranges them cross-sectionally. Thus TIME1 will contain twenty-
five data points (one for each portfolio) – all the observations for the first month,
October 1980; TIME2 will contain all twenty-five observations for the portfolios
in the second month, November 1980; . . . ; TIME387 will contain all twenty-five
portfolio observations for December 2012.

We are now in a position to run the second-stage cross-sectional regressions
corresponding to equation (14.35) above – note that this runs from 1 to NOBS,
which was defined as Gregory et al.’s sample to run to December 2010 and not all
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Table 14.4 Results from Fama–MacBeth procedure using EViews

Parameter Estimate t-ratio

Cons 0.34 0.89

λM 0.21 0.62

λS 0.08 0.50

λV 0.42 2.23

λU 0.32 0.50

the data available up to December 2012. Again, it is more efficient to run these in
a loop (since there will be 363 of them!) rather than individually. The Z index will
loop over each of the months to produce a set of parameter estimates (lambdas)
for each one, each time running a regression on the corresponding parameter
estimates from the first stage.

Thus the first regression will be of TIME1 on a constant, BETA RMRF,
BETA UMD, BETA HML, and BETA SMB with the estimates being put in new
series as before. LAMBDA C will contain all of the intercepts from the second
stage regressions, LAMBDA RMRF will contain all of the parameter estimates
on the market risk premium betas and so on. We also collect the R2 for each
regression as it is of interest to examine the cross-sectional average.

The final stage is to estimate the averages and standard errors of these estimates
using something equivalent to equations (14.29) and (14.30) respectively for each
parameter. The mean is calculated simply using the @MEAN object, and the
standard deviation is calculated using @STDEV. So LAMBDA C MEAN will
contain the mean of the cross-sectional intercept estimates, and the corresponding
t-ratio will be in LAMBDA C TRATIO and so on.

Once the program is run, we can double click on each of these objects to
examine the contents. The lambda parameter estimates should be comparable
with the results in the column headed ’Simple 4F Single’ from Panel A of Table
9 in Gregory et al. Note that they use γ to denote the parameters which have
been called λ in this text. The parameter estimates obtained from this simulation
and their corresponding t-ratios are given in table 14.4. Note that the latter do
not use the Shanken correction as Gregory et al. do. These parameter estimates
are the prices of risk for each of the factors (again, the coefficients from EViews
need to be multiplied by 100 to turn them into percentages), and interestingly
only the price of risk for value is significantly different from zero. While Gre-
gory et al. additionally conduct a range of closely related but more sophisticated
tests, their conclusion that further research is required to discover more convinc-
ing asset pricing model for the UK is identical to this one using the standard
approach.
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Table 14.5 Suggested structure for a typical dissertation or
project

Title page

Abstract or executive summary

Acknowledgements

Table of contents

Section 1: Introduction

Section 2: Literature review

Section 3: Data

Section 4: Methodology

Section 5: Results

Section 6: Conclusions

References

Appendices

• • • • • • • • • • • • • • 14.11 How might the finished project look?

Different projects will of course require different structures, but it is worth outlining
at the outset the form that a good project or dissertation will take. Unless there
are good reasons for doing otherwise (for example, because of the nature of the
subject), it is advisable to follow the format and structure of a full-length article in
a scholarly journal. In fact, many journal articles are, at approximately 5,000 words
long, roughly the same length as a student research project. A suggested outline
for an empirical research project in finance is presented in table 14.5. We shall
examine each component in table 14.5 in turn.

The title page

The title page is usually not numbered, and will contain only the title of the project,
the name of the author, and the name of the department, faculty, or centre in which
the research is being undertaken.

The abstract

The abstract is usually a short summary of the problem being addressed and of the
main results and conclusions of the research. The maximum permissible length of
the abstract will vary, but as a general guide, it should not be more than 300 words
in total. The abstract should usually not contain any references or quotations, and
should not be unduly technical, even if the subject matter of the project is.
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Acknowledgements

The acknowledgements page is a list of people whose help you would like to note.
For example, it is courteous to thank your instructor or project supervisor (even if
he/she was useless and didn’t help at all), any agency that gave you the data, friends
who read and checked or commented upon the work, etc. It is also ‘academic
etiquette’ to put a disclaimer after the acknowledgements, worded something like
‘Responsibility for any remaining errors lies with the author(s) alone’. This also
seems appropriate for a dissertation, for it symbolises that the student is completely
responsible for the topic chosen, and for the contents and the structure of the
project. It is your project, so you cannot blame anyone else, either deliberately
or inadvertently, for anything wrong with it! The disclaimer should also remind
project authors that it is not valid to take the work of others and to pass it off
as one’s own. Any ideas taken from other papers should be adequately referenced
as such, and any sentences lifted directly from other research should be placed in
quotations and attributed to their original author(s).

The table of contents

The table of contents should list the sections and sub-sections contained in the
report. The section and sub-section headings should reflect accurately and con-
cisely the subject matter that is contained within those sections. It should also list
the page number of the first page of each section, including the references and any
appendices.

The abstract, acknowledgements and table of contents pages are usually
numbered with lower case Roman numerals (e.g. i, ii, iii, iv, etc.), and the intro-
duction then starts on page 1 (reverting back to Arabic numbers), with page num-
bering being consecutive thereafter for the whole document, including references
and any appendices.

The introduction

The introduction should give some very general background information on the
problem considered, and why it is an important area for research. A good intro-
ductory section will also give a description of what is original in the study – in
other words, how does this study help to advance the literature on this topic or
how does it address a new problem, or an old problem in a new way? What are the
aims and objectives of the research? If these can be clearly and concisely expressed,
it usually demonstrates that the project is well defined. The introduction should
be sufficiently non-technical that the intelligent non-specialist should be able to
understand what the study is about, and it should finish with an outline of the
remainder of the report.

The literature review

Before commencing any empirical work, it is essential to thoroughly review the
existing literature, and the relevant articles that are found can be summarised in
the literature review section. This will not only help to give ideas and put the
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proposed research in a relevant context, but may also highlight potential problem
areas. Conducting a careful review of existing work will ensure that up-to-date
techniques are used and that the project is not a direct (even if unintentional) copy
of an already existing work.

The literature review should follow the style of an extended literature review
in a scholarly journal, and should always be critical in nature. It should comment
on the relevance, value, advantages and shortcomings of the cited articles. Do
not simply provide a list of authors and contributions – the review should be
written in continuous prose and not in note form. It is important to demonstrate
understanding of the work and to provide a critical assessment – i.e. to point out
important weaknesses in existing studies. Being ‘critical’ is not always easy but is a
delicate balance; the tone of the review should remain polite. The review should
synthesise existing work into a summary of what is and is not known and should
identify trends, gaps and controversies.

Some papers in the literature are seminal: they change the way that people have
thought about a problem or have had a major influence on policy or practice They
might be introducing a new idea or an idea new to that subject area. Reviews
can sometimes be organised around such papers and certainly any literature review
should cite the seminal works in the field.

The process of writing a literature review can be made much easier if there
exists a closely related survey or review paper. Review papers are published and
(usually) high quality and detailed reports on a particular area of research. However,
it goes without saying that you should not simply copy the review for several
reasons. First, your topic may not match exactly that of the survey paper. Second,
there may be more recent studies that are not included in the review paper. Third,
you may wish to have a different emphasis and a wider perspective.

An interesting question is whether papers from low ranking journals, poorly
written papers, those that are methodologically weak, and so on, be included in
the review? This is, again, a difficult balance. In general the answer is probably
not, but they should be included if they are directly relevant to your own work,
but you should be sure to highlight the weaknesses of the approaches used.

The data

The data section should describe the data in detail – the source, the format, the
features of the data and any limitations which are relevant for later analysis (for
example, are there missing observations? Is the sample period short? Does the sam-
ple include large potential structural breaks, e.g. caused by a stock market crash?).
If there are a small number of series which are being primarily investigated, it is
common to plot the series, noting any interesting features, and to supply summary
statistics – such as the mean, variance, skewness, kurtosis, minimum and maximum
values of each series, tests for non-stationarity, measures of autocorrelation, etc.

Methodology

‘Methodology’ should describe the estimation technique(s) used to compute esti-
mates of the parameters of the model or models. The models should be outlined
and explained, using equations where appropriate. Again, this description should
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be written critically, noting any potential weaknesses in the approach and, if relevant,
why more robust or up-to-date techniques were not employed. If the methodol-
ogy employed does not require detailed descriptions, this section may usefully be
combined with the data section.

Results

The results will usually be tabulated or graphed, and each table or figure should
be described, noting any interesting features – whether expected or unexpected,
and in particular, inferences should relate to the original aims and objectives of
the research outlined in the introduction. Results should be discussed and analysed,
not simply presented blandly. Comparisons should also be drawn with the results
of similar existing studies if relevant – do your results confirm or contradict those
of previous research? Each table or figure should be mentioned explicitly in the
text (e.g. ‘Results from estimation of equation (11) are presented in Table 4’). Do
not include in the project any tables or figures which are not discussed in the text.
It is also worth trying to present the results in as interesting and varied a way as
possible – for example, including figures and charts as well as just tables.

Conclusions

The conclusions section should re-state the original aim of the dissertation and
outline the most important results. Any weaknesses of the study as a whole should
be highlighted, and finally some suggestions for further research in the area should
be presented.

References

A list of references should be provided, in alphabetical order by author. Note that a
list of references (a list of all the papers, books or web pages referred to in the study,
irrespective of whether you read them, or found them cited in other studies), as
opposed to a bibliography (a list of items that you read, irrespective of whether
you referred to them in the study), is usually required.

Although there are many ways to show citations and to list references, one
possible style is the following. The citations given in the text can be given as
‘Brooks (1999) demonstrated that . . . ’ or ‘A number of authors have concluded
that . . . (see, for example, Brooks, 1999).’

All works cited can be listed in the references section using the following style:

Books

Harvey, A. C. (1993) Time Series Models, second edition, Harvester Wheatsheaf,
Hemel Hempstead, England

Published articles

Hinich, M. J. (1982) Testing for Gaussianity and Linearity of a Stationary Time
Series, Journal of Time Series Analysis 3(3), 169–176
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Unpublished articles or theses

Bera, A. K. and Jarque, C. M. (1981) An Efficient Large-Sample Test for Normality
of Observations and Regression Residuals, Australian National University Working
Papers in Econometrics 40, Canberra

Appendices

Finally, an appendix or appendices can be used to improve the structure of the study
as a whole when placing a specific item in the text would interrupt the flow of
the document. For example, if you want to outline how a particular variable was
constructed, or you had to write some computer code to estimate the models, and
you think this could be interesting to readers, then it can be placed in an appendix.
The appendices should not be used as a dumping ground for irrelevant material, or
for padding, and should not be filled with printouts of raw output from computer
packages!

• • • • • • • • • • • • • • 14.12 Presentational issues

There is little sense in making the final report longer than it needs to be. Even if you
are not in danger of exceeding the word limit, superfluous material will generate
no additional credit and may be penalised. Assessors are likely to take into account
the presentation of the document, as well as its content. Hence students should
ensure that the structure of their report is orderly and logical, that equations are
correctly specified, and that there are no spelling or other typographical mistakes,
or grammatical errors.

Some students find it hard to know when to stop the investigative part of their
work and get to the tidying up stage. Of course, it is always possible to make a piece
of work better by working longer on it but there comes a point when further work
on the project seems counterproductive because the remaining time is better spent
on improving the writing and presentational aspects. It is definitely worth reserving
a week at the end of the allocated project time if possible to read the draft paper
carefully at least twice. Also, your supervisor or advisor may be willing to read
through the draft and to offer comments upon it prior to final submission. If not,
maybe friends who have done similar courses can give suggestions. All comments
are useful – after all, any that you do not like or agree with can be ignored!
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Appendix 1
Sources of data used in this book

I am grateful to the following people and organisations, who all kindly agreed to
allow their data to be used as examples in this book and for it to be copied onto
the book’s web site: Alan Gregory/Rajesh Tharyan, the Bureau of Labor Statistics,
Federal Reserve Board, Federal Reserve Bank of St. Louis, Nationwide, Oanda,
and Yahoo! Finance. The following table gives details of the data used and of the
provider’s web site.

Provider Data Web

Alan Gregory/Rajesh
Tharyan

Size/value-sorted portfolios
and Fama–French factors

business-school.exeter.ac.uk/research/
areas/centres/xfi/research/famafrench

Bureau of Labor
Statistics

CPI www.bls.gov

Federal Reserve
Board

US T-bill yields, money supply,
industrial production,
consumer credit

www.federalreserve.gov

Federal Reserve
Bank of St. Louis

average AAA & BAA corporate
bond yields

research.stlouisfed.org/fred2

Nationwide UK average house prices www.nationwide.co.uk/hpi/datadownload/
data download.htm

Oanda euro–dollar, pound–dollar &
yen–dollar exchange rates

www.oanda.com/convert/fxhistory

Yahoo! Finance S&P500 and various US stock
and futures prices

finance.yahoo.com
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Appendix 2
Tables of statistical distributions

Table A2.1 Normal critical values for different values of α

α 0.4 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.001

Zα .2533 .6745 .8416 1.0364 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902

Source: Author’s computation using the NORMDIST function in Excel.
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Table A2.2 Critical values of Student’s t-distribution for different probability
levels, α and degrees of freedom, ν

α 0.4 0.25 0.15 0.1 0.05 0.025 0.01 0.005 0.001 0.0005

ν

1 0.3249 1.0000 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 318.3087 636.6189
2 0.2887 0.8165 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 22.3271 31.5991
3 0.2767 0.7649 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 10.2145 12.9240
4 0.2707 0.7407 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732 8.6103
5 0.2672 0.7267 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934 6.8688
6 0.2648 0.7176 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588
7 0.2632 0.7111 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079
8 0.2619 0.7064 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413
9 0.2610 0.7027 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 4.2968 4.7809

10 0.2602 0.6998 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869
11 0.2596 0.6974 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370
12 0.2590 0.6955 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178
13 0.2586 0.6938 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208
14 0.2582 0.6924 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405
15 0.2579 0.6912 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467 3.7328 4.0728
16 0.2576 0.6901 1.0711 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150
17 0.2573 0.6892 1.0690 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9651
18 0.2571 0.6884 1.0672 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9216
19 0.2569 0.6876 1.0655 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834
20 0.2567 0.6870 1.0640 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8495
21 0.2566 0.6864 1.0627 1.3232 1.7207 2.0796 2.5176 2.8314 3.5272 3.8193
22 0.2564 0.6858 1.0614 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7921
23 0.2563 0.6853 1.0603 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7676
24 0.2562 0.6848 1.0593 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668 3.7454
25 0.2561 0.6844 1.0584 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7251
26 0.2560 0.6840 1.0575 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066
27 0.2559 0.6837 1.0567 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896
28 0.2558 0.6834 1.0560 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739
29 0.2557 0.6830 1.0553 1.3114 1.6991 2.0452 2.4620 2.7564 3.3962 3.6594
30 0.2556 0.6828 1.0547 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460
35 0.2553 0.6816 1.0520 1.3062 1.6896 2.0301 2.4377 2.7238 3.3400 3.5911
40 0.2550 0.6807 1.0500 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510
45 0.2549 0.6800 1.0485 1.3006 1.6794 2.0141 2.4121 2.6896 3.2815 3.5203
50 0.2547 0.6794 1.0473 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960
60 0.2545 0.6786 1.0455 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602
70 0.2543 0.6780 1.0442 1.2938 1.6669 1.9944 2.3808 2.6479 3.2108 3.4350
80 0.2542 0.6776 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387 3.1953 3.4163
90 0.2541 0.6772 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316 3.1833 3.4019

100 0.2540 0.6770 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259 3.1737 3.3905
120 0.2539 0.6765 1.0409 1.2886 1.6577 1.9799 2.3578 2.6174 3.1595 3.3735
150 0.2538 0.6761 1.0400 1.2872 1.6551 1.9759 2.3515 2.6090 3.1455 3.3566
200 0.2537 0.6757 1.0391 1.2858 1.6525 1.9719 2.3451 2.6006 3.1315 3.3398
300 0.2536 0.6753 1.0382 1.2844 1.6499 1.9679 2.3388 2.5923 3.1176 3.3233
∞ 0.2533 0.6745 1.0364 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905

Source: Author’s own computation using the TINV function in Excel.
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Table A2.3 Upper 5% critical values for F-distribution

Degrees of freedom for numerator (m)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

Degrees of freedom for denominator (T − k)

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2:33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08. 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Source: Author’s own computation using the Excel FINV function.
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Table A2.4 Upper 1% critical values for F-distribution

Degrees of freedom for numerator (m)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

Degrees of freedom for denominator (T − k)

1 4,052 5,000 5,403 5,625 5,764 5,859 5,928 5,982 6,023 6,056 6,106 6,157 6,209 6,235 6,261 6,287 6,313 6,339 6,366
2 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.4 26.2 26.1
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6 13.5
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.53 2.45 2.36 2.27 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Source: Author’s own computation using the Excel FINV function.
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Table A2.5 Chi-squared critical values for different values of α and degrees
of freedom, υ

υ 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.005

1 0.00004 0.00016 0.00098 0.00393 0.01579 0.1015 0.4549 1.323 2.706 3.841 5.024 6.635 7.879
2 0.01003 0.02010 0.05065 0.1026 0.2107 0.5754 1.386 2.773 4.605 5.991 7.378 9.210 10.597
3 0.07172 0.1148 0.2158 0.3518 0.5844 1.213 2.366 4.108 6.251 7.815 9.348 11.345 12.838
4 0.2070 0.2971 0.4844 0.7107 1.064 1.923 3.357 5.385 7.779 9.488 11.143 13.277 14.860
5 0.4117 0.5543 0.8312 1.145 1.610 2.675 4.351 6.626 9.236 11.070 12.833 15.086 16.750
6 0.6757 0.8721 1.237 1.635 2.204 3.455 5.348 7.841 10.645 12.592 14.449 16.812 18.548
7 0.9893 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.219 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.389 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.549 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 7.584 10.341 13.701 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 8.438 11.340 14.845 18.54 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.041 9.299 12.340 15.984 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 10.165 13.339 17.117 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 11.036 14.339 18.245 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 11.912 15.338 19.369 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 12.792 16.338 20.489 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 13.675 17.338 21.605 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 14.562 18.338 22.718 27.204 30.143 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 15.452 19.337 23.828 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 16.344 20.337 24.935 29.615 32.670 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 17.240 21.337 26.039 30.813 33.924 36.781 40.289 42.796
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Table A2.5 (cont.)

23 9.260 10.196 11.688 13.090 14.848 18.137 22.337 27.141 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 19.037 23.337 28.241 33.196 36.415 39.364 42.080 45.558
25 10.520 11.524 13.120 14.611 16.473 19.939 24.337 29.339 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 20.843 25.336 30.434 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 21.749 26.336 31.528 36.741 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 22.657 27.336 32.620 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 23.567 28.336 33.711 39.087 42.557 45.722 49.588 52.336
30 13.787 14.954 16.791 18.493 20.599 24.478 29.336 34.800 40.256 43.773 46.979 50.892 53.672
35 17.192 18.509 20.569 22.465 24.797 29.054 34.336 40.223 46.059 49.802 53.203 57.342 60.275
40 20.707 22.164 24.433 26.509 29.050 33.660 39.335 45.616 51.805 55.758 59.342 63.691 66.766
45 24.311 25.901 28.366 30.612 33.350 38.291 44.335 50.985 57.505 61.656 65.410 69.957 73.166
50 27.991 29.707 32.357 34.764 37.689 42.942 49.335 56.334 63.167 67.505 71.420 76.154 79.490
55 31.735 33.571 36.398 38.958 42.060 47.611 54.335 61.665 68.796 73.311 77.381 82.292 85.749
60 35.535 37.485 40.482 43.158 46.459 52.294 59.335 66.981 74.397 79.082 83.298 85.379 91.952
70 43.275 45.442 48.758 51.739 55.329 61.698 69.334 77.577 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 71.144 79.334 88.130 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 80.625 89.334 98.650 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 90.133 99.334 109.141 118.498 124.342 129.561 135.807 140.169
120 83.829 86.909 91.568 95.705 100.627 109.224 119.335 130.051 140.228 146.565 152.214 158.963 163.670
150 109.122 112.655 117.980 122.692 126.278 137.987 149.334 161.258 172.577 179.579 185.803 193.219 198.380
200 152.224 156.421 162.724 168.279 174.825 156.175 199.334 213.099 226.018 233.993 241.060 249.455 255.281
250 196.145 200.929 208.095 214.392 221.809 234.580 249.334 264.694 279.947 287.889 295.691 304.948 311.361

Source: Author’s own computation using the Excel CHIINV function.
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Table A2.6 Lower and upper 1% critical values for Durbin–Watson
statistic

k′ = 1 k′ = 2 k′ = 3 k′ = 4 k′ = 5

T dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Note: T, number of observations; k′, number of explanatory variables (excluding a constant term).
Source: Durbin and Watson (1951): 159–77. Reprinted with the permission of Oxford University
Press.
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Table A2.7 Dickey–Fuller critical values for different significance
levels, α

Sample size T 0.01 0.025 0.05 0.10

τ

25 −2.66 −2.26 −1.95 −1.60

50 −2.62 −2.25 −1.95 −1.61

100 −2.60 −2.24 −1.95 −1.61

250 −2.58 −2.23 −1.95 −1.62

500 −2.58 −2.23 −1.95 −1.62

∞ −2.58 −2.23 −1.95 −1.62

τμ

25 −3.75 −3.33 −3.00 −2.63

50 −3.58 −3.22 −2.93 −2.60

100 −3.51 −3.17 −2.89 −2.58

250 −3.46 −3.14 −2.88 −2.57

500 −3.44 −3.13 −2.87 −2.57

∞ −3.43 −3.12 −2.86 −2.57

ττ

25 −4.38 −3.95 −3.60 −3.24

50 −4.15 −3.80 −3.50 −3.18

100 −4.04 −3.73 −3.45 −3.15

250 −3.99 −3.69 −3.43 −3.13

500 −3.98 −3.68 −3.42 −3.13

∞ −3.96 −3.66 −3.41 −3.12

Source: Fuller (1976). Reprinted with the permission of John Wiley and Sons.
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Table A2.8 Critical values for the Engle–Granger cointegration
test on regression residuals with no constant in test regression

Number of variables Sample
in system size T 0.01 0.05 0.10

50 −4.32 −3.67 −3.28

2 100 −4.07 −3.37 −3.03

200 −4.00 −3.37 −3.02

50 −4.84 −4.11 −3.73

3 100 −4.45 −3.93 −3.59

200 −4.35 −3.78 −3.47

50 −4.94 −4.35 −4.02

4 100 −4.75 −4.22 −3.89

200 −4.70 −4.18 −3.89

50 −5.41 −4.76 −4.42

5 100 −5.18 −4.58 −4.26

200 −5.02 −4.48 −4.18

Source: Engle and Yoo (1987). Reprinted with the permission of Elsevier.
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Table A2.9 Quantiles of the asymptotic distribution of the Johansen
cointegration rank test statistics (constant in cointegrating vectors
only)

p − r 50% 80% 90% 95% 97.5% 99% Mean Var

λmax

1 3.40 5.91 7.52 9.24 10.80 12.97 4.03 7.07

2 8.27 11.54 13.75 15.67 17.63 20.20 8.86 13.08

3 13.47 17.40 19.77 22.00 24.07 26.81 14.02 19.24

4 18.70 22.95 25.56 28.14 30.32 33.24 19.23 23.83

5 23.78 28.76 31.66 34.40 36.90 39.79 24.48 29.26

6 29.08 34.25 37.45 40.30 43.22 46.82 29.72 34.63

7 34.73 40.13 43.25 46.45 48.99 51.91 35.18 38.35

8 39.70 45.53 48.91 52.00 54.71 57.95 40.35 41.98

9 44.97 50.73 54.35 57.42 60.50 63.71 45.55 44.13

10 50.21 56.52 60.25 63.57 66.24 69.94 50.82 49.28

11 55.70 62.38 66.02 69.74 72.64 76.63 56.33 54.99

λTrace

1 3.40 5.91 7.52 9.24 10.80 12.97 4.03 7.07

2 11.25 15.25 17.85 19.96 22.05 24.60 11.91 18.94

3 23.28 28.75 32.00 34.91 37.61 41.07 23.84 37.98

4 38.84 45.65 49.65 53.12 56.06 60.16 39.50 59.42

5 58.46 66.91 71.86 76.07 80.06 84.45 59.16 91.65

6 81.90 91.57 97.18 102.14 106.74 111.01 82.49 126.94

7 109.17 120.35 126.58 131.70 136.49 143.09 109.75 167.91

8 139.83 152.56 159.48 165.58 171.28 177.20 140.57 208.09

9 174.88 198.08 196.37 202.92 208.81 215.74 175.44 257.84

10 212.93 228.08 236.54 244.15 251.30 257.68 213.53 317.24

11 254.84 272.82 282.45 291.40 298.31 307.64 256.15 413.35

Source: Osterwald-Lenum (1992, table 1). Reprinted with the permission of Blackwell Publishers.
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Table A2.10 Quantiles of the asymptotic distribution of the
Johansen cointegration rank test statistics (constant, i.e. a drift
only in VAR and in cointegrating vector)

p − r 50% 80% 90% 95% 97.5% 99% Mean Var

λmax

1 0.44 1.66 2.69 3.76 4.95 6.65 0.99 2.04

2 6.85 10.04 12.07 14.07 16.05 18.63 7.47 12.42

3 12.34 16.20 18.60 20.97 23.09 25.52 12.88 18.67

4 17.66 21.98 24.73 27.07 28.98 32.24 18.26 23.47

5 23.05 27.85 30.90 33.46 35.71 38.77 23.67 28.82

6 28.45 33.67 36.76 39.37 41.86 45.10 29.06 33.57

7 33.83 39.12 42.32 45.28 47.96 51.57 34.37 37.41

8 39.29 45.05 48.33 51.42 54.29 57.69 39.85 42.90

9 44.58 50.55 53.98 57.12 59.33 62.80 45.10 44.93

10 49.66 55.97 59.62 62.81 65.44 69.09 50.29 49.41

11 54.99 61.55 65.38 68.83 72.11 75.95 55.63 54.92

λTrace

1 0.44 1.66 2.69 3.76 4.95 6.65 0.99 2.04

2 7.55 11.07 13.33 15.41 17.52 20.04 8.23 14.38

3 18.70 23.64 26.79 29.68 32.56 35.65 19.32 32.43

4 33.60 40.15 43.95 47.21 50.35 54.46 34.24 52.75

5 52.30 60.29 64.84 68.52 71.80 76.07 52.95 79.25

6 75.26 84.57 89.48 94.15 98.33 103.18 75.74 114.65

7 101.22 112.30 118.50 124.24 128.45 133.57 101.91 158.78

8 131.62 143.97 150.53 156.00 161.32 168.36 132.09 201.82

9 165.11 178.90 186.39 192.89 198.82 204.95 165.90 246.45

10 202.58 217.81 225.85 233.13 239.46 247.18 203.39 300.80

11 243.90 260.82 269.96 277.71 284.87 293.44 244.66 379.56

Source: Osterwald-Lenum (1992, table 1). Reprinted with the permission of Blackwell Publishers.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-APP2 CUUK2581/Brooks 978 1 107 03466 2 December 20, 2013 3:55

Tables of statistical distributions

•
•
•
•
•
•
•
•
• 679

Table A2.11 Quantiles of the asymptotic distribution of the
Johansen cointegration rank test statistics (constant in
cointegrating vector and VAR, trend in cointegrating vector)

p − r 50% 80% 90% 95% 97.5% 99% Mean Var

λmax

1 5.55 8.65 10.49 12.25 14.21 16.26 6.22 10.11

2 10.90 14.70 16.85 18.96 21.14 23.65 11.51 16.38

3 16.24 20.45 23.11 25.54 27.68 30.34 16.82 22.01

4 21.50 26.30 29.12 31.46 33.60 36.65 22.08 27.74

5 26.72 31.72 34.75 37.52 40.01 42.36 27.32 31.36

6 32.01 37.50 40.91 43.97 46.84 49.51 32.68 37.91

7 37.57 43.11 46.32 49.42 51.94 54.71 38.06 39.74

8 42.72 48.56 52.16 55.50 58.08 62.46 43.34 44.83

9 48.17 54.34 57.87 61.29 64.12 67.88 48.74 49.20

10 53.21 59.49 63.18 66.23 69.56 73.73 53.74 52.64

11 58.54 64.97 69.26 72.72 75.72 79.23 59.15 56.97

λTrace

1 5.55 8.65 10.49 12.25 14.21 16.26 6.22 10.11

2 15.59 20.19 22.76 25.32 27.75 30.45 16.20 24.90

3 29.53 35.56 39.06 42.44 45.42 48.45 30.15 45.68

4 47.17 54.80 59.14 62.99 66.25 70.05 47.79 74.48

5 68.64 77.83 83.20 87.31 91.06 96.58 69.35 106.56

6 94.05 104.73 110.42 114.90 119.29 124.75 94.67 143.33

7 122.87 134.57 141.01 146.76 152.52 158.49 123.51 182.85

8 155.40 169.10 176.67 182.82 187.91 196.08 156.41 234.11

9 192.37 207.25 215.17 222.21 228.05 234.41 193.03 288.30

10 231.59 247.91 256.72 263.42 270.33 279.07 232.25 345.23

11 276.34 294.12 303.13 310.81 318.02 327.45 276.88 416.98

Source: Osterwald-Lenum (1992, table 2). Reprinted with the permission of Blackwell Publishers.
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This glossary gives brief definitions of all the
key terms used in the book. For more details,
go back and read the chapters or the references
therein!

adjusted R2: a measure of how well a model
fits the sample data that automatically penalises
models with large numbers of parameters.

Akaike information criterion: a metric
that can be used to select the best fitting from a
set of competing models and that incorporates
a weak penalty term for including additional
parameters.

alternative hypothesis: a formal expression
as part of a hypothesis testing framework that
encompasses all of the remaining outcomes of
interest aside from that incorporated into the
null hypothesis.

arbitrage: a concept from finance that refers
to the situation where profits can be made
without taking any risk (and without using
any wealth).

asymptotic: a property that applies as the
sample size tends to infinity.

autocorrelation: a standardised measure,
which must lie between −1 and +1, of the
extent to which the current value of a series
is related to its own previous values.

autocorrelation function: a set of estimated
values showing the strength of association
between a variable and its previous values as
the lag length increases.

autocovariance: an unstandardised measure
of the extent to which the current value of a
series is related to its own previous values.

autoregressive conditional heteroscedas-
ticity (ARCH) model: a time series model
for volatilities.

autoregressive (AR) model: a time series
model where the current value of a series is
fitted with its previous values.

autoregressive moving average (ARMA)
model: a time series model where the cur-
rent value of a series is fitted with its previous
values (the autoregressive part) and the cur-
rent and previous values of an error term (the
moving average part).

autoregressive volatility (ARV) model: a
time series model where the current volatility
is fitted with its previous values.

auxiliary regression: a second stage regres-
sion that is usually not of direct interest in its
own right, but rather is conducted in order
to test the statistical adequacy of the original
regression model.

balanced panel: a dataset where the vari-
ables have both time series and cross-sectional
dimensions, and where there are equally long
samples for each cross-sectional entity (i.e. no
missing data).

Bayes information criterion: see Schwarz’s
Bayesian information criterion (SBIC).

BDS test: a test for whether there are pat-
terns in a series, predominantly used for deter-
mining whether there is evidence for non-
linearities.

BEKK model: a multivariate model for
volatilities and covariances between series that
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ensures the variance–covariance matrix is pos-
itive definite.

BHHH algorithm: a technique that can
be used for solving optimisation problems
including maximum likelihood.

backshift operator: see lag operator.

Bera–Jarque test: a widely employed test for
determining whether a series closely approx-
imates a normal distribution.

best linear unbiased estimator (BLUE): is
one that provides the lowest sampling variance
and which is also unbiased.

between estimator: is used in the context
of a fixed effects panel model, involving run-
ning a cross-sectional regression on the time-
averaged values of all the variables in order
to reduce the number of parameters requiring
estimation.

biased estimator: where the expected value
of the parameter to be estimated is not equal
to the true value.

bid–ask spread: the difference between the
amount paid for an asset (the ask or offer price)
when it is purchased and the amount received
if it is sold (the bid).

binary choice: a discrete choice situation
with only two possible outcomes.

bivariate regression: a regression model
where there are only two variables – the
dependent variable and a single independent
variable.

bootstrapping: a technique for construct-
ing standard errors and conducting hypothesis
tests that requires no distributional assump-
tions and works by resampling from the data.

Box–Jenkins approach: a methodology for
estimating ARMA models.

Box–Pierce Q-statistic: a general measure
of the extent to which a series is autocorre-
lated.

break date: the date at which a structural
change occurs in a time series or in a model’s
parameters.

Breusch–Godfrey test: a test for autocorre-
lation of any order in the residuals from an
estimated regression model, based on an aux-
iliary regression of the residuals on the original
explanatory variables plus lags of the residuals.

broken trend: a process which is a determin-
istic trend with a structural break.

calendar effects: the systematic tendency for
a series, especially stock returns, to be higher
at certain times than others.

capital asset pricing model (CAPM): a
financial model for determining the expected
return on stocks as a function of their level of
market risk.

capital market line (CML): a straight line
showing the risks and returns of all combina-
tions of a risk-free asset and an optimal port-
folio of risky assets.

Carhart model: a time series model for
explaining the performance of mutual funds
or trading rules based on four factors: excess
market returns, size, value and momentum.

causality tests: a way to examine whether
one series leads or lags another.

censored dependent variable: where val-
ues of the dependent variable above or below
a certain threshold cannot be observed, while
the corresponding values for the independent
variables are still available.

central limit theorem: the mean of a sam-
ple of data having any distribution converges
upon a normal distribution as the sample size
tends to infinity.

chaos theory: an idea taken from the phys-
ical sciences whereby although a series may
appear completely random to the naked eye
or to many statistical tests, in fact there is an
entirely deterministic set of non-linear equa-
tions driving its behaviour.

Chow test: an approach to determine
whether a regression model contains a change
in behaviour (structural break) part-way
through based on splitting the sample into two
parts, assuming that the break-date is known.
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Cochrane–Orcutt procedure: an iterative
approach that corrects standard errors for a
specific form of autocorrelation.

coefficient of multiple determination: see
R2.

cointegration: a concept whereby time
series have a fixed relationship in the long
run.

cointegrating vector: the set of parame-
ters that describes the long-run relationship
between two or more time series.

common factor restrictions: these are the
conditions on the parameter estimates that are
implicitly assumed when an iterative proce-
dure such as Cochrane–Orcutt is employed to
correct for autocorrelation.

conditional expectation: the value of a
random variable that is expected for time
t + s (s = 1, 2, . . .) given information avail-
able until time t .

conditional mean: the mean of a series at
a point in time t fitted given all informa-
tion available until the previous point in time
t − 1.

conditional variance: the variance of a
series at a point in time t fitted given all infor-
mation available until the previous point in
time t − 1.

confidence interval: a range of values within
which we are confident to a given degree (e.g.
95% confident) that the true value of a given
parameter lies.

confidence level: one minus the significance
level (expressed as a proportion rather than a
percentage) for a hypothesis test.

consistency: the desirable property of an
estimator whereby the calculated value of a
parameter converges upon the true value as
the sample size increases.

contemporaneous terms: those variables
that are measured at the same time as the
dependent variable – i.e. both are at time
t .

continuous variable: a random variable that
can take on any value (possibly within a given
range).

convergence criterion: a pre-specified rule
that tells an optimiser when to stop looking
further for a solution and to stick with the
best one it has already found.

copulas: a flexible way to link together the
distributions for individual series in order to
form joint distributions.

correlation: a standardised measure,
bounded between −1 and +1, of the strength
of association between two variables.

correlogram: see autocorrelation function.

cost of carry (COC) model: shows the
equilibrium relationship between spot and
corresponding futures prices where the spot
price is adjusted for the cost of ‘carry-
ing’ the spot asset forward to the maturity
date.

covariance matrix: see variance–covariance
matrix.

covariance stationary process: see weakly
stationary process.

covered interest parity (CIP): states that
exchange rates should adjust so that borrow-
ing funds in one currency and investing them
in another would not be expected to earn
abnormal profits.

credit rating: an evaluation made by a ratings
agency of the ability of a borrower to meet its
obligations to meet interest costs and to make
capital repayments when due.

critical values: key points in a statistical dis-
tribution that determine whether, given a cal-
culated value of a test statistic, the null hypoth-
esis will be rejected or not.

cross-equation restrictions: a set of restric-
tions needed for a hypothesis test that involves
more than one equation within a system.

cross-sectional regression: a regression
involving series that are measured only at a
single point in time but across many entities.
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cumulative distribution: is a function giv-
ing the probability that a random variable will
take on a value lower than some pre-specified
value.

CUSUM and CUSUMSQ tests: tests for
parameter stability in an estimated model
based on the cumulative sum of residuals
(CUSUM) or cumulative sum of squared
residuals (CUSUMSQ) from a recursive
regression.

daily range estimator: a crude measure
of volatility calculated as the difference
between the day’s lowest and highest observed
prices.

damped sine wave: a pattern, especially in
an autocorrelation function plot, where the
values cycle from positive to negative in a
declining manner as the lag length increases.

data generating process (DGP): the true
relationship between the series in a model.

data mining: looking very intensively for
patterns in data and relationships between
series without recourse to financial theory,
possibly leading to spurious findings.

data revisions: changes to series, especially
macroeconomic variables, that are made after
they are first published.

data snooping: see data mining.

day-of-the-week effect: the systematic ten-
dency for stock returns to be higher on some
days of the week than others.

degrees of freedom: a parameter that affects
the shape of a statistical distribution and there-
fore its critical values. Some distributions have
one degree of freedom parameter, while oth-
ers have more.

degree of persistence: the extent to which
a series is positively related to its previous
values.

dependent variable: the variable, usually
denoted by y that the model tries to explain.

deterministic: a process that has no random
(stochastic) component.

Dickey–Fuller test: an approach to deter-
mining whether a series contains a unit root,
based on a regression of the change in that
variable on the lag of the level of that variable.

differencing: a technique used to remove a
(stochastic) trend from a series that involves
forming a new series by taking the lagged
value of the original series away from the cur-
rent one.

differentiation: a mathematical technique to
find the derivative, which is the slope of a
function, or in other words the rate at which
y changes in response to changes in x.

discrete choice: a model where the key vari-
able takes only integer values that capture the
selections made between alternatives – for
example, between modes of transport for a
particular journey.

discrete variable: a random variable that can
only take specific values.

distributed lag models: contain lags of
the explanatory variables but no lags of the
explained variable.

disturbance term: see error term.

double logarithmic form: a specification of
a model where logarithms are taken of both
the dependent variable (y) and the indepen-
dent variable(s) (x).

dummy variables: are artificially con-
structed variables that capture qualitative
information – for example, for male/female,
days of the week, emerging/developed mar-
kets, etc. They are usually binary variables (0
or 1).

Durbin–Watson statistic: a test for first
order autocorrelation, i.e. a test for whether
a (residual) series is related to its immediately
preceding values.

dynamic conditional correlation: a model
that explicitly models correlations in a time-
varying, autoregressive fashion.

dynamic model: a model that includes
lagged or differenced terms of the dependent
or independent variables (or both).
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efficient estimator: an approach to param-
eter estimation that is optimal in some sense.
In econometrics, this is usually taken to mean
a formula for calculating the parameters that
leads to minimum sampling variance; in other
words, the estimates vary as little as possible
from one sample to another.

efficient frontier: a curve that traces out all
possible optimal portfolios.

efficient market hypothesis: the notion
that asset prices will rapidly reflect all relevant
and available information.

eigenvalues: the characteristic roots of a
matrix.

eigenvectors: this is a set of vectors that,
when multiplied by a square matrix, give a
set of vectors that differ from the originals by
a multiplicative scalar.

elasticities: the responsiveness of a percent-
age change in one variable to percentage
changes in another.

encompassing principle: the notion that a
good model will be able to explain all that
competing models can and more.

encompassing regression: is a hybrid
model that incorporates the variables con-
tained in two or more competing mod-
els as a method of selecting which is the
best between them. The parameters of the
best model will be significant in the hybrid
model.

endogenous variable: a variable whose
value is determined within the system of
equations under study. In the context of a
simultaneous system, each endogenous vari-
able has its own equation specifying how it is
generated.

Engle–Granger test: a unit root test applied
to the residuals of a potentially cointegrating
regression.

Engle–Ng test: a test for appropriate spec-
ification of a GARCH model in terms of
whether there are any uncaptured asymme-
tries.

equilibrium correction model: see error
correction model.

error correction model (ECM): a model
constructed using variables that are employed
in stationary, first-differenced forms together
with a term that captures movements back
towards long run equilibrium.

error term: part of a regression model that
sweeps up any influences on the dependent
variable that are not captured by the indepen-
dent variables.

errors-in-variables regression: a valid
approach to estimating the parameters of a
regression when the explanatory variables are
measured with error and are thus stochastic.

estimate: the calculated value of a parameter
obtained from the sample data.

estimator: an equation that is employed
together with the data in order to calculate the
parameters that describe the regression rela-
tionship.

exogeneity: the extent to which a variable
is determined outside of the model under
study.

event study: an approach to financial research
where the impact of an identifiable event
(e.g. a dividend announcement) is mea-
sured on a firm characteristic (e.g. its stock
price) to evaluate the market reaction to the
event.

exogenous variables: variables whose values
are taken as given and are determined outside
of the equation or system of equations under
study and is thus not correlated with the error
term.

expectations hypothesis: related particu-
larly to the term structure of interest rates. It
states that the expected return from investing
in a long term bond will be equal to the return
from investing in a series of short-term bonds
plus a risk premium. In other words, the long
term interest rate is a geometric average of the
current and expected future short term rates
(plus a risk premium).
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explained sum of squares (ESS): the part
of the variation in y that is explained by the
model.

explained variable: see dependent variable.

explanatory variables: those variables
which are on the right hand side of an equa-
tion, whose values are usually taken as fixed,
and which are purported to be explaining the
values of the dependent variable y.

exponential (EGARCH): a model where
volatility is modelled in an exponential form
so that no non-negativity conditions need to
be applied to the parameters. This specifica-
tion also that allows for asymmetries in the
relationship between volatility and returns of
different signs.

exponential growth model: a model where
the dependent variable is an exponential func-
tion of one or more independent variables.

exponential smoothing: a simple approach
to modelling and forecasting where the cur-
rent smoothed value is a geometrically declin-
ing function of all previous values of the
series.

exponentially weighted moving average
(EWMA) model: a simple method for mod-
elling and forecasting volatility where the cur-
rent estimate is simply a weighted combi-
nation of previous values, with the weight-
ings exponentially declining back through
time.

F -statistic: a measure that follows an F -
distribution that is used for testing multiple
hypotheses.

factor loading: has several meanings but in
particular in the context of principal compo-
nent analysis, it gives the amount of a variable
that appears in each component.

Fama–MacBeth procedure: a two-step
procedure for testing asset pricing models such
as the CAPM. In the first stage the betas are
estimated in a set of time series regressions
and then a second stage cross-sectional regres-
sion examines the explanatory power of these
betas.

financial options: are securities that give the
holder the right but not the obligation to buy
or sell another asset at a pre-specified price on
a pre-specified date.

first differences: are new series constructed
by taking the immediately previous value of a
series from its current value.

fitted value: the value of y that the model
fits for a given data point, i.e. for given values
of the explanatory variable.

fixed effects: most commonly a type of
model used for panel data that employs dum-
mies to account for variables that affect the
dependent variable y cross-sectionally but do
not vary over time. Alternatively, the dum-
mies can capture variables that affect y over
time but do not vary cross-sectionally.

forcing variable: sometimes used synony-
mously with explanatory variable; alterna-
tively it can mean the unobservable state-
determining variable that governs the regime
in a Markov switching regression model.

forecast encompassing test: a regression of
the actual values of a series on several cor-
responding sets of forecasts. The idea is that
if a parameter estimate is statistically signifi-
cant, then the forecasts from the correspond-
ing model encompass (i.e. contain more infor-
mation than) those of the other model(s).

forecast error: the difference between the
actual value of a series and the value that has
been forecast for it.

forward rate unbiasedness (FRU): the
hypothesis that the forward rate of foreign
exchange should be an unbiased prediction
of the future spot rate of interest.

fractionally integrated models: a way to
represent series that are stationary but highly
persistent and thus have long memory.

functional form misspecification: see
RESET test.

futures prices: the price of a specific quan-
tity of a good or asset for delivery at some
pre-specified date in the future.
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GJR model: a model for time-varying
volatilities developed by Glosten, Jaganathan
and Runkle to allow for asymmetries in the
relationship between volatility and returns of
different signs.

generalised autoregressive conditional
heteroscedasticity (GARCH) models: a
common specification of dynamic model for
volatility.

GARCH-in-mean (GARCH-M): a
dynamic model for volatility where the stan-
dard deviation (or variance) enters into the
generating process for returns.

Gauss–Markov theorem: a derivation using
algebra showing that, providing a certain set
of assumptions hold, the OLS estimator is the
best linear unbiased estimator (BLUE).

general-to-specific methodology: a philo-
sophical approach to constructing economet-
ric models where the researcher commences
with a very broad model and then, through
hypothesis testing, reduces the model down
to a smaller one.

generalised least squares (GLS): an
approach to the estimation of econometric
models that is more flexible than ordinary least
squares and can be used to relax one or more
of its limiting assumptions.

generalised unrestricted model (GUM):
the initial, broad model that is specified as the
first step of the general-to-specific approach
to model construction.

gilt–equity yield ratio (GEYR): the ratio
of the yield on long term Treasury bonds to
the dividend yield on stocks.

Goldfeld–Quandt test for heteroscedas-
ticity: one of several available tests for
whether the residuals from an estimated model
have constant variance.

goodness of fit statistic: a measure of how
well the model that has been estimated fits the
sample data.

Granger representation theorem: states
that if there exists a dynamic linear model with

stationary disturbances but where the com-
ponent variables are non-stationary, then they
must be cointegrated.

Hamilton’s filter: a form of Markov-
switching model where an unobservable state
variable switches between discrete regimes via
a first-order Markov process.

Hannan–Quinn information criterion: a
metric that can be used to select the best
fitting from a set of competing models and
that incorporates a moderate penalty term for
including additional parameters.

Hausman test: a test for whether a variable
can be treated as exogenous or whether in
fact the researcher needs to specify a sepa-
rate structural equation for that variable. It
can also refer to a test for whether a random
effects approach to panel regression is valid or
whether a fixed effects model is necessary.

Heckman procedure: a two-step method
that corrects for the selection bias that can
be observed in the context of samples not
selected randomly.

hedge ratios: in the context of hedging with
futures contracts, this is the number of futures
contracts that are sold per unit of the spot asset
held.

hedonic pricing models: a modelling
approach where the price of a physical asset is
modelled as a function of its characteristics.

heteroscedasticity: where the variance of a
series is not constant throughout the sample.

heteroscedasticity-robust: a set of standard
errors (or test statistics) that have been cal-
culated using an approach that is valid in the
presence of heteroscedastic residuals.

hypothesis test: a framework for considering
plausible values of the true population param-
eters given the sample estimates.

identification: a condition for whether all
of the structural parameters in a particular
equation from a simultaneous system can be
retrieved from estimating the corresponding
reduced form equation.
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identity matrix: a square matrix containing
ones on the main diagonal and zeros every-
where else.

implied volatility models: an approach
whereby the volatility of an underlying asset is
calculated from the traded price of an option
and a pricing formula.

impulse responses: an examination of the
impact of a unit shock to one variable on
the other variables in a vector autoregressive
(VAR) system.

independent variables: see explanatory
variables.

information criteria: a family of meth-
ods for selecting between competing models
that incorporate automatic correction penal-
ties when larger numbers of parameters are
included.

instrumental variables (instruments): can
be used to replace endogenous variables on
the right hand side of a regression equation.
The instruments are correlated with the vari-
ables they replace but not with the error term
in the regression.

integrated GARCH (IGARCH): a model
where the variance process is non-stationary
so that the impact of shocks on volatility per-
sists indefinitely.

integrated variable: one which requires dif-
ferencing to make it stationary.

interactive dummy variable: when a
dummy variable is multiplied by an explana-
tory variable to allow the regression slope to
change according to the value of the dummy.

intercept: the point where a regression line
crosses the y-axis, also known sometimes as
‘the coefficient on the constant term’, or
sometimes just ‘the constant term’.

inverse (of a matrix): a transformed matrix
which, when multiplied by the original
matrix, yields the identity matrix.

invertibility: a condition for a moving aver-
age (MA) model to be representable as a valid
infinite-order autoregressive model.

irrelevant variables: variables that are
included in a regression equation but in fact
have no impact on the dependent variable.

Jensen’s alpha: the intercept estimate in a
regression model of the returns to a portfolio
or strategy on a risk factor or set of risk fac-
tors, especially in the context of the CAPM.
Alpha measures the degree to which there was
abnormally bad or good performance.

Johansen test: an approach to determining
whether a set of variables is cointegrated – i.e.
if they have a long-run equilibrium relation-
ship.

joint hypothesis: a multiple hypothesis that
involves making more than one restriction
simultaneously.

just identified equation: occurs when the
parameters in a structural equation from a sys-
tem can be uniquely obtained by substitution
from the reduced form estimates.

KPSS test: a test for stationarity – in other
words, a test where the null hypothesis is
that a series is stationary against an alterna-
tive hypothesis that it is not.

kurtosis: the standardised fourth moment of
a series; a measure of whether a series has ‘fat
tails’.

lag length: the number of lagged values of a
series used in a model.

lag operator: is an algebraic notation for tak-
ing the current value of a series and turning it
into a past value of that series.

Lagrange multiplier (LM) test: used in the
context of maximum-likelihood estimation,
an LM test involves estimation of a restricted
regression only. In practice, an LM test is often
employed via the calculation of R2 from an
auxiliary regression to construct a test statistic
that follows a χ2 distribution.

law of large numbers: is a theorem stating
that the mean from a sample will approach the
true population mean (i.e. the expected value)
as the sample size increases.

least squares: see ordinary least squares.
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least squares dummy variables (LSDV):
an approach to estimating panel data models
using 0–1 intercept dummy variables for each
cross-sectional unit.

leptokurtosis: a phenomenon whereby a
series has a higher peak at the mean and fatter
tails than a normal distribution with the same
mean and variance.

leverage effects: the tendency for stock
volatility to rise more following a large stock
price fall than a price rise of the same magni-
tude owing to the consequent impact on the
firm’s debt-to-equity (leverage) ratio.

likelihood function: a mathematical expres-
sion that relates to the data and the parameters.
A likelihood function is constructed given
an assumption about the distribution of the
errors, and then the values of the parameters
that maximise it are chosen.

likelihood ratio (LR) test: an approach
to hypothesis testing arising from maximum
likelihood estimation that revolves around a
comparison of the maximised values of the
log-likelihood functions for the restricted and
unrestricted models.

limited dependent variable: when the val-
ues that the dependent variable can take are
restricted in some way. In such cases, OLS
cannot be validly used to estimate the model
parameters.

linear probability model: a simple but
flawed model for use when the dependent
variable in a regression model is binary (0 or
1).

linearity: the extent to which a relationship
between variables can be represented by a
(possibly multi-dimensional) straight line.

Ljung–Box test: a general test for autocor-
relation in a variable or residual series.

log-likelihood function (LLF): the natural
logarithm of the likelihood function.

log-log model: see double logarithmic form.

logit model: an approach for use when the
dependent variable in a regression model is

binary (0 or 1), and which ensures that the
estimated probabilities are bounded by 0 and
1.

long-memory models: see fractionally inte-
grated models.

long-run static solution: the algebraic
manipulation of a dynamic equation to con-
struct the long-run relationship between the
variables.

longitudinal data: see panel data.

loss function: is constructed in order to eval-
uate the accuracy of a model fit or of fore-
casts. The parameters of a model are usually
estimated by minimising or maximising a loss
function.

Lyapunov exponent: a characteristic that
can be used to determine whether a series
can be described as chaotic.

marginal effects: these are the impacts
of changes in the explanatory variables on
changes in the probabilities for probit and logit
models. They are calculated in order to intu-
itively interpret the models.

marginal probability: the probability of a
single random variable.

market microstructure: a financial term,
concerned with the way that markets work
and the impact that the design and structure
of the market can have on the outcomes of
trade, including prices, volumes and execu-
tion costs.

market risk premium: the amount of
additional return that an investor requires
for accepting an additional unit of mar-
ket risk, often calculated as the difference
between the returns on a broad portfolio of
stocks and a proxy for the risk free rate of
interest.

market timing: the extent to which
investors are able to select the optimal times
to invest in different asset classes.

Markov switching model: is a time series
approach based on a dependent variable that
alternates between regimes according to the
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value of an unobservable state variable that
follows a Markov process.

Marquardt algorithm: an approach to opti-
misation that can be used, for example, as part
of the procedure to estimate the parameter
values in maximum likelihood estimation.

matrix: a two-dimensional array of numbers
constructed in rows and columns.

maximum likelihood: an approach that can
be used for parameter estimation based on the
construction and maximisation of a likelihood
function, which is particularly useful for non-
linear models.

minimum capital risk requirement
(MCRR): see value-at-risk.

misspecification error: occurs when the
model estimated is incorrect – for example,
if the true relationship between the variables
is non-linear but a linear model is adopted.

misspecification tests: these are diagnos-
tic tests that can provide the researcher with
information concerning whether a model
has desirable statistical properties, particularly
regarding the residuals.

model interpretation: the examination of
an estimated model in terms of whether the
signs of the parameters (i.e. positive or neg-
ative) and sizes of the parameters (i.e. their
values) make sense intuitively.

moments: the moments of a distribution
describe it’s shape. The first moment of a dis-
tribution is the mean, the second moment is
the variance, the third (standardised) moment
is the skewness and the fourth (standardised)
moment is the kurtosis. The fifth moments
and higher are harder to interpret and in gen-
eral are not calculated.

moving average process: a model where
the dependent variable depends upon the cur-
rent and past values of a white noise (error)
process.

multicollinearity: a phenomenon where the
two or more of the explanatory variables used

in a regression model are highly related to one
another.

multimodal: a characteristic of a distribution
whereby it does not have a single peak at the
mean, but rather reaches a maximum in more
than one place.

multinomial logit or probit: classes of
models that are used for discrete choice prob-
lems, where we wish to explain how indi-
viduals make choices between more than two
alternatives.

multivariate generalised autoregressive
conditionally heteroscedastic (GARCH)
models: a family of dynamic models for time-
varying variances and covariances.

neural network models: a class of statisti-
cal models whose structure is loosely based on
how computation is performed by the brain.
They have been employed for time series
modelling and for classification purposes.

Newey–West estimator: a procedure that
can be employed to adjust standard errors to
allow for heteroscedasticity and/or autocorre-
lation in the residuals from a regression model.

news impact curve: a pictorial represen-
tation of the responsiveness of volatility to
positive and negative shocks of different
magnitudes.

Newton–Raphson procedure: an iterative
approach to optimisation – in other words,
for finding the values of a parameter or set
of parameters that maximise or minimise a
function.

nominal series: a series that has not been
deflated (i.e. not been adjusted for inflation).

non-linear least squares (NLS): an estima-
tion technique for use on non-linear models
(models that are non-linear in the parameters)
based on minimising the sum of the squared
residuals.

non-negativity constraints: the conditions
that it is sometimes necessary to impose on the
parameter estimates from non-linear models
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to ensure that they are not negative in situa-
tions where it would not make sense for them
to be so.

non-nested models: where there are at least
two models, neither of which is a special (i.e.
restricted) case of the other.

non-normality: not following a normal or
Gaussian distribution.

non-stationarity: a characteristic of a time
series whereby it does not have a constant
mean, a constant variance, and a constant
autocovariance structure.

null hypothesis: a formal expression of the
statement actually being tested as part of a
hypothesis test.

observations: another name for the data
points available for analysis.

omitted variable: a relevant variable for
explaining the dependent variable has been
left out of the estimated regression equation,
leading to biased inferences on the remaining
parameters.

one-sided hypothesis test: is used when
theory suggests that the alternative hypothe-
sis should be of the greater than form only
or of the less than form only (and not
both).

optimal portfolio: a combination of risky
assets that maximises return for a given risk or
minimises risk for a given return.

order of integration: the number of times
that a stochastically non-stationary series must
be differenced to make it stationary.

ordered response variable: usually a situa-
tion where the dependent variable in a model
is limited to only certain values but where
there is a natural ordering of those values – for
example, where the values represent sovereign
credit rating assignments.

ordinal scale: where a variable is limited so
that its values define a position or ordering
only, and thus the precise values that the vari-
able takes have no direct interpretation.

ordinary least squares (OLS): the standard
and most common approach that is used to
estimate linear regression models.

out-of-sample: sometimes, not all observa-
tions are employed to estimate the model (in-
sample data), but instead some are retained for
forecasting (the out-of-sample data).

outliers: data points that do not fit in with
the pattern of the other observations and that
are a long way from the fitted model.

overfitting: estimating too large a model with
too many parameters.

overidentified equation: occurs when more
than one estimate of each parameter in the
structural equation from a system can be
obtained by substitution from the reduced
form estimates.

overreaction effect: the tendency for asset
(especially stock) prices to overshoot their
new equilibrium prices when news is released.

oversized test: a statistical test that rejects
the null hypothesis too often when it is in fact
correct.

p-value: the exact significance level, or the
marginal significance level which would make
us indifferent between rejecting and not
rejecting the null hypothesis.

panel data analysis: the use of data having
both cross-sectional and time series dimen-
sions.

parsimonious model: one that describes the
data as accurately as possible while using as few
parameters as possible.

partial autocorrelation function (pacf):
measures the correlation of a variable with
its value k periods ago (k = 1, 2, . . .) after
removing the effects of observations at all
intermediate lags.

pecking order hypothesis: the notion from
corporate finance that firms will select the
cheapest method of financing (usually retained
earnings) first before switching to increasingly
more expensive forms.
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perfect multicollinearity: occurs when an
explanatory variable used in a regression
model is a precise linear combination of one
or more other explanatory variables from that
model.

period effects: see time fixed effects.

piecewise linear model: a model that is lin-
ear (i.e. can be represented by a straight line)
within restricted ranges of the data, but where
taken overall the model is non-linear.

pooled sample: where there is a panel of
data (i.e. having both time series and cross-
sectional dimensions), but where all of the
observations are employed together without
regard for the panel structure.

population: the collection of all objects or
entities that are relevant to the idea being
tested in a model.

population regression function (PRF):
embodies the true but unobservable relation-
ship between the dependent and independent
variables.

portmanteau tests: general tests for non-
linear patterns or model-misspecification; in
other words, tests that have power over a broad
range of alternative structures.

position risk requirement: see value-at-
risk.

power of a test: the ability of a test to cor-
rectly reject a wrong null hypothesis.

pre-determined variables: are uncorrelated
with past or current values of the error term
in a regression equation but may be correlated
with future values of the error term.

predicted value: see fitted value.

predictive failure test: a test for parameter
stability or structural change in a regression
model, which is based on estimating an aux-
iliary regression for a sub-sample of the data
and then evaluating how well that model can
‘predict’ the other observations.

price deflator: a series that measures the
general level of prices in an economy,

used to adjust a nominal series to a real
one.

principal components analysis (PCA): a
technique that is sometimes used where a set
of variables are highly correlated. More specif-
ically, it is a mathematical operation that con-
verts a set of correlated series into a new set
of linearly independent series.

probability density function (pdf): is a
relationship or mapping that describes how
likely it is that a random variable will take on
a value within a given range.

probit model: an appropriate model for
binary (0 or 1) dependent variables where
the underlying function used to transform the
model is a cumulative normal distribution.

pseudo-random numbers: a set of artifi-
cial random-looking numbers generated using
a purely deterministic sequence (e.g. using a
computer).

purchasing power parity (PPP): the
hypothesis that, in equilibrium, exchange
rates should adjust so that a representative
basket of goods and services should cost the
same when converted into a common cur-
rency irrespective of where it was purchased.

qualitative variables: see dummy variables.

Quandt likelihood ratio test: a test for
structural breaks in a regression model, based
on the Chow test but where the break date is
assumed unknown.

quantile: the position (within the 0–1 inter-
val) in an ordered series where an observation
falls.

quantile regression: an approach to model
specification that involves constructing a fam-
ily of regression models, each for different
quantiles of the distribution of the dependent
variable.

R2: a standardised measure, bounded between
zero and one, of how well a sample regression
model fits the data.

R-bar2: see adjusted R2.
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random effects model: a particular type
of panel data model specification where the
intercepts vary cross-sectionally as a result of
each cross-sectional entity having a different
error term.

random walk: a simple model where the
current value of a series is simply the pre-
vious value perturbed by a white noise (error)
term. Therefore the optimal forecast for a
variable that follows a random walk is sim-
ply the most recently observed value of that
series.

random walk with drift: a random walk
model that also includes an intercept, so that
changes in the variable are not required to
average zero.

rank (of a matrix): a measure of whether
all the rows and columns of a matrix are inde-
pendent of one another.

real series: a series that has been deflated
(adjusted for inflation).

recursive model: an approach to estimation
where a set of time series regressions are esti-
mated using sub-samples of increasing length.
After the first model is estimated, an addi-
tional observation is added to the end of the
sample so that the sample size increases by one
observation. This continues until the end of
the sample is reached.

reduced form equations: the equations
with no endogenous variables on the right-
hand side that have been derived algebraically
from the structural forms in the context of a
simultaneous system.

redundant fixed effects test: a test for
whether a fixed effects panel regression
approach must be employed, or whether the
data can simply be pooled and estimated using
a standard ordinary least squares regression
model.

regressand: see dependent variable.

regressor: see explanatory variable.

rejection region: if a test statistic falls within
this area plotted onto a statistical distribution

function then the null hypothesis under study
is rejected.

re-sampling: creating a simulated distribu-
tion for computing standard errors or critical
values via sampling with replacement from the
original data.

RESET test: a non-linearity test, or a test for
misspecification of functional form, i.e. a situ-
ation where the shape of the regression model
estimated is incorrect – for example, where
the model estimated is linear but it should
have been non-linear.

residual diagnostics: an examination of the
residuals for whether they have any patterns
remaining that were present in the dependent
variable and not captured by the fitted model.

residual sum of squares (RSS): the addi-
tion of all of the squared values of the differ-
ences between the actual data points and the
corresponding model fitted values.

residual terms: the differences between the
actual values of the dependent variable and the
values that the model estimated for them – in
other words, the parts of the dependent vari-
able that the model could not explain.

restricted model: a regression where the
parameters cannot be freely determined by
the data, but instead some restrictions have
been placed on the values that can be taken
by one or more of the parameters.

risk premium: the additional return that
investors expect for bearing risk.

riskless arbitrage opportunities: see arbi-
trage.

rolling window: an approach to estimation
where a set of time series regressions are esti-
mated using sub-samples of fixed length. After
the first model is estimated, the first obser-
vation is removed from the sample and one
observation is added to the end. This contin-
ues until the end of the sample is reached.

sample: a selection of some entities from the
population which are then used to estimate a
model.
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sample regression function (SRF): the
regression model that has been estimated from
the actual data.

sample size: the number of observations or
data points per series in the sample.

sampling error: the inaccuracy in parameter
estimation that arises as a result of having only
a sample and not the whole population; as a
consequence of sampling error, the estimates
vary from one sample to another.

Schwarz’s Bayesian information crite-
rion (SBIC): a metric that can be used to
select the best fitting from a set of competing
models and that incorporates a strict penalty
term for including additional parameters.

second moment: the moments of a distri-
bution define its shape; the second moment is
another term for the variance of the data.

seemingly unrelated regression (SUR):
a time series regression approach for mod-
elling the movements of several highly related
dependent variables. The approach allows for
the correlation between the error terms of the
regressions, hence improving the efficiency of
the estimation.

self-exciting threshold autoregression
(SETAR): a TAR model where the state-
determining variable is the same as the vari-
able under study.

semi-interquartile range: a measure of the
spread of a set of data (an alternative to
the variance) that is based on the difference
between the quarter- and three-quarter points
of the ordered data.

sensitive dependence on initial condi-
tions (SDIC): this is the defining character-
istic of a chaotic system that the impact on
a system of an infinitesimally small change in
the initial values will grow exponentially over
time.

serial correlation: see autocorrelation.

Sharpe ratio: in finance, this is a risk-
adjusted performance measure calculated by
subtracting the risk-free return from the

portfolio return, and then dividing this by the
portfolio standard deviation.

shocks: another name for the disturbances in
a regression model.

short-selling: selling a financial asset that you
do not own, in anticipation of repurchasing it
at a later date when the price has fallen.

significance level: the size of the rejection
region for a statistical test, also equal to the
probability that the null hypothesis will be
rejected when it is correct.

sign and size bias tests: tests for asymme-
tries in volatility – i.e. tests for whether pos-
itive and negative shocks of a given size have
the same effect on volatility.

simultaneous equations: a set of inter-
linked equations each comprising several
variables.

size of test: see significance level.

skewness: the standardised third moment of
a distribution that shows whether it is sym-
metrical around its mean value.

slippage time: the amount of time that it is
assumed to take to execute a trade after a rule
is computer-generated.

slope: the gradient of a straight (regression)
line, measured by taking the change in the
dependent variable, y between two points,
and dividing it by the change in the inde-
pendent variable, x between the same points.

sovereign credit ratings: are assessments of
the riskiness of debts issued by governments.

sovereign yield spreads: usually defined as
the difference between the yield on the bonds
of a government under study and the yield on
US Treasury bonds.

specific-to-general modelling: a philo-
sophical approach to building econometric
models that involves starting with a spe-
cific model as indicated by theory and then
sequentially adding to it or modifying it so
that it gradually becomes a better description
of reality.
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spline techniques: are piecewise linear mod-
els that involve the application of polynomial
functions in a piecewise fashion to different
portions of the data.

spot price: the price of a specific quantity of
a good or asset for immediate delivery.

spurious regressions: if a regression involves
two or more independent non-stationary
variables, the slope estimate(s) may appear
highly significant to standard statistical tests
and may have highly significant t-ratios even
though in reality there is no relationship
between the variables.

standard deviation: a measure of the spread
of the data about their mean value, which has
the same units as the data.

standard errors: measure the precision or
reliability of the regression estimates.

stationary variable: one that does not
contain a unit or explosive root and can
thus be validly used directly in a regression
model.

statistical inference: the process of drawing
conclusions about the likely characteristics of
the population from the sample estimates.

statistically significant: a result is statistically
significant if the null hypothesis is rejected
(usually using a 5% significance level).

stochastic regressors: it is usually assumed
when using regression models that the regres-
sors are non-stochastic or fixed; in practice,
however, they may be random or stochastic –
for example, if there are lagged dependent
variables or endogenous regressors.

stochastic trend: some levels time series pos-
sess a stochastic trend, meaning that they can
be characterised as unit root processes, which
are non-stationary.

stochastic volatility (SV) model: a less
common alternative to GARCH models,
where the conditional variance is explicitly
modelled using an equation containing an
error term.

strictly exogenous variable: is one that is
uncorrelated with past, present and future val-
ues of the error term.

strictly stationary process: one where the
entire probability distribution is constant over
time.

structural break: a situation where the prop-
erties of a time series or of a model exhibit a
substantial long-term shift in behaviour.

structural equations: the original equations
describing a simultaneous system, which con-
tain endogenous variables on the right hand
side.

sum of squared residuals: see residual sum
of squares.

switching model: an econometric specifica-
tion for a variable whose behaviour alternates
between two or more different states.

t-ratio: the ratio of a parameter estimate to
its standard error, forming a statistic to test
the null hypothesis that the true value of the
parameter is one.

Theil’s U-statistic: a metric to evaluate
forecasts, where the mean squared error of
the forecasts from the model under study is
divided by the mean squared error of the fore-
casts from a benchmark model. A U-statistic
of less than one implies that the model is supe-
rior to the benchmark.

threshold autoregressive (TAR) models:
a class of time series models where the series
under study switches between different types
of autoregressive dynamics when an under-
lying (observable) variable exceeds a certain
threshold.

time fixed effects: a panel data model that
allows the regression intercept to vary over
time and is useful when the average value of
the variable under study changes over time
but not cross-sectionally.

time series regressions: models built using
time series data – i.e. data collected for a
period of time for one or more variables.



Trim: 246mm × 189mm Top: 9.841mm Gutter: 18.98mm

CUUK2581-GLOSS CUUK2581/Brooks 978 1 107 03466 2 December 19, 2013 19:3

Glossary

•
•
•
•
•
•
•
•
• 695

tobit regression: a model that is appropri-
ate when the dependent variable is censored –
that is, where the values of the variable beyond
a specific threshold cannot be observed, even
though the corresponding values of the inde-
pendent variables are observable.

total sum of squares (TSS): the sum of the
squared deviations of the dependent variable
y about its mean value ȳ.

transition probabilities: a square matrix of
estimates of the likelihood that a Markov
switching variable will move from a given
regime to each other regime.

truncated dependent variable: a situation
where the values of this variable beyond a cer-
tain threshold cannot be observed, and neither
can the corresponding values of the indepen-
dent variables.

two-stage least squares (TSLS or 2SLS):
an approach to parameter estimation that
is valid for use on simultaneous equations
systems.

unbalanced panel: a set of data having both
time series and cross-sectional elements, but
where some data are missing – i.e. where
the number of time series observations avail-
able is not the same for all cross-sectional
entities.

unbiased estimator: a formula or set of for-
mulae that, when applied, will give estimates
that are on average equal to the corresponding
true population parameter values.

uncovered interest parity (UIP): holds if
covered interest parity and forward rate unbi-
asedness both apply.

underidentified or unidentified equa-
tion: occurs when estimates of the param-
eters in the structural equation from a system
cannot be obtained by substitution from the
reduced form estimates as there is insufficient
information in the latter.

unit root process: a series follows a unit root
process if it is non-stationary but becomes sta-
tionary by taking first differences.

unparameterised: if a feature of the depen-
dent variable y is not captured by the model,
it is unparameterised.

unrestricted regression: a model that
is specified without any restrictions being
imposed so that the estimation technique can
freely determine the parameter estimates.

value-at-risk (VaR): an approach to mea-
suring risk based on the loss on a portfolio
that may be expected to occur with a given
probability over a specific horizon.

variance–covariance matrix: an array of
numbers that comprises each of the variances
of a set of random variables on the leading
diagonal of the matrix and their covariances
as the off-diagonal elements.

variance decomposition: a way to exam-
ine the importance of each variable in a vec-
tor autoregressive (VAR) model by calculating
how much of the forecast error variance (for
1, 2, . . . , periods ahead) for each dependent
variable can be explained by innovations in
each independent variable.

variance reduction techniques: these are
employed in the context of Monte Carlo sim-
ulations in order to reduce the number of
replications required to achieve a given level
of standard errors of the estimates.

VECH model: a relatively simple multivari-
ate approach that allows for the estimation of
time-varying volatilities and covariances that
are stacked into a vector.

vector autoregressive (VAR) model: a
multivariate time series specification where
lagged values of (all) the variables appear on
the right-hand side in (all) the equations of
the (unrestricted) model.

vector autoregressive moving average
(VARMA) model: a VAR model where
there are also lagged values of the error terms
appearing in each equation.

vector error correction model (VECM):
an error correction model that is embedded
into a VAR framework so that the short- and
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long-run relationships between a set of vari-
ables can be modelled simultaneously.

vector moving average (VMA) model: a
multivariate time series model where a series
is expressed as a combination of lagged values
of a vector of white noise processes.

volatility: the extent to which is series is
highly variable over time, usually measured
by its standard deviation or variance.

volatility clustering: the tendency for the
variability of asset returns to occur ‘in
bunches’, so that there are prolonged periods
when volatility is high and other prolonged
periods when it is low.

Wald test: an approach to testing hypotheses
where estimation is undertaken only under
the alternative hypothesis; most common
forms of hypothesis tests (e.g. t- and F -tests)
are Wald tests.

weakly exogenous variables: see pre-
determined variables.

weakly stationary process: has a constant
mean, constant variance and constant autoco-
variances for each given lag.

weighted least squares (WLS): see gener-
alised least squares.

white noise process: has a fixed mean and
variance but no other structure (e.g. it has zero

autocorrelations for all lags). The error term
in a regression model is usually assumed to be
white noise.

White’s correction: an adjustment to the
standard errors of regression parameters that
allows for heteroscedasticity in the residuals
from the estimated equation.

White’s test: an approach to determining
whether the assumption of homoscedastic
errors in a model is valid based on estimating
an auxiliary regression of the squared residu-
als on the regressors, their squared values, and
their cross-products.

within transformation: is used in the con-
text of a fixed effects panel model, involving
the subtraction of the time series mean from
each variable to reduce the number of dummy
variable parameters requiring estimation.

Wold’s decomposition theorem: states that
any stationary series can be decomposed into
the sum of two unrelated processes, a purely
deterministic part and a purely stochastic
part.

yield curves: show how the yields on bonds
vary as the term to maturity increases.

Yule–Walker equations: are a set of formu-
lae that can be used to calculate the autocorre-
lation function coefficients for an autoregres-
sive model.
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adjusted R2

adjustment parameters
arbitrage
Asian options
autocorrelation

coefficients
in cross-sectional data
function (acf)
in volatility

autocovariances
autoregressive (AR) model
autoregressive conditional duration (ACD)
autoregressive conditional heteroscedasticity

(ARCH) models
autoregressive distributed lag (ADL) models
autoregressive integrated moving average

(ARIMA) models
autoregressive moving average (ARMA) models
autoregressive volatility (ARV) models

backshift operator see lag operator
balanced panel
banking competition
Bayes theorem
BDS test
BEKK model
BeraJarque test
best linear unbiased estimators (BLUE)
between estimator
BHHH algorithm
biased estimator
bicorrelation test
bidask spread
bispectrum test
bivariate regression
block significance tests
bootstrapping
Box–Jenkins approach
Box–Pierce Q-statistic
Breusch–Godfrey test
broken trend
buy-and-hold abnormal return (BHAR)

calendar effects
capital asset pricing model (CAPM)
capital market line
Carhart model
causality tests
censored dependent variable
central limit theorem
central tendency
chaos theory
characteristic equation
chi-squared distribution
Chow test
classical linear regression model (CLRM)
CLRM assumptions

violations of
Cochrane–Orcutt procedure
coefficient estimators

standard errors of
cointegrating regressions

Durbin–Watson (CRDW) statistic
cointegrating vector
cointegration

tests
commodity prices
common factor restrictions
conditional covariance
conditional expectations
conditional kurtosis
conditional skewness
conditional variance
conditional variance-in-mean
confirmatory data analysis
consistency
constant term
contemporaneous terms
continuously compounded returns
convergence criterion
copulas
correlation

implied
matrix
positive definite matrix
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correlation coefficient
correlogram see autocorrelation function
cost of carry (coc) model
covariance stationary process see weakly stationary

process
covered interest parity (CIP)
credit rating
critical values
cross-equation restrictions
cross-sectional regression
cross-sectional variability
cumulative abnormal return (CAR)
cumulative normal distribution
CUSUM and CUSUMSQ tests

daily range estimators
daily volatility estimate
damped sine wave
data

cross-sectional
macroeconomic
panel
qualitative/quantitative
time series
transformed

data frequencies
data generating process (DGP)
data mining
data revisions
data snooping see data mining
day-of-the-week effect
degree of uncertainty
degrees of freedom
degrees of persistence
dependent/independent variable

inertia of
deterministic trend
Dickey–Fuller (DF) test

augmented (ADF)
critical values

differencing
differentiation
discrete choice see multiple choice
distributed lag models
disturbance term
double logarithmic form
dummy variables

dummy variable trap
Durbin–Watson test
dynamic conditional correlation (DCC) model
dynamic models

econometric model
construction

evaluation
efficient estimator
efficient frontier
efficient market hypothesis
eigenvalues
eigenvectors
elasticities
empirical research project

choice of software
choice of topic
data for
forms of
originality
outline
purpose
results
structure

encompassing principle
encompassing regressions
Engle–Granger test
Engle–Ng test
equilibrium correction model see error correction

model
error correction model
error term

variance of
errors-in-variables see measurement error
estimation techniques

full information maximum likelihood (FIML)
indirect least squares (ILS)
instrumental variable (IV)
two-stage least squares (SLS)

estimators
event study

biased/unbiased
standard error

EViews
ARCH effects
ARCH estimation
ARMA models
autocorrelation function
BDS test
BeraJarque test
Breusch–Godfrey test
CAPM regression
Chow test
cointegration
date format
dummy variables
dummy variables for seasonality
Durbin–Watson statistic
EGARCH model
exponential smoothing
forecasting
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forecasting from GARCH
GJR model
GARCH estimation
GARCH-M estimation
Granger causality tests
hedge ratio estimation
heteroscedasticity testing
information criteria
Johansen test
Ljung–Box test
MGARCH estimation
multicollinearity
Newey–West procedure
RESET test
returns on shares
simultaneous equations models
transformation of series
unit root test
VAR estimation
VaR estimation using bootstrapping
variance decomposition
Wald test
White’s test

exchange rate
exogeneity
expectations hypothesis
explained sum of squares (ESS)
exponent
exponential growth model
exponential regression model
exponential smoothing
exponential weighting
exponentially weighted moving average (EWMA)

models
extreme value theory

F -test
factor loadings
Fama–French approach
Fama–MacBeth procedure
financial data
financial modelling

returns in
financial options
fitted value
fixed effects
forcing variable
forecast accuracy
forecast encompassing
forecast error
forecasting

autoregressive process
ARMA models
in-sample/out-of-sample

moving average process
one-step-ahead/multi-step-ahead
structural
time series

forward rate unbiasedness (FRU)
fractionally integrated models
functional form misspecification of see RESET

test

GJR model
generalised autoregressive conditional

heteroscedasticity (GARCH) models
exponential (EGARCH)
factor
integrated (IGARCH)
in-mean (GARCH-M)
orthogonal

geometric mean
inverse of a matrix
generalised error distribution (GED)
general-to-specific methodology
generalised least squares (GLS)
generalised unrestricted model (GUM)
gilt–equity yield ratio (GEYR)
Goldfeld–Quandt test for heteroscedasticity
goodness of fit
Granger representation theorem

Hadamard product
Hamilton’s filter
Hausman test
Heckman procedure
hedge ratios
hedonic pricing models
heteroscedasticity

conditional
historical covariance
homoscedasticity
hypothesis testing

confidence interval
error classification
Lagrange multiplier (LM) test
likelihood ratio (LR) test
significance level
test of significance approach
under maximum likelihood
Wald test

identification
order condition
rank condition

implied covariance
implied volatility models
impulse responses
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independence of irrelevant alternatives
information criteria

adjusted R2

Akaike’s (AIC)
Hannan–Quinn (HQIC)
Schwartz’s Bayesian (SBIC)

intercept
interest rates

term structure of
invertibility

Jensen’s alpha
Johansen test
jumps

KPSS test
kurtosis

lag lengths
lag operator
lagged regressors
lagged value
Lagrange multiplier (LM) test
lags number of
large sample property
laws of logs
lead-lag relationships
least squares dummy variables (LSDV)
leptokurtosis
leverage effects
likelihood function
likelihood ratio (LR) test
LIMDEP
linear models
linear probability model
linearity
Ljung–Box test
log-likelihood function (LLF)
log-return formulation
logit model

comparison with probit
estimation of
measuring goodness of fit
parameter interpretation

long-memory models
long-run static solution
loss function see residual sum of squares
Lyapunov exponent

macroeconomic indicators
marginal distribution
marginal effects
market microstructure
market reaction

market returns
market risk premium
market timing
Markov switching regime
Marquardt algorithm
matrices

eigenvalues of
matrix notation
maximum likelihood
measurement error
median
minimum capital risk requirement (MCRR) see

value-at-risk
misspecification error
misspecification tests
misspecified dynamics
mode
model construction
model interpretation
moving average process
multicollinearity

near
perfect

multimodalities
multinomial logit
multinomial probit
multiple choice
multiple linear regression
multivariate GARCH models

neural network models
Newey–West estimator
news impact curves
Newton–Raphson procedure
non-linear least squares (NLS) procedure
non-linear models
non-linear restrictions
nominal series
non-negativity
non-nested models
non-normality
non-stationarity

deterministic
random walk with drift
stochastic
testing for
trend-stationary process
unit root

observation frequencies
observations

daily closing
number of

optimal portfolio
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options price
order of integration
ordered response variable

ordered logit
ordered probit

ordinal scale
ordinary least squares (OLS)

coefficient estimator
intercept
multiple regression
slope
standard error estimator
time series regression

out-of-sample
outliers
overfitting
overreaction effect
oversized tests

p-value see hypothesis testing: significance level
panel data analysis
panel cointegration
panel unit root test
parameters

estimations
stability tests

parsimonious encompassing
parsimonious model
partial autocorrelation function (pacf)
partial regression coefficient
pecking order hypothesis
penalty term
period effects see time fixed effects
piecewise linear model
Phillips–Perron tests
pooled sample
population

coefficient
disturbances

population regression function (PRF)
population values
portfolio theory
portmanteau tests
position risk requirement see value-at-risk
powers
prediction see forecasting
predictive failure test
precision
price deflator
principal components analysis (PCA)
probabilities
probability density function (pdf)
probability distribution
probit model

comparison with logit
estimation of
measuring goodness of fit
parameter interpretation

property returns
pseudo R2

pseudo-random numbers
purchasing power parity (PPP)

qualitative variables see dummy variables
Quandt likelihood ratio test
quantile
quantile regression
quasi-demeaned data see random effects
quasi-maximum likelihood (QML)

R2

R-bar2

random draws
random effects
random number generation
random number re-usage
random walk
rank (of a matrix)
ratings

announcements
rational expectations
real series
reality check test
recursive forecasting model
recursive least squares
redundant fixed effects test
regime switching
regression analysis
rejection region
relationship between variables
renormalisation
re-sampling

from data
from residuals

RESET test
residual diagnostics
residual sum of squares (RSS)
residual term
restricted/unrestricted model
restricted/unrestricted regressions
restrictions number of
risk management
risk measurement
risk premium
risk–return relationship
riskless arbitrage opportunities
rolling window
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sample
sample regression function (SRF)
sample selection bias
sample size
sampling error
scatter plot
seasonal unit root
seasonality
second moment models
seemingly unrelated regression (SUR)
self-selection bias see sample selection bias
semi-interquartile range
sensitive dependence on initial conditions (SDIC)
Sharpe ratio
shocks
short-selling
shuffle diagnostic
sigma notation
significance level
sign predictions
sign and size bias tests
simple bivariate regression model
simple returns
simulation experiments

disadvantages
simulation methods

Monte Carlo
simultaneous equations
size of test see significance level
skewness
slippage time
slope
small sample problems
sovereign credit ratings
sovereign yield spreads
spatial lag
specific-to-general modelling
spline techniques
spot/futures markets
spot return forecasts
spurious regressions
squared daily returns
squared residuals
stable distributions
standard deviations
standard errors
stationarity

difference
stochastic
testing for
weak

statistical decision rule
statistical inference
stochastic regressors

stochastic trend model
stochastic volatility (SV) model
stock index

futures markets
log of

stock return
predictability

strictly stationary process
structural break
structural change
structural equations
structural models
Student’s t distribution
switching models
switching portfolio

t-test
t-ratio
Theil’s U-statistic
threshold autoregressive (TAR) models

self-exciting (SETAR)
smooth transition (STAR)

tick size
limits

time fixed effects
time series models

univariate
time series regressions
time-varying covariances
time-varying stock market risk premiums
tobit regression
total sum of squares (TSS)
trading rules
trading strategies
transaction costs
transition probabilities
truncated dependent variable

unbalanced panel
unbiasedness
unconditional density model
uncovered interest parity (UIP)
uniform distribution
unit root process
unit roots testing for
unparameterised seasonality

value-at-risk (VaR)
Monte Carlo approach

variables
binary choice
dummy
exogenous
explanatory
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irrelevant
macroeconomic
omission of
ordering of
random
slope dummy
state-determining

variance–covariance matrix
conditional

variance decompositions
variance forecasts
variance operator
variance reduction techniques

antithetic variate
control variates
quasi-random sequences

VECH model
diagonal

vector autoregressive (VAR) models
vector autoregressive moving average (VARMA)

models
vector error correction model (VECM)

vector moving average (VMA) model
volatility

asymmetries in
clustering
feedback hypothesis
forecasting
historical
implied
response to shocks

Wald test
weakly stationary process
weighted least squares (WLS)
white noise process

error term
White’s correction
White’s test
within transformation
Wold’s decomposition theorem

yield curves
Yule–Walker equations
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