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Importance of Nitrogen in
Biochemistry

e Nitrogen (with H, O, and C) is a major elemental
constituent of living organisms.

e Mostly in nucleic acids and proteins

e But also found in:
— several cofactors (NAD, FAD, biotin ... )
— many small hormones (epinephrine)
— many neurotransmitters (serotonin)
— many pigments (chlorophyll)

— many defense chemicals (amanitin)



Ammonia Is Incorporated into
Biomolecules Through Glu and GIn

e Glutamine is made from
Glu by glutamine
synthetase in a two-step
process.

e Phosphorylation of Glu
creates a good leaving
group that can be easily
displaced by ammonia.
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Adenylation of Glutamine Synthetase

Adenylylation (attachment of
AMP) to Tyr-397 assists in
inhibition.

* Increases sensitivity to
inhibitors

* Part of complex cascade that
is dependent on [Glu],
[a-ketoglutarate], [ATP], and
[P;]

* Activity of
adenylyltransferase
regulated by binding to
regulatory protein P,
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P, Is Regulated by Uridylylation

(Remember that P, regulates adenylyltransferase,
which helps inhibit GIn synthetase.)

*When P is uridylylated, adenylyltransferase
stimulates deadenylylation of GIn synthetase
(increasing the latter’s activity).

e ALSO, uridylylated P, upregulates transcription of Gln
synthetase.



Biosynthesis of Amino Acids and
Nucleotides— MultipleTransaminations

Transaminations and rearrangements using
pyridoxal phosphate (PLP)

* PLP is active form of vitamin B,

* Catalyzed by amidotransferases

* PLP has aldehyde group that forms Schiff base
with Lys of aminotransferase
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Amino Acid
Synthesis
Overview

Source of N is Glu or GIn
Derived from intermediates of:
— glycolysis

— citric acid cycle

— pentose phosphate pathway
Bacteria can synthesize all 20.

Mammals require some in diet.
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All Amino Acids Derive from One of
Seven Precursors

e CAC:
— a-ketoglutarate, oxaloacetate
e Glycolysis

— pyruvate, 3-phosphoglycerate,
phosphoenolpyruvate

e Pentose phosphate pathway
— ribose 5-phosphate, erythrose 4-phosphate



Amino Acid Biosynthetic Families, Grouped by

TABLE 22-1 Metabolic Precursor

a-Ketoglutarate Pyruvate

Glutamate Alanine

Glutamine Valine?

Proline Leucine?

Arginine |soleucine?

3-Phosphoglycerate Phosphoenolpyruvate and

Serine erythrose 4-phosphate

Glycine Tryptophan2

Cysteine Phenylalanine?
Tyrosine®

Oxaloacetate Ribose 5-phosphate

Aspartate Histidine?

Asparagine

Methionine?

Threonine?

Lysine?

agessential amino acids in mammals.

bDerived from phenylalanine in mammals.




Proline and Arginine Derive from
Glutamate

e Glutamate is derived from transamination of
o-ketoglutarate, as seen in Chapter 18.

a-Ketoglutarate

Unnumbered 22 p870b
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In Animals, Proline Can ALSO Be
Synthesized from Arginine

e Ornithine is derived from the urea cycle or

degradation of arginine.

e Ornithine o-aminotransferase converts ornithine to
glutamate »-semialdehyde that cyclizes and converts

to Pro.
COO

H,N —CH
H,

H,

H,

NH,

Ornithine

Figure 22-13
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Arginine Is Synthesized from
Ornithine in Animals

e Ornithine comes
from the urea
cycle.

e |n bacteria,
ornithine has a
special synthesis
pathway.
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Serine Derives from
3-Phosphoglycerate

of Glycolysis

e Same pathway in all
organisms so far

e Requires Glu as source
of NH, group

e Oxidation 2
transamination 2
dephosphorylation to
yield serine
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Biosynthesis of Cys from Homocysteine
and Ser in Mammals

In mammals, sulfur is recycled from methionine degradation.
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Oxaloacetate yields Asp and Pyruvate
Yields Ala, Val, Leu, and lle

Oxaloacetate
l
Aspartate
/N
Asparagine Methionine Lysine Threonine
l
Alanine Valine Leucine Isoleucine

~.\ / _—

Pyruvate
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Aromatic Amino Acids Derive from
Phosphoenolpyruvate and Erythrose
4-Phosphate

e Very complicated chemistry!

e Rings must be synthesized and closed and then oxidized
to create double bonds. O. _OH

e Chorismate is a common intermediate.
Phosphoenolpyruvate
+ J\H/OH

Erythrose 4-phosphate

.

Phenylalanine Tyrosine Tryptophan

|

Tyrosine
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N7 NADPH +H*
ﬁ Phosphoenolpyruvate (4] A
CH, (PEP) NADP
+
Co0~
o§c _H
H—é—ou Erythrose 4-phosphate Shikimate
H—C—OH
c!Hz—o—®
ATP
H,0 e
e ADP
P
Oy €00~ -
N ikimate
\? 3-phosphate
CH,

2-Keto-3-deoxy-D-

HO—C—H arabinoheptulosonate
H—C—oH 7-phosphate —
H—¢—on o
Juz—o—®
3-phosphate
P NAD* CH,
" -
i 0—C—C00
H
H°°“-c /COO
3-Dehydroquinate
o OH
a H — H
Ho' h coo~ Chorismate
3) i
Hz0 0—C—C00™
E H
€00~ HO H
3-Dehydroshikimate
o HOH
HO H
Figure 22-18

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

@ 2-keto-3-deoxy-p-arabinoheptulosonate
7-phosphate synthase

© dehydroquinate synthase

© 3-dehydroquinate dehydratase
@ shikimate dehydrogenase

© shikimate kinase

@ 5-enolpyruvylshikimate 3-phosphate
synthase

@ chorismate synthase

5-Enolpyruvylshikimate

Biosynthesis of
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Intermediate in
Aromatic Amino Acid
Biosynthesis




His Derives from PPP Metabolite
Ribose 5-Phosphate
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Several Pathways Share 5-Phosphoribosyl-1-
Pyrophosphate (PRPP) as an Intermediate

e Synthesized from ribose 5-phosphate of PPP via
ribose phosphate pyrophosphokinase

— a highly regulated allosteric enzyme

i
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cl)- 0 0
H H | |

H O—P—0—P—0O0"

| I
OH OH O O
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Regulation of Amino Acid Biosynthesis

e Multilayered approach: Often, more than one
mechanism of regulation is utilized.
— feedback inhibition of products

— use of isozymes for regulation of specific
pathways



Feedback Inhibition in lle Synthesis
from Thr
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Use of Isozymes Is Another
Important Means of Regulation

Example: Asp can lead to Lys, Met, Thr, and lle.
Use of isozymes, all regulated by different
effectors, allows E. coli to produce the amino
acids when needed.

— Example: At step 1, isozyme Al is inhibited if lle
is high, but not if Met or Thr are high.

— Only the Al isozyme is inhibited by lle at this
step.




Important Metabolites Are Derived
From Amino Acids

Porphyrin rings (e.g., heme)
Phosphocreatine

Glutathione

Neurotransmitters and signaling molecules
Cell-wall constituents



Glycine or Glutamate Is the Precursor
to Porphyrins

Porphyrin makes up the heme of hemoglobin,
cytochromes, myoglobin.

In higher animals, porphyrin arises from reaction of
glycine with succinyl-CoA.
— In plants and bacteria, glutamate is the precursor.

The pathway generates two molecules of the
important intermediate 6-aminolevulinate.

Porphobilinogen is another important
intermediate.



Synthesis of &-Aminolevulinate in
Higher Eukaryotes
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Synthesis of Heme from
o-Aminolevulinate

1. Two molecules of o-aminolevulinate condense to form
porphobilinogen.

2. Four molecules of porphobilinogen combine to form protoporphyrin.

3. Fe ion is inserted into protoporphyrin with the enzyme ferrochelatase.
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Figure 22-26
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Most animals synthesize their own heme.
Mutations or misregulaton of enzymes in the heme
biosynthesis pathway lead to porphyrias.

— Precursors accumulate in red blood cells, body fluids, and
liver.

Accumulation of precursor uroporphyrinogen |

— Urine becomes discolored (pink to dark purplish depending
on light, heat exposure).

— Teeth may show red fluorescence under UV light.
— Skin is sensitive to UV light.
— There is a craving for heme.

Explored as possible biochemical basis for vampire myths



Heme Is the Source of Bile Pigments

e Heme from degradation of erythrocytes is degraded
to bilirubin in two steps:

1. Heme oxygenase linearizes heme to create
biliverdin, a green compound (seen in a bruise).

2. Biliverdin reductase converts biliverdin to
that travels bound
to serum albumin in the bloodstream.
e major pigment of urine (degradation to urobilin)
e further degraded by intestinal microbiota to stercobilin



Formation and Breakdown of Bilirubin
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Jaundice Is Caused by Bilirubin
Accumulation

e Jaundice (yellowish pigmentation of skin,
whites of eyes, etc.) can result from:

— impaired liver (in liver cancer, hepatitis)

— blocked bile secretion (due to gallstones,
pancreatic cancer)

— insufficient glucouronyl bilirubin transferase to
process bilirubin (occurs in infants)

e treated with UV to cause photochemical breakdown
of bilirubin



Gly and Arg Are Precursors of Creatine

and Phosphocreatine

e Phosphocreatine is hydrolyzed for energy in
muscle.

?OO_ COO0~
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ﬁ . CH, H,O0 CH, HzN\\
-0—P—N—C—N—CH, —\T» H,N—C—N—CH; «————  C==
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AG'° = —43.0 kJ/mol

Figure 13-15
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e Gly and Arg combine, then S-adenosyl-
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methionine (Ado-Met) acts as a methyl donor.



Biosynthesis of
Creatine and
Phosphocreatine

Requires glycine, arginine,
and S-adenosyl-methionine

Phosphocreatine can be
phosphorylated by ATP for
use as a stored energy
source.
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Glutathione (GSH) Derives from Glu,
Cys, and Gly

e GSH is present in most ) B ou-cys-cl
|
cells at high amounts. :
| e foenin
e Reducing I
ADP + P,

agent/antioxidant

— keeps proteins, metal
cations reduced

y-Glu-Cys

\/ ATP

glutathione

. synthetase
— keeps redox enzymes in N\nor + 7,
reduced state __yau Dos ey
NH; (o] o
— removes toxic peroxides ~00C—CHo—C — Gy~ —E -, —co-
H CH, H
e Oxidized to a dimer using Guaone G50

0 . Figure 22-29
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Some Neurotransmitters Are Derived from
Amino Acids
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All are decarboxylated using PLP

dependent enzymes.




 Nucleotides can be synthesized de novo (“from the
beginning”) from amino acids, ribose-5-phosphate,
CO,, and NH,.

e Nucleotides can be salvaged from RNA, DNA, and
cofactor degradation.

e Many parasites (e.g., malaria) lack de novo
biosynthesis pathways and rely exclusively on salvage.

— Compounds that inhibit salvage pathways are
promising antiparasite drugs.



De Novo Biosynthesis of Nucleotides

e Approximately the same in all organisms studied
e Bases synthesized while attached to ribose

e Glu provides most amino groups.

e Glyis precursor for purines

e Asp is precursor for pyrimidines

e Nucleotide pools are kept low, so cells must
continually synthesize them.

— This synthesis may actually limit rates of transcription
and replication.



Origin of Ring Atoms in Purines
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N /
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| | C <— Formate
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Figure 22-34
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De Novo Biosynthesis of Purines Begins
with PRPP

Adenine and guanine are synthesized as AMP and
GMP.

Synthesis begins with reaction of 5-phosphoribosyl 1-
pyrophosphate (PRPP) with Glu.

Purine ring builds up following the addition of three
carbons from glycine.

The first intermediate with a full purine ring is

inosinate (IMP). %
'O—II’—O—CHZ (o) H

aaaaaaaaaaaaaaaa



Regulation of Purine
Biosynthesis in E. coli
Largely Consists of
Feedback Inhibition

Four Major Mechanisms

. Glutamine-PRPP
amidotransferase is inhibited by
end-products IMP, AMP, and
GMP.

. Excess GMP inhibits formation of
xanthylate from inosinate by IMP
dehydrogenase.

. GMP and AMP concentrations
inhibit phosphorylation steps.

. PRPP synthesis is inhibited by ADP
and GDP.

Ribose 5-phosphate

ribose phosphate

(PRPP synthetase)

PRPP

glutamine-PRPP

amidotransferase ® <--GMP

\
|
5-Phosphoribosylamine I
|
|
|
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|
|
|
17— d
adenylosuccinate / \ IMP
synthetase dehydrogenase
= AMP-> @ & < GMP -~
| Y |
: XMP :
: Y XMP-qutamine :
I amidotransferase |
: Adenylosuccinate | Y /I
I adenylosuccinate GMP ———————— -~
: lyase
\
e AMP —— = e

Figure 22-37
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De Novo
Synthesis of
Pyrimidine
Nucleotides (1)

Unlike purine synthesis,
pyrimidine synthesis proceeds
by first making the pyrimidine
ring (in the form of orotate)
and then attaching it to ribose
5-phosphate.

Aspartate and carbamoyl
phosphate provide the atoms
for the ring structure.
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Y Y Carbamoyl
: aspartate f phosphate
|
, trans-
! carbamoylase \> P, oL AL
C

: v HN  CH,
! N-Carbamoylaspartate cI cIH g
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u 0
! \-b H,0 Il
' C
I v HN \cn,
! L-Dihydroorotate | |

C CH—CO00~
i o \:/
|
, NAD*
: dihydroorotate VY
I dehydrogenase
! N> NADH + H* I
! v HNT
| Orotate J
! 0 N7 oo
| H
Figure 22-38
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De Novo
Synthesis of
Pyrimidine
Nucleotides (2)

After addition of ribose-5-
phosphate via PRPP, the
resulting nucleotide
(orotidylate) is
decarboxylated to form
uridylate (UMP), the first
possible pyrimidine.

dihydroorotate
dehydrogenase

A

Oro

orotate
phosphoribosyl-
transferase

v
Orotidylate ®—0—CH,

orotidylate
decarboxylase

A
Uridylate (UMP)

kinases

L NAD*
\+ NADH + H* ll
; t Hj/ \jH
ate
o” \:/ coo-

. £
0% N7 coo-

\-b Cco,

/—2 ATP

Figure 22-38
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De Novo
Synthesis of
Pyrimidine
Nucleotides (3)
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Regulation of Pyrimidine Biosynthesis Is
Also via Feedback Inhibition

e ATCase is inhibited by end-product CTP and is
accelerated by ATP.
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Ribonucleotides Are Precursors to
Deoxyribonucleotides

e 2’C-OH bond is directly reduced to 2’-H
bond... without activating the carbon!

— catalyzed by ribonucleotide reductase
e Mechanism: Two H atoms are donated by

NADPH and carried by proteins thioredoxin
or glutaredoxin.



Folic Acid Deficiency Leads to
Reduced Thymidylate Synthesis

e Folic acid deficiency is widespread, especially
in nutritionally poor populations.

e Reduced thymidylate synthesis causes uracil
to be incorporated into DNA.

e Repair mechanisms remove the uracil by
creating strand breaks that affect the
structure and function of DNA.

— associated with cancer, heart disease,
neurological impairment
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Conversion of Uric Acid
to Allantoin,
Allantoate, and Urea

Degree of further
oxidation of uric acid is
organism dependent.
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Painful joints (often in toes) due to deposits of
sodium urate crystals

Primarily affects males

May involve genetic under-excretion of urate
and/or may involve overconsumption of fructose

Treated with avoidance of purine-rich foods
(seafood, liver) or avoidance of fructose

Also treated with xanthine oxidase inhibitor
allopurinol



Allopurinol Inhibits Xanthine Oxidase
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Catabolism
of
Pyrimidines

e Leadsto NH,* and urea
e Can produce intermediates

of CAC
— Example: Thymine is

degraded to succinyl-CoA.
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Purine and Pyrimidine Bases Are
Recycled by Salvage Pathways

e Free bases, released in metabolism, are reused.

— Example: Adenine reacts with PRPP to form the
adenine nucleotide AMP.

e catalyzed by adenosine phosphoribosyltransferase

e The brain is especially dependent on salvage
pathways.

e The lack of hypoxanthine-guanine
phosphoribosyltransferase leads to Lesch-Nyhan

syndrome with neurological impairment and finger-
and-toe-biting behavior.



Many Chemotherapeutic Agents
Target Nucleotide Biosynthesis

e Glutamine analogs: azaserine, acivicin

— inhibit glutamine amidotransferases

e Fluorouracil

— converted by salvage pathway into FAUMP, which
inhibits thymidylate synthase

e Methotrexate and aminopterin
— inhibit dihydrofolate reductase (competitive inhibitors)



Antibiotics Also Target Nucleotide
Biosynthesis

e Allopurinol, and so on

— studied against African sleeping sickness (trypanosomiasis)
because the trypanosomes lack enzymes for de novo
nucleotide synthesis

e Trimethoprim

— inhibits bacterial dihydrofolate reductase but binds human
enzyme several orders of magnitude less strongly



