
# Gastrointestinal and Antiemetic Drugs



# GI drugs

Drugs used for:

1) Peptic ulcers and gastroesophageal reflux disease (GERD)

2) Chemotherapy-induced emesis

3) Diarrhea

4) Constipation

# Peptic ulcer

Causes of peptic ulcer:

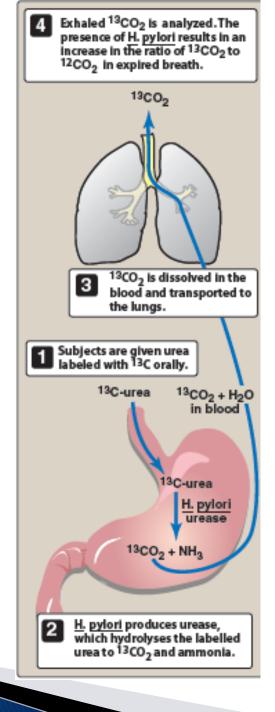
- Infection with gram-negative Helicobacter pylori
- Use of nonsteroidal anti-inflammatory drugs (NSAIDs)
- Increased hydrochloric acid secretion
- Inadequate mucosal defense against gastric acid
- Tumors (rare)

# **Drugs for Peptic ulcer**

Treatment of peptic ulcer

- 1) Eradicating the H. pylori infection
- 2) Reducing secretion of gastric acid with the use of proton pump inhibitors or  $H_2$ -receptor antagonists 3) Providing agents that protect the gastric mucosa from damage such as **misoprostol** and **sucralfate** 4) Neutralizing gastric acid with nonabsorbable antacids

#### Drugs for Peptic ulcers and GERD


- Antimicrobials
- ► H<sub>2</sub>-receptor antagonists
- Proton pump inhibitors
- Prostaglandins
- Antacids

# **Drugs for Peptic ulcers**

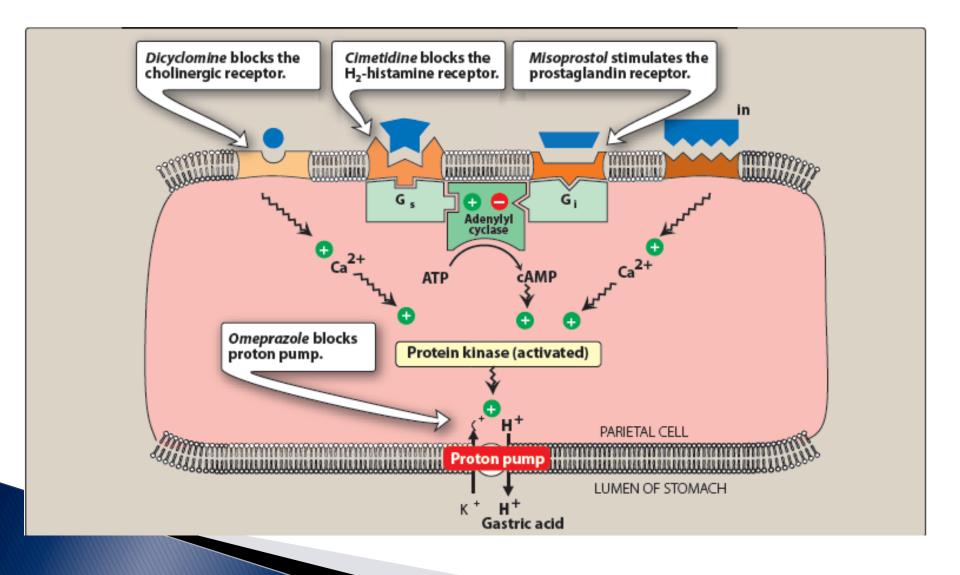
- Antimicrobial agents (For H. pylori)
  - Metronidazole
  - Amoxicillin
  - Clarithromycin
  - Tetracyclines
  - Bismuth compounds

## Antimicrobial agents

- Optimal therapy for patients with peptic ulcer disease infected with H. pylori requires antimicrobial treatment
- Endoscopic biopsy of the gastric mucosa or various noninvasive methods are used, including serologic tests and urea breath tests to document infection with H. pylori
- Eradication of H. pylori results in rapid healing of active peptic ulcers and low recurrence rates



# Antimicrobial agents for PU


- GERD is not associated with H. pylori infection and does not respond to treatment with antibiotics
- Triple therapy consisting of a PPI combined with either metronidazole or amoxicillin plus clarithromycin for 2 weeks
  - (Amoxicillin, omeprazole, clarithromycin)
    - Peptipac<sup>®</sup>, Triopac<sup>®</sup>

- Quadruple therapy of bismuth subsalicylate and metronidazole plus tetracycline plus a PPI, administered for a 2-week course
- Treatment with a single antimicrobial drug is less effective, results in antimicrobial resistance, and is absolutely not recommended
- Switching antibiotics is not recommended
- Bismuth salts inhibit pepsin and increase the secretion of mucus

- Ranitidine (Zantac<sup>®</sup>, Randin<sup>®</sup>, Ratidine<sup>®</sup>, GI-care<sup>®</sup>)
- Famotidine (Famodin<sup>®</sup>, Famo<sup>®</sup>, Gastrex<sup>®</sup>)
- Cimetidine (Cemidin<sup>®</sup>, Cimetag<sup>®</sup>, Tagamet<sup>®</sup>)
- Nizatidine

- Gastric acid secretion by parietal cells of the gastric mucosa is stimulated by acetylcholine, histamine, and gastrin
- The receptor-mediated binding of acetylcholine, histamine, or gastrin results in the activation of protein kinases, which stimulates the H+/K+-adenosine triphosphatase (ATPase) proton pump to secrete hydrogen ions in exchange for K+ into the lumen of the stomach
- Receptor binding of prostaglandin E2 and somatostatin diminish gastric acid production
- Histamine binding causes activation of adenylyl cyclase, whereas binding of prostaglandin E2 inhibits it
- Gastrin and acetylcholine act by inducing an increase in intracellular calcium levels

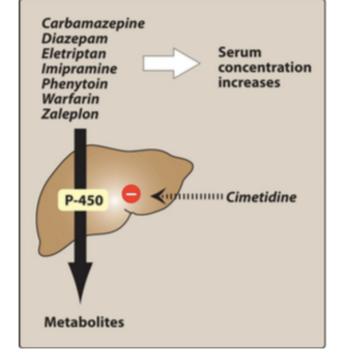
- Antagonists of the histamine H<sub>2</sub> receptor are used to inhibit gastric acid secretion
- By competitively blocking the binding of histamine to H<sub>2</sub> receptors, these agents reduce the intracellular concentrations of cAMP and, secretion of gastric acid
- Inhibit basal, food-stimulated, and nocturnal secretion of gastric acid after a single dose
- Cimetidine use is limited by its adverse effects and drug-drug interactions



- H<sub>2</sub>-receptor antagonists therapeutic uses
  - Peptic ulcer
  - Acute stress ulcers
  - Gastroesophageal reflux disease (GERD)

Peptic ulcers:

- Effective in promoting the healing of duodenal and gastric ulcers
- Recurrence is common after treatment with H<sub>2</sub> antagonists is stopped
- Patients with NSAID-induced ulcers should be treated with PPIs, because these agents heal and prevent future ulcers better than H<sub>2</sub> antagonists


#### Acute stress ulcers

- H<sub>2</sub> blockers are given as intravenous infusion to prevent and manage acute stress ulcers associated with high-risk patients in intensive care units
- PPIs have gained favor for this indication because tolerance may occur with these agents in this setting

#### Gastroesophageal reflux disease (GERD):

- Low doses of H<sub>2</sub> antagonists is used for the prevention and treatment of heartburn (GERD)
- H<sub>2</sub>-receptor antagonists act by stopping acid secretion and may not relieve symptoms for at least 45 minutes
- Antacids more quickly and efficiently neutralize secreted acid already in the stomach, but their action is only temporary
- PPIs are now used preferentially in the treatment of GERD

- The dosage of all these drugs must be decreased in patients with hepatic or renal failure
- Cimetidine can interfere in the metabolism of many drugs
- Cimetidine inhibits CYP450 and can slow metabolism and potentiate the action of several drugs resulting in serious adverse effects





- Adverse effects:
  - Headache
  - Dizziness
  - Diarrhea
  - Muscular pain
  - Cimetidine can also have endocrine effects because it acts as a nonsteroidal antiandrogen
    - These effects include gynecomastia, and galactorrhea
- Drugs such as ketoconazole, which depend on an acidic medium for gastric absorption, may not be efficiently absorbed if taken with H<sub>2</sub> receptor antagonists

## Proton pump inhibitors

- Omeprazole (Locid<sup>®</sup>, Losec<sup>®</sup>, Marial<sup>®</sup>, Mepral<sup>®</sup>, Pepticum<sup>®</sup>)
- Esomeprazole (Nexium<sup>®</sup>, Ezomax<sup>®</sup>)
- Lansoprazole (Lanso<sup>®</sup>, Lanton<sup>®</sup>, Zoton<sup>®</sup>)
- Dexlansoprazole
- Pantoprazole (Pantover<sup>®</sup>, Controloc<sup>®</sup>)
- Rabeprazole

## Proton pump inhibitors

- Bind to the H+/K+-ATPase enzyme system (proton pump) of the parietal cell and suppress the secretion of hydrogen ions into the gastric lumen, inhibiting gastric acid secretion
- The membrane-bound proton pump is the final step in the secretion of gastric acid
- More effective than H<sub>2</sub> antagonists in suppressing gastric acid production and healing peptic ulcers

#### PPIs

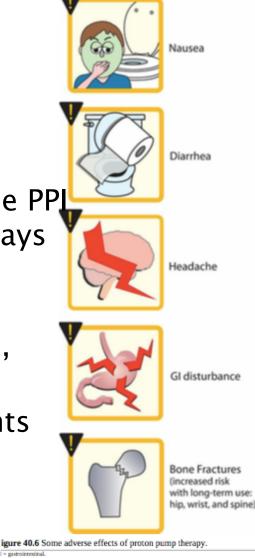
- PPIs are prodrugs with an acid-resistant enteric coating to protect them from premature degradation by gastric acid
- The coating is removed in the alkaline duodenum, and the prodrug is absorbed and transported to parietal cells
- There, it is converted to the active form, which forms a stable covalent bond with H+/K+-ATPase
- It takes about 18 hours for the enzyme to be resynthesized
- At standard doses, all PPIs inhibit both basal and stimulated gastric acid secretion by ~90%

## **PPIs Therapeutic uses**

- The superiority of the PPIs over the H<sub>2</sub> antagonists for suppressing acid production and healing peptic ulcers has made them the preferred drugs for
  - Stress ulcer treatment and prophylaxis
  - $\circ\,$  Treating erosive esophagitis and active duodenal ulcer
  - Long-term treatment of pathologic hypersecretory conditions (e.g. Zollinger-Ellison syndrome, in which a gastrin-producing tumor causes hypersecretion of HCl)

#### **PPIs Therapeutic uses**

- Approved for the treatment of GERD and have gained favor over H<sub>2</sub> antagonists
- PPIs reduce the risk of bleeding from an ulcer caused by aspirin and other NSAIDs
- Used with antimicrobial regimens to eradicate H. pylori


## **PPIs Therapeutic uses**

- PPIs should be taken 30 to 60 minutes before breakfast or the largest meal of the day
- If an H<sub>2</sub>-receptor antagonist is also needed, it should be taken well after the PPI for best effect because the H<sub>2</sub> antagonists will reduce the activity of the proton pump
- In patients with GERD in whom a once-daily PPI is only partially effective, increasing to a twice-daily regimen or keeping the PPI in the morning and adding an H<sub>2</sub> antagonist in the evening may improve symptom control

# **PPIs Adverse Effects**

#### Diarrhea

- Clostridium difficile colitis
  - Patients must be counseled to discontinue PPI therapy if they have diarrhea for several days and to contact their physicians
- Possible increased risk of fractures of the hip, wrist, and spine
  - The greatest risk is associated with patients taking the PPIs for one year or greater



## **PPIs Drug Interactions**

Drug interactions

- Decrease the effectiveness of clopidogrel due to inhibition of CYP2C19
  - Increase risk of cardiovascular events
- Omeprazole inhibits the metabolism of warfarin, phenytoin, diazepam, and cyclosporine through competitive inhibition of CYP450 enzymes
- Prolonged therapy may result in low vitamin B12, because acid is required for its absorption
- Prolonged elevation of gastric pH can cause incomplete absorption of calcium carbonate products

Use calcium citrate as a source of calcium for patients taking protocod acid-suppressing medications

#### Prostaglandins

- Prostaglandin E, produced by the gastric mucosa, inhibits secretion of HCl and stimulates secretion of mucus and bicarbonate (cytoprotective effect)
- A deficiency of prostaglandins is involved in the pathogenesis of peptic ulcers

## Prostaglandins

#### Misoprostol (Cytotec<sup>®</sup>)

- A stable analog of prostaglandin approved for the prevention of gastric ulcers induced by NSAIDs
- Less effective than H<sub>2</sub> antagonists and the PPIs for acute treatment of peptic ulcers
- Has cytoprotective actions, but is clinically effective only at higher doses that diminish gastric acid secretion
- Routine prophylactic use of misoprostol may not be justified except in patients who are taking NSAIDs and are at high risk of NSAID-induced ulcers such as elderly patients and those with ulcer complications

# Prostaglandins

- Misoprostol
  - Like other prostaglandins, misoprostol produces uterine contractions, dislodging of the fetus, and is contraindicated during pregnancy
  - Adverse effects: diarrhea and nausea

#### Antacids

- Weak bases that react with gastric acid to form water and a salt to diminish gastric acidity
- Antacids also reduce pepsin activity because pepsin is inactive at a pH greater than 4

# Antacids

- Aluminum hydroxide
- Magnesium hydroxide
- Calcium carbonate
- Systemic absorption of sodium bicarbonate can produce transient metabolic alkalosis and is not recommended for long-term use
- Food delays stomach emptying allowing more time for the antacid to react

#### Antacids

- Aluminum hydroxide + Magnesium hydroxide (Maalox<sup>®</sup>)
- Calcium carbonate + Magnesium carbonate (Rennie<sup>®</sup>)
- Calcium carbonate (Tums<sup>®</sup>)

# Antacids Therapeutic uses

- Aluminum- and magnesium-containing antacids are used to:
  - Provide symptomatic relief of peptic ulcer disease and GERD
  - Promote healing of duodenal ulcers
  - Used as last-line therapy for acute gastric ulcers
- Calcium carbonate preparations are also used as calcium supplements for the treatment of osteoporosis

# Antacids Adverse effects

- Aluminum hydroxide causes constipation
- Magnesium hydroxide causes diarrhea
- The binding of phosphate by aluminum-containing antacids can lead to hypophosphatemia
- Sodium bicarbonate
  - Can cause systemic alkalosis
  - Liberates CO<sub>2</sub>, causing belching and flatulence
  - The sodium content of antacids can be an important consideration in patients with hypertension or congestive heart failure

- Cytoprotective compounds
- Enhance mucosal protection mechanisms, preventing mucosal injury, reducing inflammation, and healing existing ulcers.
  - Sucralfate (Ulsanic<sup>®</sup>)
  - Bismuth subsalicylate (Pink Bismuth<sup>®</sup>, Kalbeten<sup>®</sup>)

Sucralfate

- A complex of aluminum hydroxide and sulfated sucrose
- Binds to positively charged groups in proteins of both normal and necrotic mucosa
- Forms complex gels with epithelial cells creating a physical barrier that impairs diffusion of HCl and prevents degradation of mucus by pepsin and acid
- > Stimulates prostaglandin release, mucus and bicarbonate output
- Inhibits peptic digestion

- By these mechanisms, sucralfate effectively heals duodenal ulcers and is used in long-term maintenance therapy to prevent their recurrence
- Does not prevent NSAID-induced ulcers, and does not heal gastric ulcers

Sucralfate

- Requires an acidic pH for activation and should not be administered with PPIs, H<sub>2</sub> antagonists, or antacids
- Little of the drug is absorbed systemically
- Very well tolerated, but it can interfere with the absorption of other drugs by binding to them

Bismuth subsalicylate

- Effectively heals peptic ulcers
- Has antimicrobial actions
- Inhibits the activity of pepsin
- Increases secretion of mucus, and interact with glycoproteins in necrotic mucosal tissue to coat and protect the ulcer crater

- Nausea and vomiting may occur in a variety of conditions (motion sickness, pregnancy, and hepatitis) and are always unpleasant for the patient
- The nausea and vomiting produced by many chemotherapeutic agents demands especially effective management
- 70% -80% percent of all patients who undergo chemotherapy experience nausea or vomiting

- Several factors influence the incidence and severity of chemotherapy-induced emesis including
  - The specific chemotherapeutic drug
  - The dose
  - Route and schedule of administration
  - Patient variables
    - Young patients and women are more susceptible than older patients and men

| Carmustine       |                      |
|------------------|----------------------|
| Cisplatin        |                      |
| Dacarbazine      |                      |
| Dactinomycin     |                      |
| Mechlorethamine  |                      |
| Streptozocin     |                      |
|                  |                      |
| Asparaginase     |                      |
| Azacytidine      |                      |
| Carboplatin      |                      |
| Cyclophosphamide |                      |
| Doxorubicin      |                      |
| Mitomycin        |                      |
| miningen         |                      |
| Bleomycin        |                      |
| Etoposide        |                      |
| Fluorouracii     |                      |
| Methotrexate     |                      |
| Vincristine      |                      |
|                  | Mild Moderate Strong |
|                  | EMETIC POTENTIAL     |
|                  |                      |

- 10% 40% of patients experience nausea or vomiting in anticipation of their chemotherapy (anticipatory vomiting)
- Emesis not only affects the quality of life but can also lead to rejection of potentially curative antineoplastic treatment
- Uncontrolled vomiting can produce dehydration, profound metabolic imbalances, and nutrient depletion

- Nausea and vomiting may occur in a variety of conditions (motion sickness, pregnancy, and hepatitis) and are always unpleasant for the patient
- The nausea and vomiting produced by many chemotherapeutic agents demands especially effective management
- 70% -80% percent of all patients who undergo chemotherapy experience nausea or vomiting

# Mechanisms that trigger vomiting

- Two brainstem sites have key roles in the vomiting reflex pathway
  - Chemoreceptor trigger zone
    - Found outside the blood-brain barrier, thus can respond directly to chemical stimuli in the blood or CSF
  - The vomiting center
    - Located in the lateral reticular formation of the medulla
    - Coordinates the motor mechanisms of vomiting
    - Responds to afferent input from the vestibular system, the periphery (pharynx and gastrointestinal tract), and higher brainstem and cortical structures
      - The vestibular system functions mainly in motion sickness

# Emetic actions of chemotherapeutic agents

- Chemotherapeutic agents can activate the medullary chemoreceptor trigger zone, or vomiting center
- Several neuroreceptors, including dopamine receptor Type 2 (D<sub>2</sub>) and serotonin Type 3 (5-HT<sub>3</sub>), play critical roles
- The color or smell of chemotherapeutic drugs and even stimuli associated with chemotherapy can activate higher brain centers and trigger emesis
- Chemotherapeutic drugs can also act peripherally by causing cell damage in the GI tract and releasing serotonin from the enterochromaffin cells of the small intestinal mucosa
- The released serotonin activates 5-HT<sub>3</sub> receptors on vagal and splanchnic afferent fibers, which then carry sensory signals to the medulla, leading to the emetic response

- Antiemetics represent a variety of classes with various efficacies
- Anticholinergic drugs like the muscarinic receptor antagonist scopolamine and H1-receptor antagonists, such as dimenhydrinate, meclizine, and cyclizine are very useful in motion sickness but are ineffective against substances that act directly on the chemoreceptor trigger zone

- Scopolamine
- Dimenhydrinate (Dramine<sup>®</sup>)
- Cyclizine
- Meclizine (Meclozine)
  - Meclozine + pyridoxine (Ancozine<sup>®</sup>, Paravomine<sup>®</sup>)

- Phenothiazines
- ▶ 5-HT<sub>3</sub> receptor blockers
- Substituted benzamides
- Butyrophenones
- Benzodiazepines
- Corticosteroids
- Substance P/neurokinin-1 receptor blocker

#### Phenothiazines

- Prochlorperazine
- Act by blocking dopamine receptors
- Effective against low or moderately emetogenic chemotherapeutic agents (e.g. fluorouracil and doxorubicin)
- Side effects:
  - Hypotension and restlessnes (Dose limiting)
  - Extrapyramidal symptoms
  - Sedation

- 5-HT3 receptor blockers
- Ondansetron
- Granisetron
- Palonosetron
- Dolasetron

#### 5-HT<sub>3</sub> receptor blockers

- Important in treating emesis linked with chemotherapy, because of their longer duration of action
- Selectively block 5-HT<sub>3</sub> receptors in the periphery (visceral vagal afferent fibers) and in the brain (chemoreceptor trigger zone)
- Can be administered as a single dose prior to chemotherapy (intravenously or orally)
- Efficacious against all grades of emetogenic therapy
- Extensively metabolized by the liver, doses should be adjusted in patients with hepatic insufficiency
- Side Effects:
  - Headache
  - Electrocardiographic changes, such as a prolonged QT interval, can occur with dolasetron

#### Substituted benzamides

- Metoclopramide (Emistop<sup>®</sup>, Pramin<sup>®</sup>)
- Effective at high doses against the emetogenic cisplatin, preventing emesis in 30%-40% percent of patients and reducing emesis in the majority
- Antidopaminergic side effects like sedation, diarrhea, and extrapyramidal symptoms, limit its high-dose use

#### Butyrophenones

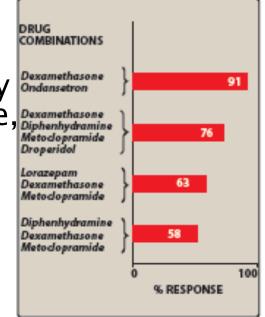
- Droperidol
- Haloperidol
- Act by blocking dopamine receptors
- Moderately effective antiemetics
- Droperodol may prolong the QT interval, and is reserved for patients with inadequate response to other agents
- High-dose haloperidol was found to be nearly as effective as high-dose metoclopramide in preventing cisplatin-induced emesis

#### Benzodiazepines

- Lorazepam (Lorocare<sup>®</sup>, Lorivan<sup>®</sup>)
- Alprazolam (Xanax<sup>®</sup>, Xanagis<sup>®</sup>, Prazolex<sup>®</sup>)
- The antiemetic potency of lorazepam and alprazolam is low
- Their beneficial effects may be due to their sedative, anxiolytic, and amnesic properties
- These same properties make benzodiazepines useful in treating anticipatory vomiting

#### Corticosteroids

- Dexamethasone
- Methylprednisolone
- Effective against mildly to moderately emetogenic chemotherapy
- Most frequently used in combination with other agents
- Their antiemetic mechanism is not known
- Can cause insomnia and hyperglycemia in patients with diabetes mellitus


#### Substance P/neurokinin-1 receptor blocker

- Aprepitant
- Targets the neurokinin receptor in the brain and blocks the actions of the natural substance
- Aprepitant administered orally with dexamethasone and palonosetron
- Undergoes extensive metabolism, primarily by CYP3A4
- Affect the metabolism of other drugs
- Induce CYP3A4

- Concomitant use with warfarin can shorten the its halflife
- Side effects: constipation and fatigue
- Only indicated for highly or moderately emetogenic chemotherapy regimens

#### Combination regimens:

- Antiemetic drugs are often combined to increase antiemetic activity or decrease toxicity
- Corticosteroids, most commonly dexamethasone, increase antiemetic activity when given with high-dose metoclopramide, a 5-HT3 antagonist, phenothiazine, butyrophenone, or a benzodiazepine
- Antihistamines, such as diphenhydramine, are often administered in combination with high-dose metoclopramide to reduce extrapyramidal reactions or with corticosteroids to counter metoclopramide induced diarrhea



- Increased motility of the gastrointestinal tract and decreased absorption of fluid are major factors in diarrhea
- Antidiarrheal drugs used to treat acute diarrhea include
  - Antimotility agents
  - Adsorbents
  - Agents that modify fluid and electrolyte transport

#### Antimotility agents

- Diphenoxylate
- Loperamide (Diacare<sup>®</sup>, Imodium<sup>®</sup>)
- Both are analogs of meperidine and have opioid-like actions on the gut
- Activate presynaptic opioid receptors in the enteric nervous system to inhibit acetylcholine release and decrease peristalsis
- > At the usual doses, they lack analgesic effects
- Side effects: drowsiness, abdominal cramps, and dizziness
- Contribute to toxic megacolon and should not be used in young children or in patients with severe colitis

#### Adsorbents

- Aluminum hydroxide
- Methylcellulose
- Used to control diarrhea
- Act by adsorbing intestinal toxins or microorganisms and/or by coating or protecting the intestinal mucosa
- Much less effective than antimotility agents and
- Can interfere with the absorption of other drugs

Agents that modify fluid and electrolyte transport

- Bismuth subsalicylate
- Used for traveler's diarrhea
- Decreases fluid secretion in the bowel
- Its action may be due to its salicylate component as well as its coating action
- Adverse effects may include black tongue and black stools

### Constipation

- Common condition caused by
  - Diminished fluid intake
  - Slow motility of waste material through large intestine
  - Certain foods, medications, diseases

- Laxatives are commonly used for constipation to accelerate the movement of food through GIT
- Increase the potential for loss of pharmacologic effect of poorly absorbed, delayed acting, and extended-release oral preparations by accelerating their transit through the intestines
- May cause electrolyte imbalances when used chronically
- All of these drugs, except for the chloride channel activator lubiprostone, have a risk of dependency for the user

- Irritants and stimulants
- Bulk laxatives
- Saline and osmotic laxatives
- Stool softeners (emollient laxatives or surfactants)
- Lubricant laxatives
- Chloride channel activators

- Irritants and stimulants
- Senna
- Bisacodyl
- Castor oil

#### Senna (Laxikal Forte®, Agiolax®)

- Its active ingredient is a group of sennosides, a natural complex of anthraquinone glycosides
- Taken orally, senna causes evacuation of the bowels within 8 to 10 hours
- Also causes water and electrolyte secretion into the bowel
- In combination products with a docusate-containing stool softener, it is useful in treating opioid-induced constipation

#### Bisacodyl (Dilax<sup>®</sup>, Laxadin<sup>®</sup>)

- Potent stimulant of the colon
- $\circ\,$  Acts directly on nerve fibers in the mucosa of the colon
- Adverse effects include abdominal cramps and the potential for atonic colon with prolonged use
- Milk and drugs that may increase the gastric pH, such as antacids, PPIs, and H<sub>2</sub>-receptor antagonists, should not be taken at the same time as the enteric-coated tablets
  - These agents may cause the enteric coating to dissolve prematurely in the stomach, resulting in stomach irritation and pain

#### Castor oil

- Broken down in the small intestine to ricinoleic acid, which is very irritating to the stomach and increases peristalsis
- Pregnant patients should avoid castor oil because it may stimulate uterine contractions

#### **Bulk laxatives**

- The bulk laxatives include hydrophilic colloids (from indigestible parts of fruits and vegetables)
- Form gels in the large intestine, causing water retention and intestinal distension, thereby increasing peristaltic activity
- Similar actions are produced by methylcellulose, psyllium seeds, and bran
- Should be used cautiously in patients who are immobile because of their potential for causing intestinal obstruction

#### Saline and osmotic laxatives

- Magnesium citrate
- Magnesium hydroxide
- Sodium phosphate
  - Nonabsorbable salts that hold water in the intestine by osmosis
  - This distends the bowel, increasing intestinal activity and producing defecation in a few hours
- Electrolyte solutions containing PEG are used as colonic lavage solutions to prepare the gut for radiologic or endoscopic procedures
  - PEG powder for solution is available as a laxative
- Lactulose is a semisynthetic disaccharide sugar that also acts as an osmotic laxative
  - It cannot be hydrolyzed by intestinal enzymes

- Oral doses are degraded in the colon by colonic bacteria into lactic, formic, and acetic acids
- This increases osmotic pressure, causing fluid accumulation, colon distension, soft stools, and defecation

#### Stool softeners (emollient laxatives or surfactants)

- Docusate sodium
- Docusate calcium
- Docusate potassium
- Surface-active agents that become emulsified with the stool produce softer feces and ease passage
- May take days to become effective and are often used for prophylaxis rather than acute treatment

#### Lubricant laxatives

- Include mineral oil and glycerin suppositories
- Act by facilitating the passage of hard stools
- Mineral oil should be taken orally in an upright position to avoid its aspiration and potential for lipid or lipoid pneumonia

#### Chloride channel activators

- Lubiprostone
- Activate chloride channels to increase fluid secretion in the intestinal lumen
  - This eases the passage of stools and causes little change in electrolyte balances
- Used in the treatment of chronic constipation
- Minimal drug-drug interactions because metabolism occurs quickly in the stomach and jejunum
- Side effect: Nausea, Diarrhea