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Applied Biopharmaceutics & Pharmacokinetics > Chapter 7. Pharmacokinetics of Oral Absorption >

PHARMACOKINETICS OF DRUG ABSORPTION

The pharmacokinetics of drugs follow ing intravenous drug administration are more simple to model compared to extravascular

delivery (see , , , , , and ). Extravascular delivery routes, particularly oral dosing, are important and popular means of drug

administration. Unlike intravenous administration, in which the drug is injected directly into the plasma, pharmacokinetic models

after extravascular drug administration must consider systemic drug absorption from the site of administration, eg, the lung, the

gut, etc., into the plasma. Extravascular drug delivery is further complicated by variables at the absorption site, including possible

drug degradation and significant inter- and intrapatient differences in the rate and extent of absorption. Absorption and

metabolic variables are characterized using pharmacokinetic methods. The variability in systemic drug absorption can be

minimized to some extent by proper biopharmaceutical design of the dosage form to provide predictable and reliable drug

therapy (, , and ). The major advantage of intravenous administration is that the rate and extent of systemic drug input is

carefully controlled.

The systemic drug absorption from the gastrointestinal (GI) tract or from any other extravascular site is dependent on (1) the

physicochemical properties of the drug, (2) the dosage form used, and (3) the anatomy and physiology of the absorption site.

Although this chapter w ill focus primarily on oral dosing, the concepts discussed here may be easily extrapolated to other

extravascular routes. For oral dosing, such factors as surface area of the GI tract, stomach-emptying rate, GI mobility, and blood

flow to the absorption site all affect the rate and the extent of drug absorption. In pharmacokinetics, the overall rate of drug

absorption may be described as either a first-order or zero-order input process. Most pharmacokinetic models assume first-order

absorption unless an assumption of zero-order absorption improves the model significantly or has been verified experimentally.

The rate of change in the amount of drug in the body, dD B/dt, is dependent on the relative rates of drug absorption and

elimination (). The net rate of drug accumulation in the body at any time is equal to the rate of drug absorption less the rate of

drug elimination, regardless of whether absorption is zero-order or first-order.

Figure 7-1.

Model of drug absorption and elimination.

Where D GI is amount of drug in the gastrointestinal tract and D E is amount of drug eliminated. A plasma level–time curve

showing drug adsorption and elimination rate processes is given in . During the absorption phase of a plasma level–time curve (),

the rate of drug absorption is greater than the rate of drug elimination. Note that during the absorption phase, elimination

occurs whenever drug is present in the plasma, even though absorption predominates.

Figure 7-2.
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Plasma level–time curve for a drug given in a single oral dose. The drug absorption and elimination phases of the curve are shown.

At the peak drug concentration in the plasma () the rate of drug absorption just equals the rate of drug elimination, and there is

no net change in the amount of drug in the body.

Immediately after the time of peak drug absorption, some drug may still be at the absorption site (ie, in the GI tract or other site

of administration). However, the rate of drug elimination at this time is faster than the rate of absorption, as represented by the

postabsorption phase in .

When the drug at the absorption site becomes depleted, the rate of drug absorption approaches zero, or dD GI/dt = 0. The

plasma level–time curve (now the elimination phase) then represents only the elimination of drug from the body, usually a first-

order process. Therefore, during the elimination phase the rate of change in the amount of drug in the body is described as a

first-order process,

where k is the first-order elimination rate constant.

ZERO-ORDER ABSORPTION MODEL

Zero-order drug absorption from the dosing site into the plasma usually occurs when either the drug is absorbed by a saturable

process or a zero-order controlled-release delivery system is used (see ). The pharmacokinetic model assuming zero-order

absorption is described in . In this model, drug in the gastrointestinal tract, D GI, is absorbed systemically at a constant rate, k 0.

Drug is simultaneously and immediately eliminated from the body by a first-order rate process defined by a first-order rate

constant, k. This model is analogous to that of the administration of a drug by intravenous infusion ().

Figure 7-3.

One-compartment pharmacokinetic model for zero-order drug absorption and first-order drug elimination.

The rate of first-order elimination at any time is equal to D Bk. The rate of input is simply k 0. Therefore, the net change per unit

time in the body can be expressed as
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Integration of this equation w ith substitution of V DC p for D B produces

The rate of drug absorption is constant until the amount of drug in the gut, D GI, is depleted. The time for complete drug

absorption to occur is equal to D GI/k 0. After this time, the drug is no longer available for absorption from the gut, and Equation

7.7 no longer holds. The drug concentration in the plasma subsequently declines in accordance w ith a first-order elimination rate

process.

FIRST-ORDER ABSORPTION MODEL

Although zero-order absorption can occur, absorption is usually assumed to be a first-order process. This model assumes a first-

order input across the gut wall and first-order elimination from the body (). This model applies mostly to the oral absorption of

drugs in solution or rapidly dissolving dosage (immediate release) forms such as tablets, capsules, and suppositories. In

addition, drugs given by intramuscular or subcutaneous aqueous injections may also be described using a first-order process.

Figure 7-4.

One-compartment pharmacokinetic model for first-order drug absorption and first-order elimination.

In the case of a drug given orally, the dosage form first disintegrates if it is given as a solid, then the drug dissolves into the

fluids of the GI tract. Only drug in solution is absorbed into the body. The rate of disappearance of drug from the gastrointestinal

tract is described by

where k a is the first-order absorption rate constant from the GI tract, F is the fraction absorbed, and D GI is the amount of drug

in solution in the GI tract at any time t. Integration of the differential equation (7.8) gives

where D 0 is the dose of the drug.

The rate of drug elimination is described by a first-order rate process for most drugs and is equal to –kD B. The rate of drug

change in the body, dD B/dt, is therefore the rate of drug in, minus the rate of drug out—as given by the differential equation,

Equation 7.10:

where F is the fraction of drug absorbed systemically. Since the drug in the gastrointestinal tract also follows a first-order decline

(ie, the drug is absorbed across the gastrointestinal wall), the amount of drug in the gastrointestinal tract at any time t is equal

to D 0e –k at .

The value of F may vary from 1 for a fully absorbed drug to 0 for a drug that is completely unabsorbed. This equation can be

integrated to give the general oral absorption equation for calculation of the drug concentration (C p) in the plasma at any time t,

as shown below.
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A typical plot of the concentration of drug in the body after a single oral dose is presented in .

Figure 7-5.

Typical plasma level–time curve for a drug given in a single oral close.

The maximum plasma concentration after oral dosing is C max, and the time needed to reach maximum concentration is t max.

The t max is independent of dose and is dependent on the rate constants for absorption (k a) and elimination (k) (Eq. 7.13a). At

C max, sometimes called peak concentration, the rate of drug absorbed is equal to the rate of drug eliminated. Therefore, the net

rate of concentration change is equal to zero. At C max, the rate of concentration change can be obtained by differentiating

Equation 7.12, as follows:

This can be simplified as follows:

As shown in Equation 7.13a, the time for maximum drug concentration, t max, is dependent only on the rate constants k a and k.

In order to calculate C max, the value for t max is determined via Equation 7.13a and then substituted into Equation 7.11, solving

for C max. Equation 7.11 shows that C max is directly proportional to the dose of drug given (D 0) and the fraction of drug

absorbed (F). Calculation of t max and C max is usually necessary, since direct measurement of the maximum drug concentration

may not be possible due to improper timing of the serum samples.

The first-order elimination rate constant may be determined from the elimination phase of the plasma level–time curve (). At later

time intervals, when drug absorption has been completed, ie, e –k at ≈ 0, Equation 7.11 reduces to

Taking the natural logarithm of this expression,

Substitution of common logarithms gives
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With this equation, a graph constructed by plotting log C p versus time w ill yield a straight line w ith a slope of –k/2.3 ().

Figure 7-6.

A. Plasma drug concentration versus time, single oral dose. B. Rate of urinary drug excretion versus time, single oral dose.

With a similar approach, urinary drug excretion data may also be used for calculation of the first-order elimination rate constant.

The rate of drug excretion after a single oral dose of drug is given by

where dD u/dt = rate of urinary drug excretion, k e = first-order renal excretion constant, and F = fraction of dose absorbed.

A graph constructed by plotting dD u/dt versus time w ill yield a curve identical in appearance to the plasma level–time curve for

the drug (). After drug absorption is virtually complete, –e–kat approaches zero, and Equation 7.17 reduces to

Figure 7-7.
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A. Plasma drug concentration versus time, single oral dose. B. Rate of urinary drug excretion versus time, single oral dose.

Taking the natural logarithm of both sides of this expression and substituting for common logarithms, Equation 7.18 becomes

When log (dD u/dt) is plotted against time, a graph of a straight line is obtained w ith a slope of –k/2.3 (). Because the rate of

urinary drug excretion, dD u/dt, cannot be determined directly for any given time point, an average rate of urinary drug excretion

is obtained (see also ), and this value is plotted against the midpoint of the collection period for each urine sample.

To obtain the cumulative drug excretion in the urine, Equation 7.17 must be integrated, as shown below.

A plot of D u versus time w ill give the urinary drug excretion curve described in . When all of the drug has been excreted, at t =

∞. Equation 7.20 reduces to

where D ∞ u is the maximum amount of active or parent drug excreted.

Figure 7-8.
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Cumulative urinary drug excretion versus time, single oral dose. Urine samples are collected at various time periods after the dose. The
amount of drug excreted in each sample is added to the amount of drug recovered in the previous urine sample (cumulative addition). The

total amount of drug recovered after all the drug is excreted is D ∞ u.

Determination of Absorption Rate Constants from Oral Absorption Data

METHOD OF RESIDUALS

Assuming k a >> k in Equation 7.11, the value for the second exponential w ill become insignificantly small w ith time (ie, e –k at ≈

0) and can therefore be omitted. When this is the case, drug absorption is virtually complete. Equation 7.11 then reduces to

Equation 7.22.

From this, one may also obtain the intercept of the y axis ().

where A is a constant. Thus, Equation 7.22 becomes

This equation, which represents first-order drug elimination, w ill yield a linear plot on semilog paper. The slope is equal to –k/2.3.

The value for k a can be obtained by using the method of residuals or a feathering technique, as described in . The value of k a is

obtained by the follow ing procedure:

1. Plot the drug concentration versus time on semilog paper w ith the concentration values on the logarithmic axis ().

2. Obtain the slope of the terminal phase (line BC, ) by extrapolation.

3. Take any points on the upper part of line BC (eg, x'1, x'2, x'3, . . .) and drop vertically to obtain corresponding points on the

curve (eg, x 1, x 2, x 3, . . .).

4. Read the concentration values at x 1 and x'1, x 2 and x'2, x 3 and x'3, and so on. Plot the values of the differences at the

corresponding time points 1, 2, 3, . . . . A straight line w ill be obtained w ith a slope of –k a/2.3 ().

Figure 7-9.
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Plasma level–time curve for a drug demonstrating first-order absorption and elimination kinetics. The equation of the curve is obtained by
the method of residuals.

When using the method of residuals, a minimum of three points should be used to define the straight line. Data points occurring

shortly after t max may not be accurate, because drug absorption is still continuing at that time. Because this portion of the curve

represents the postabsorption phase, only data points from the elimination phase should be used to define the rate of drug

absorption as a first-order process.

If drug absorption begins immediately after oral administration, the residual lines obtained by feathering the plasma level–time

curve (as shown in ) w ill intersect on the y axis at point A. The value of this y intercept, A, represents a hybrid constant

composed of k a, k, V D, and FD 0. The value of A has no direct physiologic meaning (see Eq. 7.23).

The value for A, as well as the values for k and k a, may be substituted back into Equation 7.11 to obtain a general theoretical

equation that w ill describe the plasma level–time curve.

LAG TIME

In some individuals, absorption of drug after a single oral dose does not start immediately, due to such physiologic factors as

stomach-emptying time and intestinal motility. The time delay prior to the commencement of first-order drug absorption is known

as lag time.

The lag time for a drug may be observed if the two residual lines obtained by feathering the oral absorption plasma level–time

curve intersect at a point greater than t = 0 on the x axis. The time at the point of intersection on the x axis is the lag time ().

Figure 7-10.
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The lag time can be determined graphically if the two residual lines obtained by feathering the plasma level–time curve intersect at a point
where t > 0.

The lag time, t 0, represents the beginning of drug absorption and should not be confused w ith the pharmacologic term onset

time, which represents latency, eg, the time required for the drug to reach minimum effective concentration.

Two equations can adequately describe the curve in . In one, the lag time t 0 is subtracted from each time point, as shown in

Equation 7.24.

where Fk aD 0/V D(k a–k) is the y value at the point of intersection of the residual lines in .

The second expression that describes the curve in omits the lag time, as follows:

where A and B represents the intercepts on the y axis after extrapolation of the residual lines for absorption and elimination,

respectively.

FLIP-FLOP OF KA AND K

In using the method of residuals to obtain estimates of k a and k, the terminal phase of an oral absorption curve is usually

represented by k whereas the steeper slope is represented by k a (). In a few cases, the elimination rate constant k obtained

from oral absorption data does not agree w ith that obtained after intravenous bolus injection. For example, the k obtained after

an intravenous bolus injection of a bronchodilator was 1.72 hr– 1, whereas the k calculated after oral administration was 0.7 hr–

1 (). When k a was obtained by the method of residuals, the rather surprising result was that the k a was 1.72 hr– 1.

Figure 7-11.

Flip-flop of k a and k. Because k > k a, the right-hand figure and slopes represent the correct values for k a and k.

Apparently, the k a and k obtained by the method of residuals has been interchanged. This phenomenon is called flip-flop of the

absorption and elimination rate constants. Flip-flop, or the reversal of the rate constants, may occur whenever k a and k are

estimated from oral drug absorption data. Use of computer methods does not ensure against flip-flop of the two constants

estimated.

In order to demonstrate unambiguously that the steeper curve represents the elimination rate for a drug given extravascularly,
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In order to demonstrate unambiguously that the steeper curve represents the elimination rate for a drug given extravascularly,

the drug must be given by intravenous injection into the same patient. After intravenous injection, the decline in plasma drug

levels over time represents the true elimination rate. The relationship between k a and k on the shape of the plasma drug

concentration–time curve for a constant dose of drug given orally is shown in .

Most of the drugs observed to have flip-flop characteristics are drugs w ith fast elimination (ie, k > k a). Drug absorption of most

drug solutions or fast-dissolving products are essentially complete or at least half-complete w ithin an hour (ie, absorption half-

life of 0.5 or 1 hr, corresponding to a k a of 1.38 hr– 1 or 0.69 hr– 1). Because most of the drugs used orally have longer

elimination half-lives compared to absorption half-lives, the assumption that the smaller slope or smaller rate constant (ie, the

terminal phase of the curve in ) should be used as the elimination constant is generally correct.

For drugs that have a large elimination rate constant (k > 0.69 hr– 1), the chance for flip-flop of k a and k is much greater. The

drug isoproterenol, for example, has an oral elimination half-life of only a few minutes, and flip-flop of k a and k has been noted

(). Similarly, salicyluric acid was flip-flopped when oral data were plotted. The k for salicyluric acid was much larger than its k a ().

Many experimental drugs show flip-flop of k and k a, whereas few marketed oral drugs do. Drugs w ith a large k are usually

considered to be unsuitable for an oral drug product due to their large elimination rate constant, corresponding to a very short

elimination half-life. An extended-release drug product may slow the absorption of a drug, such that the k a is smaller than the k

and producing a flip-flop situation.

DETERMINATION OF KA BY PLOTTING PERCENT OF DRUG UNABSORBED VERSUS TIME

(WAGNER–NELSON METHOD)

After a single oral dose of a drug, the total dose should be completely accounted for in the amount present in the body, the

amount present in the urine, and the amount present in the GI tract. Therefore, dose (D 0) is expressed as follows:

Let Ab = D B + D u = amount of drug absorbed and let Ab∞ = amount of drug absorbed at t = ∞. At any given time the fraction of

drug absorbed is Ab/Ab∞, and the fraction of drug unabsorbed is 1 – (Ab/Ab∞). The amount of drug excreted at any time t can be

calculated as

The amount of drug in the body (D B), at any time, = C pV D. At any time t, the amount of drug absorbed (Ab) is

At t = ∞, C ∞ p = 0 (ie, plasma concentration is negligible), and the total amount of drug absorbed is

The fraction of drug absorbed at any time is

The fraction unabsorbed at any time t is

The drug remaining in the GI tract at any time t is

Therefore, the fraction of drug remaining is

Because D GI/D 0 is actually the fraction of drug unabsorbed—that is, 1 – (Ab/Ab∞)—a plot of 1 – (Ab/Ab∞) versus time gives –k

a/2.3 as the slope ().

Figure 7-12.
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Semilog graph of data in , depicting the fraction of drug unabsorbed versus time using the Wagner–Nelson method.

The follow ing steps should be useful in determination of k a:

1. Plot log concentration of drug versus time.

2. Find k from the terminal part of the slope when the slope = –k/2.3.

3. Find [AUC]t 0 by plotting C p versus t.

4. Find k[AUC]t 0 by multiplying each [AUC]t 0 by k.

5. Find [AUC]∞ 0 by adding up all the [AUC] pieces, from t = 0 to t = ∞

6. Determine the 1 – (Ab/Ab∞) value corresponding to each time point t by using .

7. Plot 1 – (Ab/Ab∞) versus time on semilog paper, w ith 1 – (Ab/Ab∞) on the logarithmic axis.

Table 7.1 Blood Concentrations and Associated Data for a Hypothetical Drug

Time tn (hr) Concentration C P ( g/mL)

 
[AUC]t n 

t n–1 

 

[AUC]t 
0 

 

k[AUC]t 
0 

 

C p + k[AUC]t 
0 

 

0 0. 0. 0.    1.000

1 3.13 1.57 1.57 0.157 3.287 0.328 0.672

2 4.93 4.03 5.60 0.560 5.490 0.548 0.452

3 5.86 5.40 10.99 1.099 6.959 0.695 0.305

4 6.25 6.06 17.05 1.705 7.955 0.794 0.205

5 6.28 6.26 23.31 2.331 8.610 0.856 0.140

6 6.11 6.20 29.51 2.951 9.061 0.905 0.095

7 5.81 5.96 35.47 3.547 9.357 0.934 0.066

8 5.45 5.63 41.10 4.110 9.560 0.955 0.045

9 5.06 5.26 46.35 4.635 9.695 0.968 0.032

10 4.66 4.86 51.21 5.121    

12 3.90 8.56 59.77 5.977    

14 3.24 7.14 66.91 6.691    

16 2.67 5.92 72.83 7.283    

18 2.19 4.86 77.69 7.769    

24 1.20 10.17 87.85 8.785    

28 0.81 4.02 91.87 9.187    

32 0.54 2.70 94.57 9.457    

36 0.36 1.80 96.37 9.637    

48 0.10 2.76 99.13 9.913    

k = 0.1 hr– 1

If the fraction of drug unabsorbed, 1 – Ab/Ab∞, gives a linear regression line on a semilog graph, then the rate of drug

absorption, dD GI/dt, is a first-order process. Recall that 1 – Ab/Ab∞ is equal to dD GI/dt ().
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As the drug approaches 100% absorption, C p becomes very small and difficult to assay accurately. Consequently, the terminal

part of the line described by 1 – Ab/Ab∞ versus time tends to become scattered or nonlinear. This terminal part of the curve is

excluded, and only the initial linear segment of the curve is used for the estimate of the slope.

PRACTICE PROBLEM

Drug concentrations in the blood at various times are listed in . Assuming the drug follows a one-compartment model, find the k

a, and compare it w ith the k a value obtained by the method of residuals.

Solution

The AUC is approximated by the trapezoidal rule. This method is fairly accurate when there are sufficient data points. The area

between each time point is calculated as

where C n and C n – 1 are concentrations. For example, at n = 6, the [AUC] is

To obtain [AUC]∞ 0, add all the area portions under the curve from zero to infinity. In this case, 48 hours is long enough to be

considered as infinity, because the blood concentration at that point already has fallen to an insignificant drug concentration, 0.1 

g/mL. The rest of the needed information is given in . Notice that k is obtained from the plot of log C p versus t; k was found to

be 0.1 hr– 1. The plot of 1–(Ab/Ab∞) versus t on semilog paper is shown in .

A more complete method of obtaining the is to estimate the residual area from the last observed plasma concentration, C pn 
at t

n to time equal to infinity. This equation is

The total [AUC]∞ 0 is the sum of the areas obtained by the trapezoidal rule, [AUC]∞ 0, and the residual area [AUC]∞ t , as

described in the follow ing expression:

ESTIMATION OF KA FROM URINARY DATA

The absorption rate constant may also be estimated from urinary excretion data, using a plot of percent of drug unabsorbed

versus time. For a one-compartment model:

The differential of Equation 7.38 w ith respect to time gives

Assuming first-order elimination kinetics w ith renal elimination constant k e,

Assuming a one-compartment model,

Substituting V DC p into Equation 7.39,
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And rearranging Equation 7.40,

Substituting for dC p/dt into Equation 7.41 and kD u/k e for D E,

When the above expression is integrated from zero to time t,

At t = ∞ all the drug that is ultimately absorbed is expressed as Ab∞ and dD u/dt = 0. The total amount of drug absorbed is

where D ∞ u is the total amount of unchanged drug excreted in the urine.

The fraction of drug absorbed at any time t is equal to the amount of drug absorbed at this time, Abt, divided by the total amount

of drug absorbed, Ab∞.

A plot of the fraction of drug unabsorbed, 1 – Ab/Ab∞, versus time gives –k a/2.3 as the slope from which the absorption rate

constant is obtained (; refer to Eq. 7-34).

When collecting urinary drug samples for the determination of pharmacokinetic parameters, one should obtain a valid urine

collection as discussed in . If the drug is rapidly absorbed, it may be difficult to obtain multiple early urine samples to describe the

absorption phase accurately. Moreover, drugs w ith very slow absorption w ill have low concentrations, which may present

analytical problems.

EFFECT OF KA AND K ON CMAX, TMAX, AND AUC

Changes in k a and k may affect t max, C max, and AUC as shown in . If the values for k a and k are reversed, then the same t

max is obtained, but the C max and AUC are different. If the elimination rate constant is kept at 0.1 hr– 1 and the k a changes

from 0.2 to 0.6 hr– 1 (absorption rate increases), then the t max becomes shorter (from 6.93 to 3.58 hr), the C max increases

(from 5.00 to 6.99 g/mL), but the AUC remains constant (100 g hr/mL). In contrast, when the absorption rate constant is kept

at 0.3 hr– 1 and k changes from 0.1 to 0.5 hr– 1 (elimination rate increases), then the t max decreases (from 5.49 to 2.55 hr), the

C max decreases (from 5.77 to 2.79 g/mL), and the AUC decreases (from 100 to 20 g hr/mL). Graphical representations for the

relationships of k a and k on the time for peak absorption and the peak drug concentrations are shown in and .

Table 7.2 Effects of the Absorption Rate Constant and Elimination Ratea

Absorption Rate Constant k a (hr–1)

 

Elimination Rate Constant k (hr–1)
 

t max (hr)

 

C max ( g/mL)

 

AUC ( g hr/mL)

0.1 0.2 6.93 2.50 50

0.2 0.1 6.93 5.00 100

0.3 0.1 5.49 5.77 100

0.4 0.1 4.62 6.29 100

0.5 0.1 4.02 6.69 100

0.6 0.1 3.58 6.99 100

0.3 0.1 5.49 5.77 100

0.3 0.2 4.05 4.44 50

0.3 0.3 3.33 3.68 33.3

0.3 0.4 2.88 3.16 25

0.3 0.5 2.55 2.79 20
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a t max = peak plasma concentration, C max = peak drug concentration, AUC = area under the curve. Values are based on a

single oral dose (100 mg) that is 100% bioavailable (F = 1) and has an apparent V D of 10 L. The drug follows a one-

compartment open model. t max is calculated by Eq. 7.13 and C max is calculated by Eq. 7.11. The AUC is calculated by the

trapezoidal rule from 0 to 24 hours.

Figure 7-13.

Effect of a change in the absorption rate constant, k a, on the plasma drug concentration-versus-time curve. Dose of drug is 100 mg, V D is

10 L, and k is 0.1 hr– 1.

Figure 7-14.

Effect of a change in the elimination rate constant, k, on the plasma drug concentration-versus-time curve. Dose of drug is 100 mg, V D is

10 L, and k a is 0.1 hr– 1.

DETERMINATION OF KA FROM TWO-COMPARTMENT ORAL ABSORPTION DATA (LOO

–RIEGELMAN METHOD)

Plotting the percent of drug unabsorbed versus time to determine the k a may be calculated for a drug exhibiting a two-

compartment kinetic model. As in the method used previously to obtain an estimate of the k a, no limitation is placed on the

order of the absorption process. However, this method does require that the drug be given intravenously as well as orally to

obtain all the necessary kinetic constants.

After oral administration of a dose of a drug that exhibits two-compartment model kinetics, the amount of drug absorbed is

calculated as the sum of the amounts of drug in the central compartment (D p) and in the tissue compartment (D t) and the

amount of drug eliminated by all routes (D u) ().
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amount of drug eliminated by all routes (D u) ().

Figure 7-15.

Two-compartment pharmacokinetic mode. Drug absorption and elimination occur from the central compartment.

Each of these terms may be expressed in terms of kinetics constants and plasma drug concentrations, as follows:

Substituting the above expression for D p and D u into Equation 7.46,

By dividing this equation by V p to express the equation on drug concentrations, we obtain

At t = ∞ this equation becomes

Equation 7.53 divided by Equation 7.54 gives the fraction of drug absorbed at any time.

A plot of the fraction of drug unabsorbed, 1 – Ab/Ab∞, versus time gives –k a/2.3 as the slope from which the value for the

absorption rate constant is obtained (refer to Eq. 7-34).

Cp and k [AUC]t 0 are calculated from a plot of C p versus time. Values for (D t/V p) can be approximated by the Loo–Riegelman

method, as follows:

where C t is D t/V p, or apparent tissue concentration; t = time of sampling for sample n; t n –1 = time of sampling for the

sampling point preceding sample n; and (C p)t n–1 
= concentration of drug at central compartment for sample n – 1.

Calculation of C t values is shown in , using a typical set of oral absorption data. After calculation of C t values, the percent of

drug unabsorbed is calculated w ith Equation 7.54, as shown in . A plot of percent of drug unabsorbed versus time on semilog

graph paper gives a k a of approximately 0.5 hr– 1.

Table 7.3 Calculation of C t Valuesa

(C

p)tn 

(t)tn

 

C p 

 

t
 

(C p)t

n–1 

(k 12/k 21) x (1 – e–k

21 t )

(C p)t n–1 k 12/k 21 x (1 – e–k

21 t )

(C t )t n–1 e
–k

21 t 

(C t

)tn  
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p)tn 

 
   

n–1 

 
21 t )
 

21 t )
 

21 t 

 

)tn  

 

3.00 0.5 3.0 0.5 0.218 0 0.134 0 0 0.218

5.20 1.0 2.2 0.5 0.160 3.00 0.134 0.402 0.187 0.749

6.50 1.5 1.3 0.5 0.094 5.20 0.134 0.697 0.642 1.433

7.30 2.0 0.8 0.5 0.058 6.50 0.134 0.871 1.228 2.157

7.60 2.5 0.3 0.5 0.022 7.30 0.134 0.978 1.849 2.849

7.75 3.0 0.15 0.5 0.011 7.60 0.134 1.018 2.442 3.471

7.70 3.5 –0.05 0.5 –0.004 7.75 0.134 1.039 2.976 4.019

7.60 4.0 –0.10 0.5 –0.007 7.70 0.134 1.032 3.444 4.469

7.10 5.0 –0.50 1.0 –0.073 7.60 0.250 1.900 3.276 5.103

6.60 6.0 –0.50 1.0 –0.073 7.10 0.250 1.775 3.740 5.442

6.00 7.0 –0.60 1.0 –0.087 6.60 0.250 1.650 3.989 5.552

5.10 9.0 –0.90 2.0 –2.261 6.00 0.432 2.592 2.987 5.318

4.40 11.0 –0.70 2.0 –0.203 5.10 0.432 2.203 2.861 4.861

3.30 15.0 –1.10 4.0 –0.638 4.40 0.720 3.168 1.361 3.891

aCalculated with the following rate constants: k 12 = 0.29 hr– 1, k 21 = 0.31– 1.

Adapted with permission from .

Table 7.4 Calculation of Percentage Unabsorbeda

Time (hr) (C p)t n 

 

[AUC]t n 
t n–1 

 

[AUC]t n 
t 0 

 

k[AUC]t n 
t 0 

 

(C t )t n 

 

Ab/V p 

 

%Ab/V p 

 

100% – Ab/V p%

 

0.5 3.00 0.750 0.750 0.120 0.218 3.338 16.6 83.4

1.0 5.20 2.050 2.800 0.448 0.749 6.397 31.8 68.2

1.5 6.50 2.925 5.725 0.916 1.433 8.849 44.0 56.0

2.0 7.30 3.450 9.175 1.468 2.157 10.925 54.3 45.7

2.5 7.60 3.725 12.900 2.064 2.849 12.513 62.2 37.8

3.0 7.75 3.838 16.738 2.678 3.471 13.889 69.1 30.9

3.5 7.70 3.863 20.601 3.296 4.019 15.015 74.6 25.4

4.0 7.60 3.825 24.426 3.908 4.469 15.977 79.4 20.6

5.0 7.10 7.350 31.726 5.084 5.103 17.287 85.9 14.1

6.0 6.60 6.850 38.626 6.180 5.442 18.222 90.6 9.4

7.0 6.00 6.300 44.926 7.188 5.552 18.740 93.1 6.9

9.0 5.10 11.100 56.026 8.964 5.318 19.382 96.3 3.7

11.0 4.40 9.500 65.526 10.484 4.861 19.745 98.1 1.9

15.0 3.30 15.400 80.926 12.948 3.891 20.139 100.0 0

For calculation of the k a by this method, the drug must be given intravenously to allow evaluation of the distribution and

elimination rate constants. For drugs that cannot be given by the IV route, the k a cannot be calculated by the Loo–Riegelman

method. For these drugs, given by the oral route only, the Wagner–Nelson method, which assumes a one-compartment model,

may be used to provide an initial estimate of k a. If the drug is given intravenously, there is no way of knowing whether there is

any variation in the values for the elimination rate constant k and the distributive rate constants k 12 and k 21. Such variations

alter the rate constants. Therefore, a one-compartment model is frequently used to fit the plasma curves after an oral or

intramuscular dose. The plasma level predicted from the k a obtained by this method does deviate from the actual plasma level.

However, in many instances, this deviation is not significant.

CUMULATIVE RELATIVE FRACTION ABSORBED

The fraction of drug absorbed at any time t (Eq. 7.31) may be summed or cumulated for each time period for which a plasma drug

sample was obtained. From Equation 7.31, the term Ab/Ab∞ becomes the cumulative relative fraction absorbed (CRFA).
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where C pt 
is the plasma concentration at time t.

In the Wagner–Nelson equation, Ab/Ab∞ or CRFA w ill eventually equal unity, or 100%, even though the drug may not be 100%

systemically bioavailable. The percent of drug absorbed is based on the total amount of drug absorbed (Ab∞) rather than the

dose D 0. Because the amount of the drug ultimately absorbed, Ab∞, is equal to k[AUC]∞ 0, the numerator w ill always equal the

denominator, whether the drug is 10, 20, or 100% bioavailable. The percent of drug absorbed based on Ab/Ab∞ is therefore

different from the real percent of drug absorbed unless F = 1. However, for the calculation of k a, the method is acceptable.

To determine the real percent of drug absorbed, a modification of the Wagner–Nelson equation was suggested by . A reference

drug product was administered and plasma drug concentrations were determined over time. CRFA was then estimated by

dividing Ab/Ab∞ ref, where Ab is the cumulative amount of drug absorbed from the drug product and Ab∞ ref is the cumulative

final amount of drug absorbed from a reference dosage form. In this case, the denominator of Equation 7.56 is modified as

follows:

where k ref and [AUC]∞ ref are the elimination constant and the area under the curve determined from the reference product.

The terms in the numerator of Equation 7.57 refer to the product, as in Equation 7.56.

Each fraction of drug absorbed is cumulated and plotted against the time interval in which the plasma drug sample was obtained

(). An example of the relationship of CRFA versus time for the absorption of tolazamide from four different drug products is shown

in . The data for were obtained from the serum tolazamide levels–time curves in . The CRFA–time graph provides a visual image

of the relative rates of drug absorption from various drug products. If the CRFA–time curve is a straight line, then the drug was

absorbed from the drug product at an apparent zero-order absorption rate.

Figure 7-16.

Fraction of drug absorbed. (Wagner–Nelson method).

Figure 7-17.
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Mean cumulative relative fractions of tolazamide absorbed as a function of time.

()

Figure 7-18.

Mean serum tolazamide levels as a function of time.

()

SIGNIFICANCE OF ABSORPTION RATE CONSTANTS

The overall rate of systemic drug absorption from an orally administered solid dosage form encompasses many individual rate

processes, including dissolution of the drug, GI motility, blood flow, and transport of the drug across the capillary membranes and

into the systemic circulation. The rate of drug absorption represents the net result of all these processes. The selection of a

model w ith either first-order or zero-order absorption is generally empirical.

The actual drug absorption process may be zero-order, first-order, or a combination of rate processes that is not easily

quantitated. For many immediate-release dosage forms, the absorption process is first-order due to the physical nature of drug

diffusion. For certain controlled-release drug products, the rate of drug absorption may be more appropriately described by a

zero-order rate constant.

The calculation of k a is useful in designing a multiple-dosage regimen. Knowledge of the k a and k allows for the prediction of

peak and trough plasma drug concentrations follow ing multiple dosing. In bioequivalence studies, drug products are given in

chemically equivalent (ie, pharmaceutical equivalents) doses, and the respective rates of systemic absorption may not differ

markedly. Therefore, for these studies, t max, or time of peak drug concentration, can be very useful in comparing the respective

rates of absorption of a drug from chemically equivalent drug products.

FREQUENTLY ASKED QUESTIONS

1. What is the absorption half-life of a drug and how is it determined?

2. When one simulates drug absorption w ith the oral one-compartment model, would a greater absorption rate constant
result in a greater amount of drug absorbed?

3. How do you explain that k a is often greater than k w ith most drugs?

4. Drug clearance is dependent on dose and area under the time–drug concentration curve. Would drug clearance be affected
by the rate of absorption?

5. In sw itching a drug from IV to oral dosing, what is the most important consideration?

LEARNING QUESTIONS

1. Plasma samples from a patient were collected after an oral bolus dose of 10 mg of a new benzodiazepine solution as follows:

Time (hr) Concentration (ng/mL)

0.25 2.85

0.50 5.43

0.75 7.75

1.00 9.84

2.00 16.20

4.00 22.15

6.00 23.01

10.00 19.09

14.00 13.90

20.00 7.97
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From the data above:

a. Determine the elimination constant of the drug.

b. Determine k a by feathering.

c. Determine the equation that describes the plasma drug concentration of the new benzodiazepine.

2. Assuming that the drug in Question 1 is 80% absorbed, find (a) the absorption constant, k a; (b) the elimination half-life, t

1/2; (c) the t max, or time of peak drug concentration; and (d) the volume of distribution of the patient.

3. Contrast the percent of drug-unabsorbed methods for the determination of rate constant for absorption, k a, in terms of (a)

pharmacokinetic model, (b) route of drug administration, and (c) possible sources of error.

4. What is the error inherent in the measurement of k a for an orally administered drug that follows a two-compartment model

when a one-compartment model is assumed in the calculation?

5. What are the main pharmacokinetic parameters that influence (a) time for peak drug concentration and (b) peak drug

concentration?

6. Name a method of drug administration that w ill provide a zero-order input.

7. A single oral dose (100 mg) of an antibiotic was given to an adult male patient (43 years, 72 kg). From the literature, the

pharmacokinetics of this drug fit a one-compartment open model. The equation that best fits the pharmacokinetics of the drug is

From the equation above, calculate (a)t max, (b)C max, and (c)t 1/2 for the drug in this patient. Assume C p is in g/mL and the

first-order rate constants are in hours– 1.

8. Two drugs, A and B, have the follow ing pharmacokinetic parameters after a single oral dose of 500 mg:

Drug k a (hr– 1)

 

k (hr– 1)
 

V D (mL)

 

A 1.0 0.2 10,000

B 0.2 1.0 20,000

Both drugs follow a one-compartment pharmacokinetic model and are 100% bioavailable.

a. Calculate the t max for each drug.

b. Calculate the C max for each drug.

9. The bioavailability of phenylpropanolamine hydrochloride was studied in 24 adult male subjects. The follow ing data represent

the mean blood phenylpropanolamine hydrochloride concentrations (ng/mL) after the oral administration of a single 25-mg dose

of phenylpropanolamine hydrochloride solution.

Time (hr) Concentration (ng/mL) Time (hr) Concentration (ng/mL)

0 0 3 62.98

0.25 51.33 4 52.32

0.5 74.05 6 36.08

0.75 82.91 8 24.88

1.0 85.11 12 11.83

1.5 81.76 18 3.88

2 75.51 24 1.27

a. From the data, obtain the rate constant for absorption, k a, and the rate constant for elimination, k, by the method of

residuals.

b. Is it reasonable to assume that k a > k for a drug in a solution? How would you determine unequivocally which rate

constant represents the elimination constant k?

c. From the data, which method, Wagner–Nelson or Loo–Riegelman, would be more appropriate to determine the order of the
rate constant for absorption?

d. From your values, calculate the theoretical t max. How does your value relate to the observed t max obtained from the

subjects?

e. Would you consider the pharmacokinetics of phenylpropanolamine HCl to follow a one-compartment model? Why?
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