

Homework 4

Bio pharmaceutics & Pharmacokinetics/PHAR434

Instructor Abdullah Rabba

Student name and I.D Muhammad Musleh /1162595

Problem 1:-

Plasma samples from a patient were collected after an oral bolus dose of 10 mg of a new benzodiazepine solution (F=1) as follows:

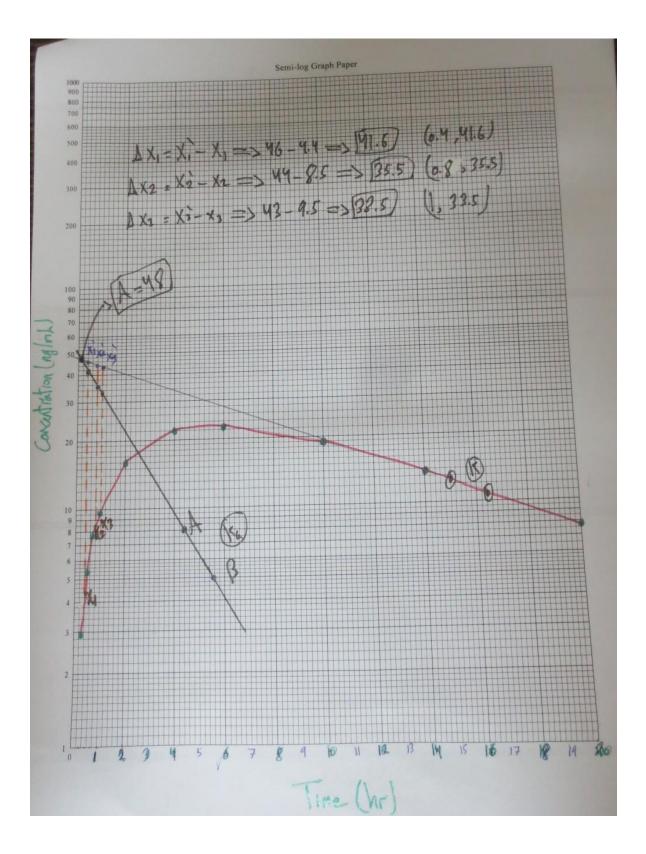
Time (hr)	Concentration (ng/mL)
0.25	2.85
0.50	5.43
0.75	7.75
1.00	9.84
2.00	16.20
4.00	22.15
6.00	23.01
10.00	19.09
14.00	13.90
20.00	7.97

a. Determine the elimination constant of the drug.

b. Determine k_{a} by feathering.

c. Determine the equation that describes the plasma drug concentration of the new benzodiazepine.

d. the elimination half-life, $t_{1/2}$;


e. the t_{max} , or time of peak drug concentration.

f. the volume of distribution of the drug.

Figures: Solution Muhannad / 1162595 6.4 -XA

@ Fron Residual line: X. (0.4, 46) X2 (0.8, 44) X3 (1, 43) X. (0.4, 7.4) X2 (0.8, 8.5) X3 (1, 9.5) AX1=X1-X1=> 41.6 AX2=35.5 AX2=33.5 AX (For y) - Fron Residual line (Take 2 points) A (4.4,8) B (5.8,5) Slope * -2.303 = Ka log ye - log y => F 0.146) x -2.203 = 150 X2 - X1 TA = FKaDo Ka = 1.24) X2 - X1 A=FKaDo [Ka = 0.34] O Equation: - A = 48 y/n1, K= 0.103 h⁻¹, Ka= 0.34 h⁻¹ -0.34+ Cp = A(e - e) => Cp = 48 (e)

F1 = 6.73 h/ $\begin{array}{c} \textcircled{O} \ t_{max} = \ln \left(\frac{k_{a}}{k} \right) = s \ \frac{\ln \left(0.34 / 0.103 \right)}{0.34 - 0.103} = s \ \frac{1.18}{0.2} \\ \end{array}$ trax = 5.02 h. @ A = Fkalo, who F=1, ka= 0.34h, k= 0.103h, Do= long Vo(ka-k) A=48 ng Ini $V_{D} = \frac{F_{X} |k_{A} \times |l_{O}}{A |k_{A} - |c|} = \frac{1 \times 0.34 h^{-} \times |0 \times |0^{6} n_{g}}{M_{B} |n| (0.34 h^{-} - 0.|03 h^{-}]} = \frac{3.4 \times 10^{6}}{11.376}$ => 0.298 ×105 mh => (299 h) [1h=103 n] Vo = 2996

