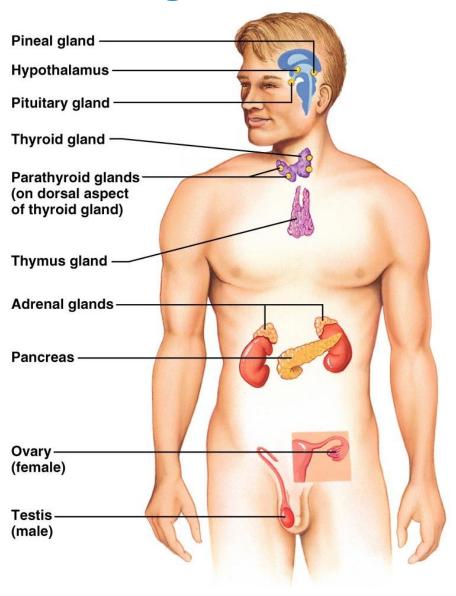


PowerPoint® Lecture Slides prepared by Vince Austin, Bluegrass Technical and Community College


PARTA

The Endocrine System

Endocrine System: Overview

- Endocrine system the body's second great controlling system which influences metabolic activities of cells by means of hormones
- Endocrine glands pituitary, thyroid, parathyroid, adrenal, pineal, and thymus
- The pancreas and gonads produce both hormones and exocrine products
- The hypothalamus has both neural functions and releases hormones

Major Endocrine Organs

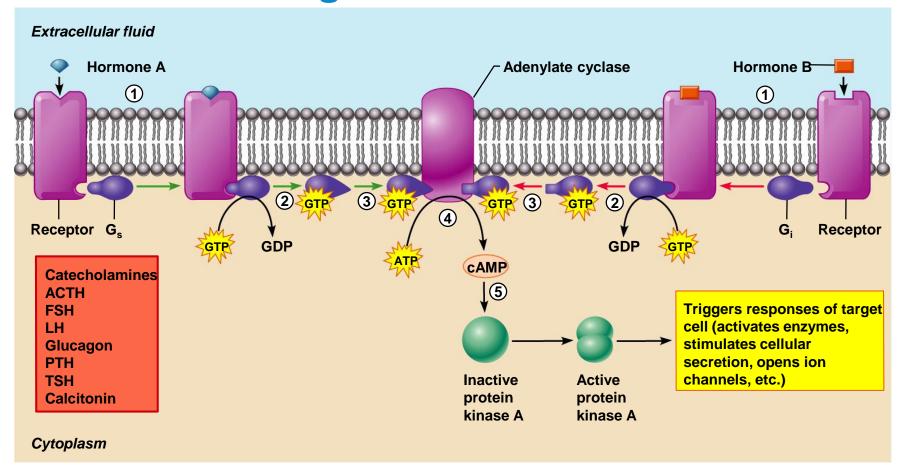
Hormones

- Hormones chemical substances secreted by cells into the extracellular fluids
 - Regulate the metabolic function of other cells
 - Have lag times ranging from seconds to hours
 - Tend to have prolonged effects
 - Are classified as amino acid-based hormones, or steroids

Types of Hormones

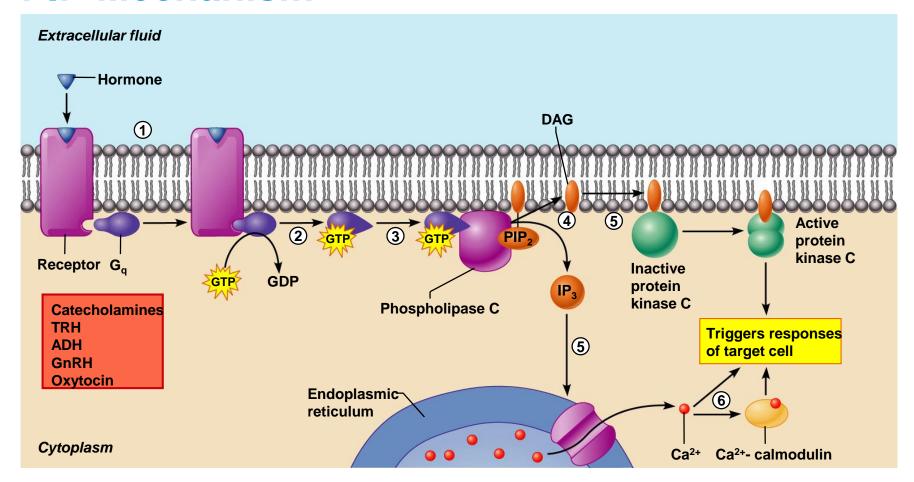
- Amino acid based
 - Amines, thyroxine, peptide, and protein hormones
- Steroids gonadal and adrenocortical hormones

Hormone Action

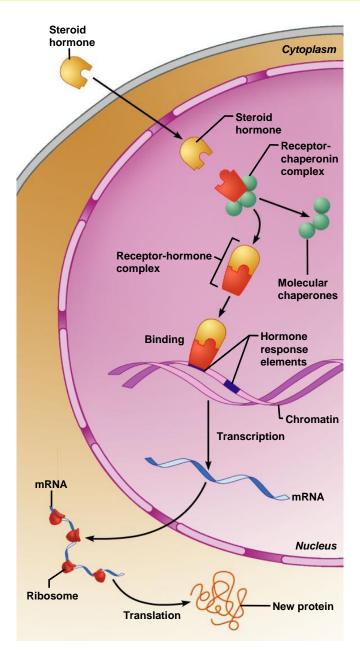

- Hormones alter target cell activity by one of two mechanisms
 - Second messengers:
 - Regulatory G proteins
 - Amino acid—based hormones
 - Direct gene activation
 - Steroid hormones
- The precise response depends on the type of the target cell

Mechanism of Hormone Action

- Hormones produce one or more of the following cellular changes in target cells
 - Alter plasma membrane permeability
 - Stimulate protein synthesis
 - Activate or deactivate enzyme systems
 - Induce secretory activity
 - Stimulate mitosis


Amino Acid-Based Hormone Action: cAMP Second Messenger

Amino Acid-Based Hormone Action: PIP-Calcium


- Hormone binds to the receptor and activates
 G protein
- G protein binds and activates phospholipase
- Phospholipase splits the phospholipid PIP₂ into diacylglycerol (DAG) and IP₃ (both act as second messengers)
- DAG activates protein kinases; IP₃ triggers release of Ca²⁺ stores
- Ca²⁺ (third messenger) alters cellular responses

Amino Acid-Based Hormone Action: PIP Mechanism

Steroid Hormones

- This interaction prompts DNA transcription to produce mRNA
- The mRNA is translated into proteins, which bring about a cellular effect

Target Cell Specificity

- Hormones circulate to all tissues but only activate cells referred to as target cells
- Target cells must have specific receptors to which the hormone binds
- These receptors may be intracellular or located on the plasma membrane

Target Cell Specificity

- Examples of hormone activity
 - ACTH receptors are only found on certain cells of the adrenal cortex
 - Thyroxin receptors are found on nearly all cells of the body

Target Cell Activation

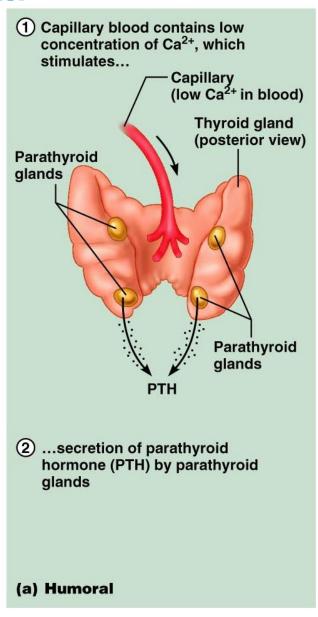
- Target cell activation depends on three factors
 - Blood levels of the hormone
 - Relative number of receptors on the target cell
 - The affinity of those receptors for the hormone
- Up-regulation target cells form more receptors in response to the hormone
- Down-regulation target cells lose receptors in response to the hormone

Hormone Concentrations in the Blood

- Hormones circulate in the blood in two forms free or bound
 - Steroids and thyroid hormone are attached to plasma proteins
- Concentrations of circulating hormone reflect:
 - Rate of release
 - Speed of inactivation and removal from the body
- Hormones are removed from the blood by:
 - Degrading enzymes
 - The kidneys
 - Liver enzyme systems

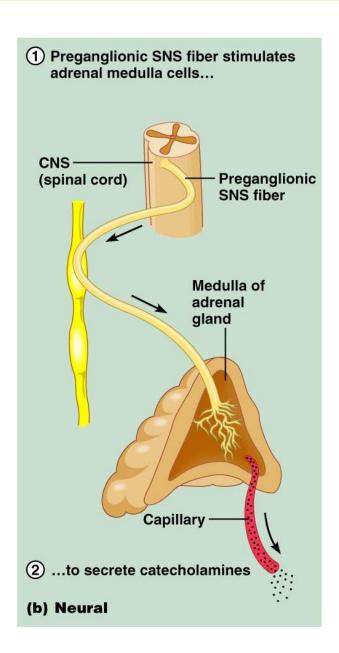
Interaction of Hormones at Target Cells

- Three types of hormone interaction
 - Permissiveness one hormone cannot exert its effects without another hormone being present
 - Synergism more than one hormone produces the same effects on a target cell
 - Antagonism one or more hormones opposes the action of another hormone


Control of Hormone Release

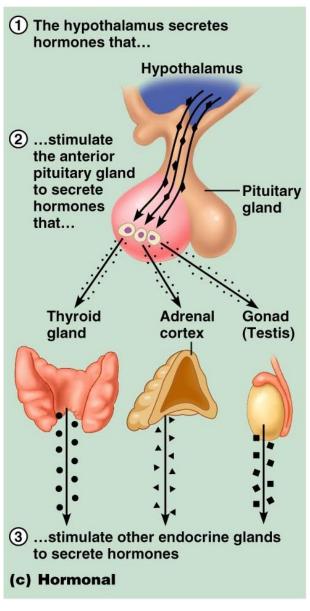
- Blood levels of hormones:
 - Are controlled by negative feedback systems
 - Vary only within a narrow desirable range
- Hormones are synthesized and released in response to:
 - Humoral stimuli
 - Neural stimuli
 - Hormonal stimuli

Humoral Stimuli


- Humoral stimuli secretion of hormones in direct response to changing blood levels of ions and nutrients
- Example: concentration of calcium ions in the blood
 - Declining blood Ca²⁺ concentration stimulates the parathyroid glands to secrete PTH (parathyroid hormone)
 - PTH causes Ca²⁺ concentrations to rise and the stimulus is removed

Humoral Stimuli

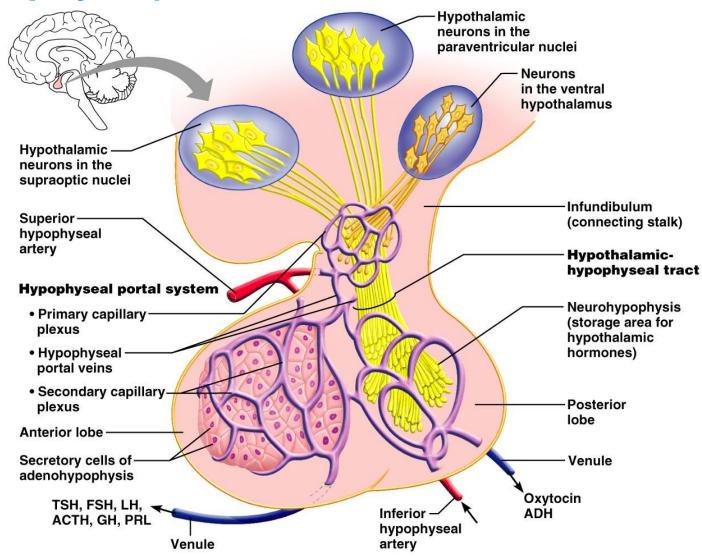
Neural Stimuli


- Neural stimuli nerve fibers stimulate hormone release
 - Preganglionic sympathetic nervous system (SNS) fibers stimulate the adrenal medulla to secrete catecholamines

Hormonal Stimuli

- Hormonal stimuli release of hormones in response to hormones produced by other endocrine organs
 - The hypothalamic hormones stimulate the anterior pituitary
 - In turn, pituitary hormones stimulate targets to secrete still more hormones

Hormonal Stimuli


Nervous System Modulation

- The nervous system can override normal endocrine controls
 - For example, control of blood glucose levels
 - Normally the endocrine system maintains blood glucose
 - Under stress, the body needs more glucose
 - The hypothalamus and the sympathetic nervous system are activated to supply more glucose

Major Endocrine Organs: Pituitary (Hypophysis)

- Pituitary gland two-lobed organ that secretes nine major hormones
- Neurohypophysis posterior lobe (neural tissue) and the infundibulum
 - Receives, stores, and releases hormones from the hypothalamus
- Adenohypophysis anterior lobe, made up of glandular tissue
 - Synthesizes and secretes a number of hormones

Major Endocrine Organs: Pituitary (Hypophysis)

Pituitary-Hypothalamic Relationships: Posterior Lobe

- The posterior lobe is a downgrowth of hypothalamic neural tissue
- Has a neural connection with the hypothalamus (hypothalamic-hypophyseal tract)
- Nuclei of the hypothalamus synthesize oxytocin and antidiuretic hormone (ADH)
- These hormones are transported to the posterior pituitary

Pituitary-Hypothalamic Relationships: Anterior Lobe

- There is a vascular connection, the hypophyseal portal system, consisting of:
 - The primary capillary plexus
 - The hypophyseal portal veins
 - The secondary capillary plexus

InterActive Physiology ®: The Hypothalamic Pituitary Axis

Adenophypophyseal Hormones

- The six hormones of the adenohypophysis:
 - Abbreviated as GH, TSH, ACTH, FSH, LH, and PRL
 - Regulate the activity of other endocrine glands

Activity of the Adenophypophysis

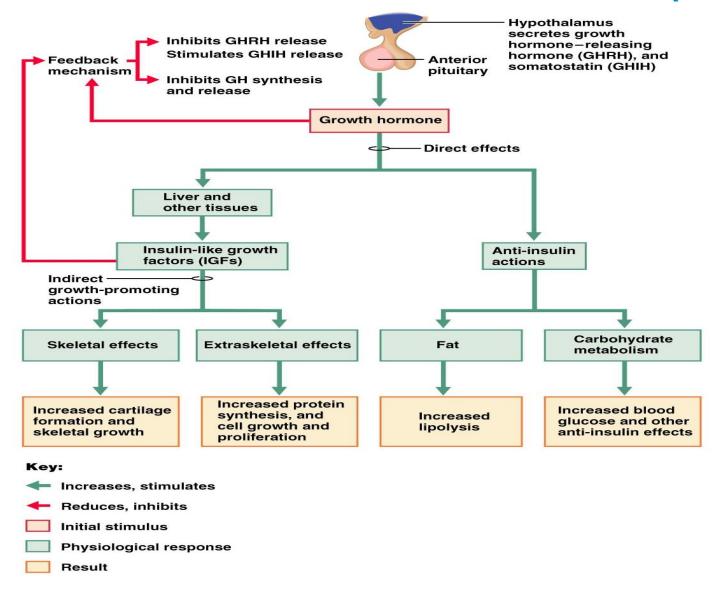
- The hypothalamus sends a chemical stimulus to the anterior pituitary
 - Releasing hormones stimulate the synthesis and release of hormones
 - Inhibiting hormones shut off the synthesis and release of hormones

Activity of the Adenophypophysis

- The tropic hormones that are released are:
 - Thyroid-stimulating hormone (TSH)
 - Adrenocorticotropic hormone (ACTH)
 - Follicle-stimulating hormone (FSH)
 - Luteinizing hormone (LH)

Growth Hormone (GH)

- Produced by somatotropic cells of the anterior lobe that:
 - Stimulate most cells, but target bone and skeletal muscle
 - Promote protein synthesis and encourage the use of fats for fuel
- Most effects are mediated indirectly by somatomedins


Growth Hormone (GH)

- Antagonistic hypothalamic hormones regulate GH
 - Growth hormone—releasing hormone (GHRH) stimulates GH release
 - Growth hormone—inhibiting hormone (GHIH) inhibits GH release

Metabolic Action of Growth Hormone

- GH stimulates liver, skeletal muscle, bone, and cartilage to produce insulin-like growth factors
- Direct action promotes lipolysis and inhibits glucose uptake

Metabolic Action of Growth Hormone (GH)

Thyroid Stimulating Hormone (Thyrotropin)

- Stimulates the normal development and secretory activity of the thyroid
- Triggered by hypothalamic peptide thyrotropinreleasing hormone (TRH)
- Rising blood levels of thyroid hormones act on the pituitary and hypothalamus to block the release of TSH

Adrenocorticotropic Hormone (Corticotropin)

- Stimulates the adrenal cortex to release corticosteroids
- Triggered by hypothalamic corticotropin-releasing hormone (CRH) in a daily rhythm
- Internal and external factors such as fever, hypoglycemia, and stressors can trigger the release of CRH

Gonadotropins

- Gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH)
 - Regulate the function of the ovaries and testes
 - FSH stimulates gamete (egg or sperm) production
 - Absent from the blood in prepubertal boys and girls
 - Triggered by the hypothalamic gonadotropinreleasing hormone (GnRH) during and after puberty

Functions of Gonadotropins

- In females
 - LH works with FSH to cause maturation of the ovarian follicle
 - LH works alone to trigger ovulation (expulsion of the egg from the follicle)
 - LH promotes synthesis and release of estrogens and progesterone

Functions of Gonadotropins

- In males
 - LH stimulates interstitial cells of the testes to produce testosterone
 - LH is also referred to as interstitial cell-stimulating hormone (ICSH)

Prolactin (PRL)

- In females, stimulates milk production by the breasts
- Triggered by the hypothalamic prolactin-releasing hormone (PRH)
- Inhibited by prolactin-inhibiting hormone (PIH)
- Blood levels rise toward the end of pregnancy
- Suckling stimulates PRH release and encourages continued milk production

The Posterior Pituitary and Hypothalamic Hormones

- Posterior pituitary made of axons of hypothalamic neurons, stores antidiuretic hormone (ADH) and oxytocin
- ADH and oxytocin are synthesized in the hypothalamus
- ADH influences water balance
- Oxytocin stimulates smooth muscle contraction in breasts and uterus
- Both use PIP-calcium second-messenger mechanism

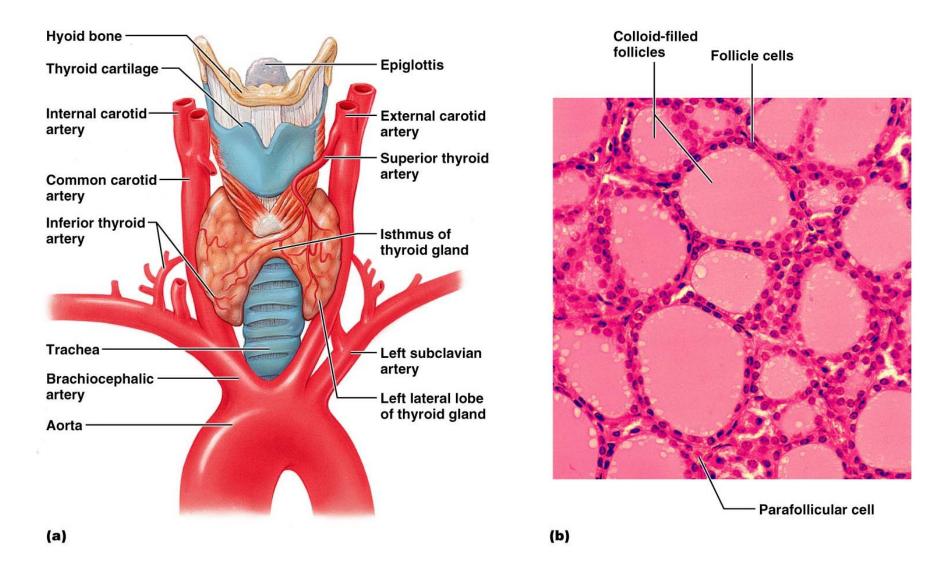
Oxytocin

- Oxytocin is a strong stimulant of uterine contraction
- Regulated by a positive feedback mechanism to oxytocin in the blood
- This leads to increased intensity of uterine contractions, ending in birth
- Oxytocin triggers milk ejection ("letdown" reflex) in women producing milk

Oxytocin

 Synthetic and natural oxytocic drugs are used to induce or hasten (speeds up) labor

Antidiuretic Hormone (ADH)


ADH helps to avoid dehydration or water overload

- Osmoreceptors monitor the solute concentration of the blood
- With high solutes, ADH preserves water
- With low solutes, ADH is not released, thus causing water loss
- Alcohol inhibits ADH release and causes copious urine output

Thyroid Gland

- The largest endocrine gland, located in the anterior neck, consists of two lateral lobes connected by a median tissue mass called the isthmus
- Composed of follicles that produce the glycoprotein thyroglobulin
- Colloid (thyroglobulin + iodine) fills the lumen of the follicles and is the precursor of thyroid hormone
- Other endocrine cells, the parafollicular cells, produce the hormone calcitonin

Thyroid Gland

Thyroid Hormone

- Thyroid hormone major metabolic hormone
- Consists of two related iodine-containing compounds
 - T₄ thyroxine; has two tyrosine molecules plus four bound iodine atoms
 - T₃ triiodothyronine; has two tyrosines with three bound iodine atoms

Effects of Thyroid Hormone

- TH is concerned with:
 - Glucose oxidation
 - Increasing metabolic rate
 - Heat production
- TH plays a role in:
 - Maintaining blood pressure
 - Regulating tissue growth
 - Developing skeletal and nervous systems
 - Maturation and reproductive capabilities

Synthesis of Thyroid Hormone

- Thyroglobulin is synthesized and discharged into the lumen
- Iodides (I⁻) are actively taken into the cell, oxidized to iodine (I₂), and released into the lumen
- Iodine attaches to tyrosine, mediated by peroxidase enzymes, forming T₁ (monoiodotyrosine, or MIT), and T₂ (diiodotyrosine, or DIT)

Synthesis of Thyroid Hormone

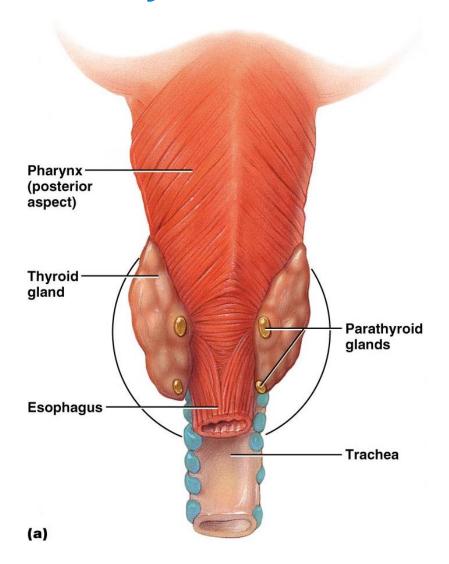
- Iodinated tyrosines link together to form T_3 and T_4
- Colloid is then endocytosed and combined with a lysosome, where T₃ and T₄ are cleaved and diffuse into the bloodstream

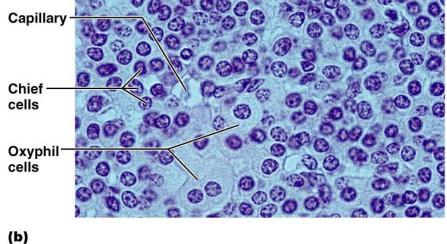
Transport and Regulation of TH

- T₄ and T₃ bind to thyroxine-binding globulins (TBGs)
 produced by the liver
- Both bind to target receptors, but T_3 is ten times more active than T_4
- Peripheral tissues convert T₄ to T₃
- Mechanisms of activity are similar to steroids
- Regulation is by negative feedback
- Hypothalamic thyrotropin-releasing hormone (TRH) can overcome the negative feedback

Calcitonin

- A peptide hormone produced by the parafollicular, or C, cells
- Lowers blood calcium levels in children
- Antagonist to parathyroid hormone (PTH)

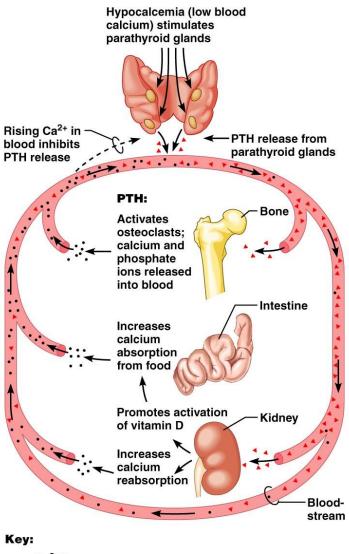

Calcitonin


- Calcitonin targets the skeleton, where it:
 - Inhibits osteoclast activity (and thus bone resorption) and release of calcium from the bone matrix
 - Stimulates calcium uptake and incorporation into the bone matrix
- Regulated by a humoral (calcium ion concentration in the blood) negative feedback mechanism

Parathyroid Glands

- Tiny glands embedded in the posterior aspect of the thyroid
- Cells are arranged in cords containing oxyphil and chief cells
- Chief (principal) cells secrete PTH
- PTH (parathormone) regulates calcium balance in the blood

Parathyroid Glands

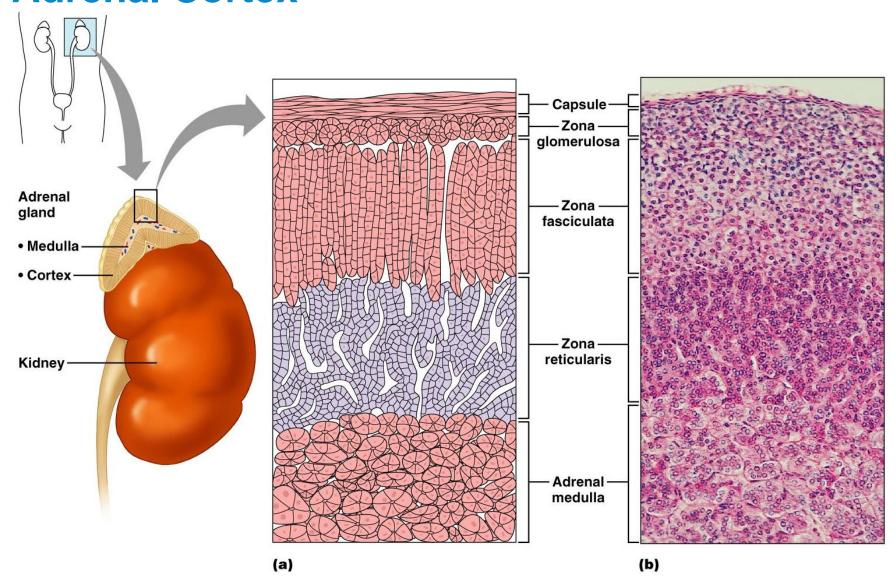


Effects of Parathyroid Hormone

- PTH release increases Ca²⁺ in the blood as it:
 - Stimulates osteoclasts to digest bone matrix
 - Enhances the reabsorption of Ca²⁺ and the secretion of phosphate by the kidneys
 - Increases absorption of Ca²⁺ by intestinal mucosal
- Rising Ca²⁺ in the blood inhibits PTH release

Effects of Parathyroid Hormone

= PTH molecules


Adrenal (Suprarenal) Glands

- Adrenal glands paired, pyramid-shaped organs atop the kidneys
- Structurally and functionally, they are two glands in one
 - Adrenal medulla neural tissue that acts as part of the SNS
 - Adrenal cortex glandular tissue derived from embryonic mesoderm

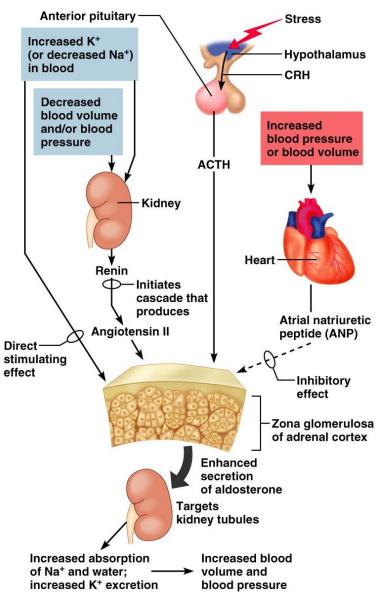
Adrenal Cortex

- Synthesizes and releases steroid hormones called corticosteroids
- Different corticosteroids are produced in each of the three layers
 - Zona glomerulosa mineralocorticoids (chiefly aldosterone)
 - Zona fasciculata glucocorticoids (chiefly cortisol)
 - Zona reticularis gonadocorticoids (chiefly androgens)

Adrenal Cortex

Mineralocorticoids

- Regulate electrolytes in extracellular fluids
- Aldosterone most important mineralocorticoid
 - Maintains Na⁺ balance by reducing excretion of sodium from the body
 - Stimulates reabsorption of Na⁺ by the kidneys


Mineralocorticoids

- Aldosterone secretion is stimulated by:
 - Rising blood levels of K⁺
 - Low blood Na⁺
 - Decreasing blood volume or pressure

The Four Mechanisms of Aldosterone Secretion

- Renin-angiotensin mechanism kidneys release renin, which is converted into angiotensin II that in turn stimulates aldosterone release
- Plasma concentration of sodium and potassium directly influences the zona glomerulosa cells
- ACTH causes small increases of aldosterone during stress
- Atrial natriuretic peptide (ANP) inhibits activity of the zona glomerulosa

Major Mechanisms of Aldosterone Secretion

Glucocorticoids (Cortisol)

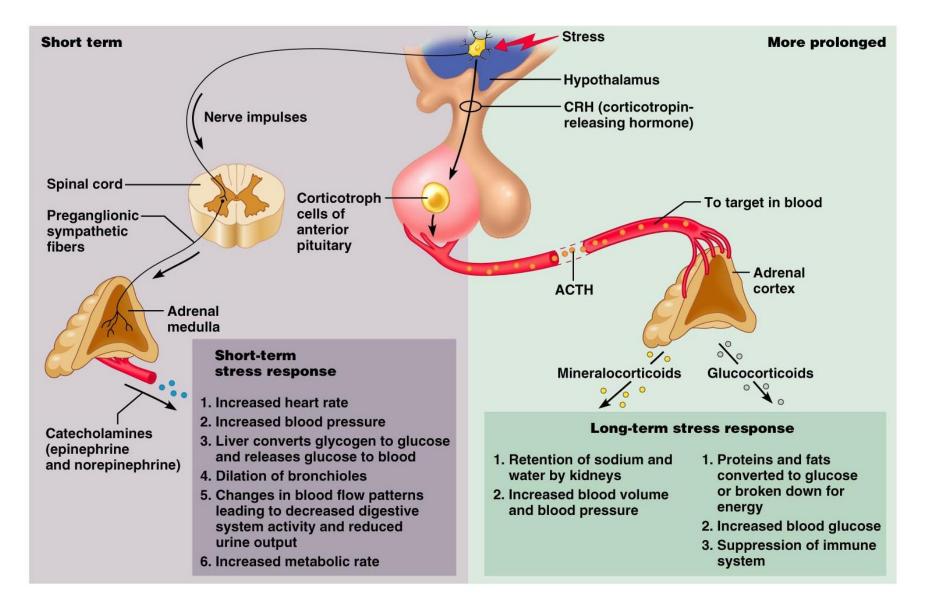
- Help the body resist stress by:
 - Keeping blood sugar levels relatively constant
 - Maintaining blood volume and preventing water shift into tissue
- Cortisol provokes:
 - Gluconeogenesis (formation of glucose from noncarbohydrates)
 - Rises in blood glucose, fatty acids, and amino acids

Excessive Levels of Glucocorticoids

- Excessive levels of glucocorticoids:
 - Depress cartilage and bone formation
 - Inhibit inflammation
 - Depress the immune system
 - Promote changes in cardiovascular, neural, and gastrointestinal function

Gonadocorticoids (Sex Hormones)

- Most gonadocorticoids secreted are androgens (male sex hormones), and the most important one is testosterone
- Androgens contribute to:
 - The onset of puberty
 - The appearance of secondary sex characteristics
 - Sex drive in females
- Androgens can be converted into estrogens after menopause


Adrenal Medulla

- Made up of chromaffin cells that secrete epinephrine and norepinephrine
- Secretion of these hormones causes:
 - Blood glucose levels to rise
 - Blood vessels to constrict
 - The heart to beat faster
 - Blood to be diverted to the brain, heart, and skeletal muscle

Adrenal Medulla

- Epinephrine is the more potent stimulator of the heart and metabolic activities
- Norepinephrine is more influential on peripheral vasoconstriction and blood pressure

Stress and the Adrenal Gland

Other Hormone-Producing Structures

- Heart produces atrial natriuretic peptide (ANP), which reduces blood pressure, blood volume, and blood sodium concentration
- Gastrointestinal tract enteroendocrine cells release local-acting digestive hormones
- Placenta releases hormones that influence the course of pregnancy

Other Hormone-Producing Structures

- Kidneys secrete erythropoietin, which signals the production of red blood cells
- Skin produces cholecalciferol, the precursor of vitamin D
- Adipose tissue releases leptin, which is involved in the sensation of satiety, and stimulates increased energy expenditure