Lehninger **PRINCIPLES of BIOCHEMISTRY**

5| Protein Function

© 2017 W. H. Freeman and Company

Seventh Edition

David L. Nelson Michael M. Cox

CHAPTER 5: Protein Function

Learning goals:

- Methods of binding ligands and proteins
- Quantitative and graphical modeling of protein-ligand interactions
- Interaction of globins with oxygen and non-oxygen ligands
- Physiological regulation of oxygen binding

Functions of Globular Proteins

- Storage of ions and molecules
	- myoglobin, ferritin
- Transport of ions and molecules
	- hemoglobin, glucose transporter
- Defense against pathogens
	- antibodies, cytokines
- Muscle contraction
	- actin, myosin
- Biological catalysis
	- chymotrypsin, lysozyme

Interaction with Other Molecules

- Reversible, transient process of chemical equilibrium: $A + B \npreceq AB$
- A molecule that binds to a protein is called a ligand
	- Typically a small molecule
- A region in the protein where the ligand binds is called the binding site
- Ligand binds via same noncovalent forces that dictate protein structure (see Chapter 4)
	- Allows the interactions to be transient
	- (this is key to life \rightarrow organism can respond quickly and reversibly to changes)

Interaction with Other Molecules

- When ligands bind to proteins, some conformational changes (sometimes quite dramatically) occur permitting tighter binding \rightarrow this is called **induced fit**
	- In multisubunit proteins, a conformational change of one subunit often affects the others (**cooperativity**)
- Enzymes are special kinds of proteins. They bind and transform other molecules. Enzyme ligands are called **substrates**
- The binding site is called **catalytic site (active site)**

Binding: Quantitative Description

• Consider a process in which a ligand (L) binds reversibly to a site in a protein (P)

- The interaction can be described by:
	- the association rate constant k_a or the dissociation rate constant k_d
- After some time, the process will reach the equilibrium where the association and dissociation rates are equal $k_a[P] \cdot [L] = k_d[P]$
- The equilibrium composition is characterized by the equilibrium association constant *K^a* or the equilibrium dissociation constant, K_d

$$
K_a = \frac{[PL]}{[P] \cdot [L]} = \frac{k_a}{k_d} = 1/K_d
$$

Binding:

Analysis in Terms of the Bound Fraction

- In practice, we can often determine the fraction of occupied binding sites (θ)
- Substituting [PL] with $K_a[L][P]$, we'll eliminate [PL]
- Eliminating [P] and rearranging gives the result in terms of equilibrium association constant
- In terms of the more commonly used equilibrium dissociation constant

Protein-Ligand Interactions

- Plotting θ as a function of [L] can give the value of K_a
- At θ = 0.5 \rightarrow [L] = 1/K_a
- Normally we use the **dissociation constant** $(K_d =$ $1/K_a$) $\rightarrow \theta = [L] / [L] + K_d$
- When $[L] > K_d$ by 9 x \rightarrow 90% of sites are occupied
- Note: **↑** *K***^d ↓ affinity of L for P**
- K_d is the molar concentration of ligand at which half *of the binding sites are occupied*
- The more tightly L is bound to P, the lower [L] needed for $\frac{1}{2}$ binding sites to be filled \rightarrow lower value of K_d

Binding: Graphical Analysis

- The fraction of bound sites depends on the free ligand concentration and K_d
- **Experimentally**
	- Ligand concentration is known
	- K_d can be determined graphically

In cells, normally [L] >> binding sites for $L \rightarrow b$ *inding of L to P does not change [L]*

Examples of Binding Strength

Example: Oxygen Binding to Myoglobin

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Specificity: Lock-and-Key Model

- Proteins typically have high specificity: only certain ligands bind
- High specificity can be explained by the complementary of the binding site and the ligand.
- Complementary in
	- size,
	- shape,
	- charge,
	- or hydrophobic/hydrophilic character
- "Lock and Key" model by Emil Fisher (1894) assumes that complementary surfaces are preformed.

$$
\begin{array}{|c|c|c|c|c|}\hline \hspace{.1in} & & \\\hline \hspace{.1in} & & \\\h
$$

Specificity: Induced Fit

- Conformational changes may occur upon ligand binding (Daniel Koshland in 1958)
	- This adaptation is called the induced fit
	- Induced fit allows for tighter binding of the ligand
	- Induced fit allows for high affinity for different ligands
- Both the ligand and the protein can change their conformations

Case Study I: Globins Are Oxygen-Binding Proteins

Biological problems:

- Protein side chains lack affinity for O_2 .
- Some transition metals bind $O₂$ well but would generate free radicals if free in solution.
- Organometallic compounds such as heme are more suitable, but $Fe²⁺$ in free heme could be oxidized to $Fe³⁺$ (very reactive!).

Biological solution:

• Capture the oxygen molecule with heme that is protein bound.

Myoglobin (storage) and hemoglobin (transport) can bind oxygen via a protein-bound heme.

Structures of Porphyrin and Heme

four pyrrole rings linked by methene bridges

The iron atom of heme has six coordination bonds: four in the plane of, and bonded to, the flat porphyrin ring system, and two perpendicular to it

Figure 5-1 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Example: Oxygen Binding to Myoglobin

- Free heme molecules not bound in proteins \rightarrow 2 open coordination bonds
- Reaction of 1 $O₂$ molecule with two hemes will lead to irreversible conversion of $Fe²⁺$ to $Fe³⁺$ which does not bind $O₂$
- This reaction is prevented in heme-containing proteins because one of the coordination bonds is attached to a His side chain and the other is free to bond $O₂$
- When $O₂$ binds, electronic properties of heme changes (color changes from dark purple to bright red)
- CO and NO bind more tightly to heme than $O_2 \rightarrow$ toxic to aerobic organisms

Structure of Myoglobin

• Mb is a single polypeptide of 153 aa and 1 heme molecule

• It is part of a family of proteins called **globins**

• 8 α helices

• His residue coordinated heme is His⁹³ (or His F8)

Binding of Carbon Monoxide

- CO has similar size and shape to O_2 ; it can fit to the same binding site
- CO binds over 20,000 times better than $O₂$ because the carbon in CO has a filled lone electron pair that can be donated to vacant d-orbitals on the $Fe²⁺$
- Protein pocket decreases affinity for CO, but it still binds about 250 times better than oxygen
- CO is highly toxic as it competes with oxygen. It blocks the function of myoglobin, hemoglobin, and mitochondrial cytochromes that are involved in oxidative phosphorylation

CO vs. O² Binding to Free Heme

Figure 5-5ab Lehninger Principles of Biochemistry, Sixth Edition

© 2013 W. H. Freeman and Company

Heme binding to protein affects CO vs. O² binding

When binding to the heme in myoglobin, CO is forced to adopt a slight angle because the perpendicular arrangement is sterically blocked by His E7, the distal His. This effect weakens the binding of CO to myoglobin.

Figure 5-5c Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Spectroscopic Detection of Oxygen Binding to Myoglobin

- The heme group is a strong chromophore that absorbs both in ultraviolet and visible range
- Ferrous form $(Fe²⁺)$ without oxygen has an intense Soret band at 429 nm
- Oxygen binding alters the electronic properties of the heme, and shifts the position of the Soret band to 414 nm
- Binding of oxygen can be monitored by UV-Vis spectrophotometry
- Deoxyhemoglobin (in venous blood) appears purplish in color and oxyhemoglobin (in arterial blood) is red

Could myoglobin transport O₂?

- $po₂$ in lungs is about 13 kPa: it sure binds oxygen well
- $pO₂$ in tissues is about 4 kPa: it will not release it!

Would lowering the affinity (P_{50}) of myoglobin to oxygen help?

For effective transport affinity must vary with pO2

How can affinity to oxygen change?

- Must be a protein with multiple binding sites
- Binding sites must be able to interact with each other
- This phenomenon is called cooperativity
	- positive cooperativity
		- first binding event increases affinity at remaining sites
		- recognized by sigmoidal binding curves
	- negative cooperativity
		- first binding event reduces affinity at remaining sites

Cooperativity

Figure 5-13 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Cooperativity: Quantitative Description

- Cooperative proteins have multiple ligand-binding sites
- $\|P\|_{n}\|$ $=$ • so K_a becomes:
- And θ becomes:

$$
K_a = \frac{\left[\text{P}\right]\left[\text{L}\right]^n}{\left[\text{P}\right]\left[\text{L}\right]^n}
$$

$$
\theta = \frac{\left[\text{L}\right]^n}{\left[\text{P}\right]^n \left[\text{L}\right]^n}
$$

- $n + K$ [L] *d* • Taking the log of both sides gives the Hill Equation: $\log\left(\frac{\theta}{1-\theta}\right) = n \log \left[\text{L}\right] - \log K_d$
	- $-$ n = the Hill Coefficient (the degree of cooperativity)
	- $-n = 1 \rightarrow$ no cooperativity; n>1 \rightarrow +ve coop.; n<1 \rightarrow -ve coop.
	- $-$ **Hill plot:** plotting $\log (\theta / 1 \theta)$ vs. \log [L]. Gives the Hill coefficient (n_H) which measures the degree of cooperativity

The Hill Plot of Cooperativity

Figure 5-14 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Cooperativity is a special case of allosteric regulation

• **Allosteric protein**

- Binding of a ligand (a modulator) to one site affects the binding properties of a different site, on the same protein
- Can be positive or negative
- Homotropic
	- Normal ligand of the protein is the allosteric regulator
- Heterotropic
	- Different ligand affects binding of the normal ligand
- Cooperativity = positive homotropic regulation

Two Models of Cooperativity: Concerted (MWC) vs. Sequential

Each individual subunit can be in either the or form. A very large number of conformations is thus possible

 (a)

 (b)

Hemoglobin binds oxygen cooperatively

- Hemoglobin (Hb) is a tetramer of two subunits (2 α 2 β)
- Each subunit is similar to myoglobin

Figure 5-6 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Hemoglobin binds oxygen cooperatively

- Red blood cells (erythrocytes) are special incomplete cells filled with Hb (and no nucleus or organelles). They are biconcave discs. Their lifespan is 120 days
- In arterial blood (from the lungs), Hb is 96% saturated with O_2 . In venous blood (to the heart and lungs), Hb is $~64\%$
- Mb is insensitive to small changes in $[O_2]$ $(O_2$ storage protein)
- Hb is sensitive to small changes \rightarrow O₂-transport protein (multiple subunits)

Hb Subunits are Similar to Mb

- Hb $(M, 64, 500)$ is spherical
- Tetramer
- 4 heme prosthetic groups
- 2 α chains (141 aa each) and 2 β chains (146 aa each)
- 3D structure of both α and β is similar
- aa sequences of Mb and α and β Hb are identical in 27 positions
- The helix-naming system for Mb is also used for Hb polypeptides
- \bullet Hb α does not have D helix

Sequence Similarity between Hemoglobin and Myoglobin

Hb is a dimer of two $\alpha\beta$ protomers

• 4º structure of Hb shows strong interactions between unlike subunits

- The $\alpha_1\beta_1$ interface (and also $\alpha_2\beta_2$) involve > 30 aa
- The $\alpha_1\beta_2$ interface (and also $\alpha_2\beta_1$) involve 19 aa
- These interfaces make strong interactions \rightarrow mild treatment of Hb with urea breaks the tetramer into $\alpha\beta$ dimers

Subunit Interactions in Hemoglobin

Figure 5-8 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

R and T States of Hemoglobin

- Two major conformations of Hb: **R state** and **T state**
- $O₂$ binds to Hb in either one, but it has higher affinity to R state
- \bullet T = Tense state
	- More interactions, more stable
	- $-$ Lower affinity for $O₂$
- $R = Relaxed state$
	- Fewer Interactions, more flexible
	- $-$ Higher affinity for $O₂$

Hb Changes Structure after O² Binding

- $O₂$ binding stabilizes R state
- T state is more stable when not bound to $O₂$ (deoxyhemoglobin)
- *O² binding to a Hb subunit at the T state converts the subunit to R state*
- Therefore, O_2 binding triggers a $T \rightarrow R$ conformational change
- Conformational change from the T state to the R state involves breaking ion pairs between the α 1- β 2 interface

R and T States of Hemoglobin

© 2008 W.H. Freeman and Company

The transition from the T state to the R state shifts the subunit pairs, affecting certain ion pairs. Most noticeably, the His HC3 residues at the carboxyl termini of the *β* subunits, which are involved in ion pairs in the T state, rotate in the R state toward the center of the molecule, where they are no longer in ion pairs. Another dramatic result of the T → R transition is a narrowing of the pocket between the *β* subunits.

pH Effect on O² Binding to Hemoglobin

- Actively metabolizing tissues generate H⁺, lowering the pH of the blood near the tissues relative to the lungs
- •Hb Affinity for oxygen depends on the pH
	- $-$ H⁺ binds to Hb and stabilizes the T state
		- Protonates His146 which then forms a salt bridge with Asp94
		- Leads to the release of O_2 (in the tissues)
- The pH difference between lungs and metabolic tissues increases efficiency of the O_2 transport
- This is known as the Bohr effect

pH Effect on O² Binding to Hemoglobin

Figure 5-16 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Hemoglobin and CO2 Export

- \bullet CO₂ is produced by metabolism in tissues and must be exported
- 15–20% of $CO₂$ is exported in the form of a carbamate on the amino terminal residues of each of the polypeptide subunits.

– the carbamate forms additional salt bridges stabilizing the T state

• The rest of the $CO₂$ is exported as dissolved bicarbonate

the Bohr Effect

– Formed by carbonic anhydrase, and also producing a proton

2,3-Bisphosphoglycerate regulates O² binding

- Negative heterotropic regulator of Hb function
- Present at mM concentrations in erythrocytes
	- Produced from an intermediate in glycolysis
	- Plays an important role in physiological adaptations for low oxygen concentration (like at high altitudes or in cases of **hypoxia**)
- Small negatively charged molecule, binds to the positively charged central cavity of Hb
- **Stabilizes the T states**

Lehninger Principles of Biochemistry, Sixth Edition 2013 W. H. Freeman and Company

2,3-BPG binds to the central cavity of Hb

Figure 5-18 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

BPG binding stabilizes the T state of deoxyhemoglobin

The binding pocket for BPG disappears on oxygenation

2,3-BPG allows for O² release in the tissues and adaptation to changes in altitude

- \star At sea level, Hb is nearly saturated with O_2 in the lungs
- \star Hb is just over 60% saturated in the tissues
- \star The amount of O₂ released in the tissues is about 38% of the maximum that can be carried in the blood
- \star At high altitudes, O₂ delivery declines to 30% of maximum \star An increase in [BPG] decreases the affinity of Hb for O_2 , so \sim 37% of

Figure 5-17 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Sickle-cell anemia is due to a mutation in hemoglobin

- Sickle-cell disease occurs in individuals *homozygous* for the sickle cell allele of the gene encoding the β subunit of Hb
- When Hb from a sick patient is deoxygenated (Hb S) it aggregates and precipitates (normal Hb, Hb A does not precipitate upon deoxygenation)
- The difference is a single aa substitution Glu6 \rightarrow Val in the β chain of Hb
- The new Val (hydrophobic) side chain can bind to a different Hb molecule to form a strand

- Untreated homozygous individuals generally die in childhood
- Heterozygous individuals exhibit a resistance to malaria

Formation of Hb Strands in Sickle-Cell Anemia

deoxyhemoglobin S has a hydrophobic patch on its surface, which causes the molecules to aggregate into strands that align into insoluble fibers

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Fetal Hemoglobin (HbF)

- The main oxygen transport protein in the fetus during the last seven months of development in the uterus and in the newborn until ~ 6 months old
- 2 α , 2 γ subunits (fewer positive charges than the adult hemoglobin β subunit; 2,3-BPG binds less)
- **Binds O² at a greater affinity that HbA** (adult) \rightarrow fetus can extract O₂ from his/her mother bloodstream easily
- The affinity of HbF for oxygen > that of HbA $(P_{50}$ HbF \sim 2.5 kPa; P₅₀ HbA \sim 3.7 kPa)
- The oxygen saturation curve is shifted to the left for HbF
- HbF does not interact with 2,3-BPG (which decreases the affinity of HbA for oxygen) **HbF binds O² tighter than HbA**

