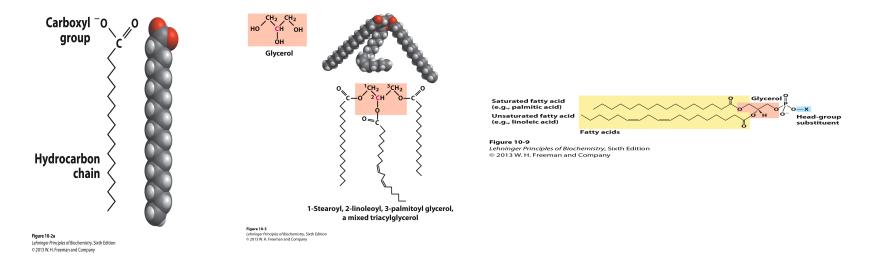
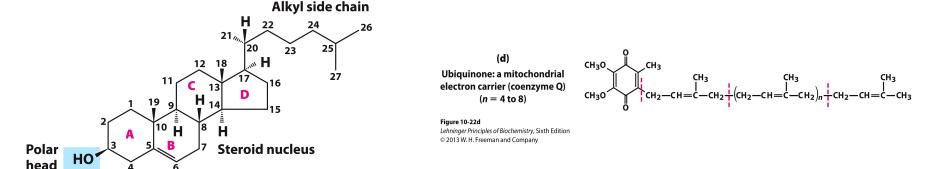

Lehninger


SIXTH EDITION


Principles of Biochemistry

David L. Nelson | Michael M. Cox

Lipids: Structurally Diverse Class

Organic molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.

group

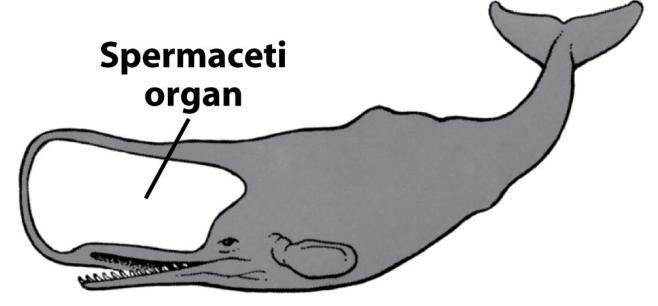
Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Biological Functions of Lipids

Storage of energy

- Reduced compounds: lots of available energy
- Hydrophobic nature: good packing

Insulation from environment


- Low thermal conductivity
- High heat capacity (can "absorb" heat)
- Mechanical protection (can absorb shocks)

Water repellant

- Hydrophobic nature: keeps surface of the organism dry
 - Prevents excessive wetting (birds)
 - Prevents loss of water via evaporation

Buoyancy control and acoustics in marine mammals

- Increased density while diving deep helps sinking (just a hypothesis)
- Spermaceti organ may focus sound energy: sound stun gun?

Box 10-1 *Lehninger Principles of Biochemistry, Fifth Edition*© 2008 W. H. Freeman and Company

- Feeds on squid (in very deep water >1,000m deep)
- Rests quietly waiting (without constant swimming effort)
- In order to do so, its density must be equal to the surrounding water → changes in buoyancy
- Deep sea water is colder than the surface, spermaceti oil freezes (becomes denser) → matching the density of water
- When the whale returns to the surface, the oil warms up and melts decreasing the density to match surface water density

More Functions

Membrane structure

Main structure of cell membranes

Cofactors for enzymes

- Vitamin K: blood clot formation
- Coenzyme Q: ATP synthesis in mitochondria

Signaling molecules

- Paracrine hormones (act locally)
- Steroid hormones (act body-wide)
- Growth factors
- Vitamins A and D (hormone precursors)

Pigments

Color of tomatoes, carrots, pumpkins, some birds

Antioxidants

Vitamin E

Lipids can provide pigment

- ✓ Minor differences in the chemistry of these compounds produce pigments of strikingly different colors
- ✓ Birds obtain the pigments that color their feathers red or yellow by eating plant materials that contain carotenoid pigments (e.g., canthaxanthin and zeaxanthin)
- ✓ The differences in pigmentation between male and female birds are the result of differences in intestinal uptake and processing of carotenoids.

Classification of Lipids

- Based on the structure and function
 - Lipids that do not contain fatty acids: cholesterol, terpenes, ...
 - Lipids that contain fatty acids (complex lipids)
 - can be further separated into:
 - storage lipids and membrane lipids

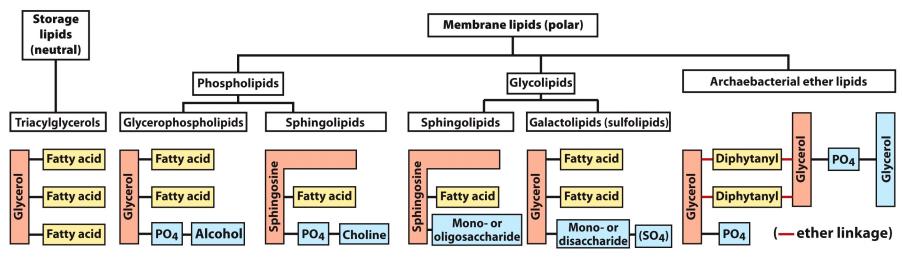


Figure 10-7
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

10.1 Storage Lipids

Derivatives of fatty acids

Fatty acids are hydrocarbon derivatives

Low oxidation state (highly reduced)

Cellular oxidation is highly exergonic

Fatty Acids

- Carboxylic acids with hydrocarbon chains containing between 4 to 36 carbons
- Almost all natural fatty acids have an even number of carbons
- Most natural fatty acids are unbranched
- Saturated: no double bonds between carbons in the chain
- Monounsaturated: one double bond between carbons in the alkyl chain
- Polyunsaturated: more than one double bond in the alkyl chain

Fatty Acid Nomenclature

TABLE 10-1 Some Naturally Occurring Fatty Acids: Structure, Properties, and Nomenclature

Carbon			Common name	Melting	Solubility at 30 °C (mg/g solvent)	
skeleton	Structure*	Systematic name [†]	(derivation)	point (°C)	Water	Benzene
12:0	CH ₃ (CH ₂) ₁₀ COOH	n-Dodecanoic acid	Lauric acid (Latin <i>laurus,</i> "laurel plant")	44.2	0.063	2,600
14:0	CH ₃ (CH ₂) ₁₂ COOH	<i>n</i> -Tetradecanoic acid	Myristic acid (Latin <i>Myristica,</i> nutmeg genus)	53.9	0.024	874
16:0	CH ₃ (CH ₂) ₁₄ COOH	n-Hexadecanoic acid	Palmitic acid (Latin <i>palma</i> ,	63.1	0.0083	348

n-Octadecanoic acid

n-Eicosanoic acid

n-Tetracosanoic acid

cis-9-Hexadecenoic

cis-9-Octadecenoic

Octadecadienoic

cis-,cis-,cis-9,12,15-

cis-5,8,11,14-

Icosatetraenoic

Octadecatrienoic

acid

acid

acid

acid

cis-,cis-,cis-,

cis-,cis-9,12-

"palm tree")

(Greek stear, "hard fat") Arachidic acid

(Latin Arachis, legume genus)

(Latin *lignum*, "wood" + *cera*, "wax")

Lignoceric acid

Palmitoleic acid

Oleic acid (Latin

oleum, "oil")

(Greek linon,

 α -Linolenic acid

Arachidonic acid

Linoleic acid

"flax")

Stearic acid

0.0034

69.6

76.5

86.0

1 to -0.5

13.4

1-5

-11

-49.5

124

18:0

20:0

24:0

16:1(∆9)

18:1(Δ°)

18:2($\Delta^{9,12}$)

18:3($\Delta^{9,12,15}$)

20:4(\(\Delta^{5,8,11,14}\)

CH₃(CH₂)₁₆COOH

CH,(CH,),,COOH

CH,(CH,),,COOH

CH,(CH,),CH=

CH,(CH,),CH=

CH,(CH,),CH=

CH,CH,CH=

CHCH,CH=

CHCH,CH=

CHCH,CH=

CH,(CH,),CH=

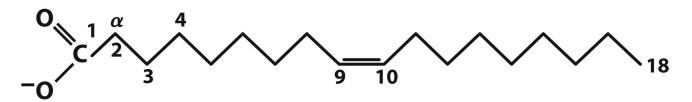
CHCH,CH=

CHCH,CH=

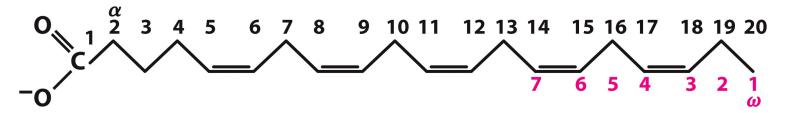
CHCH₂CH= CH(CH₂),COOH

CH(CH₂)₂COOH

CH(CH,),COOH


CH(CH₂),COOH

CH(CH₂),COOH


^{*}All acids are shown in their nonionized form. At pH 7, all free fatty acids have an ionized carboxylate. Note that numbering of carbon atoms begins at the carboxyl carbon.

¹The prefix *n*- indicates the "normal" unbranched structure. For instance, "dodecanoic" simply indicates 12 carbon atoms, which could be arranged in a variety of branched forms; "*n*-dodecanoic" specifies the linear, unbranched form. For unsaturated fatty acids, the configuration of each double bond is indicated; in biological fatty acids the configuration is almost always cis.

Fatty Acid Nomenclature

(a) 18:1(Δ^9) cis-9-Octadecenoic acid

(b) 20:5($\Delta^{5,8,11,14,17}$) Eicosapentaenoic acid (EPA), an omega-3 fatty acid

- (a)Standard nomenclature # 1 to the carboxyl carbon (C-1), and α to the carbon next to it. The position of any double bond(s) is indicated by Δ followed by a superscript number indicating the lower-numbered carbon in the double bond.
- (b)Polyunsaturated fatty acids (PUFAs) nomenclature # 1 to the methyl carbon at the other end of the chain (also designated ω ; the last letter in the Greek alphabet). The positions of the double bonds are indicated relative to the ω carbon.

Omega-3 PUFA

- Omega-3 fatty acids are essential nutrients
 - Humans need them but cannot synthesize one
 - No synthetic pathway in humans to make the ω-3 PUFA α-linolenic acid; 18:3(Δ^{9,12,15}) ALA

- Must be obtained in the diet
 - Including ALA, DHA, and EPA
 - Although DHA and EPA can be synthesized from ALA

• Imbalance in ω -6 and ω -3 leads to an increased risk of cardiovascular disease

Solubility and Melting Point of Fatty Acids

Solubility

decreases as the chain length increases

Melting Point

- decreases as the chain length decreases
- decreases as the number of double bonds increases At room temperature, saturated fatty acids (from 12:0 to 24:0) have a waxy consistency, whereas unsaturated fatty acids of the same lengths are oily liquids

Conformation of Fatty Acids

- The saturated chain tends to adopt extended conformations
- The double bonds in natural unsaturated fatty acids are commonly in cis configuration, which kinks the chain

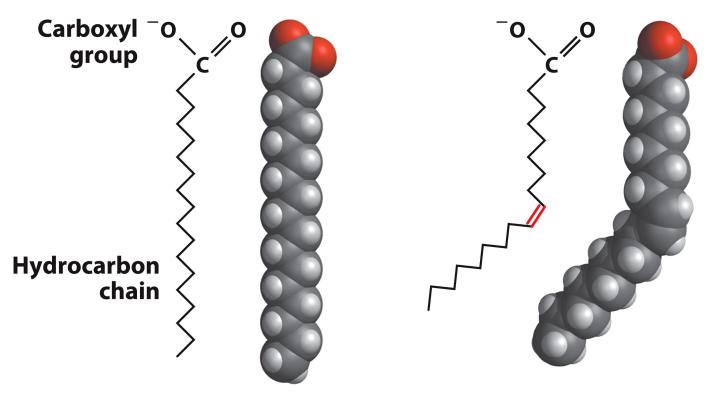
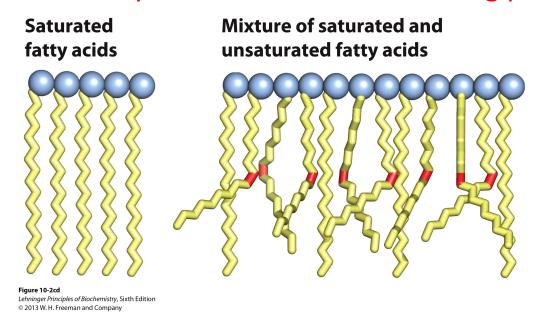



Figure 10-2ab
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Melting Point and Double Bonds

- Saturated fatty acids pack in a fairly orderly way
 - extensive favorable interactions
- Unsaturated cis fatty acid pack less orderly due to the kink
 - less-extensive favorable interactions
- It takes less thermal energy to disrupt disordered packing of unsaturated fatty acids:
 - unsaturated cis fatty acids have a lower melting point

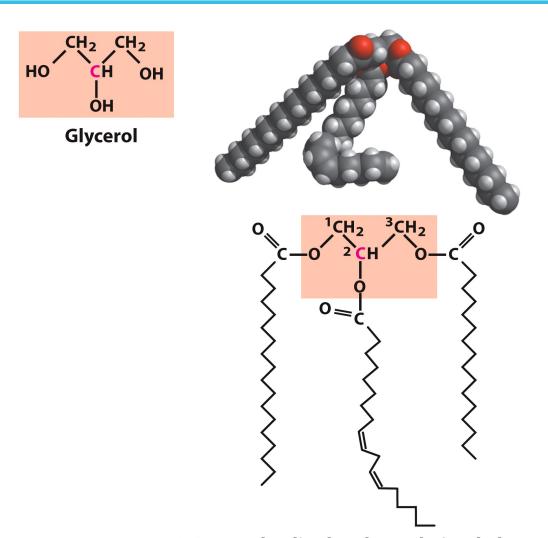
Trans Fatty Acids

- Trans fatty acids form by partial dehydrogenation of unsaturated fatty acids
 - Done to increase shelf life or stability at high temperature of oils used in cooking (especially deep frying)
- A trans double bond allows a given fatty acid to adopt an extended conformation
- Trans fatty acids can pack more regularly and show higher melting points than cis forms
- Consuming trans fats increases risk of cardiovascular disease
 - Avoid deep-frying partially hydrogenated vegetable oils
 - Current trend: reduce trans fats in foods (Wendy's, KFC)

TABLE 10-2

Trans Fatty Acids in Some Typical Fast Foods and Snacks

	Trans fatty acid content			
	In a typical serving (g)	As % of total fatty acids		
French fries	4.7-6.1	28-36		
Breaded fish burger	5.6	28		
Breaded chicken				
nuggets	5.0	25		
Pizza	1.1	9		
Corn tortilla chips	1.6	22		
Doughnut	2.7	25		
Muffin	0.7	14		
Chocolate bar	0.2	2		

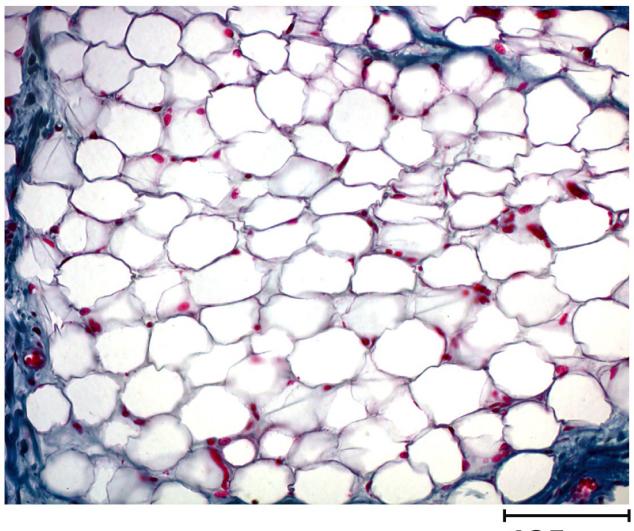

Source: Adapted from Table 1 in Mozaffarian, D., Katan, M.B., Ascherio, P.H., Stampfer, M.J., & Willet, W.C. (2006). Trans fatty acids and cardiovascular disease. *N. Engl. J. Med.* **354**, 1604–1605.

Note: All data for foods prepared with partially hydrogenated vegetable oil in the United States in 2002.

Triacylglycerols (Nonpolar)

- Majority of fatty acids in biological systems are found in the form of triacylglycerols
- Solid ones are called fats
- Liquid ones are called oils
- The primary storage form of lipids (body fat)
- Less soluble in water than fatty acids due to the lack of charged carboxylate group
- Less dense than water: fats and oils float

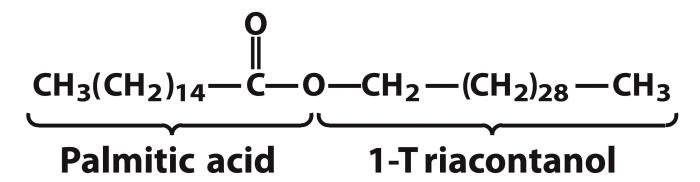
Triacylglycerols


1-Stearoyl, 2-linoleoyl, 3-palmitoyl glycerol, a mixed triacylglycerol

Fats Provide Efficient Fuel Storage

- The advantage of fats over polysaccharides:
 - Fatty acids carry more energy per carbon because they are more reduced
 - Fatty acids carry less water per gram because they are nonpolar

- Glucose and glycogen are for short-term energy needs, quick delivery
- Fats are for long-term (months) energy needs, good storage, slow delivery


Fats Provide Efficient Fuel Storage

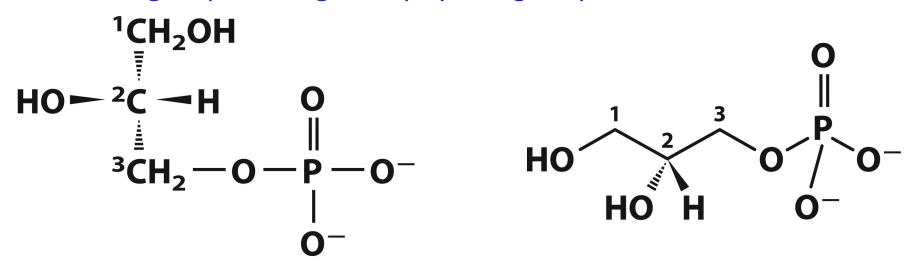
 $125 \, \mu \mathrm{m}$

Waxes

- Waxes are esters of long-chain saturated and unsaturated fatty acids with long-chain alcohols
- Insoluble and have high melting points ~ 60 − 100 °C
- Variety of functions:
 - Storage of metabolic fuel in plankton
 - Protection and pliability for hair and skin in vertebrates
 - Waterproofing of feathers in birds
 - Protection from evaporation in tropical plants and ivy
 - Used by people in lotions, ointments, and polishes

Wax: The Material of the Honeycomb

Beeswax is a mixture of a large number of lipids, including esters of triacontanol, and a long-chain alkane hentiacontane


Figure 10-6b
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Structural Lipids in Membranes (Polar)

- Contain polar head groups and nonpolar tails (usually attached fatty acids)
- Diversification can come from:
 - modifying a different backbone
 - changing the fatty acids
 - modifying the head groups
- The properties of head groups determine the surface properties of membranes
- Different organisms have different membrane lipid head group compositions
- Different tissues have different membrane lipid head group compositions

Glycerophospholipids

- Primary constituents of cell membranes
- Two fatty acids form ester linkages with the first and second hydroxyl groups of L-glycerol-3-phosphate
- Head group is charged at physiological pH

L-Glycerol 3-phosphate (sn-glycerol 3-phosphate)

Figure 10-8

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company Glycerol itself is not chiral.

However, glycerol is **prochiral** – it can be converted to a chiral compound by adding a substituent such as phosphate to either of the $-CH_2OH$ groups.

General Structure of Glycerophospholipids

- Unsaturated fatty acids are commonly found connected to C2
- The highly polar phosphate group may be further esterified by an alcohol; such substituent groups are called the head groups

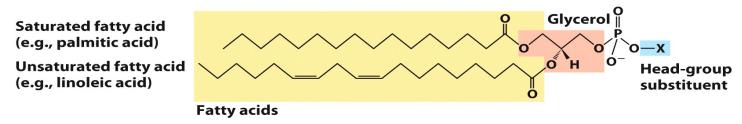
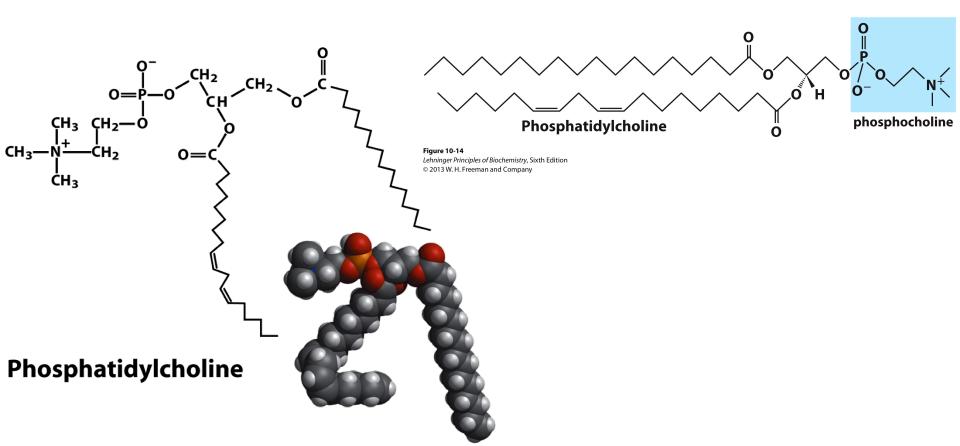


Figure 10-9
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company


Examples of Glycerophospholipids

Name of glycerophospholipid	Name of X — O	Formula of X	Net charge (at pH 7)
Phosphatidic acid	_	— н	-2
Phosphatidylethanolamine	Ethanolamine	NH ₃	0
Phosphatidylcholine	Choline	N -	0
Phosphatidylserine	Serine	H O- NH ₃	-1
Phosphatidylglycerol	Glycerol	но н	-1
Phosphatidylinositol 4,5-bisphosphate	<i>myo-</i> lnositol 4,5- bisphosphate	OH OPO32- OPO33- OH	-4*
Cardiolipin	Phosphatidyl- glycerol	HO H	-2

Figure 10-9
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Phosphatidylcholine

- Phosphatidylcholine is the major component of most eukaryotic cell membranes
- Many prokaryotes, including E. coli, cannot synthesize this lipid; their membranes do not contain phosphatidylcholine

Ether Lipids: Plasmalogen

- Vinyl ether analog of phosphatidylethanolamine
- Common in vertebrate heart tissue
- Also found in some protozoa and anaerobic bacteria
- Function is not well understood
 - Resistant to cleavage by common lipases but cleaved by few specific lipases
 - Increase membrane rigidity?
 - Sources of signaling lipids?
 - May be antioxidants?

Ether Lipids: Plasmalogen

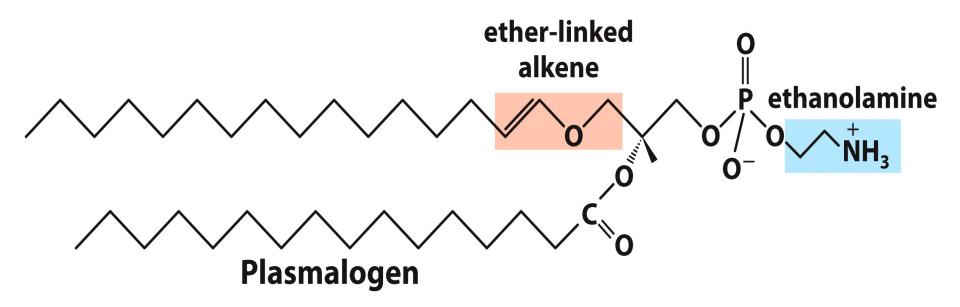
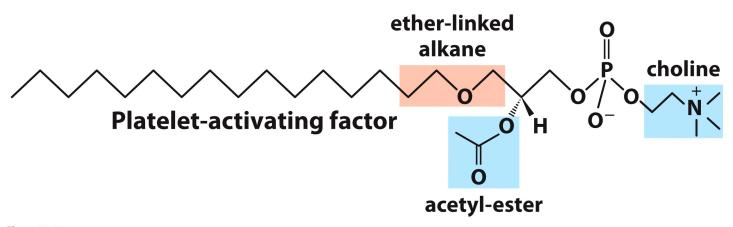



Figure 10-10

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Ether Lipids: Platelets-Activating Factor

- Aliphatic ether analog of phosphatidylcholine
- Acetic acid has esterified position C2
- First signaling lipid to be identified
- Stimulates aggregation of blood platelets
- Plays role in mediation of inflammation

Sphingolipids

- The backbone of sphingolipids is NOT glycerol
- The backbone of sphingolipids is a long-chain amino alcohol sphingosine
- A fatty acid is joined to sphingosine via an amide linkage rather than an ester linkage as usually seen in lipids
- A polar head group is connected to sphingosine by a glycosidic or phosphodiester linkage
- The sugar-containing glycosphingolipids are found largely in the outer face of plasma membranes

Sphingolipids

Ceramide is the parent compound for this group (structurally similar to diacylglycerol).

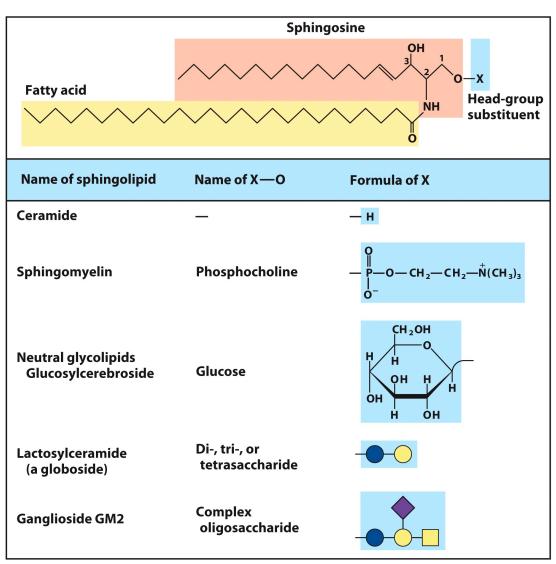
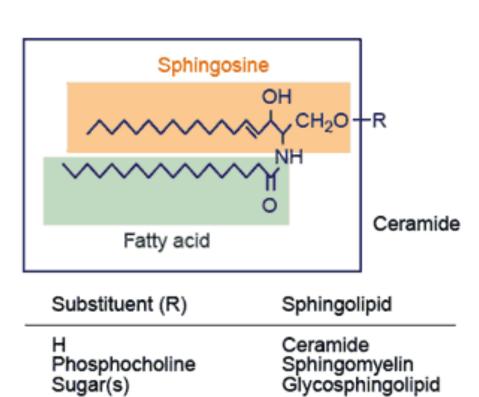



Figure 10-13
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

$$\begin{array}{cccc} \mathsf{CH_2}\!-\mathsf{OH} & & & \mathsf{CH_2}\!-\mathsf{OH} \\ | & & | \\ \mathsf{CH} -\mathsf{OH} & & \mathsf{CH} -\mathsf{NH_2} \\ | & & | \\ \mathsf{CH_2}\!-\mathsf{OH} & & \mathsf{R}\,\mathsf{CH_2}\!-\mathsf{OH} \end{array}$$

glycerol

sphingosine

- J. Stiban, D. Fistere and M. Colombini (2006) Dihydroceramide hinders ceramide channel formation: Implications on apoptosis. Apoptosis. 11(5): 773-780.
 J. Stiban, L. Caputo and M. Colombini (2008) Ceramide synthesis in the
- Lipid Res. 49(3): 625-634.

 3. J. Stiban, L.C. Silva and A.H. Futerman (2008) Ceramide-containing membranes: the interface between biophysics and biology. Trends Glycosci. Glycotech. 20(116):

endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins. J.

297–313.

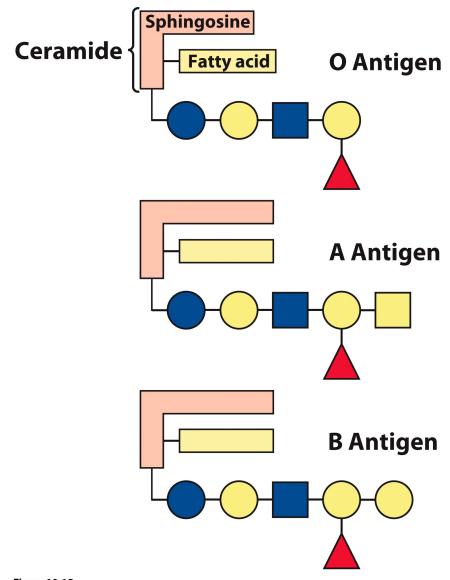
- 4. J. Stiban, R. Tidhar and A.H. Futerman (2009) <u>Ceramide</u> Synthases: Roles in Cell Physiology and Signaling, In: 'Sphingolipids as Signaling and Regulatory Molecules' Landes Bioscience
- 5. Y. Pewzner-Jung Y, H. Park, E.L. Laviad, L.C. Silva, S. Lahiri, J. Stiban, et. al. A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways.(2010) J. Biol. Chem. 285(14): 10902-10910.
- 6. S. Samanta, J. Stiban, T.K. Maugel and M. Colombini (2011) Visualization of ceramide channels by transmission electron microscopy. Biochim. Biophys. Acta Biomembranes 1808(4):1196-1201.
 7. J. Stiban and M. Perera (2015) Very long chain ceramides interfere with C16-ceramide

channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis. *Biochim*.

8. M. Abou-Ghali and J. Stiban (2015) Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J. Biol. Sci. 22(6): 760-772

Sphingomyelin

- Ceramide (sphingosine + amide-linked fatty acid) + phosphocholine attached to the alcohol
- Sphingomyelin is abundant in myelin sheath that surrounds some nerve cells in animals


Figure 10-14
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

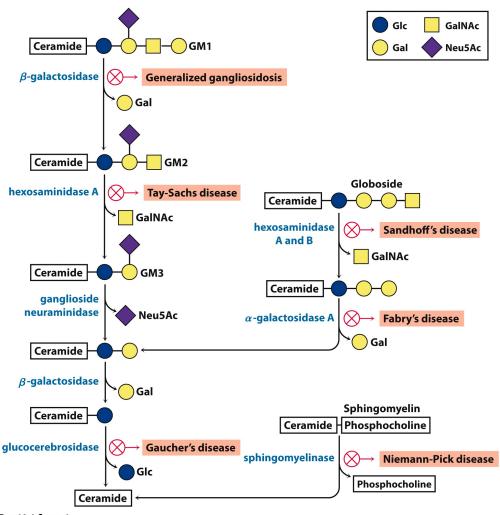
Sphingomyelin is structurally similar to phosphatidylcholine

Glycosphingolipids and Blood Groups

- The blood groups are determined in part by the type of sugars located on the head groups in glycosphingolipids.
- The structure of sugar is determined by an expression of specific glycosyltransferases
 - Individuals with no active glycosyltransferase will have the O antigen
 - Individuals with a glycosyltransferase that transfers an N-acetylgalactosamine group have A blood group
 - Individuals with a glycosyltransferase that transfers a galactose group have B blood group

Glycosphingolipids determine blood groups

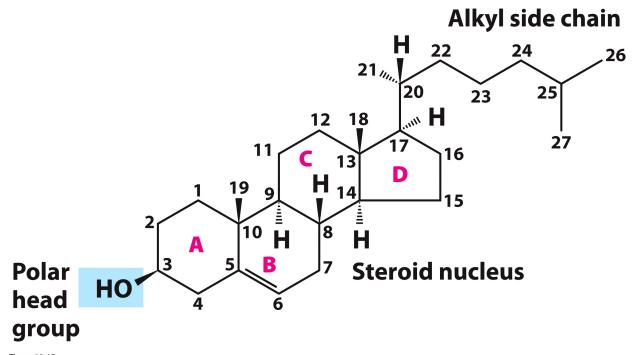
Glc


Gal

GlcNAc

GalNAc

Figure 10-15
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company


Defects in the turnover of membrane lipids lead to a number of diseases

Box 10-1 figure 1 *Lehninger Principles of Biochemistry,* Sixth Edition © 2013 W. H. Freeman and Company

Sterols and Cholesterol

- Sterol
 - Steroid nucleus: four fused rings
 - Hydroxyl group (polar head) in the A-ring
 - Various nonpolar side chains
- The steroid nucleus is almost planar

Physiological Role of Sterols

- Cholesterol and related sterols are present in the membranes of most eukaryotic cells
 - Modulate fluidity and permeability
 - Thicken the plasma membrane
 - Most bacteria lack sterols
- Mammals obtain cholesterol from food or synthesize it de novo in the liver
- Cholesterol, bound to proteins, is transported to tissues via blood vessels
 - Cholesterol in low-density lipoproteins tends to deposit and clog arteries
- Many hormones are derivatives of sterols

Membrane microdomains (rafts) Raft, enriched in sphingolipids, cholesterol **Cholesterol GPI-linked** protein **Outside Inside Doubly Acyl groups** acylated (palmitoyl, **Prenylated** protein Caveolin myristoyl) protein

Figure 11-20a
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Synthesis of cholesteryl esters
Esterification converts

Esterification converts cholesterol to an even more hydrophobic form for storage and transport.

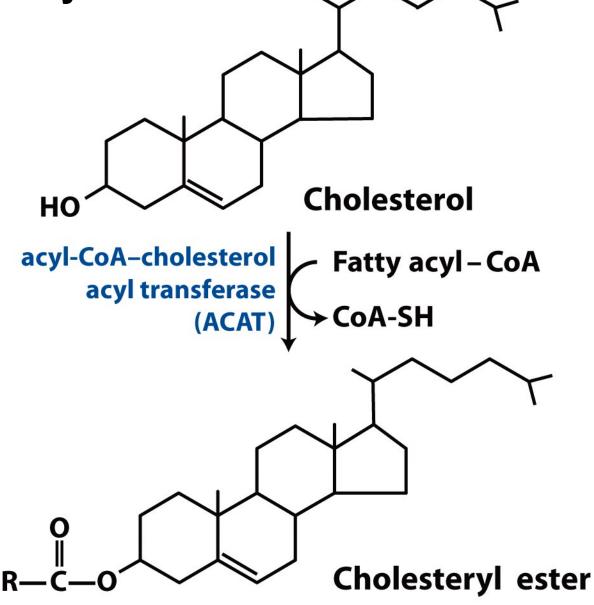
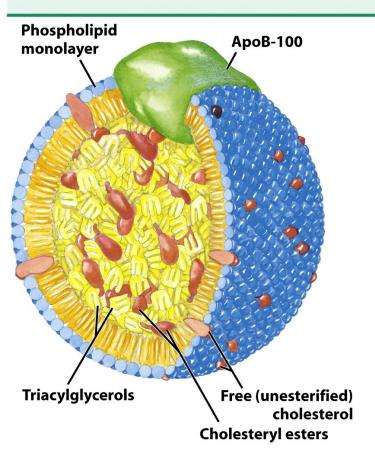
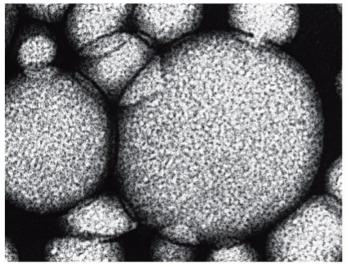


Figure 21-38
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

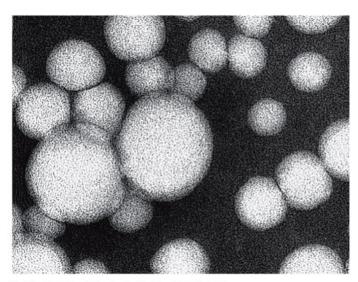
Blood plasma Blood plasma after fast after meal

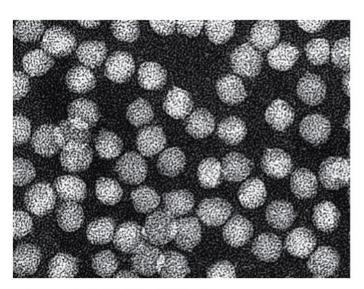

Figure 21-40b

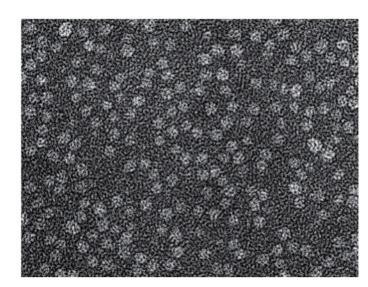
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company


TABLE 21–1

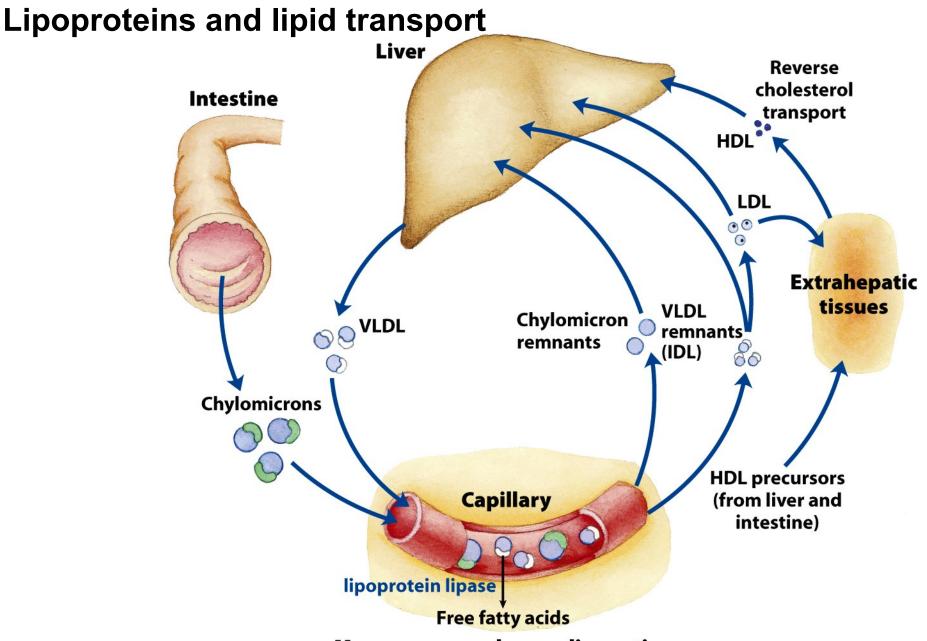
Major Classes of Human Plasma Lipoproteins: Some Properties


Lipoprotein	Density (g/mL)	Composition (wt %)				
		Protein	Phospholipids	Free cholesterol	Cholesteryl esters	Triacylglycerols
Chylomicrons	<1.006	2	9	1	3	85
VLDL	0.95-1.006	10	18	7	12	50
LDL	1.006-1.063	23	20	8	37	10
HDL	1.063-1.210	55	24	2	15	4


- ☐ Structure of an LDL molecule
- ☐ Apolipoprotein B-100 (apoB-100) is one of the largest single polypeptide chains known (4,636 aa; M_r 513,000)
- ☐ One particle of LDL contains a core with about 1,500 molecules of cholesteryl esters, surrounded by a shell composed of about 500 more molecules of cholesterol, 800 molecules of phospholipids, and one molecule of apoB-100


Chylomicrons (×60,000)

VLDL (×180,000)


LDL (×180,000)

HDL (×180,000)

Figure 21-39b

Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Mammary, muscle, or adipose tissue

Figure 21-40a
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

- Dietary lipids are packaged into chylomicrons
- ➤ Much of their triacylglycerol content is released by lipoprotein lipase to adipose and muscle tissues during transport through capillaries
- ➤ Remaining chylomicrons (containing largely protein and cholesterol) are taken up by the liver
- ➤ Endogenous lipids and cholesterol from the liver are delivered to adipose and muscle tissue by **VLDL**
- ➤ Extraction of lipid from VLDL (along with loss of some apolipoproteins) gradually converts some of it to LDL, which delivers cholesterol to extrahepatic tissues or returns to the liver
- ➤ The liver takes up LDL, VLDL remnants, and chylomicron remnants by **receptor mediated endocytosis**
- Excess cholesterol in extrahepatic tissues is transported back to the liver as HDL
- > In the liver, some cholesterol is converted to bile salts

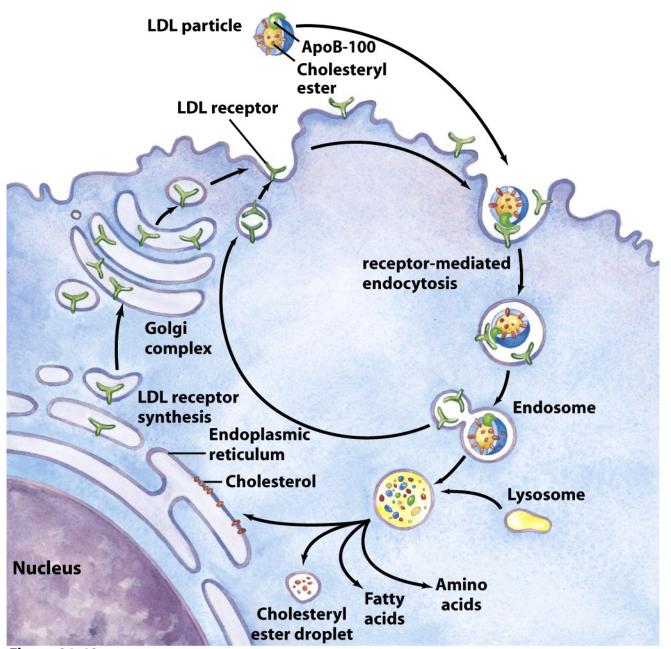


Figure 21-42
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Steroid Hormones

- Steroids are oxidized derivatives of sterois
- Steroids have the sterol nucleus, but lack the alkyl chain found in cholesterol
- More polar than cholesterol
- Steroid hormones are synthesized from cholesterol in gonads and adrenal glands
- They are carried through the body in the bloodstream, usually attached to carrier proteins
- Many of the steroid hormones are male and female sex hormones

Steroid Hormones

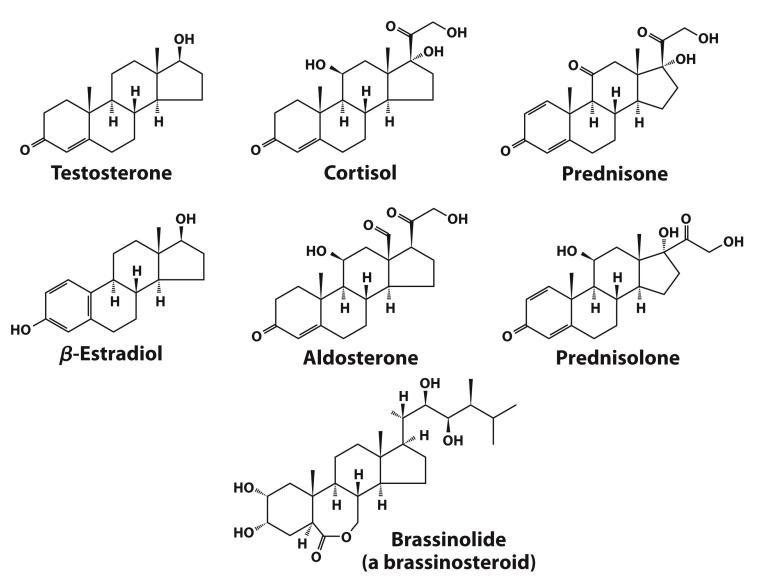


Figure 10-19
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Biologically Active Lipids

- Are present in much smaller amounts than storage or structural lipids
- Play vital roles as signaling molecules between nearby cells
- Lipid soluble vitamins (A, D, E, and K)

Signaling Lipids

- Paracrine lipid hormones are present in small amounts but play vital roles as signaling molecules between nearby cells
- Enzymatic oxidation of arachidonic acid yields
 - prostaglandins,
 - thromboxanes,
 - leukotrienes
- Arachidonic acid: 20:4(Δ^{5,8,11,14})

Arachidonic Acid Derivatives as Signaling Lipids

- Variety of functions:
 - Inflammation and fever, increase in body temperature (prostaglandins)
 - Formation of blood clots (thromboxanes)
 - Smooth muscle contraction in lungs; overproduction causes asthmatic attacks (leukotrienes)
 - Smooth muscle contraction in uterus during labor and menstruation (prostaglandins)

Nonsteroidal antiinflammatory drugs (NSAIDs) such as **aspirin** and **ibuprofen** block the formation of prostaglandins and thromboxanes from arachidonate by inhibiting the enzyme cyclooxygenase (prostaglandin H2 synthase).

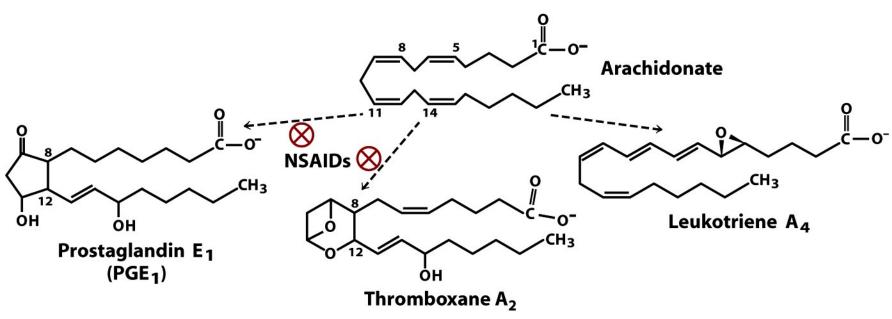


Figure 10-18
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Vitamin D regulates calcium uptake

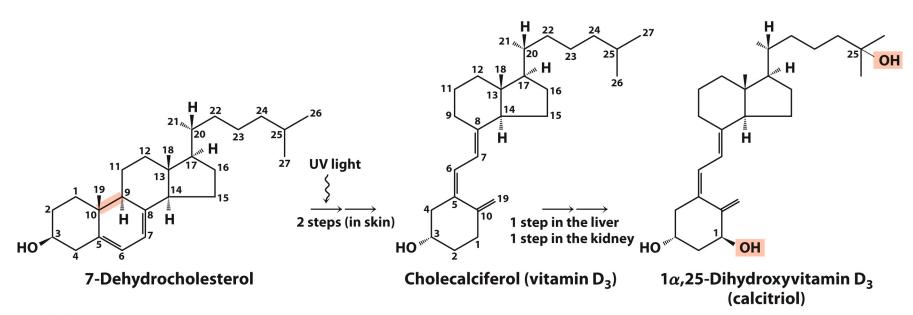
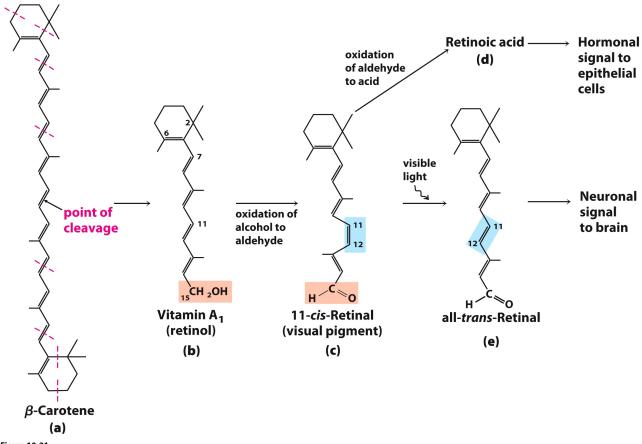



Figure 10-20a

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Vitamin A (Retinol)

- Involved in visual pigment
- Precursor for other hormones involved in signaling

Vitamin E, K, and other lipid quinones are antioxidants

(a)
Vitamin E: an antioxidant

$$\begin{array}{c} \text{CH}_{3} \\ \text{HO} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{C$$

(b)
Vitamin K₁: a blood-clotting cofactor (phylloquinone)

(c)
Warfarin: a blood
anticoagulant

(d)
Ubiquinone: a mitochondrial electron carrier (coenzyme Q)

$$\begin{array}{c} \mathsf{CH_{3}O} \\ \mathsf{CH_{3}} \\ \mathsf{CH_{3}} \\ \mathsf{CH_{2}-CH=C-CH_{2}} \\ \mathsf{CH_{2}-CH=C-CH_{2}} \\ \mathsf{CH_{2}-CH=C-CH_{2}} \\ \mathsf{CH_{2}-CH=C-CH_{2}} \\ \mathsf{CH_{3}} \\ \mathsf{CH_{3}} \\ \mathsf{CH_{3}-CH=C-CH_{2}} \\ \mathsf{CH_{3}-CH$$

Plastoquinone: a chloroplast electron carrier (n = 4 to 8)

(n = 4 to 8)

$$\begin{array}{c} \mathsf{CH_3} & \mathsf{CH_3} & \mathsf{CH_3} \\ \mathsf{CH_3} & \mathsf{CH_3} & \mathsf{CH_3} \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH_2} + (\mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2})_n + \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} \\ \end{array}$$

(f)
Dolichol: a sugar carrier
(n = 9 to 22)

$$\begin{array}{c} \mathsf{CH_3} & \mathsf{CH_3} & \mathsf{CH_3} \\ \mathsf{I} & \mathsf{I} & \mathsf{I} \\ \mathsf{HO} + \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} + (\mathsf{CH_2} - \mathsf{CH} = \mathsf{C} - \mathsf{CH_2})_n + \mathsf{CH_2} - \mathsf{CH} = \mathsf{C} - \mathsf{CH_3} \end{array}$$

Figure 10-22
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Polyketides are biologically active lipids with medicinal uses

Erythromycin (antibiotic)

Amphotericin B (antifungal)

Lovastatin (statin)