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CHAPTER 14, 16 & 19  
Introduction to Metabolism 

–  Harnessing energy from glucose via glycolysis   
–  Fermentation under anaerobic conditions  
–  Gluconeogenesis  
–  Cellular respiration 
–  Conversion of pyruvate to activated acetate  
–  Reactions of the citric acid cycle 
–  Electron transport chain in mitochondria 
–  Building up the proton-motive force 
–  Synthesis of ATP in mitochondria 

Key topics:  
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Central Importance of Glucose 
•  Glucose is an excellent fuel 

–  Yields good amount of energy upon oxidation 
–  Can be efficiently stored in the polymeric form  
–  Many organisms and tissues can meet their energy 

needs on glucose only 
•  Glucose is a versatile biochemical precursor 

–  Bacteria can use glucose to build the carbon skeletons 
of: 

•  All the amino acids 
•  Membrane lipids 
•  Nucleotides in DNA and RNA 
•  Cofactors needed for the metabolism  
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Four Major Pathways of Glucose 
Utilization 

•  When there’s plenty of excess energy, glucose can 
be stored in the polymeric form (starch, glycogen) 

•  Short-term energy needs are met by oxidation of 
glucose via glycolysis  

•  Pentose phosphate pathway generates NADPH that 
is used for detoxification, and for the biosynthesis of 
lipids and nucleotides 

•  Structural polysaccharides (e.g. in cell walls of 
bacteria, fungi, and plants) are derived from glucose 
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Glycolysis: Importance 

•  Glycolysis is a sequence of enzyme-catalyzed 
reaction by which glucose is converted into 
pyruvate 
•  Pyruvate can be further aerobically or 

anaerobically oxidized 
•  Pyruvate can be used as a precursor in 

biosynthesis 

•  In the process, some of the oxidation free energy in 
captured by the synthesis of ATP and NADH 

I 1 
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The two phases of glycolysis.  
For each molecule of glucose that 
passes through the preparatory 
phase (a), two molecules of 
glyceraldehyde 3-phosphate are 
formed; both pass through the 
payoff phase (b). Pyruvate is the 
end product of the second phase of 
glycolysis.  
For each glucose molecule, 2 ATP 
are consumed in the preparatory 
phase and 4 ATP are produced in the 
payoff phase. 
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Glycolysis: The Preparatory Phase 
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Glycolysis: The Payoff Phase  
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(1) The First Priming Reaction;  
The Hexokinase Reaction 

•  The first step, phosphorylation of glucose, is catalyzed by 
hexokinase in eukaryotes, and by glucokinase in prokaryotes 

•  Nucleophilic oxygen at C6 of glucose attacks the last (γ) 
phosphorous of ATP 

•  Bound Mg2+ facilitates this process by stabilizing the negative 
charge in the transition state 

•  This process uses the energy of ATP 
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(2) Phosphohexose Isomerization 

•  An aldose can isomerize into a ketose 
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(3) The Second Priming Reaction; 
The First Commitment  

•  ATP is the donor of the second phosphate group 
•  This is an irreversible step 
•  The product, fructose 1,6-bisphosphate is 

committed to become pyruvate and yield energy 
•  Phosphofructokinase-1 is negatively regulated by 

ATP 
– Do not burn glucose if there is plenty of ATP  
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(4) Aldolases Cleave 6-Carbon Sugars   

•  The reverse process is the familiar aldol 
condensation 
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(5) Triose Phosphate Interconversion 

•  Aldolase creates two triose phosphates: DAP and GAP 
•  Only GAP is the substrate for the next enzyme 
•  DAP is converted enzymatically to GAP 
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(6) Glyceraldehyde 3-Phosphate 
Dehydrogenase Reaction  

•  First energy-yielding step in glycolysis 
•  Oxidation of aldehyde with NAD+ gives NADH 
•  Phosphorylation yields an high-energy reaction 

product 
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(7) First Substrate-Level 
Phosphorylation 

•  1,3-bisphosphoglycerate is a high-energy 
compound that can donate the phosphate group to 
ADP to make ATP 

•  The reaction is reversible, the reverse process 
transfer of phosphate from ATP to 
phosphoglycerate 

•  Kinases are enzymes that transfer phosphate 
groups from molecules like ATP to various 
substrates 
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(8) Conversion of 3-Phosphoglycerate 
to 2-Phosphoglycerate 

•  This is a reversible isomerization reaction 
•  Enzymes that shift functional groups around are 

called mutases 
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(9) Dehydration of 2-Phosphoglycerate 
•  The goal here is to create a better phosphoryl donor 
•  Loss of phosphate from 2-phosphoglycerate would just 

give a secondary alcohol with no further stabilization 
… 
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(10) Second Substrate-Level 
Phosphorylation 

•  … but loss of phosphate from 
phosphoenolpyruvate yields 
an enol that tautomerizes 
into ketone 

•  The tautomerization 
effectively lowers the 
concentration of the reaction 
product and drives the 
reaction toward ATP 
formation   
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Tautomerization is not possible in PEP, and thus the products of hydrolysis are 
stabilized relative to the reactants. Resonance stabilization of Pi also occurs. 
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Pyruvate Kinase is Subject to 
Regulation 

•  Pyruvate kinase requires divalent metals (Mg2+ 
or Mn2+) for activity 

•  Under physiological conditions, the activity of 
pyruvate kinase is limited by the level of Mg2+ 

•  When there is plenty of ATP, the Mg ions are 
sequestered by ATP; this slows down pyruvate 
kinase 

•  Increased concentration of metabolites in the 
glycolytic pathway slows down glucose 
utilization 
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Under Anaerobic Conditions, 
Animals Reduce Pyruvate to Lactate  

•  During strenuous exercise, lactate builds up in the muscle 
•  The acidification of muscle prevents its continuous 

strenuous work 
•  The lactate can be transported to liver and converted to 

glucose there 

II 2 



Under Anaerobic Conditions, Yeast 
Ferments Glucose to Ethanol 

•  Both steps require cofactors 
–  Mg2+ and thiamine pyrophosphate (TPP) in 
pyruvate decarboxylase 

–  Zn2+ and NAD+ in alcohol dehydrogenase  
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Gluconeogenesis: Precursors for 
Carbohydrates  

•  Notice that mammals cannot 
convert fatty acids to sugars  

•  The pathway from 
phosphoenolpyruvate to glucose 
6-phosphate is common to the 
biosynthetic conversion  

•  The path from pyruvate to 
phosphoenolpyruvate leads 
through oxaloacetate 

•   Any compound that can be 
converted to either pyruvate or 
oxaloacetate can serve as starting 
material for gluconeogenesis 

III 3 
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Glycolysis vs. Gluconeogenesis 

•  Glycolysis occurs mainly in the muscle and brain 
•  Gluconeogenesis occurs mainly in the liver  
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Synthesis of Oxaloacetate 

•  Conversion of pyruvate 
to energy-rich 
phosphoenolpyruvate 
requires two energy-
consuming steps 

•  In the first step, 
pyruvate is transported 
into mitochondria and 
converted into 
oxaloacetate by 
pyruvate carboxylase 



32 

Oxaloacetate Picks Up 
Phosphate from GTP 

•  The 
phosphoenolp
yruvate 
carboxykinase 
reaction 
occurs either 
in the cytosol 
or the 
mitochondria 
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Only a Small Amount of Energy 
Available in Glucose is Captured in 

Glycolysis 

2
ΔG’° = -146 kJ/mol 

Glycolysis 

Full oxidation (+ 6 O2) 

ΔG’° = -2,840 kJ/mol 
6 CO2 + 6 H2O

GLUCOSE 

4 
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Cellular Respiration 

•  process in which cells consume O2 and produce CO2 

•  provides more energy (ATP) from glucose than glycolysis 

•  also captures energy stored in lipids and amino acids  

•  evolutionary origin: developed about 2.5 billion years ago 

•  used by animals, plants, and many microorganisms 

•  occurs in three major stages:  

-  acetyl CoA production 

-  acetyl CoA oxidation 

-  electron transfer and oxidative phosphorylation 
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Respiration: Stage 1 
Generates some: 

ATP, NADH, FADH2 
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Respiration: Stage 2 
Generates more NADH, FADH2 and one GTP 
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Respiration: Stage 3 
Makes lots of ATP  
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In Eukaryotes, Citric Acid Cycle 
Occurs in Mitochondria 

•  Glycolysis occurs in the 
cytoplasm 

•  Citric acid cycle occurs in the 
mitochondrial matrix† 

•  Oxidative phosphorylation occurs in 
the inner membrane 

† Except succinate dehydrogenase, which is an 
integral inner membrane protein
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Conversion of Pyruvate to Acetyl-CoA 

•   net reaction: oxidative decarboxylation of pyruvate 

•  acetyl-CoA can enter the citric acid cycle and 
yield energy 

•  acetyl-CoA can be used to synthesize storage 
lipids  

•   requires five coenzymes  

•   catalyzed by the pyruvate decarboxylase complex 

5 
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Pyruvate Dehydrogenase 
Complex (PDC) 

•   PDC is a large (Mr = 7.8 × 106 Da) multienzyme complex 

-  pyruvate dehydrogenase (E1) 

-  dihydrolipoyl transacetylase (E2) 

-  dihydrolipoyl dehydrogenase (E3) 

•   short distance between catalytic sites allows channeling  

  of substrates from one catalytic site to another 

•   channeling minimizes side reactions 

•   activity of the complex is subject to regulation (ATP) 
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Chemistry of Oxidative 
Decarboxylation of Pyruvate 

•  NAD+ and CoA-SH  are co-substrates 

•  TPP, lipoyllysine and FAD are prosthetic groups 

•  Coenzymes or co-substrates are not a permanent part 
of the enzymes’ structure; they associate, fulfill a 
function, and dissociate 

•  The function of CoA is to accept and carry acetyl 
groups   

•  Prosthetic groups are strongly bound to the protein 

•  Lipoic acid is covalently linked to the enzyme via a 
lysine residue 
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The Citric Acid Cycle 

6 
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Sequence of Events  
in the Citric Acid Cycle  

•   Step 1: C-C bond formation to make citrate  

•   Step 2: Isomerization via dehydration, followed by 
hydration 

•   Steps 3-4: Oxidative decarboxylations to give 2 
NADH 

•   Step 5: Substrate-level phosphorylation to give GTP 

•   Step 6: Dehydrogenation to give reduced FADH2  
•   Step 7: Hydration 

•   Step 8: Dehydrogenation to give NADH 
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(1) The Citrate Synthase Reaction 
•   The only cycle reaction with C-C bond formation 

•   Essentially irreversible process 
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(2) Isomerization of Citrate by 
Aconitase 

•   Citrate, a tertiary alcohol, is a poor substrate for 
oxidation  

•   Elimination of H2O from citrate gives a cis C=C 
bond  

•   Addition of H2O to cis-aconitate is stereospecific 

•   Isocitrate, a secondary alcohol, is a good 
substrate for oxidation  
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(3) The Isocitrate 
Dehydrogenase Reaction 

Oxidation of the alcohol to ketone involves the 
transfer of a hydride from the C-H of the alcohol 
to the nicotinamide cofactor 
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(4) Oxidation of α-ketoglutarate 

• Enzyme: α-ketoglutarate dehydrogenase complex  

• Similar to pyruvate dehydrogenase complex 

• Same coenzymes, identical mechanisms 
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(5) Substrate-Level Phosphorylation 
Produces GTP, which can be converted to ATP 
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(6) Succinate Dehydrogenase 
•   Covalently bound FAD is reduced to FADH2 
•   FADH2 passes electrons to coenzyme Q 
•   Reduced coenzyme (QH2) can be used to make ATP 
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(7) Hydration of Fumarate to Malate  

•   Fumarase is highly 
stereospecific 

•   OH- adds to 
fumarate … 
         then H+ adds to 
the carbanion 

•   Net effect: trans 
addition of water 

•   Reversible reaction 
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(8) Oxidation of Malate to Oxaloacetate 
•   Thermodynamically unfavorable reaction  
•   Oxidation occurs because oxaloacetate 
concentration is very low as it is continuously used 
to make citrate  
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Products from One Turn of the Cycle 
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Net Effect of the Citric Acid Cycle 
 

Acetyl-CoA + 3NAD+ + FAD + GDP + Pi + 2 H2O 

  2CO2 +3NADH + FADH2 + GTP + CoA + 3H+ 

 

•   carbons of acetyl groups in acetyl-CoA are 
oxidized to CO2 

•   electrons from this process reduce NAD+ and FAD 

•   one GTP is formed per cycle, this can be 
converted to ATP 

•   intermediates in the cycle are not depleted 
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Oxidative Phosphorylation 

•  Electrons from the reduced cofactors NADH and 
FADH2 are passed to proteins in the respiratory 
chain 

•  In eukaryotes, oxygen is the ultimate electron 
acceptor for these electrons 

•  Energy of oxidation is used to phosphorylate ADP 

7 
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Chemiosmotic Theory 

•  How to make an unfavorable ADP + Pi à ATP  
 possible? 

•  Phosphorylation of ADP is not a result of a 
direct reaction between ADP and some high 
energy phosphate carrier 

•  Energy needed to phosphorylate ADP is 
provided by the flow of protons down the 
electrochemical gradient 

•  The electrochemical gradient is established by 
transporting protons against the electrochemical 
gradient during the electron transport 
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Chemiosmotic Energy Coupling 
Requires Membranes 

•  The proton gradient needed for ATP synthesis can be 
stably established across a topologically closed 
membrane 
–  Plasma membrane in bacteria 
–  Cristae membrane in mitochondria 
–  Thylakoid membrane in chloroplasts  

•  Membrane must contain proteins that couple the 
“downhill” flow of electrons in the electron transfer chain 
with the “uphill” flow of protons across the membrane 

•  Membrane must contain a protein that couples the 
“downhill” flow of proton to the phosphorylation of ADP   
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Coenzyme Q or Ubiquinone 
•  Ubiquinone is a lipid-soluble 

conjugated dicarbonyl 
compound that readily 
accepts electrons  

•  Upon accepting two 
electrons, it picks up two 
protons to give an alcohol, 
ubiquinol 

•  Ubiquinol can freely diffuse 
in the membrane, carrying 
electrons with protons from 
one side of the membrane 
to another side 
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 NADH:Ubiquinone Oxidoreductase 
(Complex I) 

•  One of the largest macro-molecular assemblies in 
the mammalian cell 

•  Over 40 different polypeptide chains, encoded by 
both nuclear and mitochondrial genes 

•  NADH binding site in the matrix side 
•  Non-covalently bound flavin mononucleotide 

(FMN) accepts two electrons from NADH 
•  Several iron-sulfur centers pass one electron at 

the time toward the ubiquinone binding site 
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NADH:Ubiquinone 
Oxidoreducase is a Proton Pump 

•  Transfer of two electrons from NADH to uniquinone is 
accompanied by a transfer of protons from the matrix (N) 
to the inter-membrane space (P) 

•  Experiments suggest that about four protons are 
transported per one NADH 

      NADH + Q + 5H+
N = NAD+ + QH2 + 4 H+

P 
 

•  Reduced coenzyme Q picks up two protons 
•  Despite 50 years of study, it is still unknown how the four 

other protons are transported across the membrane  
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Succinate Dehydrogenase 
(Complex II) 

•  FAD accepts two electrons from succinate 
•  Electrons are passed, one at a time, via iron-

sulfur centers to ubiquinone that becomes 
reduced QH2 
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Cytochrome bc1 Complex 
(Complex III) 

•  Uses two electrons from QH2 to reduce two molecules 
of cytochrome c 
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Cytochrome c 

•  Cytochrome c is a soluble heme-containing 
protein in the intermembrane space 

•  Heme iron can be either ferrous(Fe3+, oxidized) or 
ferric(Fe2+, reduced) 

•  Cytochrome c carries a single electron from the 
cytochrome bc1 complex to cytochrome oxidase   
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Cytochrome Oxidase  
(Complex IV) 

•  Mammalian cytochrome oxidase is a membrane 
protein with 13 subunits 

•  Contains two heme groups  
•  Contains copper ions 

– Two ions (CuA) form a binuclear center 
– Another ion (CuB) bonded to heme forms Fe-

Cu center   
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Cytochrome Oxidase Passes 
Electrons to O2 

•  Four electrons are used to reduce one oxygen 
molecule into two water molecules 

•  Four protons are picked up from the matrix in this 
process 

•  Four additional protons are passed from the 
matrix to the inter-membrane space by an 
unknown mechanism 
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Summary of the Electron Flow in 
the Respiratory Chain 
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Proton-motive Force 

•  The proteins in the electron transport chain created 
the electrochemical proton gradient by one of the 
three means: 

– actively transported protons across the 
membrane via poorly understood mechanisms 

– passed electrons to coenzyme Q that picked up 
protons from the matrix 

– took electrons from QH2 and released the 
protons to the inter-membrane side 
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Chemiosmotic Model for ATP 
Synthesis 

• Electron transport sets up a proton-motive force  
• Energy of proton-motive force drives synthesis of ATP 
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Mitochondrial ATP Synthase 
Complex  

•  The proton-motive force causes rotation of the 
central shaft γ 

•  This causes a conformational change within all the 
three αβ pairs 

•  The conformational change in one of the three 
pairs promotes condensation of ADP and Pi into 
ATP 
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ATP Yield From Glucose 
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Intro to Metabolism: Summary 
•  Glycolysis, a process by which cells can extract a limited amount of energy from 

glucose under anaerobic conditions 
•  Gluconeogenesis, a process by which cells can use a variety of metabolites for the 

synthesis of glucose 

•  Citric acid cycle is an important catabolic process: it makes GTP, and reduced 
cofactors that could yield ATP 

•  Citric acid cycle plays important anabolic roles in the cell  

•  A large multi-subunit enzyme, pyruvate dehydrogenase complex, converts pyruvate 
into acetyl-CoA 

•  Several cofactors are involved in reactions that harness the energy from pyruvate 

•  The reduced cofactors pass electrons into the electron transport chain in 
mitochondria 

•  Stepwise electron transport is accompanied by the directional transport of protons 
across the membrane against their concentration gradient 

•  The energy in the electrochemical proton gradient drives synthesis of ATP by 
coupling the flow of protons via ATP 


