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Overview: The Process That Feeds the 

Biosphere 

• Photosynthesis is the process that 

converts solar energy into chemical energy 

• Directly or indirectly, photosynthesis 

nourishes almost the entire living world 
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• Autotrophs sustain themselves without 

eating anything derived from other 

organisms 

• Autotrophs are the producers of the 

biosphere, producing organic molecules 

from CO2 and other inorganic molecules 

• Almost all plants are photo autotrophs, using 

the energy of sunlight to make organic 

molecules from H2O and CO2 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Fig. 10-1 

How can sunlight, seen here as a spectrum of 

colors in a rainbow, power the synthesis of 

organic substances? 
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• Photosynthesis occurs in plants, algae, 

certain other protists, and some prokaryotes 

• These organisms feed not only themselves 

but also most of the living world 

BioFlix: Photosynthesis 
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• Heterotrophs obtain their organic material 

from other organisms 

• Heterotrophs are the consumers of the 

biosphere 

• Almost all heterotrophs, including humans, 

depend on photoautotrophs for food and O2 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Concept 10.1: Photosynthesis converts 

light energy to the chemical energy of food 

• Chloroplasts are structurally similar to and 

likely evolved from photosynthetic bacteria  

• The structural organization of these cells 

allows for the chemical reactions of 

photosynthesis 
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Chloroplasts: The Sites of Photosynthesis 

in Plants 

• Leaves are the major locations of 

photosynthesis 

• Their green color is from chlorophyll, the 

green pigment within chloroplasts 

• Light energy absorbed by chlorophyll drives 

the synthesis of organic molecules in the 

chloroplast 

• CO2 enters and O2 exits the leaf through 

microscopic pores called stomata 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

• Chloroplasts are found mainly in cells of the 

mesophyll, the interior tissue of the leaf 

• A typical mesophyll cell has 30–40 

chloroplasts 

• The chlorophyll is in the membranes of 

thylakoids (connected sacs in the 

chloroplast); thylakoids may be stacked in 

columns called grana 

• Chloroplasts also contain stroma, a dense 

fluid  
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 
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Figure 10.4 
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Tracking Atoms Through Photosynthesis: 

Scientific Inquiry 

• Photosynthesis can be summarized as the 

following equation: 

6 CO2 + 12 H2O + Light energy  C6H12O6 + 6 O2 + 6 H2O  
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Figure 10.5 
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Tracking atoms through photosynthesis. 

 

The Splitting of Water 

• Chloroplasts split H2O into hydrogen and 

oxygen, incorporating the electrons of 

hydrogen into sugar molecules 

– Plants: CO2 + 2H2O [CH2O] + H2O + O2 

– Sulfur bacteria: CO2 + H2S  [CH2O] + H2O + 

S2 

 

• CO2 is not split into C and O2!! This 

hypothesis was cancelled by van Neil in 

1930s 

 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 
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Class activity!  

• How you can prove the hypothesis of 

van Neil, that splitting of water rather 

than CO2 is the source of O2?? 

 

Class activity!  

• It was proved using Oxygen-18 (18O), a 

heavy isotope incorporated into water, 

as a tracer to follow the fate of O2 during 

photosynthesis? 

• Experiment 1: (18O) incorporated in H2O 
• CO2 + 2H2O [CH2O] + H2O + O2 

 

 Experiment 2: (18O) incorporated in CO2 
 CO2 + 2H2O [CH2O] + H2O + O2 
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Photosynthesis as a Redox Process 

• Photosynthesis is a redox process in which 

H2O is oxidized and CO2 is reduced 
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Figure 10.UN01 

Energy      6 CO2      6 H2O C6 H12 O6    6 O2 

becomes reduced 

becomes oxidized 

 Summary: 

 H2O is split, & electrons are transferred 

along with H ions from H2O to CO2 

reducing it to sugars! 

 Endergonic reaction. 

How this reaction relates to cellular 

respiration?? 
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The Two Stages of Photosynthesis: A 

Preview 

• Photosynthesis consists of the light 

reactions (the photo part) and Calvin cycle 

(the synthesis part) 

• The light reactions (in the thylakoids): 

– Split H2O 

– Release O2 

– Reduce NADP+ to NADPH 

– Generate ATP from ADP by 

photophosphorylation 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

• The Calvin cycle (in the stroma) forms 

sugar from CO2, using ATP and NADPH 

• The Calvin cycle begins with carbon 

fixation, incorporating CO2 into organic 

molecules 
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Light 
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Concept 10.2: The light reactions convert 

solar energy to the chemical energy of 

ATP and NADPH  

 

• Chloroplasts are solar-powered chemical 

factories 

• Their thylakoids transform light energy into 

the chemical energy of ATP and NADPH 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

The Nature of Sunlight 

• Light is a form of electromagnetic energy, 

also called electromagnetic radiation 

• Like other electromagnetic energy, light 

travels in rhythmic waves 

• Wavelength is the distance between crests 

of waves 

• Wavelength determines the type of 

electromagnetic energy 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 
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• The electromagnetic spectrum is the 

entire range of electromagnetic energy, or 

radiation  

• Visible light consists of wavelengths 

(including those that drive photosynthesis) 

that produce colors we can see 

• Light also behaves as though it consists of 

discrete particles, called photons 
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Photosynthetic Pigments: The Light 

Receptors 

• Pigments are substances that absorb visible 

light 

• Different pigments absorb different 

wavelengths 

• Wavelengths that are not absorbed are 

reflected or transmitted 

• Leaves appear green because chlorophyll 

reflects and transmits green light 

Animation: Light and Pigments 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 
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• A spectrophotometer measures a 

pigment’s ability to absorb various 

wavelengths  

• This machine sends light through pigments 

and measures the fraction of light 

transmitted at each wavelength 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Figure 10.9 
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• An absorption spectrum is a graph plotting 

a pigment’s light absorption versus 

wavelength 

• The absorption  spectrum of chlorophyll a 

suggests that violet-blue and red light work 

best for photosynthesis 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Fig. 10-9 
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• Chlorophyll a is the main photosynthetic 

pigment 

• Accessory pigments, such as chlorophyll 

b, broaden the spectrum used for 

photosynthesis 

• Accessory pigments called carotenoids 

absorb excessive light that would damage 

chlorophyll 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Fig. 10-10 
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Excitation of Chlorophyll by Light 

• When a pigment absorbs light, it goes from 

a ground state to an excited state, which is 

unstable 

• When excited electrons fall back to the 

ground state, photons are given off, an 

afterglow called fluorescence 

• If illuminated, an isolated solution of 

chlorophyll will fluoresce, giving off light and 

heat 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Fig. 10-11 
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A Photosystem: A Reaction-Center 

Complex Associated with Light-

Harvesting Complexes  

• A photosystem consists of a reaction-

center complex (a type of protein complex) 

surrounded by light-harvesting complexes 

• The light-harvesting complexes (pigment 

molecules bound to proteins) funnel the 

energy of photons to the reaction center 

 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Fig. 10-12 
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• A primary electron acceptor in the 

reaction center accepts an excited electron 

from chlorophyll a 

• Solar-powered transfer of an electron from 

a chlorophyll a molecule to the primary 

electron acceptor is the first step of the 

light reactions 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Figure 10.13 
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Fig. 10-12 
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• There are two types of photosystems in the 

thylakoid membrane 

• Photosystem II (PS II) functions first (the 

numbers reflect order of discovery) and is best 

at absorbing a wavelength of 680 nm 

• The reaction-center chlorophyll a of PS II is 

called P680 
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• Photosystem I (PS I) is best at absorbing a 

wavelength of 700 nm 

• The reaction-center chlorophyll a of PS I is 

called P700 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Linear Electron Flow 

• During the light reactions, there are two 
possible routes for electron flow: cyclic and 
linear 

• Linear electron flow, the primary pathway, 

involves both photosystems and produces 

ATP and NADPH using light energy 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 
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• A photon hits a pigment and its energy is 

passed among pigment molecules until it 

excites P680 

• An excited electron from P680 is transferred 

to the primary electron acceptor 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 

Figure 10.14-1 

Primary 
acceptor 

P680 

Light 

Pigment 
molecules 

Photosystem II 
(PS II) 

1 

2 
e 



4/2/2018 

25 

• P680+ is a very strong oxidizing agent 

• H2O is split by enzymes, and the electrons are 

transferred from the hydrogen atoms to P680+, 

thus reducing it to P680 

• O2 is released as a by-product of this reaction 

© 2011 Pearson Education, Inc. 

Figure 10.14-2 
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• Each electron “falls” down an electron 

transport chain from the primary electron 

acceptor of PS II to PS I 

• Energy released by the fall drives the creation 

of a proton gradient across the thylakoid 

membrane 

• Diffusion of H+ (protons) across the membrane 

drives ATP synthesis 

© 2011 Pearson Education, Inc. 

Figure 10.14-3 
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• In PS I (like PS II), transferred light energy 

excites P700, which loses an electron to an 

electron acceptor 

• P700+ (P700 that is missing an electron) 

accepts an electron passed down from PS II 

via the electron transport chain 

© 2011 Pearson Education, Inc. 
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• Each electron “falls” down an electron 
transport chain from the primary electron 
acceptor of PS I to the protein ferredoxin (Fd) 

• The electrons are then transferred to NADP+ 
and reduce it to NADPH 

• The electrons of NADPH are available for the 
reactions of the Calvin cycle 

• This process also removes an H+ from the 
stroma 

© 2011 Pearson Education, Inc. 
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Cyclic Electron Flow 

• Cyclic electron flow uses only 

photosystem I  and produces ATP, but not 

NADPH 

• Cyclic electron flow generates surplus ATP, 

satisfying the higher demand in the Calvin 

cycle 
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Figure 10.16 
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A Comparison of Chemiosmosis in 

Chloroplasts and Mitochondria 

• Chloroplasts and mitochondria generate 

ATP by chemiosmosis, but use different 

sources of energy 

• Mitochondria transfer chemical energy from 

food to ATP; chloroplasts transform light 

energy into the chemical energy of ATP 
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Fig. 10-16 
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• ATP and NADPH are produced on the side 

facing the stroma, where the Calvin cycle 

takes place 

• In summary, light reactions generate ATP and 

increase the potential energy of electrons by 

moving them from H2O to NADPH 

© 2011 Pearson Education, Inc. 



4/2/2018 

32 

Figure 10.18 
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Concept 10.3: The Calvin cycle uses ATP 

and NADPH to convert CO2 to sugar 

• The Calvin cycle, like the citric acid cycle, 

regenerates its starting material after 

molecules enter and leave the cycle 

• The cycle builds sugar from smaller 

molecules by using ATP and the reducing 

power of electrons carried by NADPH 
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• Carbon enters the cycle as CO2 and leaves 

as a sugar named glyceraldehyde-3-

phospate (G3P) 

• For net synthesis of 1 G3P, the cycle must 

take place three times, fixing 3 molecules 

of CO2 

• The Calvin cycle has three phases: 

– Carbon fixation (catalyzed by rubisco) 

– Reduction 

– Regeneration of the CO2 acceptor (RuBP) 

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 
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Class activity! 

• To synthesize one molecule of 

GLUCOSE, the Calvin cycle uses  ------- 

molecules of CO2,------------- molecules 

of ATP, and --------------- molecules of 

NADPH? 

• Answer: 6, 18, 12 
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Class activity! 

• How are the large numbers of ATP and 

NADPH molecules used during Calvin 

cycle consistent with the high value of 

glucose as an energy source? 

• Glucose is a valuable energy source, 

because it is highly reduced, storing lots 

of potential energy in its electrons 

Class activity! 

• Explain why a poison that inhibits an 

enzyme in the Calvin cycle, also inhibits 

the light reaction?? 

• Light reaction requires ADP & NADP+ 

in sufficient quantities via the Calvin 

cycle 


