

Overview: The Fundamental Units of Life

- All organisms are made of cells
- The cell is the simplest collection of matter that can live
- Cell structure is correlated to cellular function
- All cells are related by their descent from earlier cells

Concept 6.1: To study cells, biologists use microscopes and the tools of biochemistry

- Though usually too small to be seen by the unaided eye, cells can be complex
- Microscopy:
- Scientists use microscopes to visualize cells too small to see with the naked eye
- In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image

<section-header><list-item><list-item><list-item><list-item>

Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions

- The basic structural and functional unit of every organism is one of two types of cells: prokaryotic or eukaryotic
- Only organisms of the domains Bacteria and Archaea consist of prokaryotic cells
- Protists, fungi, animals, and plants all consist of eukaryotic cells

Comparing Prokaryotic and Eukaryotic Cells

- Basic features of all cells:
 - Plasma membrane
 - Semifluid substance called cytosol
 - Chromosomes (carry genes)
 - Ribosomes (make proteins)

- No nucleus
- DNA in an unbound region called the nucleoid
- No membrane-bound organelles
- Cytoplasm bound by the plasma membrane

Concept 6.3: The eukaryotic cell's genetic instructions are housed in the nucleus and carried out by the ribosomes

- The nucleus contains most of the DNA in a eukaryotic cell
- Ribosomes use the information from the DNA to make proteins

Concept 6.4: The <u>endomembrane system</u> regulates protein traffic and performs metabolic functions in the cell

- Components of the <u>endomembrane</u> <u>system</u>:
 - Nuclear envelope
 - Endoplasmic reticulum
 - Golgi apparatus
 - Lysosomes
 - Vacuoles
 - Plasma membrane
- These components are <u>either continuous</u> or connected via transfer by **vesicles**

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Endoplasmic Reticulum: Biosynthetic Factory

- The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells
- The <u>ER membrane</u> is continuous with the <u>nuclear envelope</u>
- There are two distinct regions of ER:
 - Smooth ER, which lacks ribosomes
 - Rough ER, with ribosomes studding its surface

- The Golgi apparatus consists of flattened membranous sacs called cisternae
- Functions of the Golgi apparatus:
 - Modifies products of the ER
 - Manufactures certain macromolecules
 - Sorts and packages materials into transport vesicles

Concept 6.5: Mitochondria and chloroplasts change energy from one form to another

- Mitochondria are the sites of cellular respiration, a metabolic process that generates ATP
- Chloroplasts, found in plants and algae, are the sites of photosynthesis

Mitochondria: Chemical Energy Conversion

- Mitochondria are in nearly all eukaryotic cells
- They have a smooth outer membrane and an inner membrane folded into cristae
- The inner membrane creates two compartments: intermembrane space and mitochondrial matrix
- Some metabolic steps of cellular respiration are catalyzed in the mitochondrial matrix
- Cristae present a large surface area for enzymes that synthesize ATP

Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell

- The cytoskeleton is a network of fibers extending throughout the cytoplasm
- It organizes the cell's structures and activities, anchoring many organelles
- It is composed of three types of molecular structures.

© 2011 Pearson Education, Inc.

Property	Microtubules (Tubulin Polymers)	
Structure	Hollow tubes; wall consists of 13 columns of tubulin molecules	10 μm
Diameter	25 nm with 15-nm lumen	Da Carlo
Protein subunits	Tubulin, a dimer consisting of α -tubulin and β -tubulin	
Main functions	Maintenance of cell shape (compression-resisting "girders")	
	Cell motility (as in cilia or flagella)	2 CLEN
	Chromosome movements in cell division	
	Organelle movements	
		Column of tubulin dimers
		25 nm

Property	Microfilaments (Actin Filaments)	
Structure	Two intertwined strands of actin, each a polymer of actin subunits	10 µm ⊢⊣
Diameter	7 nm	
Protein subunits	Actin	
Main functions	Maintenance of cell shape (tension-bearing elements)	18 h 12 -
	Changes in cell shape	A CONTRACT OF THE OWNER
	Muscle contraction	e
	Cytoplasmic streaming	
	Cell motility (as in pseudopodia)	
	Cell division (cleavage furrow formation)	
		Actin subunit
		7 nm

Property	Intermediate Filaments	
Structure	Fibrous proteins supercoiled into thicker cables	_ <mark>5 μm</mark>
Diameter	8–12 nm	
Protein subunits	One of several different proteins (such as keratins), depending on cell type	
Main functions	Maintenance of cell shape (tension-bearing elements)	Contraction of the
	Anchorage of nucleus and certain other organelles	
	Formation of nuclear lamina	
		Keratin proteins
		Fibrous subunit (keratins coiled together) 8–12 nm

Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities

- Most cells synthesize and secrete materials that are external to the plasma membrane
- · These extracellular structures include
 - Cell walls of plants
 - The extracellular matrix (ECM) of animal cells
 - Intercellular junctions

Cell Junctions

- Neighboring cells in tissues, organs, or organ systems often adhere, interact, and communicate through direct physical contact
- Intercellular junctions facilitate this contact
- There are several types of intercellular junctions
 - Plasmodesmata
 - Tight junctions
 - Desmosomes
 - Gap junctions

© 2011 Pearson Education, Inc.

	Cell Component	Structure	Function
CONCEPT 6.3 The eukaryotic cell's genetic instructions are housed in the nucleus and carried out by the ribosomes	Nucleus (ER)	Surrounded by nuclear envelope (double membrane) perforated by nuclear poes, nuclear envelope continuous with endoplasmic reticulum (BI)	Houses chromosomes, which are made of chromatin (DNA and proteins); contains nucleoli, where nbosomal subunits are made, pores regulate entry and exit of materials
	Ribosome	Two subunits made of ribosomal RNA and proteins; can be free in cytosol or bound to ER	Protein synthesis
CONCEPT 6.4 The endomembrane system regulates protein traffic and performs metabolic functions in the cell	Endoplasmic reticulum (Nuclear envelope)	Extensive network of membrane- bounded tubules and sacs, mem- brane separates lumen from cytosol; continuous with nuclear envelope	Smooth ER: synthesis of lipids, metabolism of carbohydrates, Ca ²⁺ storage, detoxification of drugs and poisons Rough ER: adds in synthesis of se- cretory and other proteins from bound ribosomes; adds carbohy- drates to proteins to make glyco- proteins; produces new membrane
<u>сонсегт 6.5</u> Mitodowrifita.and Allorgalatis change energy from one form to another	Colgi apparatus	Stacks of flattened membranous sacs; has polarity (cis and trans faces)	Modification of proteins, carbo- hydrates on proteins, and phos- pholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles
	Lysosome 🥘	Membranous sac of hydrolytic enzymes (in animal cells)	Breakdown of ingested sub- stances, cell macromolecules, and damaged organelles for recycling
	Vacuole	Large membrane-bounded vesicle	Digestion, storage, waste disposal, water balance, cell growth, and protection
	Mitochondrion	Bounded by double membrane; inner membrane has infoldings (cristae)	Cellular respiration
	Chloroplast	Typically two membranes around fluid stroma, which contains thylakoids stacked into grana (in cells of photosynthetic eukaryotes, including plants)	Photosynthesis
	Peroxisome	Specialized metabolic compart- ment bounded by a single membrane	Contains enzymes that transfer hydrogen atoms from substrates to oxygen, producing hydrogen per- oxide (H ₂ O ₂) as a by-product; H ₂ O ₂ is converted to water by an- other enzyme

