Birzeit University-Mathematics Department Math 1321-Calculus II

Second Hour Exam Spring	
	r: n:

Question 1.(44 points) Circle the correct answer:

- (1) The polar curve $r = -\sin^2(2\theta)$ is symmetric about
 - (a) the x-axis.
 - (b) the y-axis.
 - (c) the origin.
 - (d) all of the above.
- (2) Let θ be the angle between $\mathbf{u} = \mathbf{i} + \mathbf{k}$ and $\mathbf{v} = \mathbf{j} + \mathbf{k}$. Then $\theta =$
 - (a) $\frac{\pi}{2}$
 - $\frac{\pi}{3}$
 - (c) $\frac{\pi}{4}$
 - (d) $\frac{\pi}{6}$
- (3) The vector projection of $\mathbf{u} = \mathbf{i} + \mathbf{k}$ onto $\mathbf{v} = \mathbf{j} + \mathbf{k}$ is
 - (a) 2v
 - (b) $\frac{1}{2}$ v
 - (c) $\frac{1}{\sqrt{2}}$ **v**
 - (d) **v**
- (4) The vectors $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + \mathbf{k}$, $\mathbf{v} = a\mathbf{i} \mathbf{k}$ are perpendicular if
 - (a) a = b = 1
 - (b) a = 1, b = 0
 - (c) a = 1 or a = -1 and b = 0
 - **(d)** a = 1 or a = -1
- (5) One of the following statements is true
 - (a) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{u} = \mathbf{0}$
 - (b) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$
 - (c) $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$
 - (d) $\mathbf{u}.\mathbf{u} = |\mathbf{u}|$

- (6) The area of the triangle formed by the vectors $\mathbf{u} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = \mathbf{i} \mathbf{k}$ is
 - (a) $\sqrt{12}$
 - (b) $\sqrt{3}$
 - (c) $\frac{1}{2}\sqrt{3}$
 - (d) 6
- (7) The angle between the lines 3x + y = 5 and 2x y = 4 is
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{\pi}{3}$
 - $\bigcirc \frac{\pi}{4}$
 - (d) $\frac{\pi}{6}$
- (8) The circle of radius 1 centered at the point (1,2,3) and lying in a plane parallel to the xy-plane is
 - (a) $(x-1)^2 + (y-2)^2 + (z-3)^2 = 1$.
 - (b) $(x-1)^2 + (y-2)^2 = 1$.
 - **6** $(x-1)^2 + (y-2)^2 = 1, z = 3.$
 - (d) $(x-1)^2 + (y-2)^2 = 1$, z = 0.
- (9) The area inside the curve $r = 1 + \sin \theta$ is
 - (a) 3π
 - (b) $\frac{\pi}{2}$
 - (c) $\frac{3\pi}{2}$
 - (d) 2π
- (10) The length of the polar curve $r = e^{-\theta}$, $0 \le \theta \le 1$ is
 - (a) $1 e^{-1}$
 - (b) $2(1-e^{-1})$
 - (c) $\sqrt{2}(1-e)$
 - (d) $\sqrt{2}(1-e^{-1})$
- (11) One of the following is the point $(x,y)=(-1,-\sqrt{3})$ in polar coordinates
 - (a) $(2, \frac{\pi}{3})$
 - **ⓑ** $(-2, \frac{\pi}{3})$
 - (c) $\left(-2, \frac{4\pi}{3}\right)$
 - (d) $(-2, \frac{\pi}{6})$

- (12) The cartesian equation of the polar curve $r^2 \sin(2\theta) = 2$ is
 - (a) x + y = 1
 - (b) xy = 1
 - (c) $y^2 = 2$
 - (d) xy = 2
- (13) The volume of the box determined by the vectors $\mathbf{u} = \mathbf{i} \mathbf{j} \mathbf{k}$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $\mathbf{w} = \mathbf{i} \mathbf{j}$ is
 - **a** 5
 - (b) 7
 - (c) 6
 - (d) 4
- (14) The equations x = 3, y = 4 in space represent
 - (a) The point (3,4)
 - **(b)** A line parallel to the z-axis
 - (c) A line perpendicular to the z-axis
 - (d) A line in the xy-plane.
- (15) The slope of the polar curve $r = \frac{1}{2} + \cos \theta$ at $\theta = \frac{2\pi}{3}$ is
 - (a) $\sqrt{3}$
 - ⓑ $-\sqrt{3}$
 - (c) $\frac{1}{\sqrt{3}}$
 - (d) $-\frac{1}{\sqrt{3}}$
- (16) If $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} \mathbf{v}) = 0$ then
 - (a) $\mathbf{u} = \mathbf{v}$
 - (b) $\mathbf{u}.\mathbf{v} = 0$
 - $|\mathbf{u}| = |\mathbf{v}|$
 - (d) $\mathbf{u} = \mathbf{v} = \mathbf{0}$
- (17) Let u, v and w be vectors in space. One of the following operations is undefined
 - (a) $(\mathbf{u} \times \mathbf{v}).\mathbf{w}$
 - $(\mathbf{u}.\mathbf{v}) \times \mathbf{w}$
 - (c) $(\mathbf{u} + \mathbf{v}).\mathbf{w}$
 - (d) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w}$

- (18) The set of points that satisfy the equations x + y + z = 1, x + y z = 1 is (a) the z-axis (b) the xy-plane (c) the plane x + y = 1(d) the line x + y = 1 in the xy-plane. (19) The set of points equidistant (at the same distance) from the points (0,1,0) and (0, -1, 0) is (a) the z-axis (b) the xy-plane (c) the xz-plane (d) the yz-plane (20) The center and radius of the sphere $x^2 + y^2 + z^2 - 2x + 2y = 2$ are (a) (1,1,0), 4**(b)** (1,-1,0), 2(c) (-1,1,0), 2 (d) (-1, -1, 0), 2(21) If $\mathbf{u} \cdot \mathbf{v} = \sqrt{3}$ and $\mathbf{u} \times \mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$. The angle between \mathbf{u} and \mathbf{v} is a $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{2\pi}{3}$. (22) The set of points in the plane that satisfy the inequalities -2 < r < -1, $\pi \le \theta \le 2\pi$ (a) the region between the circles r = -1 and r = -2.
 - b the region between the circles r=-1 and r=-2 in the first and second quadrant.
 - (c) the region between the circles r=-1 and r=-2 in the second and third quadrant.
 - (d) the region between the circles r=-1 and r=-2 in the third and fourth quadrant.

Question 2.(10 points) Consider the circle $r = 2\cos\theta$ and vertical line $r = \frac{1}{2}\sec\theta$.

(a) Write the curves in Cartesian coordinates and graph them.

$$r = 2 \cos 0$$

$$r^{2} = 2r \cos 0$$

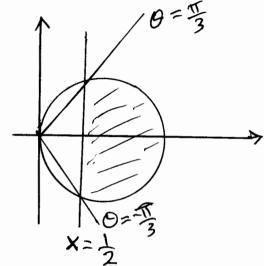
$$x^{2} + y^{2} = 2x$$

$$(x-1)^{2} + y^{2} = 1$$

$$r = \frac{1}{2} \sec 0$$

$$r \cos 0 = \frac{1}{2}$$

$$x = \frac{1}{2}$$



 $X = \frac{1}{2}$ (b) Find the area inside the circle $r = 2\cos\theta$ and to the right of the line $r = \frac{1}{2}\sec\theta$.

ind the area inside the circle
$$r = 2\cos\theta$$
 and to the right of the line $r = \frac{1}{2}\sec\theta$.

$$A = \frac{1}{2} \int_{0}^{\sqrt{3}} (4 \cos^{2}\theta - \frac{1}{4} \sec^{2}\theta) d\theta$$

$$= \int_{0}^{\sqrt{3}} 2(1 + \cos\theta) d\theta - \frac{1}{4} \int_{0}^{\sqrt{3}} \sec^{2}\theta d\theta$$

$$= 2 \left[\frac{\pi}{3} + \frac{\sqrt{3}}{4} \right] - \frac{\sqrt{3}}{4}$$

$$= 2 \frac{\pi}{3} + \frac{\sqrt{3}}{4} = \frac{2\pi}{3} + \frac{2\pi}{3} = \frac{2\pi}{3} = \frac{2\pi}{3} + \frac{2\pi}{3} = \frac{2\pi}{3} = \frac{2\pi}{3} + \frac{2\pi}{3} = \frac{$$

Question 3.(6 points) Consider the polar curve $r = \cos\left(\frac{\theta}{3}\right)$.

(a) Show that the curve is symmetric about the x-axis.

$$r = G_{S}(\frac{Q}{3})$$
 $(r, 0)$

$$r = G_{S}\left(\frac{-9}{3}\right) : (r_{i}-9)$$

(b) Graph the curve. Hint: graph the curve in the interval $[0, \frac{3\pi}{2}]$ then use symmetry.

