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Chapter 1

Functions

1

1.1 Functions

In this lecture, we review some important functions with their domains, ranges

and graphs.

Definition 1.1.1 A function f is a rule that assigns to each point x in the

domain a unique point y = f(x) in the range of f . We write f : D → R where

D is the domain of f and R is its range.

Example 1.1.1 (a) f(x) = x2, D = (−∞,∞), R = [0,∞).

(b) f(x) =
√
x, D = R = [0,∞).

Figure 1.1: Graph of y = x2 Figure 1.2: Graph of y =
√
x

(c) f(x) =
√

1− x2, D = [−1, 1], R = [0, 1].

(d) The absolute value function f(x) = |x| =
√
x2, D = (−∞,∞), R = [0,∞).

(e) The greatest integer function f(x) = bxc, D = (−∞,∞), R = 0,±1,±2, ....
1review of chapter 1 in the textbook
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Figure 1.3: Graph of y =
√

1− x2 Figure 1.4: Graph of y = |x|

1.2 Trigonometric functions

In this section, we review the six trigonometric functions: sinx, cosx, tanx, cotx, secx

and cscx. You are supposed to know the values of these functions at the main

values 0, π6 ,
π
4 ,

π
3 ,

π
2 , ...

(a) y = sinx, D = (−∞,∞), R = [−1, 1].

(b) y = cosx, D = (−∞,∞), R = [−1, 1].

Figure 1.5: Graph of y = sinx Figure 1.6: Graph of y = cosx

(c) y = tanx = sin x
cos x , D = (−∞,∞) \ {π2 ± nπ}, n = 0, 1, 2, ..., R = (−∞,∞)

(d) y = cotx = cos x
sin x , D = (−∞,∞) \ {±nπ}, n = 0, 1, 2, ..., R = (−∞,∞)

Figure 1.7: Graph of y = tanx Figure 1.8: Graph of y = cotx

(e) y = secx = 1
cos x , D = (−∞,∞) \ {π2 ± nπ}, n = 0, 1, 2, ...,

R = (−∞,−1] ∪ [1,∞)



1.2. TRIGONOMETRIC FUNCTIONS 5

(f) y = cscx = 1
sin x , D = (−∞,∞) \ {±nπ}, n = 0, 1, 2, ...,

R = (−∞,−1] ∪ [1,∞)

Figure 1.9: Graph of y = secx Figure 1.10: Graph of y = cscx

Remark 1.2.1 Since sin(x+2π) = sinx, cos(x+2π) = cosx, sec(x+2π) = secx

and csc(x + 2π) = cscx, the functions sinx, cosx, secx and cscx are called

periodic with period 2π. Whereas tanx and cotx are periodic with period π

since tan(x+ π) = tanx and cot(x+ π) = cotx.

1.2.1 Trigonometric identities

1. sin2 x+ cos2 x = 1.

2. sin(2x) = 2 sinx cosx.

3. cos(2x) = cos2 x− sin2 x.

4. cos2 x = 1+cos(2x)
2 .

5. sin2 x = 1−cos(2x)
2 .

6. sec2 x = 1 + tan2 x.

7. csc2 x = 1 + cot2 x.

8. cos(A+B) = cosA cosB − sinA sinB.

9. sin(A+B) = sinA cosB + cosA sinB.

Example 1.2.1 Using the above identities, we find the following:

(a) sin(x+ π) = − sinx, cos(x+ π) = − cosx.

(b) sin(x+ π
2 ) = cosx, cos(x+ π

2 ) = − sinx.
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1.3 Even and odd functions

Definition 1.3.1 Let f be a function defined on an interval I = [−a, a], where

a is a positive real number. Then

• f(x) is called even if f(−x) = f(x). If f is even then its graph is sym-

metric about the y−axis.

• f(x) is called odd if f(−x) = −f(x). If f is odd then its graph is symmetric

about the origin.

Example 1.3.1 x2, x4, x6, ..., cosx, secx are even. x, x3, x5, ..., sinx, tanx, cscx, cotx

are odd.

1.3.1 Exercises

(1) Find the domain and the range of the following functions:

(a) f(x) = 1√
x

.

(b) f(x) = tan(πx).

(c) f(x) = 1 + |x|.
(d) f(x) = sec2 x.

(e) g(x) = 1
x2 .

(f) h(x) = 1√
1−x2

.

(2) Sketch the following functions:

(a) y = sin(πx)

(b) y = |x− 1|
(c) y = cos(x) + 1

(3) Determine whether the following functions are even, odd or neither:

(a) f(x) = x2 + 1.

(b) f(x) = x3 + x.

(c) g(t) = 1
t−1 .

(d) h(x) = x
x2−1 .

(4) Prove the following:

(a) If f(x) is even and g(x) is odd then (g ◦ f)(x) is even.

(b) If f(x) is even and g(x) is odd then f(x)
g(x) is odd.



Chapter 2

Limits and continuity

1

2.1 Limits of functions

When a function f approaches a certain limit L as x approaches x0, we write

lim
x→x0

f(x) = L

This limit means that the function gets arbitrarily close to L when x is suffi-

ciently close to x0. Notice that x0 or L or both of them can be +∞ or −∞.

The function f may or may not be defined at x0. As you know,

lim
x→x0

f(x) = L if and only if lim
x→x+

0

f(x) = lim
x→x−0

f(x) = L

Example 2.1.1 We can use simple techniques to find the following limits:

(a) lim
x→1

x−1
x+1 = 0.

(b) lim
x→1

x2−1
x−1 = 2.

(c) lim
x→+∞

1
x = 0.

(d) lim
x→0+

1
x = +∞.

(e) lim
x→1

x2+x−2
x2−x = 3.

(f) lim
x→−1

√
x2+8−3
x+1 = − 1

3 .

1This is a review of chapter two in the textbook
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8 CHAPTER 2. LIMITS AND CONTINUITY

Theorem 2.1.1 (The Sandwich Theorem) Suppose that g(x) ≤ f(x) ≤ h(x)

for all x in some open interval containing c, except possibly at x = c and that

lim
x→c

g(x) = lim
x→c

h(x) = L then lim
x→c

f(x) = L

Example 2.1.2 Suppose that f(x) is a function that satisfies 1− x2 ≤ f(x) ≤
1 + x2. Then lim

x→0
f(x) = 1 since lim

x→0
(1− x2) = lim

x→0
(1 + x2) = 1.

Example 2.1.3 Find lim
x→+∞

sin x
x . Since

− 1

x
≤ sinx

x
≤ 1

x

and lim
x→∞

1
x = 0, then, by the sandwich theorem

lim
x→∞

sinx

x
= 0

Remark 2.1.1 Please do not confound the previous limit with lim
x→0

sin x
x = 1.

Example 2.1.4 Consider the function

f(x) =

{
x+ 1 , x ≤ 0

−x , x > 0

Then, limx→0+ f(x) = 0 and limx→0− f(x) = 1. So, limx→0 f(x) does not exist.

2.2 Continuity

Definition 2.2.1 A function f is continuous at a point x0 if the following

conditions are satisfied:

(a) f(x0) exists.

(b) lim
x→x0

f(x) exists.

(c) lim
x→x0

f(x) = f(x0).

Example 2.2.1 The functions sinx, cosx, |x| and all polynomials are continu-

ous on (−∞,∞).

Example 2.2.2 The rational functions are continuous at all points except at

the zeros of the denominator. For example, the function

f(x) =
x3 + x+ 1

x2 − 1

is continuous on (−∞,∞) \ {−1, 1}.
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Example 2.2.3 (a function with removable discontinuity) Consider the

function

f(x) =
x2 + 2x− 3

x2 − 1

Then

lim
x→1

x2 + 2x− 3

x2 − 1
= lim
x→1

(x− 1)(x+ 3)

(x− 1)(x+ 1)
= lim
x→1

x+ 3

x+ 1
= 2

The point x = 1 is called a removable discontinuity of the function f because

we can define f at x = 1 so that we can remove the discontinuity. The following

function is called the continuous extension of f at x = 1

F (x) =

{
f(x) , x 6= 1

2 , x = 1

Theorem 2.2.1 (The intermediate value theorem) If f is a continuous

function on a closed interval [a, b], and if y0 is any value between f(a) and f(b),

then y0 = f(c) for some c in [a, b].

Recall that a point c is called a root of a function f if f(c) = 0. We can use the

intermediate value theorem to show that a given function has a root in some

interval.

Example 2.2.4 Let f(x) = x3−x−1. Since f(1) = −1 < 0, f(2) = 5 > 0 and

f(1) < 0 < f(2) then there exists c ∈ [1, 2] such that f(c) = 0.

Figure 2.1: Graph of y = x3− x− 1

2.2.1 Asymptotes

In this section, we are dealing mainly with rational functions. A rational func-

tion is the ratio of two polynomials. Our objective is to be able to sketch some

rational functions using limits and asymptotes.
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Definition 2.2.2 A line y = b is a horizontal asymptote of the graph of the

function y = f(x) if either

lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b

Example 2.2.5 The line y = 0 is a horizontal asymptote for f(x) = x
x2+1 since

lim
x→+∞

x
x2+1 = lim

x→−∞
x

x2+1 = 0.

Example 2.2.6 The line y = 1 is a horizontal asymptote for f(x) = x2

x2+1 since

lim
x→+∞

x2

x2+1 = lim
x→−∞

x2

x2+1 = 1.

Definition 2.2.3 A line x = a is a vertical asymptote of the graph of the

function y = f(x) if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞

Example 2.2.7 The line x = 0 is a vertical asymptote for f(x) = 1
x since

lim
x→0+

1
x = +∞ and lim

x→0−

1
x = −∞.

Figure 2.2: Graph of y = 1
x

Example 2.2.8 The function f(x) = sin x
x has no vertical asymptote even it is

undefined at x = 0 since lim
x→0

sin x
x = 1.

Example 2.2.9 Consider the function f(x) = x+1
x−1 . Notice that

lim
x→1+

x+ 1

x− 1
= +∞, lim

x→1−

x+ 1

x− 1
= −∞

and

lim
x→+∞

x+ 1

x− 1
= lim
x→−∞

x+ 1

x− 1
= 1

Then the line x = 1 is a vertical asymptote and the line y = 1 is a horizontal

asymptote.
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Figure 2.3: Graph of y = x+1
x−1

If the degree of the numerator of a rational function is 1 greater than the degree

of the denominator then the graph of f has an oblique asymptote.

Example 2.2.10 The graph of the function f(x) = x2

x−1 has an oblique asymp-

tote since the degree of the numerator is 2 and the degree of the denominator

is one. Using polynomial division, we can write f(x) = (x + 1) + 1
x−1 So, the

line y = x + 1 is the oblique asymptote of the graph of f . Moreover, the line

x = 1 is a vertical asymptote for the graph of f since lim
x→1+

f(x) = +∞ and

lim
x→1−

f(x) = −∞.

Figure 2.4: Graph of y = x2

x−1
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2.3 Exercises

1. Find the following limits:

(a) lim
t→−1

t2+3t+2
t2−t−2

(b) lim
x→1

1−
√
x

1−x

(c) lim
θ→1

θ4−1
θ3−1

(d) lim
θ→0

sin(2θ)
3θ

(e) lim
θ→0

1−cos θ
sin(2θ)

(f) lim
x→∞

1+
√
x

1−
√
x

(g) lim
x→−∞

√
x2+1
x+1

(h) lim
x→−∞

3
√
x− 5
√
x

3
√
x+ 5
√
x

(i) lim
x→∞

(
√
x2 + 1−

√
x2 − x)

(j) lim
t→3+

btc
t

(k) lim
x→0

x sin
(
1
x

)
2. Find the asymptotes of the following functions then sketch their graphs

(a) f(x) = x+1
x−1

(b) y = x3+1
x2

(c) f(x) = x2+1
x−1

(d) f(x) = x3+1
x2−1

3. For what values of a and b is

g(x) =


ax+ 2b , x ≤ 0

x2 + 3a− b , 0 < x ≤ 2

3x− 5 , x > 2

continuous at every x. Then sketch the graph of the function.

4. Find the continuous extension of the function h(t) = t2+3t−10
t−2 .

5. Use the intermediate value theorem to show that the function f(x) =

x3 − 2x2 + 2 has a root.



Chapter 3

Differentiation

1

3.1 Definition of derivative

Definition 3.1.1 The derivative of a function f at x0, denoted f ′(x0) is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

provided this limit exists.

If f ′(x0) exists then we say that f is differentiable at x0. When we say that

f is differentiable on a closed interval [a, b], we mean the following

• f ′ exists at all points in the open interval (a, b).

• The right-hand derivative of f at a exists; that is,

lim
h→0+

f(a+ h)− f(a)

h

exists. We denote the right-hand derivative of f at x = a by f ′+(a).

• The left-hand derivative of f at b exists; that is,

lim
h→0−

f(a+ h)− f(a)

h

exists. We denote the left-hand derivative of f at x = b by f ′−(b).

Remark 3.1.1 A function f is differentiable at x = c if and only if the right-

hand derivative and the left-hand derivative both exist and are equal at x = c.

1This is a review of chapter 3 in the textbook
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If f is differentiable at x = c then f is continuous at x = c. The converse

of this statement is not true, the function f(x) = |x| is continuous but not

differentiable at x = 0.

Example 3.1.1 Let f(x) = |x|. We find the left-hand and right-hand deriva-

tives of f at x = 0.

f ′+(0) = lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

h

h
= 1

f ′−(0) = lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

−h
h

= −1

We conclude that f is not differentiable at x = 0.

3.2 Differentiation rules

Theorem 3.2.1 Suppose that f(x) and g(x) are differentiable at x. Then

1. (f(x)± g(x))′ = f ′(x)± g′(x).

2. (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

3.
(
f(x)
g(x)

)′
= g(x)f ′(x)−f(x)g′(x)

g2(x) .

4. (f ◦ g)′(x) = f ′(g(x))g′(x) (Chain Rule).

3.3 Derivatives of Trigonometric functions

1. (sinx)′ = cosx.

2. (cosx)′ = − sinx.

3. (tanx)′ = sec2 x.

4. (secx)′ = secx tanx.

5. (cscx)′ = − cscx cotx.

6. (cotx)′ = − csc2 x.

Example 3.3.1 Find the derivatives of the following functions:

1. d
dx

x+1
x2+1 = x2+1−(x+1)(2x)

(x2+1)2 = 1−2x−x2

(x2+1)2 .

2. d
dx tan(

√
x) = (sec2

√
x) 1

2
√
x

.

3. d
dx (secx tanx) = sec3 x+ secx tan2 x.
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Example 3.3.2 Find the equation of the tangent line to the curve f(x) =

secx tanx at x = π
4 .

Solution: The slope of the tangent line is f ′(π4 ) = 3
√

2 (from the above

example) and f(π4 ) =
√

2.

Then, the equation of the tangent line to f(x) at x = π
4 is

y −
√

2 = 3
√

2(x− π

4
)

3.4 Implicit differentiation

In this section, we consider equations that define relation between x and y. We

will learn how to find dy
dx using implicit differentiation. Let us consider some

examples:

Example 3.4.1 The equation x2 + y2 = 1 defines the unit circle (the circle

with center (0, 0) and radius one). To find y′, we differentiate both sides with

respect to x to get 2x+ 2yy′ = 0, from which we find that y′ = −x/y.

We can differentiate again to find the second order derivative y′′.

y′′ =
d2y

dx2
=
−y + xy′

y2
=
−y + x(−xy )

y2

Example 3.4.2 Consider the implicit equation xy = cot(xy). Differentiate

both sides with respect to x. Then

y + xy′ = − csc2(xy)(y + xy′)

From which we find that

dy

dx
=
−y − y csc2(xy)

x+ x csc2(xy)
= −y

x

3.5 Linearization and Differentials

Sometimes, we need to approximate a given nonlinear function with a linear

function at some point near (a, f(a)). The best linear function that approxi-

mates f(x) near x = a, provided that f is differentiable at x = a, is its tangent

line whose equation is given by

L(x) = f(a) + f ′(a)(x− a)

L(x) is called the linearization of f(x) at x = a and the approximation

f(x) ≈ L(x) is called the standard linear approximation of f at a.
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Example 3.5.1 The linearization of the function f(x) =
√

1 + x at x = 0 is

L(x) = 1 + 1
2x. We can use the linearization to approximate the values of f

near x = 0. For example,
√

1.2 ≈ 1 + 0.2
2 = 1.1 and

√
1.05 ≈ 1 + 0.05

2 = 1.025.

Example 3.5.2 Find the linearization of the function f(x) = secx at x = π
4 .

We need to find f(π4 ) and f ′(π4 ). Now, f ′(x) = secx tanx, so f ′(π4 ) =
√

2 and

f(π4 ) =
√

2. Then the linearization L(x) =
√

2 +
√

2(x− π
4 ).

Now, suppose that we move from a point x = a to a nearby point a+ dx. The

change in f is ∆f = f(a+ dx)− f(a) while the change in L is

∆L = L(a+ dx)− L(a) = f(a) + f ′(a)(a+ dx− a)− f(a) = f ′(a)dx

Since f ≈ L then ∆f ≈ ∆L = f ′(a)dx. Therefore, f ′(a)dx gives an approxi-

mation for ∆f . The quantity f ′(a)dx is called the differential of f at x = a.

For example, the differential of the function y = tan2 x is dy = 2 tanx sec2 xdx.

Example 3.5.3 The radius r of a circle increases from 10 to 10.1 m. Use dA

to estimate the increase in the circle’s area A. Estimate the area of the enlarged

circle and compare your estimate to the true area found by direct calculations.

Solution The area of the circle is A = πr2. Then dA = 2πrdr. The estimated

increase is

dA = 2π(10)0.1 = 2πm2

The estimate area of the enlarged circle is

A(10.1) ≈ A(10) + dA = 100π + 2π = 102π

The exact value of the area is A(10.1) = π(10.1)2 = 102.01π. The error in this

estimation is |102.01π − 102π| = 0.01π.

3.6 Exercises

1. Find the derivatives of the following functions:

(a) f(s) =
√
s−1√
s+1

(b) f(x) = ( 1
x − x)(x2 + 1)

(c) g(x) = sec(2x+ 1) cot(x2)

(d) s(t) = 1+csc t
1−csc t

(e) f(x) = x3 sinx cosx.

(f) x1/2 + y1/2 = 1.

2. Find dy
dx for the following:
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(i) y = cot2 x

(ii) x2 + y2 = x.

(iii) y = sin x
1−cos x .

3. Find the points on the curve y = 2x3 − 3x2 − 12x+ 20 where the tangent

is parallel to the x−axis.

4. For what values of the constant a, if any, is

f(x) =

{
sin(2x) , x ≤ 0

ax , x > 0

(i) continuous at x = 0?

(ii) Differentiable at x = 0.

5. Find the normals to the curve xy+ 2x− y = 0 that are parallel to the line

2x+ y = 0.

6. Find the linearization of the following functions at the given points

(a) f(x) = tanx, x = π/4.

(b) g(x) = 1
x , x = 1.

(c) h(x) = x2

x2+1 , x = 0.

(d) f(x) = 1 + cos θ, θ = π
3 .

7. The radius of a circle is increased from 2 to 2.02 m.

(a) Estimate the resulting change in area.

(b) Express the estimate as a percentage of the circle’s original area.
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Chapter 4

Applications of derivatives

1

4.1 Increasing and decreasing functions

Definition 4.1.1 Let f(x) be a function defined on an interval I. Then

(a) f is increasing on I if whenever x2 > x1 then f(x2) > f(x1), for all x1, x2
in I.

(b) f is decreasing on I if whenever x2 > x1 then f(x2) < f(x1), for all x1, x2
in I.

To determine whether a function f is increasing or decreasing, we use the fol-

lowing theorem

Theorem 4.1.1 Suppose that f is continuous on [a, b] and differentiable on

(a, b) then

(a) If f ′(x) > 0, for all x ∈ (a, b) then f is increasing on [a, b].

(b) If f ′(x) < 0, for all x ∈ (a, b), then f is decreasing on [a, b].

Example 4.1.1 Let f(x) = x3−12x−5. Then f ′(x) = 3x2−12 = 3(x−2)(x+

2). Depending on the sign of f ′, we find that f is increasing on (−∞,−2]∪[2,∞)

and decreasing on [−2, 2].

1This part is a review of chapter 4 in the textbook
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4.2 Extreme values of functions

Definition 4.2.1 Let f be a function with domain D. Then,

(a) f has an absolute maximum value on D at a point c if f(x) ≤ f(c), for

all x ∈ D.

(b) f has an absolute minimum value on D at a point c if f(x) ≥ f(c), for

all x ∈ D.

f(c) is called local maximum (resp. local minimum) if the inequality in (a)

(resp. (b)) holds in a small interval around x = c.

Example 4.2.1 The function f(x) = x3, D = [−1, 1] has absolute minimum

value f(−1) = −1 and absolute maximum value f(1) = 1.

Theorem 4.2.1 If f is continuous function on a closed interval [a, b] then f

has both an absolute maximum value and an absolute minimum value.

If we want to find the extreme values of a function f on a closed interval, we

look for these values at the endpoints of the interval and at the interior points

where f ′ = 0 or undefined (critical points).

Definition 4.2.2 An interior point where f ′ equals zero or undefined is called

a critical point of f .

Example 4.2.2 Let f(x) = x2/3, D = [−1, 8]. f ′(x) = 2
3x1/3 . Then f ′(0) is

undefined. To find the extreme values of f , we evaluate f at the endpoints x =

−1, x = 8 and at the critical point x = 0. Since f(−1) = 1, f(0) = 0, f(8) = 4,

then f(0) = 0 is an absolute minimum and f(8) = 4 is an absolute maximum.

Theorem 4.2.2 If f is differentiable and has an extreme value at an interior

point c then f ′(c) = 0.

If f ′(c) = 0, this does not mean that f has an extreme value (maximum or

minimum) at x = c. For example, x = 0 is a critical point of f(x) = x3 but

f(0) is neither maximum nor minimum for y = x3.

To classify the critical as maximum or minimum, we can use either the first

derivative test or the second derivative test which we state now.

Theorem 4.2.3 (First derivative test) Suppose that f has a critical point

at c = c and that f ′(x) exists in an open interval containing x = c. Then

(a) If f ′ changes sign from positive to negative at x = c then f(c) is a local

maximum.
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(b) If f ′ changes sign from negative to positive at x = c then f(c) is a local

minimum.

(c) If f ′ does not change sign at x = c then f does not have an extreme value

at x = c.

Theorem 4.2.4 (Second derivative test) Suppose that f ′(c) = 0 and that

f ′′ is continuous in an open interval containing c. Then

(a) If f ′′(c) < 0 then f(c) is a local maximum.

(b) If f ′′(c) > 0 then f(c) is a local minimum.

(c) If f ′′(c) = 0 then the test fails.

If f ′′(x) ≥ 0 for all x in an interval I then f is concave up on I. If f ′′(x) ≤ 0

for all x in an interval I then f is concave down on I.

Definition 4.2.3 A point where f has tangent line and changes concavity is

called an inflection point of f .

Example 4.2.3 Find the intervals at which the function f(x) = x4 − 4x3 + 10

is increasing, decreasing, concave up and concave down. Then, find the extreme

values of f . Notice that f ′(x) = 4x2(x − 3) and f ′(x) = 0 at x = 0, 3, f ′ < 0

on (−∞, 0) ∪ (0, 3) (f is decreasing) and f ′ > 0 on (3,∞) (f is increasing). It

follows that f(3) = −17 is an absolute minimum.

Now, f ′′(x) = 12x(x−2), from which we conclude that f ′′(x) = 0 at x = 0, 2.

Moreover, f ′′(x) > 0 on (−∞, 0) ∪ (2,∞) (f is concave up) and f ′′(x) < 0 on

(0, 2) (concave down).

f has inflection points at (0, 10) and (2,−6).

Figure 4.1: Graph of y = x4 − 4x3 + 10
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4.3 The Mean Value Theorem

Theorem 4.3.1 Rolle’s Theorem If y = f(x) is continuous on the closed

interval [a, b] and differentiable on (a, b) and f(a) = f(b), then there is at least

one point c in (a, b) such that f ′(c) = 0.

Theorem 4.3.2 The Mean Values Theorem If y = f(x) is continuous on

the closed interval [a, b] and differentiable on (a, b), then there is at least one

point c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Example 4.3.1 Let f(x) = x2, x ∈ [1, 4]. Then

f(4)− f(1)

4− 1
=

15

3
= 2c so c =

5

2

4.4 Exercises

1. Find the intervals in which the following functions are increasing, decreas-

ing, concave up and concave down. Then, find the extreme values and

inflection points and sketch their graphs:

(a) y = 1− (x+ 1)3

(b) y = x2+1
x

(c) y = x4 − 2x2

(d) y = x
x2+1

(e) y = x2−3
x−2

(f) y = 3
√
x3 + 1

(g) y = x
x2−1

(h) y = x
√

8− x2

2. Find the value of c in the conclusion of the mean value theorem for the

function f(x) =
√
x on the interval [a, b], a > 0.

3. For what values of a,m and b does the function

f(x) =


3 , x = 0

−x2 + 3x+ a , 0 < x < 1

mx+ b , 1 ≤ x ≤ 2

satisfy the hypotheses of the mean value theorem on the interval [0, 2].



Chapter 5

Integration

1

5.1 Antiderivative and integration

Definition 5.1.1 A function F is called an antiderivative of a function f on

an interval I if F ′(x) = f(x), for all x in I. The set of all antiderivatives of f

is called the indefinite integral of f and is denoted by
∫
f(x)dx.

Example 5.1.1 In this example, we give the indefinite integrals of some im-

portant functions

(a)
∫
xndx = xn+1

n+1 + C, n 6= −1

(b)
∫

sinxdx = − cosx+ C

(c)
∫

cosxdx = sinx+ C

(d)
∫

sec2 xdx = tanx+ C

(e)
∫

secx tanxdx = secx+ C

(f)
∫

cscx cotxdx = − cscx+ C

(g)
∫

csc2 xdx = − cotx+ C

Example 5.1.2 Consider the following examples:

(a)
∫

(x−2 − x2 + 1)dx = − 1
x −

1
3x

3 + x+ C

(b)
∫

cos2 θdθ =
∫ 1+cos(2θ)

2 dθ = θ
2 + sin(2θ)

4 + C

1This part is a review of chapter 5 of the textbook

23
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5.2 Definite integrals and areas

Sometimes, we evaluate integrals on given intervals. Such integrals are called

definite integrals and take the form∫ b

a

f(x)dx

We can solve definite integrals using the fundamental theorem of calculus:

Theorem 5.2.1 Fundamental Theorem of Calculus

(I) Suppose that f is continuous on [a, b] and F is an is an antiderivative of

f on [a, b] then ∫ b

a

f(x)dx = F (b)− F (a)

(II) Suppose that f is continuous on [a, b] and F (x) =
∫ x
a
f(t)dt then F is

continuous on [a, b] and differentiable on (a, b) and F ′(x) = f(x).

If f(x) ≥ 0 is an integrable function on [a, b] then
∫ b
a
f(x)dx is the area enclosed

between the curve f(x) and the x−axis.

Example 5.2.1 Find the derivatives of the following functions

(a) d
dx

∫ x
0

sin tdt = sinx.

(b) d
dx

∫ x2

1
dt

1+t2 = 2x
1+x4

Example 5.2.2 Find the area enclosed between the following curves and the

x−axis in the given intervals

(a) f(x) = 2x
√
x2 + 1, x ∈ [0, 1]. The area is given by the following integral

that we solve using substitution u = x2 + 1

A =

∫ 1

0

2x
√
x2 + 1dx =

∫ 2

1

u1/2du =
2

3
u3/2|21 =

2

3
(2
√

2− 1)

We can find the area enclosed between two functions f(x) and g(x) in some

interval [a, b] where f(x) ≥ g(x), using the formula

A =

∫ b

a

(f(x)− g(x))dx

Sometimes, the functions are expressed in terms of y in some interval [c, d], so

the area in this case is

A =

∫ d

c

(f(y)− g(y))dy

The next examples explain both cases.
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Example 5.2.3 Find the area enclosed between the curves f(x) = 2− x2 and

y = −x.

Solution We first find the points at which the two curves intersect by equating

the functions

−x = 2− x2 which is equivalent to x2 − x− 2 = 0

The last equation can be factorized as (x+ 1)(x− 2) = 0. Thus, the two curves

intersect at x = −1 and x = 2. So, the area is given by

A =

∫ 2

−1
(2− x2 + x)dx =

9

2

Example 5.2.4 Find the area enclosed between the curves y =
√
x, the x−axis

and the line y = x− 2. It is easier to write x as a function of y and to integrate

with respect to y. In this case, we have x = y2 and x = y + 2. The two curves

intersect at the point y = 2. The area is given by the integral

A =

∫ 2

0

(y + 2− y2)dy =
10

3

5.3 Exercises

1. Solve the following integrals:

(a)
∫

sin(5x)dx

(b)
∫

tan2 xdx

(c)
∫

(1 + cot2 θ)dθ.

(d)
∫

csc θdθ
csc θ−sin θ

2. Find the derivatives of the following functions

(a) y =
∫ x
1
dt
t

(b) y =
∫√x
0

cos tdt

(c) y =
∫ 0

tan x
dt

1+t2

3. Find the linearization of g(x) = 3 +
∫ x2

1
sec(t− 1)dt at x = −1

4. Solve the following definite integrals

(a)
∫√2

1
s2+
√
s

s2 ds

(b)
∫ π/6
0

(secx+ tanx)2dx

(c)
∫ π
0

(cosx+ | cosx|)dx
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5. Use substitution to solve the following integrals:

(a)
∫

dx√
x(1+

√
x)2

(b)
∫

sec z tan z√
sec z

dz

(c)
∫ √

x−1
x5 dx

(d)
∫
x3
√
x2 + 1dx

6. Find the area enclosed between the given functions:

(a) y = x2 − 2x, y = x

(b) y = x2, y = −x2 + 4x

(c) x = y2, x = 3− 2y2

(d) x = y3 − y2, x = 2y




