Lecture 1: Review of functions

Prepared by: Dr. Marwan Aloqeili

September 6, 2015

0.1 Review of functions

1

0.2 Functions

The aim of this part is to review some important functions with their domains, ranges and graphs.

Definition 0.2.1 A function f is a rule that assigns to each point x in the domain a unique point y = f(x) in the range of f. We write $f : D \to R$ where D is the domain of f and R is its range.

Example 0.2.1 (a) $f(x) = x^2$, $D = (-\infty, \infty)$, $R = [0, \infty)$.

(b)
$$f(x) = \sqrt{1 - x^2}, D = [-1, 1], R = [0, 1].$$

(c) The absolute value function $f(x) = |x| = \sqrt{x^2}$, $D = (-\infty, \infty)$, $R = [0, \infty)$.

(d) The greatest integer function $f(x) = \lfloor x \rfloor$, $D = (-\infty, \infty)$, $R = 0, \pm 1, \pm 2, \dots$

¹This part is a review of chapter 1 in the textbook

0.3 Trigonometric functions

In this section, we review the six trigonometric functions: $\sin x, \cos x, \tan x, \cot x, \sec x$ and $\csc x$. You are supposed to know the values of these functions at the main values $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \dots$

- (a) $y = \sin x, D = (-\infty, \infty), R = [-1, 1].$
- (b) $y = \cos x, D = (-\infty, \infty), R = [-1, 1].$

Figure 5: Graph of $y = \sin x$

Figure 6: Graph of $y = \cos x$

(c)
$$y = \tan x = \frac{\sin x}{\cos x}, D = (-\infty, \infty) \setminus \{\frac{\pi}{2} \pm n\pi\}, n = 0, 1, 2, ..., R = (-\infty, \infty)$$

(d) $y = \cot x = \frac{\cos x}{\sin x}, D = (-\infty, \infty) \setminus \{\pm n\pi\}, n = 0, 1, 2, ..., R = (-\infty, \infty)$

(e) $y = \sec x = \frac{1}{\cos x}, D = (-\infty, \infty) \setminus \{\frac{\pi}{2} \pm n\pi\}, n = 0, 1, 2, ..., R = (-\infty, -1] \cup [1, \infty)$

(f)
$$y = \csc x = \frac{1}{\sin x}, D = (-\infty, \infty) \setminus \{\pm n\pi\}, n = 0, 1, 2, ..., R = (-\infty, -1] \cup [1, \infty)$$

Remark 0.3.1 Since $\sin(x+2\pi) = \sin x$, $\cos(x+2\pi) = \cos x$, $\sec(x+2\pi) = \sec x$ and $\csc(x+2\pi) = \csc x$, the functions $\sin x$, $\cos x$, $\sec x$ and $\csc x$ are called periodic with period 2π . Whereas $\tan x$ and $\cot x$ are periodic with period π since $\tan(x+\pi) = \tan x$ and $\cot(x+\pi) = \cot x$.

0.3.1 Trigonometric identities

- 1. $\sin^2 x + \cos^2 x = 1$.
- 2. $\sin(2x) = 2\sin x \cos x.$
- 3. $\cos(2x) = \cos^2 x \sin^2 x$.
- 4. $\cos^2 x = \frac{1 + \cos(2x)}{2}$.
- 5. $\sin^2 x = \frac{1 \cos(2x)}{2}$.
- 6. $\sec^2 x = 1 + \tan^2 x$.
- 7. $\csc^2 = 1 + \cot^2 x$.
- 8. $\cos(A+B) = \cos A \cos B \sin A \sin B$.
- 9. $\sin(A+B) = \sin A \cos B + \cos A \sin B$.

Example 0.3.1 Using the above identities, we find the following:

- (a) $\sin(x+\pi) = -\sin x$, $\cos(x+\pi) = -\cos x$.
- (b) $\sin(x + \frac{\pi}{2}) = \cos x$, $\cos(x + \frac{\pi}{2}) = -\sin x$.

0.4 Even and odd functions

Definition 0.4.1 Let f be a function defined on an interval I = [-a, a], where a is some real number. Then

- f(x) is called even if f(-x) = f(x). f is even if its graph is symmetric about the y-axis.
- f(x) is called odd if f(-x) = -f(x). f is odd if its graph is symmetric about the origin.

Example 0.4.1 $x^2, x^4, x^6, ..., \cos x, \sec x$ are even. $x, x^3, x^5, ..., \sin x, \tan x, \csc x, \cot x$ are odd.

0.4.1 Exercises

(1) Find the domain and the range of the following functions:

(a)
$$f(x) = \frac{1}{\sqrt{x}}$$
.
(b) $f(x) = \tan(\pi x)$.
(c) $f(x) = 1 + |x|$.
(d) $f(x) = \sec^2 x$.
(e) $g(x) = \frac{1}{x^2}$.
(f) $h(x) = \frac{1}{\sqrt{1-x^2}}$.

- (2) Sketch the following functions:
 - (a) $y = \sin(\pi x)$
 - (b) y = |x 1|

(c)
$$y = \cos(x) + 1$$

- (3) Determine whether the following functions are even, odd or neither:
 - (a) $f(x) = x^2 + 1$. (b) $f(x) = x^3 + x$.
 - (c) $g(t) = \frac{1}{t-1}$.
 - (d) $h(x) = \frac{x}{x^2 1}$.
- (4) Prove the following:
 - (a) If f(x) is even and g(x) is odd then $(g \circ f)(x)$ is even.
 - (b) If f(x) is even and g(x) is odd then $\frac{f(x)}{g(x)}$ is odd.