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0.1 Review of functions

1

0.2 Functions

The aim of this part is to review some important functions with their domains,

ranges and graphs.

Definition 0.2.1 A function f is a rule that assigns to each point x in the

domain a unique point y = f(x) in the range of f . We write f : D → R where

D is the domain of f and R is its range.

Example 0.2.1 (a) f(x) = x2, D = (−∞,∞), R = [0,∞).

Figure 1: Graph of y = x2 Figure 2: Graph of y =
√
x

(b) f(x) =
√
1− x2, D = [−1, 1], R = [0, 1].

(c) The absolute value function f(x) = |x| =
√
x2, D = (−∞,∞), R = [0,∞).

Figure 3: Graph of y =
√
1− x2 Figure 4: Graph of y = |x|

(d) The greatest integer function f(x) = ⌊x⌋, D = (−∞,∞), R = 0,±1,±2, ....

1This part is a review of chapter 1 in the textbook
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0.3 Trigonometric functions

In this section, we review the six trigonometric functions: sinx, cosx, tanx, cotx, secx

and cscx. You are supposed to know the values of these functions at the main

values 0, π
6 ,

π
4 ,

π
3 ,

π
2 , ...

(a) y = sinx, D = (−∞,∞), R = [−1, 1].

(b) y = cosx, D = (−∞,∞), R = [−1, 1].

Figure 5: Graph of y = sinx Figure 6: Graph of y = cosx

(c) y = tanx = sin x
cos x , D = (−∞,∞) \ {π

2 ± nπ}, n = 0, 1, 2, ..., R = (−∞,∞)

(d) y = cotx = cos x
sin x , D = (−∞,∞) \ {±nπ}, n = 0, 1, 2, ..., R = (−∞,∞)

Figure 7: Graph of y = tanx Figure 8: Graph of y = cotx

(e) y = secx = 1
cos x , D = (−∞,∞) \ {π

2 ±nπ}, n = 0, 1, 2, ..., R = (−∞,−1]∪
[1,∞)

(f) y = cscx = 1
sin x , D = (−∞,∞) \ {±nπ}, n = 0, 1, 2, ..., R = (−∞,−1] ∪

[1,∞)

Remark 0.3.1 Since sin(x+2π) = sinx, cos(x+2π) = cosx, sec(x+2π) = secx

and csc(x + 2π) = cscx, the functions sinx, cosx, secx and cscx are called

periodic with period 2π. Whereas tanx and cotx are periodic with period π

since tan(x+ π) = tanx and cot(x+ π) = cotx.
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Figure 9: Graph of y = secx Figure 10: Graph of y = cscx

0.3.1 Trigonometric identities

1. sin2 x+ cos2 x = 1.

2. sin(2x) = 2 sinx cosx.

3. cos(2x) = cos2 x− sin2 x.

4. cos2 x = 1+cos(2x)
2 .

5. sin2 x = 1−cos(2x)
2 .

6. sec2 x = 1 + tan2 x.

7. csc2 = 1 + cot2 x.

8. cos(A+B) = cosA cosB − sinA sinB.

9. sin(A+B) = sinA cosB + cosA sinB.

Example 0.3.1 Using the above identities, we find the following:

(a) sin(x+ π) = − sinx, cos(x+ π) = − cosx.

(b) sin(x+ π
2 ) = cosx, cos(x+ π

2 ) = − sinx.

0.4 Even and odd functions

Definition 0.4.1 Let f be a function defined on an interval I = [−a, a], where

a is some real number. Then

• f(x) is called even if f(−x) = f(x). f is even if its graph is symmetric

about the y−axis.

• f(x) is called odd if f(−x) = −f(x). f is odd if its graph is symmetric

about the origin.

Example 0.4.1 x2, x4, x6, ..., cosx, secx are even. x, x3, x5, ..., sinx, tanx, cscx, cotx

are odd.
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0.4.1 Exercises

(1) Find the domain and the range of the following functions:

(a) f(x) = 1√
x
.

(b) f(x) = tan(πx).

(c) f(x) = 1 + |x|.

(d) f(x) = sec2 x.

(e) g(x) = 1
x2 .

(f) h(x) = 1√
1−x2

.

(2) Sketch the following functions:

(a) y = sin(πx)

(b) y = |x− 1|

(c) y = cos(x) + 1

(3) Determine whether the following functions are even, odd or neither:

(a) f(x) = x2 + 1.

(b) f(x) = x3 + x.

(c) g(t) = 1
t−1 .

(d) h(x) = x
x2−1 .

(4) Prove the following:

(a) If f(x) is even and g(x) is odd then (g ◦ f)(x) is even.

(b) If f(x) is even and g(x) is odd then f(x)
g(x) is odd.


