Lectures 2 and 3: Review of limits and continuity

Prepared by: Dr. Marwan Aloqeili

September 10, 2015

0.1 Limits and continuity(2 lectures)

1

0.2 Limits of functions

When a function f approaches a certain limit L as x approaches x_0 , we write

$$\lim_{x \to x_0} f(x) = L$$

This limit means that the function gets arbitrarily close to L when x is sufficiently close to x_0 . Notice that x_0 or L or both of them can be $+\infty$ or $-\infty$. The function f may or may not be defined at x_0 . As you know,

$$\lim_{x \to x_0^+} f(x) = L \quad \text{if and only if } \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$$

Example 0.2.1 We can use simple techniques to find the following limits:

- (a) $\lim_{x \to 1} \frac{x-1}{x+1} = 0.$
- (b) $\lim_{x \to 1} \frac{x^2 1}{x 1} = 2.$
- (c) $\lim_{x \to +\infty} \frac{1}{x} = 0.$
- (d) $\lim_{x \to 0^+} \frac{1}{x} = +\infty.$
- (e) $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x} = 3.$
- (f) $\lim_{x \to -1} \frac{\sqrt{x^2 + 8} 3}{x + 1} = -\frac{1}{3}.$

Theorem 0.2.1 (*The Sandwich Theorem*) Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c and that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L \quad then \quad \lim_{x \to c} f(x) = L$$

Example 0.2.2 Suppose that f(x) is a function that satisfies $1 - x^2 \le f(x) \le 1 + x^2$. Then $\lim_{x \to 0} f(x) = 1$ since $\lim_{x \to 0} (1 - x^2) = \lim_{x \to 0} (1 + x^2) = 1$.

Example 0.2.3 Find $\lim_{x \to +\infty} \frac{\sin x}{x}$. Since

$$-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$$

¹This is a review of chapter two in the textbook

0.3. CONTINUITY

and $\lim_{x \to \infty} \frac{1}{x} = 0$, then, by the sandwich theorem

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

Remark 0.2.1 Please do not confound the previous limit with $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Example 0.2.4 Consider the function

$$f(x) = \begin{cases} x+1 & , x \le 0\\ -x & , x > 0 \end{cases}$$

Then, $\lim_{x\to 0^+} f(x) = 0$ and $\lim_{x\to 0^-} f(x) = 1$. So, $\lim_{x\to 0^+} f(x)$ does not exist.

0.3 Continuity

Definition 0.3.1 A function f is continuous at a point x_0 if the following conditions are satisfied:

- (a) $f(x_0)$ exists.
- (b) $\lim_{x \to x_0} f(x)$ exists.
- (c) $\lim_{x \to x_0} f(x) = f(x_0).$

Example 0.3.1 The functions $\sin x, \cos x, |x|$ and all polynomials are continuous on $(-\infty, \infty)$.

Example 0.3.2 The rational functions are continuous at all points except at the zeros of the denominator. For example, the function

$$f(x) = \frac{x^3 + x + 1}{x^2 - 1}$$

is continuous on $(-\infty, \infty) \setminus \{-1, 1\}$.

Example 0.3.3 (a function with removable discontinuity) Consider the function

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

Then

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x + 3}{x + 1} = 2$$

The point x = 1 is called a **removable discontinuity** of the function f because we can define f at x = 1 so that we can remove the discontinuity. The following function is called the **continuous extension of f at** x = 1

$$F(x) = \begin{cases} f(x) & , & x \neq 1 \\ 2 & , & x = 1 \end{cases}$$

Theorem 0.3.1 (*The intermediate value theorem*) If f is a continuous function on a closed interval [a,b], and if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a,b].

Recall that a point c is called a root of a function f is f(c) = 0. We can use the intermediate value theorem to show that a given function has a root in some interval.

Example 0.3.4 Let $f(x) = x^3 - x - 1$. Since f(1) = -1 < 0, f(2) = 5 > 0 and f(1) < 0 < f(5) then there exists $c \in [1, 2]$ such that f(c) = 0.

0.3.1 Asymptotes

In this section, we are dealing mainly with rational functions. A rational function is the ratio of two polynomials. Our objective is to be able to sketch some rational functions using limits and asymptotes.

Definition 0.3.2 A line y = b is a horizontal asymptote of the graph of the function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad or \quad \lim_{x \to -\infty} f(x) = b$$

Example 0.3.5 The line y = 0 is a horizontal asymptote for $f(x) = \frac{x}{x^2+1}$ since $\lim_{x \to +\infty} \frac{x}{x^2+1} = \lim_{x \to -\infty} \frac{x}{x^2+1} = 0.$

Example 0.3.6 The line y = 1 is a horizontal asymptote for $f(x) = \frac{x^2}{x^2+1}$ since $\lim_{x \to +\infty} \frac{x^2}{x^2+1} = \lim_{x \to -\infty} \frac{x^2}{x^2+1} = 1.$

Definition 0.3.3 A line x = a is a vertical asymptote of the graph of the function y = f(x) if either

$$\lim_{x \to a^+} f(x) = \pm \infty \quad or \quad \lim_{x \to a^-} f(x) = \pm \infty$$

4

Example 0.3.7 The line x = 0 is a vertical asymptote for $f(x) = \frac{1}{x}$ since $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ and $\lim_{x \to 0^-} \frac{1}{x} = -\infty$.

Example 0.3.8 The function $f(x) = \frac{\sin x}{x}$ has no vertical asymptote even it is undefined at x = 0 since $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Example 0.3.9 Consider the function $f(x) = \frac{x+1}{x-1}$. Notice that

$$\lim_{x \to 1^+} \frac{x+1}{x-1} = +\infty, \quad \lim_{x \to 1^-} \frac{x+1}{x-1} = +\infty$$

and

$$\lim_{x \to +\infty} \frac{x+1}{x-1} = \lim_{x \to -\infty} \frac{x+1}{x-1} = 1$$

Then the line x = 1 is a vertical asymptote and the line y = 1 is a horizontal asymptote.

Figure 3: Graph of $y = \frac{x+1}{x-1}$

If the degree of the numerator of a rational function is 1 greater than the degree of the denominator then the graph of f has an **oblique asymptote**.

Example 0.3.10 The graph of the function $f(x) = \frac{x^2}{x-1}$ has an oblique asymptote since the degree of the numerator is 2 and the degree of the denominator is one. Using polynomial division, we can write

$$f(x) = (x+1) + \frac{1}{x-1}$$

So, the line y = x + 1 is the oblique asymptote of the graph of f. Moreover, the line x = 1 is a vertical asymptote for the graph of f since $\lim_{x \to 1^+} f(x) = +\infty$ and $\lim_{x \to 1^-} f(x) = -\infty$.

0.4 Exercises

1. Find the following limits:

$$\begin{array}{ll} \text{(a)} & \lim_{t \to -1} \frac{t^2 + 3t + 2}{t^2 - t - 2} \\ \text{(b)} & \lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} \\ \text{(c)} & \lim_{\theta \to 1} \frac{\theta^4 - 1}{\theta^3 - 1} \\ \text{(d)} & \lim_{\theta \to 0} \frac{\sin(2\theta)}{3\theta} \\ \text{(e)} & \lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin(2\theta)} \\ \text{(f)} & \lim_{x \to \infty} \frac{1 + \sqrt{x}}{1 - \sqrt{x}} \\ \text{(g)} & \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1} \\ \text{(h)} & \lim_{x \to -\infty} \frac{\sqrt[3]{x - \sqrt[5]{x}}}{\sqrt[3]{x + \sqrt[5]{x}}} \\ \text{(i)} & \lim_{x \to \infty} (\sqrt{x^2 + 1} - \sqrt{x^2 - x}) \\ \text{(j)} & \lim_{x \to 0} \frac{1 t}{t} \\ \text{(k)} & \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \end{array}$$

- 2. Find the asymptotes of the following functions then sketch their graphs
 - (a) $f(x) = \frac{x+1}{x-1}$ (b) $y = \frac{x^3+1}{x^2}$ (c) $f(x) = \frac{x^2+1}{x-1}$
 - (d) $f(x) = \frac{x^3 + 1}{x^2 1}$
- 3. For what values of a and b is

$$g(x) = \begin{cases} ax + 2b &, x \le 0\\ x^2 + 3a - b &, 0 < x \le 2\\ 3x - 5 &, x > 2 \end{cases}$$

continuous at every x. Then sketch the graph of the function.

- 4. Find the continuous extension of the function $h(t) = \frac{t^2+3t-10}{t-2}$.
- 5. Use the intermediate value theorem to show that the function $f(x) = x^3 2x^2 + 2$ has a root.