Lectures 4 and 5: Review of Differentiation

Prepared by: Dr. Marwan Aloqeili

September 17, 2015

0.1 Differentiation

1

0.2 Definition of derivative

Definition 0.2.1 *The derivative of a function* f *at* x_0 *, denoted* $f'(x_0)$ *is*

$$
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
$$

provided this limit exists.

If $f'(x_0)$ exists then we say that f is **differentiable** at x_0 . When we say that f is differentiable on a closed interval $[a, b]$, we mean the following

- f' exists at all points in the open interval (a, b) .
- *•* The **right-hand derivative of** *f* **at** *a* exists; that is,

$$
\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}
$$

exists. We denote the right-hand derivative of f at $x = a$ by $f'_{+}(a)$.

• The **left-hand derivative of** *f* **at** *b* exists; that is,

$$
\lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h}
$$

exists. We denote the left-hand derivative of f at $x = b$ by $f'_{-}(b)$.

Remark 0.2.1 A function f is differentiable at $x = c$ if and only if the righthand derivative and the left-hand derivative both exist and are equal at $x = c$.

If *f* is differentiable at $x = c$ then *f* is continuous at $x = c$. The converse of this statement is not true, the function $f(x) = |x|$ is continuous but not differentiable at $x = 0$.

Example 0.2.1 Let $f(x) = |x|$. We find the left-hand and right-hand derivatives of f at $x = 0$.

$$
f'_{+}(0) = \lim_{h \to 0^{+}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1
$$

$$
f'_{-}(0) = \lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1
$$

We conclude that f is not differentiable at $x = 0$.

¹This is a review of chapter 3 in the textbook

0.3 Differentiation rules

Theorem 0.3.1 *Suppose that* $f(x)$ *and* $g(x)$ *are differentiable at x. Then*

- *1.* $(f(x) \pm g(x))' = f'(x) \pm g'(x)$.
- 2. $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$.
- 3. $\left(\frac{f(x)}{g(x)}\right)$ *g*(*x*) $\int' = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$ $\frac{x(-f(x))g(x)}{g^2(x)}$.
- *4.* (*f ◦ g*) *′* (*x*) = *f ′* (*g*(*x*))*g ′* (*x*) *(Chain Rule).*

0.4 Derivatives of Trigonometric functions

- 1. $(\sin x)' = \cos x$.
- 2. $(\cos x)' = -\sin x$.
- 3. $(\tan x)' = \sec^2 x$.
- 4. $(\sec x)' = \sec x \tan x$.
- 5. $(\csc x)' = -\csc x \cot x$.
- 6. $(\cot x)' = -\csc^2 x$.

Example 0.4.1 Find the derivatives of the following functions:

- 1. $\frac{d}{dx} \frac{x+1}{x^2+1} = \frac{x^2+1-(x+1)(2x)}{(x^2+1)^2} = \frac{1-2x-x^2}{(x^2+1)^2}.$
- 2. $\frac{d}{dx} \tan(\sqrt{x}) = (\sec^2 \sqrt{x}) \frac{1}{2\sqrt{x}}$.
- 3. $\frac{d}{dx}(\sec x \tan x) = \sec^3 x + \sec x \tan^2 x$.

Example 0.4.2 Find the equation of the tangent line to the curve $f(x)$ = sec *x* tan *x* at $x = \frac{\pi}{4}$.

Solution: The slope of the tangent line is $f'(\frac{\pi}{4}) = 3\sqrt{2}$ (from the above example) and $f(\frac{\pi}{4}) = \sqrt{2}$.

Then, the equation of the tangent line to $f(x)$ at $x = \frac{\pi}{4}$ is

$$
y - \sqrt{2} = 3\sqrt{2}(x - \frac{\pi}{4})
$$

0.4.1 Implicit differentiation

In this section, we consider equations that define relation between *x* and *y*. We will learn how to find $\frac{dy}{dx}$ using implicit differentiation. Let us consider some examples:

Example 0.4.3 The equation $x^2 + y^2 = 1$ defines the unit circle (the circle with center $(0,0)$ and radius one). To find y' , we differentiate both sides with respect to *x* to get $2x + 2yy' = 0$, from which we find that $y' = -x/y$.

Example 0.4.4 Consider the implicit equation $xy = \cot(xy)$. Differentiate both sides with respect to *x*. Then

$$
y + xy' = -\csc^2(xy)(y + xy')
$$

From which we find that

 $\frac{dy}{dx} =$ *<u>−y − y* csc²(*xy*)</u> $x + x \csc^2(xy)$

0.5 Linearization and Differentials

Sometimes, we need to approximate a given nonlinear function with a linear function at some point near $(a, f(a))$. The best linear function that approximates $f(x)$ near $x = a$, provided that f is differentiable at $x = a$, is its tangent line whose equation is given by

$$
L(x) = f(a) + f'(a)(x - a)
$$

 $L(x)$ is called the **linearization of** $f(x)$ at $x = a$ and the approximation $f(x) \approx L(x)$ is called the **standard linear approximation of** *f* at *a*.

Example 0.5.1 The linearization of the function $f(x) = \sqrt{1 + x}$ at $x = 0$ is $L(x) = 1 + \frac{1}{2}x$. We can use the linearization to approximate the values of *f* near *x* = 0. For example, $\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.1$ and $\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$.

Example 0.5.2 Find the linearization of the function $f(x) = \sec x$ at $x = \frac{\pi}{4}$. We need to find $f(\frac{\pi}{4})$ and $f'(\frac{\pi}{4})$. Now, $f'(x) = \sec x \tan x$, so $f'(\frac{\pi}{4}) = \sqrt{2}$ and $f(\frac{\pi}{4}) = \sqrt{2}$. Then the linearization $L(x) = \sqrt{2} + \sqrt{2}(x - \frac{\pi}{4})$.

Now, suppose that we move from a point $x = a$ to a nearby point $a + dx$. The change in *f* is $\Delta f = f(a + dx) - f(a)$ while the change in *L* is

$$
\Delta L = L(a + dx) - L(a) = f(a) + f'(a)(a + dx - a) - f(a) = f'(a)dx
$$

Since $f \approx L$ then $\Delta f \approx \Delta L = f'(a)dx$. Therefore, $f'(a)dx$ gives an approximation for Δf . The quantity $f'(a)dx$ is called the **differential of** f **at** $x = a$. For example, the differential of the function $y = \tan^2 x$ is $dy = 2 \tan x \sec^2 x dx$.

0.6. EXERCISES 5

Example 0.5.3 The radius *r* of a circle increases from 10 to 10*.*1 m. Use *dA* to estimate the increase in the circle's area *A*. Estimate the area of the enlarged circle and compare your estimate to the true area found by direct calculations. **Solution** The area of the circle is $A = \pi r^2$. Then $dA = 2\pi r dr$. The estimated increase is

$$
dA = 2\pi(10)0.1 = 2\pi m^2
$$

The estimate area of the enlarged circle is

$$
A(10.1) \approx A(10) + dA = 100\pi + 2\pi = 102\pi
$$

The exact value of the area is $A(10.1) = \pi(10.1)^2 = 102.01\pi$. The error in this estimation is $|102.01\pi - 102\pi| = 0.01\pi$.

0.6 Exercises

- 1. Find the derivatives of the following functions:
	- (a) $f(s) = \frac{\sqrt{s}-1}{\sqrt{s}+1}$ (b) $f(x) = (\frac{1}{x} - x)(x^2 + 1)$ (c) $g(x) = \sec(2x+1)\cot(x^2)$ (d) $s(t) = \frac{1+\csc t}{1-\csc t}$ (e) $f(x) = x^3 \sin x \cos x$. (f) $x^{1/2} + y^{1/2} = 1$.
- 2. Find $\frac{dy}{dx}$ for the following:
	- (i) $y = \cot \theta$
	- (ii) $x^2 + y^2 = x$.
	- (iii) $y = \frac{\sin t}{1 \cos t}$.
- 3. Find the points on the curve $y = 2x^3 3x^2 12x + 20$ where the tangent is parallel to the *x−*axis.
- 4. For what values of the constant *a*, if any, is

$$
f(x) = \begin{cases} \sin(2x) & , x \le 0 \\ ax & , x > 0 \end{cases}
$$

- (i) continuous at $x = 0$?
- (ii) Differentiable at $x = 0$.
- 5. Find the normals to the curve $xy + 2x y = 0$ that are parallel to the line $2x + y = 0.$
- 6. Find the linearization of the following functions at the given points
	- (a) $f(x) = \tan x, x = \pi/4.$
	- (b) $g(x) = \frac{1}{x}, x = 1.$
	- (c) $h(x) = \frac{x^2}{x^2+1}, x = 0.$
	- (d) $f(x) = 1 + \cos \theta, \ \theta = \frac{\pi}{3}.$
- 7. The radius of a circle is increased from 2 to 2*.*02 m.
	- (a) Estimate the resulting change in area.
	- (b) Express the estimate as a percentage of the circle's original area.