Birzeit University Mathematics Department Math 234

Summer Semester 2019

من عن من Number: 1)81401 ... Section: ... خاند من المناسبة المناس Question 1 (2 points each). Circle the most correct answer (x).) If A is a 3×4 -matrix, $b \in \mathbb{R}^3$, and the system Ax = b is consistent, then Ax = b has a unique solution. (A)A = 0. A is a singular matrix, then adj(A)A = 0.(3) (.....) If the matrix B is obtained from A by multiplying a row of A by 3, then $\det(A) = 0$ $3\det(B)$. A...) If A is a 3×3 -matrix and $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, then A is singular. (1.5...) If A is a singular 3×3 -matrix, then the reduced row echelon form of A has 2 rows of S 2 2 2 3

(7) (.....) Any two $n \times n$ -nonsingular matrices are row equivalent.

(8) (......) If A, B are 3×3 -matrices, |A| = -2 and |B| = 4, then $|-3A^{-1}B^{T}| = 54$ (9) (......) Let A be a 3×4 matrix which has a column of zeros, and let B be a 4×4 matrix, then

(1.1.) If x_0 is a solution of the homogeneous system Ax = 0, and x_1 is a solution of the

AB has a column of zeros.

(10) (... A is a singular matrix and U is the row echelon form of A, then det(U) = 0.

nonhomogeneous system Ax = b. Then $x_1 + x_0$ is a solution of the system Ax = b.

(11) (...,) If A = LU is the LU-factorization of a matrix A, and A is nonsingular, then L and Uare both nonsingular.

(12) (....) If A is a 3×3 -matrix and the system $Ax = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}$ has a unique solution, then the system

 $Ax = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ has only the zero solution.

First Exam

(13) (.T. If A is singular and B is nonsingular $n \times n$ -matrices, then AB is singular.

(14) (..., A is a singular matrix, then A^T is singular.

(15) (..., ...) If A is row equivalent to B, then det(A) = det(B).

(16) (....) The vector $(0,0,0)^T$ is a linear combination of the vectors $(1,2,3)^T$, $(1,4,1)^T$, $(2,3,1)^T$

 $\kappa(17)$ (... 17.) If A, B are $n \times n$ symmetric matrices then AB is symmetric.

$$A^{T} = A$$

$$1 \quad (A\theta)^{T} = B \quad A$$

(18) (..., If A is a 3×5 matrix, then the system Ax = 0 has a nonzero solution. (19) (... If y, z are solutions to the system Ax = 0, then any linear combination of y, z is also a (20) (..., If A is a symmetric $n \times n$ -matrix and P any $n \times n$ -matrix, then P^TAP is a symmetric (PTAP)T = PTAP 44 (21) (... If A is an $n \times n$ -matrix with positive entries, then $det(A) \geq 0$. [82] = 2- (4)(8) = - [) (22) (....) If A is a symmetric $n \times n$ -matrix and P any $n \times n$ -matrix, then P^TAP is a symmetric matrix. (24) (......) Let A = A = A be a square nonsingular $A \times A$ matrix. If |adjA| = |A| then A is a 2×2 -matrix. Question 2 (2 points each). Circle the most correct answer (1) Let A be a 4×3 -matrix with $a_2 = a_3$. If $b = a_1 + a_2 + a_3$, where a_j is the jth column of A, $X = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix} \qquad X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ $X = \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_3 \end{pmatrix}$ then the system Ax = b has (a) no solution. (b) exactly one solution. (c) infinitely many solutions. (d) only 4 solutions. $\begin{pmatrix} 1 & 1 & 2 & | & 4 \\ 2 & -1 & 2 & | & 6 \\ 0 & 3 & 2 & | & 1 \end{pmatrix}$ is the Augmented matrix of the system Ax = b then the system $-2 \Re_1 + \Re_2 \quad \begin{pmatrix} 1 & 1 & 2 & | & 4 \\ 0 & 3 & 2 & | & 1 \end{pmatrix}$ (a) no solution (8) exactly one solution (c) exactly 2 solutions (d) infinitely many solutions (3) If A is a nonsingular and symmetric matrix, then (a) A^{-1} is singular and symmetric A^{-1} is nonsingular and symmetric (c) A^{-1} is nonsingular and not symmetric

(d) A^{-1} is singular and not symmetric

(4) If $A = \begin{pmatrix} 1 & -2 & 5 \\ 4 & -5 & 8 \\ -3 & 3 & a \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, then the system Ax = b has infinitely many solutions if

- (d) a = -3(5) The adjoint of the matrix $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} + (A 3 + 2 5) \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is $d_{c} +$
 - (6) An $n \times n$ matrix A is nonsingular if and only if
 - (a) Ax = 0 has nonzero solutions
 - (b) there exists a matrix B such that AB = I
 - (c) |A| = 0 X
 - (d) All of the above
 - (7) If A is a singular matrix, then the system Ax = 0
 - (a) has nonzero solutions
 - (b) has only the zero solution
 - (c) is inconsistent
 - (d) none of the above
 - (8) Let A be an $n \times n$ -matrix in reduced row echelon form and $A \neq I$, then

- (a) $\det(A) \neq 1$
- (b) A is the zero matrix
- (c) The system Ax = 0 has infinitely many solutions
- (d) A is nonsingular
- (9) Let A be an $n \times n$ -matrix such that $A^T = A^{-1}$, then det(A) =
 - det (AT) = det(A-1) (a) 1/
 - det(A) =

ri EE

- (10) If E is an elementary matrix of type I, then A^T is
 - (a) an elementary matrix of type III
 - (b) an elementary matrix of type II
 - (c) an elementary matrix of type I
 - (d) not an elementary matrix
- (11) One of the following matrices is in reduced row echelon form

(d)
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \not\sim$$

- (12) If A is a nonsingular $n \times n$ -matrix, then
 - (a) The system Ax = 0 has a nontrivial (nonzero) solution.
 - (b) $\det(A) = 1$
 - (c) There is an elementary matrix E such that A = E.
 - (d) There is a nonsingular matrix C such that A = CI

(Let B) = let B=0 det8 (Det 8-1) =0

(13) If $\not B$ is a 3 × 3 matrix such that $B^2 = B$. One of the following is always true

(a)
$$B^5 = B$$
.

(b)
$$B = I$$
.

$$B'' = B^2 = B$$

- (14) If A and B are $n \times n$ matrices such that Ax = Bx for some non zero $x \in \mathbb{R}^n$. Then
 - (a) A B is singular.
 - (b) A and B are nonsingular.
 - (c) A and B are singular.
 - (d) none of the above

