MATH 234 MIDTERM EXAM

, w. j.

Student Nam	ie: Key II	Student Number:	
Instructor:	<i>O</i>	Section:	
Question	1. (22 points) Answer by tru	e or false:	
1.	A linear homogeneous system	m which has a nonzero solution must have infinitely many solutions.	
2. <u> </u>	If S is a set of vectors that are linearly independent in a vector space V then any nonempty subset of S is linearly independent		
3. <u> </u>	_ If S is a set of vectors that a of V containing S is linearly	are linearly independent in a vector space V then any subset v independent	
4.	Span $\{1 + x, 1 - x\}$ is a subs	pace of P_2	
5.	_ Any nonsingular matrix can	be written as a product of elementary matrices.	
6. 	_ If A is row equivalent to B then both A and B are nonsingular.		
7.	If span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = R^3$ then span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}\} = R^3$ for any $\mathbf{x} \in R^3$.		
8.	If A is singular then $adj(A)$ is singular.		
9.	$_$ If A is singular and U is the	From echelon form of A , then $\det(U) = 0$.	
10. <u>F</u>	Suppose that $\{f_1, f_2,, f_n\}$ then $f_1, f_2,, f_n$ are linearly	$Y \subseteq C^{n-1}[a,b]$. If $W[f_1,,f_n] = 0$, where W denotes the Wronskien, by dependent.	
11.	$_$ If A is row equivalent to B ,	then $A\mathbf{x} = \mathbf{b}$ and $B\mathbf{x} = \mathbf{b}$ have the same solution set.	
12. F solution	If a system of linear equation	ns is overdetermined and consistent, then it must have infinitely many	
13.	_ If A , B , C are $n \times n$ matrice	es such that $AB = AC$, then $B = C$.	
14. —	_ Every linear system can be	solved using Cramer's Rule.	
15. –	_ If E_1 and E_2 are elementary	$n \times n$ matrices, then $E_1 E_2$ is elementary.	
16.	(AB)C = A(BC) for all mat	trices A , B , and C when multiplication is allowed.	
17.	_ If A and B are $n \times n$ matric	es and A is singular, then AB is singular.	
18. —	_ If A is a singular $n \times n$ matrix	ix, then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for every vector $\mathbf{b} \in \mathbb{R}^n$.	
19.	_ The set $\{1, \sin^2 x, \cos^2 x\}$ is	linearly dependent in $C[0, \pi]$.	
20.	If A, B are $n \times n$ matrices, $ A = 2$ and $ B = -2$, then $ A^{-1}B^T = -1$.		
21.	If A and B are symmetric $n \times n$ matrices then AB is symmetric.		
22.	_ If S is a subspace of V then	any set of vectors in S that spans S also spans V .	

Question 2 (36 points) Circle the most correct answer:

- 1. One of the following is not a subspace of P_3

 - (a) $\{p \in P_3 | p(2) = p(5)\}$ (b) $\{p \in P_3 | p(0) = 2\}$ (c) $\{p \in P_3 | p(1) = p(-1)\}$

, v:

- (d) $\{p \in P_3 | p(2) = 0\}$
- 2. One of the following sets is linearly independent in P_3

 - (a) $\{1+x, 1-x, 1\}$ (b) $\{2x, 2-x, x^2\}$ (c) $\{x, x^2, 2x + 3x^2\}$
 - (d) $\{2, 2-x, x\}$
- 3. One of the following sets is a subspace of C[-1,1]
 - (a) $\{f(x) \in C[-1,1] ; f(1) = 1\}$
 - (b) $\{f(x) \in C[-1,1] ; f(1) = -1\}$
 - (c) $\{f(x) \in C[-1,1] ; f(1) = 0 \text{ or } f(-1) = 0\}$
 - (d) $\{f(x) \in C[-1,1] ; f(1) = 0\}$
- 4. Suppose A and B are $n \times n$ nonsingular matrices. Then
 - (a) ABA^{-1} is nonsingular
 - (b) AB is nonsingular
 - (c) $B^T A^{-1}$ is nonsingular
 - (d) all of the above
- 5. Let $A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$. Then the adjoint of A is

 - (b) $\begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$

6. consider the linear system

(a) The system has a unique solution if

$$\underbrace{\text{ii.}}_{k \neq -2, 2} k \neq -2, 2$$

- iii. $k \neq -2$

iv. none of the above

(b) The system has infinitely many solutions if

$$(i)k = -2$$

- iii. $k \neq 2$
- iv. none of the above
- (c) The system is inconsistent if

i.
$$k \neq -1$$

- $\text{ii. } k \neq -2 \\
 \text{iii. } k = 2 \\
 \text{iiii. } k = -2$

iv. none of the above

- 7. The vectors $1, x, x^2, x^2 + x 1$
 - (a) span P_3
 - (b) span P_4
 - (c) are linearly independent in P_3
 - (d) are linearly independent in P_4
- 8. Let $A = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$ then the (2,3) entry of A^2 is

 - (d) 3

9. One of the following matrices is in reduced row echelon form

(b)
$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c}
 \text{(c)} \begin{bmatrix}
 1 & 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

10. One of the following is a spanning set of \mathbb{R}^3

(a)
$$\{(2,0,0)^T, (0,2,0)^T, (1,1,0)^T, (0,-3,0)^T\}$$

(b) $\{(-1,-1,-1)^T, (-1,-2,-1)^T, (-1,0,0)^T\}$
(c) $\{(1,-1,1)^T, (-4,4,-4)^T, (3,0,5)^T\}$

(c)
$$\{(1,-1,1)^T, (-4,4,-4)^T, (3,0,5)^T\}$$

(d)
$$\{(2,0,0)^T, (0,3,-4)^T\}$$

11. One of the following is a subspace of $\mathbb{R}^{n \times n}$

- (a) All nonsingular $n \times n$ matrices
- (b) All triangular $n \times n$ matrices
- (c) All singular $n \times n$ matrices
- (d) All upper triangular $n \times n$ matrices

12. The set of vectors $\{(1,a)^T,(b,1)^T\}$ is a spanning set for \mathbb{R}^2 if

(a)
$$ab \neq 1$$

- (a) $ab \neq 1$ (b) $a \neq 1$ and $b \neq 1$
- (c) ab = 1
- (d) $a \neq b$

- 13. The set $\{(1,1,1)^T, (1,1,c)^T, (1,c,1)^T\}$ is linearly independent in \mathbb{R}^3 if
 - (a) c = -1
 - (b) c = 1

 - (c) $c \neq 1$ c is any real number
- 14. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and $B = \begin{bmatrix} a & 4d & a+g \\ b & 4e & b+h \\ c & 4f & c+i \end{bmatrix}$. If |A| = 3 then |B| = 1

 - (d) 24
- 15. If A is a 3×3 matrix with det(A) = 2 then det(adj(A)) is
 - (a) 4
 - (b) 0
 - (c) 2
 - (d) $\frac{1}{2}$
- 16. Suppose that y and z are both solutions to Ax = 0 then
 - (a) $\mathbf{y} = \mathbf{z}$
 - \mathbf{b} $\mathbf{y} + \mathbf{z}$ is a solution to $A\mathbf{x} = \mathbf{0}$
 - (c) $A\mathbf{x} = \mathbf{0}$ has exactly two solutions
 - (d) None of the above