Mahmoud Ghannam

Math 234

(Q1) Let $L: P_3 \longrightarrow \mathbb{R}^2$ be a linear transformation defined by

$$L(ax^2 + bx + c) = \begin{pmatrix} a+b \\ a-c \end{pmatrix}$$

- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and the dimension of range(L).
- (c) Is L one-to one?
- (d) Is L onto?
- (e) If $S = span(x^2 + 1)$, find the image of S.

(Q2) Let
$$L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 be a linear transformation defined by $L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x-y+z \\ 2x-4z \end{bmatrix}$

- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and dimension of range(L).

(Q3) Let
$$L: \mathbb{R}^3 \longrightarrow P_4$$
 given by $L\left((a,b,c)^T\right) = (a+b)x^3 + (b+c)x^2 + (a+c)x$.

- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and dimension of range(L).

(Q4) Let
$$L: P_3 \longrightarrow P_3$$
 be the linear transformation defined by $L(p(x)) = x^2 p''(x) + p'(x) + p(0)$

- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and dimension of range(L).

(Q5) Let
$$L: P_3 \longrightarrow \mathbb{R}^{2\times 2}$$
 be a linear transformation defined by $L(ax^2 + bx + c) = \begin{pmatrix} a+b & a \\ a-b-c & b+c \end{pmatrix}$.

- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and dimension of range(L).

(Q6) Let
$$L: P_3 \longrightarrow \mathbb{R}^2$$
 be defined by $L(p(x)) = \begin{pmatrix} \int_0^1 p(x) dx \\ 0 \\ p(0) \end{pmatrix}$.

- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and dimension of range(L).

- (Q7) Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation defined by $L((a,b,c)^T) = (a+b+c,0)^T$.
- (a) Find a basis and dimension of ker(L).
- (b) Find a basis and dimension of range(L).
- (Q8) Let $L: P_3 \longrightarrow \mathbb{R}^2$ be a linear transformation such that $L(p(x)) = \begin{pmatrix} p''(x) p'(1) \\ p(0) \end{pmatrix}$.
- (a) Find ker(L) and its dimension.
- (b) Find range(L) and its dimension.
- (c) Is L one-to-one? Onto? Why?
- (d) Let $S = P_1$. Find L(S)

Short Answers

(Q1)

- (a) Basis = $\{x^2 x + 1\}$ dim(ker(L)) = 1
- (b) Basis = Any basis of \mathbb{R}^2 dim(range(L)) = 2
- (c) No.
- (d) Yes.
- (e) $span(e_1)$

(Q2)

- (a) Basis = $\{(2,3,1)^T\}$ dim(ker(L)) = 1
- (b) Basis = Any basis of \mathbb{R}^2 dim(range(L)) = 2

(Q3)

- (a) Basis = $\{(0,0,0)^T\}$ dim(ker(L)) = 0
- (b) Basis = $\{x^3 + x, x^3 + x^2, x^2 + x\}$ dim(range(L)) = 3

(Q4)

- (a) Basis = $\{1 x\}$ dim(ker(L)) = 1
- (b) Basis = $\{x^2 + x, 1\}$ dim(range(L)) = 2

(Q5)

(a) Basis =
$$\{0\}$$
 $dim(ker(L)) = 0$

(b) Basis =
$$\left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ -1 & 1 \end{array} \right) \right\}$$
 $dim(range(L)) = 3$

(Q6)

(a) Basis =
$$\{2x - 3x^2\}$$
 $dim(ker(L)) = 1$

(b) Basis = Any basis of
$$\mathbb{R}^2$$
 $dim(range(L)) = 2$

(Q7)

(a) Basis =
$$\{(1, 0, -1)^T, (0, 1, -1)^T\}$$
 $dim(ker(L)) = 2$

(b) Basis =
$$\{e_1\}$$
 $dim(range(L)) = 1$

(Q8)

(a) Basis =
$$\{x^2\}$$
 $dim(ker(L)) = 1$

(b) Basis = Any basis of
$$\mathbb{R}^2$$
 $dim(range(L)) = 2$

- (c) Onto but not one-to-one.
- (d) $span(e_2)$