

c. 1
d. 0

Question 5 Correct Mark 1.00 out of 1.00	If v_1, v_2, \dots, v_n are linearly independent vectors in a vector space V , and $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$, then c_1, c_2, \dots, c_n are all zero scalars. Select one:
	O b. False
	The correct answer is: True
Question 6 Correct	If $\{v_1, v_2, v_3, v_4\}$ forms a spanning set for a vector space V , v_4 can be written as a linear combination of v_1, v_2, v_3 , then
Mark 1.00 out of 1.00	Select one:
	${}^{\bigcirc}\;$ a. $\{v_1,v_2,v_3\}$ are linearly dependent in $V.$
	\bigcirc b. $\{v_1,v_2,v_3\}$ are linearly independent in V .
	• c. $\{v_1, v_2, v_3\}$ is a spanning set of V .
	$\ $ d. $\{v_1,v_2,v_3\}$ is not a spanning set of $V.$
	The correct answer is: $\{v_1, v_2, v_3\}$ is a spanning set of V .
رابط المحاضرات ←	Jump to course outline \rightarrow

Data retention summary Switch to the standard theme Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201 - 4 / General / Quiz 2

Starte S Complete Time to M G	d on Wednesday, 23 December 2020, 10:01 AM tate Finished d on Wednesday, 23 December 2020, 10:20 AM iken 18 mins 19 secs arks 8.00/18.00 ade 4.44 out of 10.00 (44%)	
Question 1 Incorrect Mark 0.00 out	dim(span $\{1-x,x^2,3+x^2,1+x^2\}$) equals Select one:	
of 2.00	0 a.0	
	○ b.3 ○ c.1	
	● d. 2	
	The correct answer is: 3	
Question 2 Correct	One of the following is not a basis for P_3 :	
Mark 2.00 out of 2.00	Select one: \bigcirc a. $\{1, 2x, x^2 - x\}$	
	\bigcirc b. $\{x,x^2+3,x^2-5\}$	
	○ c. $\{x - 1, x^2 + 1, x^2 - 1\}$ ● d. $\{x^2 + 1, x^2 - 1, 2\}$	
	The correct answer is: $\{x^2+1,x^2-1,2\}$	
Question 3 Correct	If V is a vector space with $\dim(V)=n$, then	
Mark 2.00 out	Select one:	

 \bigcirc a. Any set containing less than n vectors must be linearly independent.

 ${igle}$ b. Any n linearly independent vectors in V span V.

V

of 2.00

 \odot c. Any spanning set for V must contain at most n vectors.

The correct answer is: Any n linearly independent vectors in V span V.

Question 4 Incorrect	The set of vectors $\{(1,a)^T,(b,1)^T\}$ is a spanning set for R^2 if
Mark 0.00 out	Select one:
of 2.00	${}^{\odot}$ a. $a eq b$
	×
	\bigcirc b. $ab eq 1$
	\bigcirc c. $ab=1$
	\bigcirc d. $a eq 1$ and $b eq 1$
	The correct answer is: $ab eq 1$
Question 5 Incorrect	Suppose that a vector space V contains n linearly independent vectors, then
Mark 0.00 out	Select one:
of 2.00	igodoldoldoldoldoldoldoldoldoldoldoldoldol
	\odot b. If a set S spans V then S must contain at most n vectors
	\odot c. Any set containing more than n vectors is linearly dependent
	×
	$ \odot $ d. If a set S spans V then S must contain at least n vectors
	The correct answer is: If a set S spans V then S must contain at least n vectors
Question 6 Correct	Let $f,g,h\in C^2[a,b]$, if $W[f,g,h](x)=0$ for all $x\in [a,b]$, then f,g,h are linearly dependent in $C[a,b]$
Mark 2.00 out	Select one:
of 2.00	o a. True
	b. False
	The correct answer is: False
Question 7 Complete	Let V is a vector space with $\dim(V)=4$, if $v_1,v_2,v_3,v_4\in V$, then span $\{v_1,v_2,v_3,v_4\}=V.$
Not graded	Select one:
	 a. False
	b. True

The correct answer is: False

Question 8

Incorrect

Mark 0.00 out of 2.00 The vectors $e^x, \, xe^x, \, x$ are linearly independent in C[0,1].

Select one:

🔘 a. True

🔘 b. False 🗙

The correct answer is: True

Correct	If V is a vector space with $\dim(V)=n$, then any $n+1$ vectors in V are linearly dependent.
Mark 2.00 out	Select one:
of 2.00	a. True
	 b. False
	The correct answer is: True
Question 10 Incorrect	If $\{v_1,v_2,\cdot\cdot\cdot,v_n\}$ are linearly independent in a vector space V , then V is finite-dimensional.
Mark 0.00 out	Select one:
of 2.00	a. True ×
	 b. False
	The correct answer is: False
Question 11 Complete	The correct answer is: False If x_1 and x_2 are linearly independent in R^3 , then $\exists x \in R^3$ such that $ ext{span}\{x_1, x_2, x\} = R^3.$
Question 11 Complete Not graded	The correct answer is: False If x_1 and x_2 are linearly independent in R^3 , then $\exists x \in R^3$ such that span $\{x_1, x_2, x\} = R^3$. Select one:
Question 11 Complete Not graded	The correct answer is: False If x_1 and x_2 are linearly independent in R^3 , then $\exists x \in R^3$ such that span $\{x_1, x_2, x\} = R^3$. Select one: \odot a. True
Question 11 Complete Not graded	The correct answer is: False If x_1 and x_2 are linearly independent in R^3 , then $\exists x \in R^3$ such that span $\{x_1, x_2, x\} = R^3$. Select one: a. True b. False
Question 11 Complete Not graded	The correct answer is: False If x_1 and x_2 are linearly independent in R^3 , then $\exists x \in R^3$ such that span $\{x_1, x_2, x\} = R^3$. Select one: @ a. True @ b. False The correct answer is: True
Question 11 Complete Not graded	The correct answer is: False If x_1 and x_2 are linearly independent in \mathbb{R}^3 , then $\exists x \in \mathbb{R}^3$ such that span $\{x_1, x_2, x\} = \mathbb{R}^3$. Select one: (a) a. True (b) False The correct answer is: True