Birzeit University Mathematics Department

Kers

Quiz # 2

Math 234

2018/2019

Name	Number	Section

- (Q1) [10 points] Answer by True (T) or False (F)
- (1) If A is a symmetric nonsingular matrix, then A^{-1} is also symmetric.
- (2) If Ax = b is a 2×4 system and $b = a_2 3a_3$, then Ax = b has infinitely many solutions.
- (3) If A and B are $n \times n$ diagonal matrices, then AB = BA
- (4) If A and B are two matrices such that AB and BA are both defined, then A and B must be square matrices.
- (5) If A is nonsingular, then A^T is nonsingular.
- (6) ... F. If A is an $n \times n$ nonsingular matrix and α a real number such that $\alpha \neq 0$, then $(\alpha A)^{-1} = \alpha A^{-1}$
- (7) If A is a $n \times n$ nonsingular matrix, then A^2 is also nonsingular.
- (8) If B is a square matrix such that $B^2 = I$, then $B^{-1} = B$
- (9) . T... Every diagonal matrix is symmetric.
- (10) . Fig. 1. If Ax = 0 is a 3×3 system and $a_1 = a_2 + a_3$, then Ax = 0 has a unique solution.
- (11) ... F. If A and B are symmetric matrices, then AB is also symmetric.
- (12) ... F. If A and B are $n \times n$ singular matrices, then A + B is also singular.
- (13) ... F. If a homogeneous system has infinitely many solutions, then it must contain more unknowns than equations.

Birzeit University Mathematics Department

Quiz # 2

Math 234

2018/2019

cey

Name	Number	Section

(Q1) [10 points] Answer by True (T) or False (F)

- (1) If A and B are two matrices such that AB and BA are both defined, then A and B must be square matrices.
- (2) If A is a $n \times n$ nonsingular matrix, then A^2 is also nonsingular.
- (3) ... If A is an $n \times n$ nonsingular matrix and α a real number such that $\alpha \neq 0$, then $(\alpha A)^{-1} = \alpha A^{-1}$
- (5) If B is a square matrix such that $B^2 = I$, then $B^{-1} = B$
- (6) If A and B are $n \times n$ diagonal matrices, then AB = BA
- (7) . F. If A and B are $n \times n$ singular matrices, then A + B is also singular.
- (8) ... If A is a symmetric nonsingular matrix, then A^{-1} is also symmetric.
- (9) . \square . If A and B are symmetric matrices, then AB is also symmetric.
- (10) If A is nonsingular, then A^T is nonsingular.
- (11) Every diagonal matrix is symmetric.
- (12) Ax = b is a 2 × 4 system and $b = a_2 3a_3$, then Ax = b has infinitely many solutions.
- (13) ... \leftarrow . If Ax = 0 is a 3×3 system and $a_1 = a_2 + a_3$, then Ax = 0 has a unique solution.