Form A

Birzeit University

Department of Mathematics

Quiz 3

TR 4	r .	41		23	4
1	0	t	h	74	4

Name:

November 14, 2018

Number:....

Q1 [10 points]. True or False?

- 1. If W is a subspace of U and U is a subspace of V, then W is a subspace of V.
- 2. The set of continuous functions $\mathbf{f} = f(x)$ on [a,b] such that $\int_a^b f(x)dx = 1$ is a subspace of C[a,b].
- 3. If *U* and *W* are subspaces of a vector space *V*, then $U \cap W = \emptyset$.
- 4. If S and T are subspaces of a vector space V, then $S \cap T$ is a subspace of V.
- 5. The set of vectors $\{(1,a)^T,(b,1)^T\}$ is a spanning set for \mathbb{R}^2 if ab=1.
- 6. The set $S = \{(x, y) : x + y = 0\}$ is a subspace of \mathbb{R}^2 .
- 7. $W = \{p(x) \in P_5 : p(x) \text{ is even}\}\$ is a subspace of P_5 .
- 8. The null space of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is $N(A) = \{(t r, t, r)^T : t, r \in \mathbb{R}\}.$
 - 9. If A is a 3×3 matrix such that $N(A) = \{0\}$, then A is singular.
 - 10. If Span $\{x_1, x_2, x_3\} = \mathbb{R}^3$, then Span $\{x_1, x_2, x_3, x\} = \mathbb{R}^3$, for any $x \in \mathbb{R}^3$.

Birzeit University

Department of Mathematics

Quiz 3

Math 234

November 14, 2018

Name:

Number:....

Q1 [10 points]. True or False?

1. If W is a subspace of U and U is a subspace of V, then W is a subspace of V.

2. The set of continuous functions $\mathbf{f} = f(x)$ on [a,b] such that $\int_a^b f(x)dx = 0$ is a subspace of C[a,b].

3. If U and W are subspaces of a vector space V, then $U \cap W \neq \emptyset$.

4. If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.

5. The set of vectors $\{(1,a)^T,(b,1)^T\}$ is a spanning set for \mathbb{R}^2 if $ab \neq 1$.

6. The set $S = \{(x, y) : xy = 0\}$ is a subspace of \mathbb{R}^2 .

7. $W = \{p(x) \in P_5 : \text{ degree of } p(x) \text{ is even} \}$ is a subspace of P_5 .

8. The null space of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is $N(A) = \{(-t - r, t, r)^T : t, r \in \mathbb{R}\}.$

9. If A is a 3×3 matrix such that $N(A) = \{0\}$, then A is nonsingular.

10. If Span $\{x_1, x_2, x_3\} = \mathbb{R}^3$, then Span $\{x_1, x_2, x_3, x\} = \mathbb{R}^3$, for any $x \in \mathbb{R}^3$.

Good Luck