MATH 234 QUIZ

Student Name:	Key	

Student	Number:_	

Question 1. Answer by true or false:

- Span $\{1+x,1-x\}$ is a subspace of P_2
- If span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = R^3$ then span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}\} = R^3$ for any $\mathbf{x} \in R^3$.
- Suppose that $\{f_1, f_2, ..., f_n\} \subseteq C^{n-1}[a, b]$. If $W[f_1, ..., f_n] = 0$, where W denotes the Wronskien, then $f_1, f_2, ..., f_n$ are linearly dependent.
- If S is a subspace of V then any set of vectors in S that spans S also spans V.
- If S is a set of vectors that are linearly independent in a vector space V then any nonempty subset of S is linearly independent
- If S is a set of vectors that are linearly independent in a vector space V then any subset of V containing S is linearly independent

Question 2 Circle the most correct answer:

- 1. One of the following sets is linearly independent in P_3

 - (a) $\{2, 2 x, x\}$ (b) $\{2x, 2 x, x^2\}$
 - (c) $\{1+x,1-x,1\}$
 - (d) $\{x, x^2, 2x + 3x^2\}$
- 2. Suppose that a vector space V contains n linearly independent vectors, then
 - (a) Any n vectors in V are linearly independent
 - (b) Any set containing more than n vectors is linearly dependent
 - (c) If a set S spans V then S must contain at least n vectors
 - (d) If a set S spans V then S must contain at most n vectors
- 3. Suppose that $\{v_1, v_2, v_3\}$ are linearly independent in V, then
 - (a) The vectors $\{\mathbf v_1, \mathbf v_1 + \mathbf v_2, \mathbf v_2 + \mathbf v_3\}$ are linearly independent in V
 - (b) The vectors $\{\mathbf v_1 + \mathbf v_2, \mathbf v_1 + \mathbf v_3, \mathbf v_2 + \mathbf v_3\}$ are linearly independent in V
 - (c) The vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3\}$ are linearly independent in V
 - (d) All of the above

- 4. One of the following is a subspace of $\mathbb{R}^{n \times n}$
 - (a) All triangular $n \times n$ matrices
 - (b) All singular $n \times n$ matrices
 - (c) All upper triangular $n \times n$ matrices
 - (d) All nonsingular $n \times n$ matrices
- 5. One of the following is not a subspace of P_3
 - (a) $\{p \in P_3 | p(2) = 0\}$

 - (b) $\{p \in P_3 | p(1) = p(-1)\}$ (c) $\{p \in P_3 | p(0) = 2\}$ (d) $\{p \in P_3 | p(2) = p(5)\}$