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Birzeit University
Mathematics Department

Math 234

Second Exam-answers

Student Name: ................................................................... Number:..................
Instructors and Sections:
Maher Abdallatif .............. (1), Mohammad Saleh ................ (2)
Ala Talahmeh ................... (3), Hasan Yousef ................... (4)

Q1 (36 points) Answer the following statements by true or false:

(1) (. . . . . . F ) The coordinate vector of 2 + 2x with respect to the basis [2x, 4] is (1, 2)t

(2) (. . . . . . T ) If two matrices are row equivalent, they must have the same null space.

(3) (. . . . . . T ) If A is an n × n invertible matrix, then the linear system AX = b is consistent for
every b ∈ Rn.

(4) (. . . . . . T ) Any subset of a vector space that does not contain the zero vector is not a subspace.

(5) (. . . . . . T ) The set S = {f ∈ C[−1, 1] : f(0) = 0} is a subspace of V = C[−1, 1]

(6) (. . . . . . T ) S = {A ∈ R2×2 : a11 = 0} is a subspace of V = R2×2

(7) (. . . . . . T ) S = {v = (x, y) ∈ R2 : x+ y = 1} is not a subspace of V = R2

(8) (. . . . . . F ) Any subset of a vector space that contains the zero vector is a subspace.

(9) (. . . . . . T ) If v1, v2, ..., vn span a vector space V and vn is a linear combination of v1, ..., vn−1,
then V = Span{v1, ..., vn−1}.

(10) (. . . . . . T ) If two none zero vectors in a vector space V are linearly dependent, then one of
them is a scalar multiple of the other.

(11) (. . . . . . T ) The vectors (0, 0, 0)T , (2, 3, 1)T , (2,−5, 3)T are linearly dependent.

(12) (. . . . . . T ) If n vectors span a vector space V , then a collection of m > n vectors in V is
linearly dependent.

(13) (. . . . . . T ) If V is a vector space with dimension n > 0, then any set of m < n vectors in V

does not span V .

(14) (. . . . . . F ) The set S = {v1, ..., vn} is a basis of a vector space V if every vector in V is a linear
combination of the set S.

(15) (. . . . . . F ) If v1, v2, ..., vn are linearly dependent, then v1 ∈ Span{v2, ..., vn}.

(16) (. . . . . . F ) A basis for the subspace S = {(a + b + 2c, a + 2b + 4c, b + 2c)T , a, b, c ∈ R} is
{(1, 1, 0)T , (1, 2, 1)T , (1, 2, 1)T}

(17) (. . . . . . F ) A basis for the subspace S = {f ∈ P3 : f(0) = 0} is {x2 + x}

(18) (. . . . . . T ) The set of vectors x, x− 1, x2 − x− 1, sinx, ex are linearly independent
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Q2 :(39 points) Choose the correct answer.

(1) Let u and v be distinct (not equal)vectors in Rn, and let B be a basis for Rn. Then

(a) the coordinate vector of u with respect to B never equals u

(b) the coordinate vector of v with respect to B equals v

(c) the coordinate vector of u + v with respect to B equals the sum of the coordinate vector of u
and the coordinate vector of v with respect to B. T

(d) None

(2) Let V and W be subspaces of Rn such that V is contained in W . Then

(a) V and W may have the same dimension even though they need not be equal

(b) every subset of W that spans W contains a set that spans V . T

(c) every basis for V can be extended to a basis for W . T

(d) None

(3) For any finite n−dimensional vector space V with a basis B

(a) The coordinate vector of any vector v in V is in Rn. T

(b) A subspace of V is a subset of V that contains a zero vector and is closed under the operation
of addition

(c) The set of nonzero vectors in V is a subspace of V

(d) None

(4) For any vector space V ,

(a) If V is finite-dimensional, then V is a subspace of Rn for some positive integer n

(b) If V is infinite-dimensional, then every infinite subset of V is linearly independent

(c) If V is finite-dimensional, then no infinite subset of V is linearly independent. T

(d) None

(5) An n× n matrix A is invertible if

(a) The columns of A are li

(b) The rows of A are li

(c) N(A) = {0}

(d) all of the above. T
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(6) Let S be a finite subset of a subspace W of Rn. Then S is a basis for W if

(a) S is linearly independent

(b) S spans W

(c) every vector in W is a linear combination of vectors in S

(d) None. T

(7) Suppose that W is a subspace of Rn. Then

(a) the dimension of W is greater than n

(b) every basis of Rn contains a basis of W

(c) every linearly independent subset of W has at most n vectors. T

(d) None

(8) One of the following is not a subspace in the corresponding space

(a) S = {f ∈ C(R) : f(1) = 0}, V = C(R)

(b) S = {A ∈ R2×2 : a11 = 0}, V = R2×2

(c) S = {v = (x, y) ∈ R2 : x+ y = 1}, V = R2. T

(d) S = {v = (x, y) ∈ R2 : x+ y = 0}, V = R2

(9) For an finite dimensional vector space V ,

(a) every infinite subset of V spans V

(b) every infinite subset of V is linearly independent.

(c) every finite subset of V can not span V .

(d) None. T

(10) The dimension of the null space of





1 1 2 1 4
2 −1 2 −1 6
3 0 4 0 10



 is

(a) 0

(b) 1

(c) 2

(d) 3. T
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(11) One of the following set of vectors are linearly independent

(a) (1, 1, 2, 1, 4), (2, 2, 4, 2, 8)

(b) (1, 1, 2, 1, 4), (2,−1, 2,−1, 6), (0, 0, 0, 0, 0)

(c) x, 1, x2 + 1. T

(d) (1, 2, 3), (0, 1, 0), (0, 0, 1), (1, 1, 1)

(12) The dimension of the subspace S = {(a+ b+ 2c, a+ 2b+ 4c, b+ 2c)T , a, b, c ∈ R} is

(a) 4

(b) 1

(c) 2. T

(d) 3

(13) A basis for the vector space spanned by 1 − x − x2, 1 + x + x2, 2 − x, 1 − x from this set of
vectors is

(a) 1− x− x2, 1 + x+ x2, 2− x. T

(b) 1− x− x2, 1 + x+ x2

(c) 1− x− x2, 1 + x+ x2, 2− x, 1− x

(d) 1− x− x2, 1− x
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Q3 (12 points):(a) If U,W are subspaces of a vector space V . Show that U ∩W is a subspace of
V

1.0 ∈ U ∩W , since 0 ∈ U , and 0 ∈ W . So U ∩W 6= φ. (2 points)

2. Let x, y ∈ U ∩ W . Then x, y ∈ U , and x, y ∈ W . since U,W are subspaces of V , so
x+ y ∈ U , and x+ y ∈ W . So, x+ y ∈ U ∩W . (2 points)

3. Let x ∈ U ∩W,α ∈ R. So x ∈ U , and x ∈ W ,α ∈ R. Since U,W are subspaces of V , so
αx ∈ U , and αx ∈ W . So, αx ∈ U ∩W . (2 points)

so, U ∩W is a subspace of V

(b) Let S = {(0, a)t : a ∈ R}. Show that S is a subspace of R2.

1.0 ∈ S, by taking a = 0. So S 6= φ. (2 points)

2. Let x, y ∈ S, say, x = (0, a)t, y = (0, b)t : a, b ∈ R. Then x+ y = (0, a+ b)t : a+ b ∈ R, and
so x+ y ∈ S. . (2 points)

3. Let x = (0, a)t : a ∈ R,α ∈ R. So αx = (0, αa)t ∈ S. So, S is a subspace of R2.. (2
points)

Q4: (15 points)

1. Let V = P3, and let U = {f ∈ V : f(0) = f(1) = 0}. Find a basis for U
Let U = {f ∈ V ; f(x) = ax2 + bx + c, a, b, c ∈ R, f(0) = f(1) = 0}. So, c = 0, and
a+ b + c = 0, so b = −a.(3 points). Thus, U = {ax2 − ax, a ∈ R}. So a basis for U is
x2 − x. (2 points)

2. Let V = R2×2, and let S = {A ∈ V : At = A}. Find a basis for S.

S = {A ∈ V : At = A}, A =

(

a b

b c

)

. (2 points) A basis for S is

(

1 0
0 0

)

,
(

0 1
1 0

)

,

(

0 0
0 1

)

.(3 points)

3. Let V = P2, B = [1− x, 2 + x], F = [1 + 2x, 2− 3x]. Find the transition matrix S from
B into F

U1 the transition matrix from B = [1−x, 2+x]intoE = [1, x] is

(

1 2
−1 1

)

. (2 points)

U2 the transition matrix from F = [1 + 2x, 2 − 3x]intoE = [1, x] is

(

1 2
2 −3

)

. (2

points) So the transition matrix from B into F is U = U−1

2
U1=

1

7

(

1 8
3 3

)

. (1 points)

Or U = ([1− x]F , [2 + x]F ) (1 points), (2 points) [1− x]F , [2 + x]F (2 points)

Q5: (10 points)

1. Let A be an m× n matrix with N(A) 6= {0}. If the system Ax = b is consistent, prove
that Ax = b has infinitely many solutions.

Since N(A) 6= {0}, so Ax = 0 has a free variable and so Ax = b has a free variable. (3
points) And since it is consistent, so it has infinitely many solutions. (2 points)

Or, the solutions of Ax = b are of the form x0 + tz, t ∈ R, where x0 is a solution of
Ax = b, and z ∈ N(A)
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2. Let V = R be the set of real numbers with usual addition and multiplication. Show that
the only subspaces of V are {0}, and R.

Let S 6= {0}. So there exists x ∈ S, x 6= 0 (2 points). So 1

x
∈ R, (1 points)and so

1

x
x = 1 ∈ S (1 points). So if a ∈ R, then a.1 = a ∈ S. (1 points). So S = R

6
Downloaded by qwerty qwerty (a8jjd2tg@duck.com)

lOMoARcPSD|23466816


